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Abstract4

In this paper we analyze the use of Chebyshev polynomials in distributed consensus applications. We5

study the properties of these polynomials to propose a distributed algorithm that reaches the consensus6

in a fast way. The algorithm is expressed in the form of a linear iteration and, at each step, the7

agents only require to transmit their current state to their neighbors. The difference with respect to8

previous approaches is that the update rule used by the network is based on the second order difference9

equation that describes the Chebyshev polynomials of first kind. As a consequence, we show that our10

algorithm achieves the consensus using far less iterations than other approaches. We characterize the11

main properties of the algorithm for both, fixed and switching communication topologies. The main12

contribution of the paper is the study of the properties of the Chebyshev polynomials in distributed13

consensus applications, proposing an algorithm that increases the convergence rate with respect to14

existing approaches. Theoretical results, as well as experiments with synthetic data, show the benefits15

using our algorithm.16

Index Terms - Chebyshev polynomials, distributed consensus, convergence rate.17

I. INTRODUCTION18

Chebyshev polynomials [1] are a powerful mathematical tool that has proven to be very helpful19

in many different fields of science. To name a few, they are used in the modeling of complex20

chemical reaction systems [2], the simulation satellite orbits around the Earth. [3], the numerical21

solution of diffusion-reactions equations with severely stiff reaction terms [4] or the recognition22
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Universidad de Zaragoza, Spain. monti@unizar.es

ar
X

iv
:1

11
1.

48
25

v3
  [

cs
.S

Y
] 

 6
 J

un
 2

01
2



of patterns in images using Support Vector Machine classification [5]. In this paper we study23

the use of these polynomials in the field of distributed consensus applications.24

In sensor networks and multi-agent systems, the consensus problem consists of making the25

whole group of agents to reach a common estimation about a specific measurement. Within the26

control community many different distributed solutions have been proposed in the past years [6]–27

[12]. It is well known that the number of messages required to achieve the consensus depends28

on the network connectivity. Interesting analysis of convergence have been done in [13], [14],29

where consensus methods have been shown to behave in a similar manner as heat differential30

equations and electrical resistive networks respectively. Other interesting approaches analyze the31

convergence with stochastic link failures [15], switching random networks [16] and asynchronous32

consensus [17]. When the size of the network is large, communications between different pairs of33

agents become more difficult due to distance and power constraints. Under these circumstances34

the number of iterations required to reach the consensus is also large. For that reason a lot of35

research has been devoted to mitigate this problem, providing a variety of solutions that reduce36

the time to achieve the consensus.37

Some works present continuous-time solutions to achieve consensus in finite time using non38

linear methods [18]–[20]. The use of numerical integrators affects the number of iterations in39

these approaches because they depend on the number of steps taken by the method. The approach40

in [21] proposes a link scheduling that reaches the consensus in a finite number of steps. However,41

in wireless networks, communications of direct neighbors depend on the distance that separates42

them and therefore, there might be situations in which this method cannot be used because not all43

the links are feasible. Other approaches speed up convergence by sending additional information44

in the messages. Following this idea a multi-hop protocol is presented in [22] and second order45

neighbors are considered in [23]. Unfortunately, the amount of additional information in both46

cases depends on the topology. This implies that there might be situations in which large messages47

must be sent.48

The design of the adjacency matrix has been the focus of several works. For instance, the49

work in [24] provides the optimal weights for the matrix, as well as good approximations that50

do not require any global knowledge about the network topology. Different algorithms to solve51

the optimization problem of finding the best matrix are proposed in [25]. Another optimization52

method is proposed in [26], in this case considering a shift-registers method with a fixed gain.53



These approaches indeed improve the convergence speed, nevertheless, they can still be combined54

with additional techniques in order to accelerate even more the consensus.55

The distributed evaluation of polynomials, as well as the use of previous information in the56

algorithm, have turned out to be easy ways to speed up the consensus, also keeping the good57

properties found in standard methods. The minimal polynomial of the adjacency matrix is used58

in [27] and [28]. Once this polynomial is known, the network can achieve the consensus in59

a finite number of communication rounds. Unfortunately, when the topology of the network60

is time-varying this algorithm does not work and for large networks the computation of the61

polynomial can be inefficient. The approach in [29] uses a polynomial of fixed degree with62

coefficients computed assuming the network is known. A consensus predictor is considered63

in [30]. Different second order recurrences with fixed gains are used in [31], [32]. Finally, the64

distributed evaluation of Chebyshev polynomials for consensus has been proposed in [33], [34].65

Although the convergence of some of these algorithms under switching topologies has been66

demonstrated in practice, to the authors’ knowledge there is still a gap in the theoretical analysis67

of the behavior of polynomial evaluation in this case.68

In this paper we try to fill this gap, extending the results presented in [33] about Chebyshev69

polynomials and their use in consensus applications. In [33] we introduced the algorithm, based70

on a second order difference equation, and we studied its convergence to consensus for stochastic71

symmetric matrices in fixed graphs. In this paper we extend the convergence result, considering72

non-symmetric matrices that can have complex eigenvalues. We also provide a complete study73

of the parameters that make the algorithm achieve the optimal convergence rate and we give74

bounds on the selection of these parameters to achieve a faster convergence than using the powers75

of the weighted adjacency matrix. Regarding the case of switching communication topologies,76

we are able to theoretically show that there always exist parameters that make the proposed77

algorithm converge to the consensus. Experiments with synthetic data show the benefits of using78

our algorithm compared to other methods.79

The structure of the paper is the following: In section II we introduce some background80

about the Chebyshev polynomials and distributed consensus. In section III we present the new81

distributed consensus algorithm using Chebyshev polynomials. In sections IV and V we study82

the properties of the algorithm with fixed and switching communication topologies respectively.83

In section VI we analyze the behavior of the algorithm in a simulated setup. Finally in section84



VII the conclusions of the work are presented. In order to simplify the reading of the manuscript85

we have moved to an appendix some of the proofs of the theoretical results in sections III and86

IV. We have left in the text only the proofs that contain convenient information to follow the87

analysis.88

II. Background on Chebyshev Polynomials and Distributed Consensus89

In this paper we consider Chebyshev polynomials of the first kind [1]. We denote the Cheby-90

shev polynomial of degree n by Tn(x). These polynomials satisfy91

Tn(x) = cos(n arccosx), for all x ∈ [−1, 1], (1)

and |Tn(x)| > 1 when |x| > 1, for all n ∈ N. A more general way to define these polynomials92

in the real domain is using a second order recurrence,93

T0(x) = 1, T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.
(2)

By the theory of difference equations [35], the direct expression of (2) is determined by the94

roots τ1 and τ2 of the characteristic equation,95

Tn(x) =
1

2
(τ1(x)n + τ2(x)n), (3)

where τ1(x) = x−
√
x2 − 1 and τ2(x) = x+

√
x2 − 1 = 1/τ1(x). In the paper we take96

τ(x) =

 x−
√
x2 − 1, if x ≥ 0

x+
√
x2 − 1, if x < 0

, (4)

so that |τ(x)| < 1 and |τ(x)|−1 > 1 for all |x| > 1, and therefore,97

Tn(x) =
1

2
(τ(x)n + τ(x)−n) =

1

2
τ(x)−n(1 + τ(x)2n). (5)

It is clear that if |x| > 1, then Tn(x) goes to infinity as n grows. If |x| < 1, then τ(x) is a98

complex number with |τ(x)| = 1 and |Tn(x)| ≤ 1, ∀n, as stated in eq. (1).99

For the analysis in the paper, it is also convenient to describe the behavior of Chebyshev100

polynomials evaluated in complex numbers. For any z ∈ C, Chebyshev polynomials, Tn(z), on101

the complex plane can also be expressed by (5) where τ(z) is defined now by102

τ(z) =

 z −
√
z2 − 1, if |z −

√
z2 − 1| < 1

z +
√
z2 − 1, otherwise

, (6)



and again |τ(z)| ≤ 1 and |τ(z)|−1 ≥ 1 for all z. However, note that Chebyshev polynomials103

evaluated in a complex number, Tn(z), go always to infinity as n grows.104

Consider now a set of N agents, V = {1, . . . , N}, with limited communication capabilities.105

A distributed algorithm achieves consensus if, starting with initial conditions xi(0) ∈ R, and106

using only local interactions between agents, xi(n) = xj(n),∀i, j ∈ V , as n → ∞. The107

interactions between the agents are modeled using an undirected graph G = {V , E}, where108

E ⊂ V × V describes the communications between pairs of agents. In this way, agents i and j109

can communicate if and only if (i, j) ∈ E . The neighbors of one agent i ∈ V are the subset of110

agents that can directly communicate with it; i.e., Ni = {j ∈ V | (i, j) ∈ E}. Initially, let us111

assume that the communication graph is fixed and connected.112

The discrete time distributed consensus algorithm based on the weighted adjacency matrix113

associated to the communication graph [6] is114

xi(n) = aiixi(n− 1) +
∑
j∈Ni

aijxj(n− 1), (7)

with xi(0) = xi. The algorithm can also be expressed in vectorial form as115

x(n) = Ax(n− 1), (8)

where x(n) = (x1(n), . . . , xN(n))T and A = [aij] ∈ RN×N , is the weighted matrix.116

Assumption 2.1 (Stochastic Weights): A is row stochastic and compatible with the underlying117

graph, G, i.e., it is such that aii 6= 0, aij 6= 0 only if (i, j) ∈ E and A1 = 1.118

Since the communication graph is connected, by Assumption 2.1, A has one eigenvalue λ1 = 1119

with associated right eigenvector 1 and algebraic multiplicity equal to one. The rest of the120

eigenvalues, real or complex, satisfy |λi| < 1, i = 2, . . . , N. Without loss of generality, let us121

suppose that all the eigenvalues are simple. We denote by λ2 the second largest and λN the122

smallest real eigenvalues and we assume that max{|λ2|, |λN |} > |λi|, i = 3, . . . , N − 1.123

Any initial conditions x(0) can be expressed as a sum of eigenvectors of A,124

x(0) = v1 + . . .+ vN ,

where vi is a right eigenvector associated to the eigenvalue λi. Specifically, v1 will be of the125

form (wT
1 x(0)/wT

1 1)1, with w1 a left eigenvector of A associated to λ1. It is clear that126

x(n) = Anx(0) = v1 + λn2v2 + . . .+ λnNvN ,



and since |λi| < 1, i 6= 1, the consensus is asymptotically reached by all the agents in the127

network, i.e., limn→∞ x(n) = v1 = (wT
1 x(0)/wT

1 1)1. The asymptotic convergence implies that128

the exact consensus value will not be achieved in a finite number of iterations. In practice, the129

consensus is said to be achieved when |xi(n) − xj(n)| < tol for all i and j, and a prefixed130

error tolerance tol. The convergence speed of (8) depends on max(|λ2|, |λN |). When the size131

of the network is large or the number of links is small this value is usually close to one, which132

means that the algorithm requires many iterations before obtaining a good approximation of the133

final solution.134

When the communication topology changes with the time, G(n) = {V , E(n)}, eq. (8) becomes135

x(n) = A(n)x(n−1), where the different weight matrices are defined according to their respective136

underlying communication graphs. If the different weight matrices satisfy Assumption 2.1, and137

the sequence of matrices is not degenerated, the algorithm is still proved to achieve consensus.138

We refer the reader to [6] for further information about this case.139

III. Consensus algorithm using Chebyshev polynomials140

The distributed evaluation of polynomials provides an easy way to speed up the consensus,141

keeping the good properties found in standard methods. The main idea consists in designing a142

distributed linear iteration such that the execution of a fixed number of n steps is equivalent143

to the evaluation of some polynomial, Pn(x), in the fixed matrix A [27], [29]. The polynomial144

must satisfy that Pn(1) = 1 and |Pn(x)| < 1 if |x| < 1. In this way, successive evaluations of145

the polynomial in A will lead to the consensus. The choice of the polynomial determine the146

convergence speed of the algorithm, given by maxλi |Pn(λi)|, with λi the eigenvalues of A.147

Two reasons motivate the choice of Chebyshev polynomials for the consensus problem:148

• By using the recurrent definition (2), instead of considering a polynomial of fixed degree we149

can evaluate Chebyshev polynomials of higher and higher degree as successive iterations150

of the algorithm are executed.151

• Chebyshev polynomials have the mini-max property [1]. This property says that, among all152

the monic polynomials of degree n, the polynomial 21−nTn(x) is the one that minimizes153

the uniform norm on the interval [−1, 1]. This property is indeed quite convenient for our154

purposes. If the matrix A is unknown, using the Chebyshev polynomials we are minimizing155

maxλ∈[−1,1] Pn(λ), therefore, getting high chances to obtain a good convergence rate.156



However, the monic version of the Chebyshev polynomials does not satisfy 21−nTn(1) = 1.157

In order to keep this property we perform a linear transformation of Tn(x), using two real158

coefficients λm, λM , with 1 > λM > λm > −1, bringing the interval [λm, λM ] to [−1, 1]. In this159

way, we define the polynomial160

Pn(x) =
Tn(cx− d)

Tn(c− d)
, with c =

2

λM − λm
, d =

λM + λm
λM − λm

, (9)

which, for all n, has the following properties:161

• if x ∈ [λm, λM ], then cx− d ∈ [−1, 1]162

• Pn(1) = 1 and Pn(λM + λm − 1) = (−1)n163

• |Pn(x)| < 1 for all x ∈ (λM + λm − 1, 1) and |Pn(x)| ≥ 1 otherwise.164

The polynomial defined in (9) satisfies the recurrence165

Pn(x) = 2
Tn−1(c− d)

Tn(c− d)
(cx− d)Pn−1(x)− Tn−2(c− d)

Tn(c− d)
Pn−2(x) (10)

and the consensus rule x(n) = Pn(A)x(0) is defined by166

x(1) = P1(A)x(0) =
1

T1(c− d)
(cA− dI)x(0),

x(n) = Pn(A)x(0) =

(
2
Tn−1(c− d)

Tn(c− d)
(cA− dI)Pn−1(A)− Tn−2(c− d)

Tn(c− d)
Pn−2(A)

)
x(0)

= 2
Tn−1(c− d)

Tn(c− d)
(cA− dI)x(n− 1)− Tn−2(c− d)

Tn(c− d)
x(n− 2), n ≥ 2,

(11)

with I the identity matrix of dimension N . Notice that this consensus rule is well designed to167

be executed in a distributed fashion.168

When the topology of the network changes, the recurrent evaluation of Chebyshev polynomials169

(11) can still be used. The time-varying version of the algorithm is equivalent to (11) replacing170

the constant weight matrix A by the weight matrix at each step A(n). Although this is no longer171

equivalent to the distributed evaluation of a Chebyshev polynomial, a theoretical analysis about172

its convergence properties is still possible. Algorithm 1 shows a possible implementation of the173

algorithm. In the rest of the paper we analyze, both in theory and practice, the main properties174

of this algorithm for fixed and switching communication topologies.175



Algorithm 1 Consensus algorithm using Chebyshev polynomials - agent i
Require: xi(0), MaxIt ∈ N, λm, λM ,

1: – Initialization

2: c = 2/(λM − λm); d = (λM + λm)/(λM − λm);

3: T (0) = 1; T (1) = c− d;

4: – First Communication Round

xi(1) =
1

T (1)
(c

∑
j∈Ni(n)

aijxj(0) + (c aii − d)xi(0));

5: for n = 2, . . . ,MaxIt do

6: T (n) = 2(c− d)T (n− 1)− T (n− 2);

7: – Communication Between Neighbors

xi(n) = 2
T (n− 1)

T (n)
(c

∑
j∈Ni(n)

aijxj(n− 1) + (c aii − d)xi(n− 1))− T (n− 2)

T (n)
xi(n− 2);

8: end for

IV. Analysis with a Fixed Communication Topology176

In this section we analyze the main properties of the proposed algorithm when the network177

topology is fixed. In particular we first study the convergence conditions of the algorithm. Next,178

we find the parameters that maximize the convergence speed. Finally, we give bounds on the179

selection of these parameters to satisfy that our algorithm achieves the consensus faster than (8).180

Theorem 4.1 (Convergence of the algorithm): Let A be diagonalizable, fulfilling Assumption181

2.1, and parameters λm and λM such that 1 > λM > λm > −1. If the minimum real eigenvalue182

of A satisfies λN > λm + λM − 1 and the complex eigenvalues, λz, of A satisfy |τ(cλz − d)| >183

τ(c − d), then the recurrence in eq. (11) converges to the consensus state, limn→∞ x(n) =184

wT
1 x(0)1/wT

1 1. Besides, the convergence rate is given by185

max
λi 6=1

|Tn(cλi − d)|
Tn(c− d)

(12)

Proof. See the Appendix.186

Note that the conditions in Theorem 4.1 are easy to fulfill without the necessity of knowing the187

eigenvalues of the matrix A. For the real eigenvalues, any symmetric selection of the parameters,188

i.e., −λm = λM , 0 < λM < 1, satisfies the condition in Theorem 4.1. The condition on the189

complex eigenvalues has some geometrical meaning [1]. Imposing that |τ(cλz − d)| > τ(c− d)190

is equivalent to require that λz is inside an ellipse in the complex plane centered at (d/c, 0), or191



equivalently ((λM + λm)/2, 0), and with semi-axis e1 = (c− d)/c and e2 = (
√

(c− d)2 − 1)/c192

(see Fig 1). In practice, any parameters that ensure convergence for the real eigenvalues also193

ensure convergence for the complex ones. We have observed that if A is defined using well194

known distributed methods [24], the complex eigenvalues, when there are any of them, have195

always a very small modulus. For that reason, in the rest of the section we will assume that the196

matrix A has only real eigenvalues.

Fig. 1. Ellipse where all the eigenvalues must be contained in order to achieve the consensus. In this particular example we

have chosen λM = 0.9 and λm = −0.5. Note that when the imaginary part of the eigenvalues is zero convergence is achieved

if λM + λm − 1 > λ > 1 as stated in Theorem 4.1.

197

Next, we are interested in knowing the optimal selection of λm and λM to maximize the198

convergence speed. From Theorem 4.1 we know that the convergence rate is given by the factor199

max
λi 6=1

|Tn(cλi − d)|
Tn(c− d)

= max

{
|Tn(cλN − d)|
Tn(c− d)

,
|Tn(cλ2 − d)|
Tn(c− d)

}
. (13)

If the conditions in Theorem 4.1 are satisfied, for any λ, a simple calculation using eq. (5)200

leads to201

|Tn(cλ− d)|
Tn(c− d)

=

(
τ(c− d)

|τ(cλ− d)|

)n
1 + τ(cλ− d)2n

1 + τ(c− d)2n
. (14)

It is clear that when n→∞, the second fraction in the right side of (14) goes to 1. Therefore,202

the convergence rate is determined by203

max

{
τ(c− d)

|τ(cλN − d)|
,

τ(c− d)

|τ(cλ2 − d)|

}
(15)



If [λN , λ2] ⊆ [λm, λM ], then maxλi |Tn(cλi−d)| ≤ 1 and therefore we can define the convergence204

factor as205

ν(c, d) =


τ(c− d), if [λN , λ2] ⊆ [λm, λM ]

max

{
τ(c− d)

|τ(cλN − d)|
,

τ(c− d)

|τ(cλ2 − d)|

}
, otherwise.

(16)

The optimum values of λm and λM will be those that lead to the minimum value of ν(c, d).206

In [33] it was proved that among the values of the parameters satisfying [λN , λ2] ⊆ [λn, λM ],207

the ones that yield the minimum convergence factor are precisely λm = λN and λM = λ2. Let208

us see that they are also the optimum parameters in the case [λN , λ2] 6⊆ [λn, λM ].209

Theorem 4.2 (Optimal parameters): The convergence rate ν(c, d) attains its minimum value210

for the parameters c, d such that λM = λ2 and λm = λN211

Proof. See the Appendix.212

This implies that in order to achieve the maximum convergence speed, some knowledge about213

the network is required. However, even if the network topology is unknown, it is important to214

study when the algorithm converges in a faster way than (8). Since the symmetric assignation215

of the parameters, λM = −λm, always ensures convergence, in the last result of this section we216

provide bounds for this particular case that also converge faster than (8).217

Theorem 4.3 (Faster convergence than An): For any matrix A satisfying Assumption 2.1, let218

λ = max(|λ2|, |λN |) be the convergence rate in (8). For any219

0 < λM <
2λ

λ2 + 1
, and λm = −λM , (17)

Pn(λ) goes to zero faster than λn when n goes to infinity. Therefore the algorithm in eq. (11)220

converges to the consensus faster than the one in eq. (8).221

Proof. See [33].222

Remark 4.4: The above result shows that there always exist parameters that make the proposed223

algorithm faster than (8). Therefore, if the algorithm is executed using the optimal parameters,224

it will also converge to the average faster than (8).225

Finally, a graphical comparison of xn, Tn(x) and Pn(x) is depicted in Fig. 2 for n = 4, in226

the interval [−1, 1]. Note that Tn(x) cannot be used in the consensus process because at some227

points it would not reduce the error. On the other hand, as we have shown along the section,228

Pn(x) satisfies the conditions required to achieve consensus. Also notice that Pn(x) has closer229
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Fig. 2. Plot of the polynomials xn, Tn(x) and Pn(x). In the figure n = 4, λm = −0.95 and λM = 0.95.

values to zero than xn in points close to −1 and 1, which supports the theory that the error230

associated to eigenvalues in that regions will be reduced faster.231

V. Analysis with a Switching Communication Topology232

We are interested now in the study of the recursive evaluation of (11) when the topology of233

the network, and therefore the matrix A, changes at different iterations. Given initial conditions234

x(0), the distributed recurrence now looks:235

x(1) =
1

T1(c− d)
(cA(1)− dI)x(0),

x(n) = 2
Tn−1(c− d)

Tn(c− d)
(cA(n)− dI)x(n− 1)− Tn−2(c− d)

Tn(c− d)
x(n− 2), n ≥ 2.

(18)

Note that this recurrence is suitable for switching weight matrices. However, the evaluation of236

the recurrence is no longer equivalent to Pn(A)x(0), for some matrix A. This means that we237

are not exactly evaluating the transformed Chebyshev polynomials in the eigenvalues of some238

matrix anymore. Nevertheless, a theoretical analysis is still possible.239

For this analysis, the matrices A(n) now require the following assumption.240

Assumption 5.1 (Non-Degenerate Stochastic Weights): The matrices A(n) are row stochastic,241

symmetric, non-degenerate and compatible with the underlying graphs, G(n), for all n, i.e., they242

are such that A(n)1 = 1, aii(n) > ε and aij(n) ∈ {0} ∪ [ε, 1) with 0 < ε < 1 some fixed243

constant.244

Recalling the analysis done in the previous section, the evaluation of Pn(A) was separated into245

the evaluation of its eigenvalues and eigenvectors, Pn(λi)vi = Tn(cλi − d)/Tn(c − d)vi. In the246



switching case we must take into account that both λi and vi change at each iteration. Moreover,247

since the eigenvectors of different matrices are related we must also consider these relations.248

For the moment, as a first simplification of the problem, let us forget about the changes in vi249

and the parameters c and d and let us study the scalar evaluation of the Chebyshev recurrence250

(2) with different λi at each iteration. That is,251

T0(Λ) = 1, T1(Λ) = λ(1), Tn(Λ) = 2λ(n)Tn−1(Λ)− Tn−2(Λ), (19)

where Λ = {λ(n)}, n ∈ N is a succession of real numbers. Specifically, we are interested in252

the behavior of |Tn(Λ)|.253

Proposition 5.2: Suppose there exists values λmin and λmax such that λ(n) ∈ [λmin, λmax], ∀n ∈254

N, λmin < 0 < λmax and |λmin| ≤ λmax. Then255

|Tn(Λ)| ≤ |Tn(Λ∗)| (20)

where Λ∗ = {λ∗(n)} is a succession defined by256

λ∗(n) =

λmax if n odd,

λmin if n even,
(21)

Proof. For abbreviation, in the proof we will denote the sign of Tn(Λ) by s(Tn).257

Let us note that, if s(Tn−1) = s(Tn−2), by choosing λ(n) < 0, then258

|Tn(Λ)| = |2λ(n)Tn−1(Λ)− Tn−2(Λ)| = |2λ(n)Tn−1(Λ)|+ |Tn−2(Λ)|, (22)

independently of n. The choice of λ(n) > 0 when s(Tn−1) = s(Tn−2) implies that259

|Tn(Λ)| = |2λ(n)Tn−1(Λ)− Tn−2(Λ)| < |2λ(n)Tn−1(Λ)|+ |Tn−2(Λ)|. (23)

Taking these two facts into account we can see that260

s(Tn−1) = s(Tn−2)⇒ arg max
λ(n)
|Tn(Λ)| = λmin. (24)

Besides, in this situation, choosing λ(n) < 0 yields s(Tn) 6= s(Tn−1).261

Now, if s(Tn−1) 6= s(Tn−2) and λ(n) > 0, then eq. (22) is again true. On the other hand,262

choosing λ(n) < 0 in this situation implies (23). Thus,263

s(Tn−1) 6= s(Tn−2)⇒ arg max
λ(n)
|Tn(Λ)| = λmax. (25)

Also, if s(Tn−1) 6= s(Tn−2) and λ(n) > 0, then s(Tn) = s(Tn−1).264



Finally, noting that inequality (20) holds for n = 0 and 1, and s(T0(Λ
∗)) = s(T1(Λ

∗)), then265

using (24) and (25) the succession (21) is obtained and the result is proved.266

Corollary 5.3: If |λmin| > λmax then the bound in eq. (20) is true taking Λ∗ = {λ∗(n)} with267

λ∗(n) =

λmax if n even,

λmin if n odd,
(26)

The previous proposition reveals that the Chebyshev recurrence evaluated in a succession of268

different real numbers does not keep the behavior shown when it is evaluated with a constant269

value. The next Lemma provides a bound for the direct expression of this behavior.270

Lemma 5.4: Let us suppose that the conditions of Proposition 5.2 are true. Then271

|Tn(Λ∗)| ≤ κ1(λmax)
n, where κ1(λmax) = λmax +

√
λ2max + 1 (27)

Proof. Let us define the recurrence272

T ∗0 (λ) = 1, T ∗1 (λ) = λ, T ∗n(λ) = 2λT ∗n−1(λ) + T ∗n−2(λ), (28)

which satisfies that273

|Tn(Λ∗)| ≤ T ∗n(λmax). (29)

According to recurrence (28), the succession {T ∗n(λmax), n = 0, 1, . . .} satisfies the homo-274

geneous difference equation T ∗n(λmax)− 2λmaxT
∗
n−1(λmax)− T ∗n−2(λmax) = 0. By the theory of275

difference equations [35], the solution to this equation is determined by the roots κ1 and κ2 of276

the characteristic polynomial. In this case277

κ1(λmax) = λmax +
√
λ2max + 1 > 1, and κ2(λmax) = λmax−

√
λ2max + 1 = −1/κ1(λmax). (30)

Since κ1(λmax) 6= κ2(λmax), the direct expression of T ∗n(λmax) is278

T ∗n(λmax) = Aκ1(λmax)
n +Bκ2(λmax)

n (31)

where A and B depend on the initial conditions T ∗0 (λmax) and T ∗1 (λmax). In our case A = B =279

1/2 and280

|Tn(Λ∗)| ≤ T ∗n(λmax) =
1

2
(κ1(λmax)

n + (−1/κ1(λmax))
n) ≤ κ1(λmax)

n. (32)

281



This direct expression (27) will be helpful in the development of the convergence analysis282

dealing with changing matrices and the parameters c and d. We provide now the main result,283

showing the convergence of the algorithm for the switching case.284

Theorem 5.5: Allow the communication graph, G(n), to arbitrarily change in such a way that285

it is connected for all n, with the weight matrices, A(n), designed according to Assumption 5.1.286

Let us denote λi(n), i = 1, . . . , N, the eigenvalues of A(n) and287

λmax = max
n

max
i=2,...,N

λi(n), and λmin = min
n

min
i=2,...,N

λi(n). (33)

Given fixed parameters c and d, a sufficient condition to guarantee convergence to consensus of288

iteration (18) is289

κ1(max{|cλmax − d|, |cλmin − d|})τ(c− d) < 1. (34)

Proof. See the Appendix.290

The next corollaries give more specific values of λM and λm, and therefore on c and d, that291

satisfy the condition in the theorem to achieve convergence.292

Corollary 5.6: Assume |cλmax−d| > |cλmin−d| and a symmetric assignation, −λm = λM =293

λ, of the parameters. Then if294

λ2 < (1− λ2max), (35)

the algorithm converges.295

Proof. Recall that with this assignation c = 1/λ and d = 0. Substituting κ1 and τ by their296

values in eq. (34) and doing some simplifications eq. (35) is obtained.297

If we prefer to assign non-symmetric values to the parameters, the following corollary provides298

a possible assignation that satisfies Theorem 5.5.299

Corollary 5.7: Assume now that the values of λmax and λmin, or some bounds, are known.300

If λM and λm satisfy that301

λM + λm = λmax + λmin, (36)

and302

λM − λm <
√

4(1− λmax)(1− λmin), (37)

then the algorithm achieves the consensus.303



Proof. If we know the values of λmax and λmin, the choice of λm and λM can be done in such304

a way that305

|cλmin − d| = |cλmax − d|. (38)

With this assignation we are minimizing the value of max{|cλmax−d|, |cλmin−d|} and therefore,306

the convergence condition is easier to fulfill. Clearing (38) yields (36). With this first condition,307

doing some, rather tedious, calculations in eq. (34) the second condition (37) is obtained.308

We discuss now in detail the meaning of the theorem and its implications.309

Remark 5.8: Note that the theorem provides just a sufficient condition to ensure convergence.310

This means that although the given bounds seem very restrictive, in practice, even if we choose311

large values of λM and λm, there will be convergence. Moreover, an important consequence of312

corollaries 5.6 and 5.7 is that, independently on the changes of the network topology, there are313

always parameters such that the method converges to the consensus.314

Remark 5.9: It is also interesting to note the different behavior of the algorithm when the315

topology changes with respect to the fixed case. In the latter case, in general it is better to316

select the parameters λM and λm with large modulus to ensure that all the eigenvalues of317

the weight matrix are included in the interval [λm, λM ]. However, in the switching case, it318

is necessary to choose them small so that c − d is large enough to guarantee convergence.319

This happens because the more variation on the eigenvalues of the weight matrices, the larger320

κ1(max{|cλmax− d|, |cλmin− d|}) is. Therefore, the larger N , the smaller (in modulus) λM and321

λm should be chosen.322

Remark 5.10: The analysis followed to proof convergence of our algorithm is also interesting323

because it can be applied to more general consensus algorithms based on recurrences of order324

greater than one. Given a recurrence similar to (18), if a scalar difference equation is found325

such that its solution bounds the original one in the worst case, a convergence result using326

the behavior of this recurrence can be obtained. To the authors’ knowledge, this is the first327

theoretical result proving convergence of a distributed algorithm based on polynomials under328

switching communication topologies.329

Finally, we provide a discussion about the assumptions we have made to proof convergence.330

• Symmetric weight matrices: If the weight matrices are not symmetric, then we cannot ensure331

that the norm of the matrices used to change the base of eigenvectors is equal to 1. In such332



a case the convergence condition in Theorem 5.5 would be Kκ1(max{|cλmax−d|, |cλmin−333

d|})τ(c−d) < 1, with K ≥ 1 some positive constant. It is also important to remark that, in334

this situation, the left eigenvector associated to λ1(n) is not constant anymore for different335

matrices. This makes the theoretical analysis of the behavior more tedious because at each336

iteration it is affected by these eigenvectors, which do not tend to zero with n. However,337

convergence can still be achieved.338

• Connectivity of the graphs: The assumption about the connectivity of each graph is more339

restrictive than in other approaches, e.g., [9], where only joint connectivity is imposed. In340

our analysis, if one graph is disconnected, then λmax = 1 and the sufficient condition (34)341

is never satisfied. This, of course, is caused because we are considering the worst case342

scenario, so that we can model the behavior of the Chebyshev recurrence as the nth power343

of some quantity. However, in practice, even if some graphs are disconnected, the errors344

associated to the eigenvectors associated to the eigenvalue 1 are also canceled. We show345

this in simulations in section VI.346

VI. Simulations347

In this section we analyze our algorithm in a simulated environment. Monte Carlo experiments348

have been designed to study the convergence of the method and the influence of the parameters349

λm and λM in the algorithm.350

A. Evaluation with a fixed communication topology351

In a first step we study the algorithm when the topology of the network is fixed. We analyze352

the convergence speed for different weight matrices, comparing it with other approaches, and353

the influence of the parameters λM and λm in the performance of the algorithm.354

In the experiments we have considered 100 random networks of 100 nodes. For each net-355

work the nodes have been randomly positioned in a square of 200 × 200 meters. Two nodes356

communicate if they are at a distance lower than 20 meters. The networks are also forced to be357

connected so that the algorithms converge. After that, 100 different random initial values have358

been generated in the interval (0, 1)N , giving a total of 10000 trials to test the algorithm.359



1) Convergence speed of the algorithm: We evaluate how our algorithm behaves compared to360

other methods using different weighted adjacency matrices. For each communication network we361

have computed 4 different weighted adjacency matrices. The first one, Ald, uses the “local degree362

weights”, the second one, Abc, uses the “best constant factor” and the third one, Aos, computes an363

approximation of the “optimal symmetric weights”. For more information about these matrices364

we refer the reader to [24]. These three matrices are symmetric, for that reason we have included365

in the experiment a fourth non-symmetric matrix, Ans, computed by aij = 1/(Ni+1) if j ∈ Ni∪i366

and aij = 0 otherwise.367

We have compared our method with the powers of the matrices using (8), the Newton’s368

interpolation polynomial of degree 2 proposed in [29], N2(x) = (x−α)2/(1−α)2, and the second369

order recurrence with fixed weights proposed in [32], Fn(x) = βxFn−1(x) + (1 − β)Fn−2(x).370

We have used the values α = (λ2 + λN)/2 and β = 2/(1 +
√

1− λ22), which give the best371

convergence rate for the two algorithms. For the Chebyshev polynomials we have also assigned372

the optimal parameters λM = λ2 and λm = λN . We have measured the average number of373

iterations required to obtain an error, e = ‖x(n) − (wT
1 x(0)/wT

1 1)1‖∞, smaller than a given374

tolerance.375

TABLE I

NUMBER OF ITERATIONS FOR DIFFERENT ALGORITHMS AND TOLERANCES

Method\Tolerance 10−2 10−3 10−4 10−5 Method\Tolerance 10−2 10−3 10−4 10−5

An
ld 396.1 899.0 1422.9 1902.9 N2(Ald) 381.4 748.9 1120.8 1474.5

An
bc 470.5 892.4 1307.4 1691.5 N2(Abc) 475.7 897.0 1109.9 1493.7

An
os 390.8 735.1 1092.0 1446.0 N2(Aos) 426.8 792.4 964.3 1225.2

An
ns 308.9 698.4 1116.7 1521.2 N2(Ans) 302.6 604.1 911.5 1216.4

Fn(Ald) 45.7 71.9 98.0 124.2 Pn(Ald) 41.8 62.2 82.6 103.0

Fn(Abc) 45.2 67.4 91.2 114.6 Pn(Abc) 44.6 66.4 88.1 109.9

Fn(Aos) 42.2 62.9 83.3 103.6 Pn(Aos) 42.1 62.6 83.0 103.4

Fn(Ans) 40.8 63.9 86.8 109.8 Pn(Ans) 38.6 57.1 75.6 94.1

Table I shows the results of the experiment. For any matrix our algorithm is the one that376

reaches the consensus first. It is remarkable the speed up compared to the powers and the377

Newton method. Moreover, considering that the initial error is upper bounded by 1, note that378



our algorithm is able to reduce the error by five orders of magnitude (10−5) in around N = 100379

iterations (103.0, 109.9, 103.4 and 94.1 iterations in the table), which is the size of the network.380

An interesting detail is that our algorithm converges faster using the “local degree weights”,381

Ald(103.0), and the “non-symmetric weights”, Ans(94.1), than using the other two matrices382

(109.9 and 103.4), even though the second largest eigenvalue of the other two matrices is smaller.383

This behavior happens because the eigenvalues of Abc and Aos are symmetrically placed with384

respect to zero whereas for Ald and Ans |λN | < λ2 (an example can be found in [24]). As a385

consequence, c− d is larger and the algorithm converges faster. This is indeed very convenient386

because the “local degree weights” and the “non-symmetric weights” can be easily computed in387

a distributed way without global information, whereas the other two require the knowledge of388

the whole topology.389

Regarding the non-symmetric weights, we have observed that λ2 is, in general, small compared390

to the second eigenvalue of the symmetric matrices. Since the eigenvalues of Ans also satisfy that391

|λN | < λ2, the convergence for this matrix is the fastest. Also note that these matrices are the392

easiest to compute. On the other hand, when using symmetric weight matrices the convergence393

value is known to be the average of the initial conditions whereas when using non-symmetric394

weights the convergence value depends on the matrix.395

2) Dependence on the parameters λM and λm: So far we have evaluated the convergence396

speed of our algorithm only considering the optimal parameters, which implies the knowledge397

of the eigenvalues of the weight matrix. However, in most situations the nodes will have no398

knowledge about these eigenvalues. We analyze now the convergence rates of our algorithm399

when it is run using sub-optimal parameters. In this case, for simplicity we have only considered400

Ald in the experiment.401

The results are in Table II. The table shows the average number of iterations required to402

have an error lower than 10−3. The number of iterations is in all the cases larger than in403

Table I (62.2 iterations) but anyway, the results are in most cases also good. The only problem404

appears when λM + λm − 1 > λN because the algorithm diverges (cells with ∞ in the table).405

Nevertheless, the number of iterations is almost always smaller than using the powers of Ald and406

the Newton polynomial (899.0 and 748.9 iterations in Table I respectively). The results compared407

to Fn evaluated with the optimal parameter (71.9 it. in Table I) seem to be poor. However, the408

optimal β requires the knowledge of λ2 which, right now, we are assuming it is unknown. For409



TABLE II

NUMBER OF ITERATIONS USING SUB-OPTIMAL PARAMETERS AND TOLERANCE 10−3

λm\λM 0.2 0.5 0.8 0.9 0.95 0.999

-0.2 713.8 563.7 355.2 ∞ ∞ ∞

-0.5 798.1 630.4 397.2 279.0 194.5 75.9

-0.8 874.3 690.6 435.2 305.6 213.1 83.1

-0.9 898.3 709.5 447.0 314.0 219.0 85.4

-0.95 910.0 718.8 453.0 318.1 221.8 86.5

-0.999 919.4 726.0 457.6 321.3 224.0 87.4

Fn 757.5 672.4 463.9 320.9 227.1 93.0

that reason, in the last row of Table II we have included the results using Fn evaluated with410

β = 2/(1+
√

1− λ2M), i.e., with the same estimation of λ2 used for the Chebyshev polynomials.411

In this case we observe again that both methods present a similar performance when using the412

same parameters. The degree of freedom given by λm is what differs in the algorithms. By413

adjusting this parameter we can reduce the number of iterations in our algorithm.414

Another advantage of using our algorithm with the weight matrix Ald, besides the computation415

using local information, is that usually its smallest eigenvalue, λN , is a negative value close to416

zero (in our simulations it has never valued less than -0.5). The second largest eigenvalue depends417

on how many nodes has the network and the number of links, but in general this eigenvalue is418

close to one. Therefore by choosing λm = −0.5 and λM ' 1 there is a great chance to obtain a419

good convergence rate and almost no risk of divergence, see for example the cell in the second420

row and sixth column of Table II (153.7). A safer choice of parameters is λm = −λM , which421

we know that has good convergence rates. In this case it is also convenient to choose λM ' 1422

to ensure that all the eigenvalues are contained in [λm, λM ].423

B. Evaluation with a switching communication topology424

Let us see how the algorithm behaves when the topology of the network changes at different425

iterations. We start by showing the convergence in an illustrative example where the conditions426

of Theorem 5.5 are satisfied. After that we run again Monte Carlo experiments to analyze the427

algorithm in more realistic situations, where the conditions of Theorem 5.5 do not always hold.428



1) Illustrative Example: The communication network considered, composed by 20 nodes, is429

depicted in Fig. 3 (top left), which is connected. In order to satisfy the conditions of Theorem 5.5430

at each iteration we have randomly added some links to the network. In this way all the topologies431

remain connected and the parameters λmax and λmin correspond to the second maximum and the432

smallest eigenvalues of the initial weight matrix. Using the local degree weights, which return433

a symmetric matrix, these parameters are λmax = 0.9477 and λmin = −0.1922. Figure 3 top434

middle and top right depict the evolution of x(n) using (18) with the parameters of Corollary435

5.6, λM = −λm = 0.3190, and Corollary 5.7, λM = 0.6274, λm = 0.1282, respectively.436

The evolution of x(n) using (8) is shown in Fig. 3 bottom left. It is interesting to note the437

similarity of this graphic with the Chebyshev recurrence using the symmetric parameters given438

by Corollary 5.6 (top middle). Finally, to remark that the condition of Theorem 5.5 is a sufficient439

condition in Fig. 3 bottom middle and bottom right we show that the algorithm also converges440

to the consensus choosing parameters with larger modulus. In the example we have chosen the441

parameters using the criteria analyzed for the fixed topology situation. Moreover, we can see442

in the graphics that the consensus is achieved in both cases in less iterations (the lines overlap443

earlier in the graphics). Finally, note that the symmetry in all the weight matrices implies that,444

in all the cases, the value of the consensus is the average of the initial conditions.445

2) Analysis of convergence depending on the evolution of network and the parameters of the446

algorithm: We have generated again 100 random networks of 100 nodes like in the fixed topology447

case. To model the changes in the communication topology we have considered three different448

scenarios in the experiment. The first one assumes a fixed initial communication topology and,449

at each iteration the links can fail with constant probability equal to 0.05 (Link Failures). This450

is a usual way to model networks with unreliable or noisy communications. In the second451

scenario we consider a set of mobile agents that randomly move in the environment. In this452

way, at each iteration the communication topology evolves with the proximity graph defined453

by the new positions of the agents (Evolution with Motion). The last scenario assumes a new454

random network at each iteration (Random Network). Although in reality this situation will be455

uncommon, it is interesting to analyze it in order to study the properties of our algorithm. In456

the three scenarios we have used the local degree weights to define the weight matrix at each457

iteration. We have not worried about the network connectivity, letting the experiment to possibly458

have several iterations with disconnected networks. We have set a maximum of 3000 iterations459
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Fig. 3. Illustrative example of the convergence speed of the algorithm with a switching communication topology. The initial

network is shown at the top left graphic. The evolution using (8) is shown at the bottom left and four different executions of

(18) with the same changes in the topology and different parameters are depicted in the rest of the graphics. Notice that even

when the conditions of Theorem 5.5 are not satisfied (bottom middle and bottom right graphics), the algorithm still achieves

the consensus.

per trial.460

Table III shows the number of iterations required by iteration (8) to achieve a precision of461

10−3. We can see that when the network has link failures or evolves with the motion of the nodes462

the number of iterations required by the algorithm is slightly greater than when the topology463

of the network remains fixed (1087.2 and 1032.4 compared to 899.0 in Table I). On the other464

hand, when the network randomly changes at each step, in a few iterations (9.4) the consensus465

is achieved, which makes sense because in this situation the information is spread in a fast way.466

TABLE III

NUMBER OF ITERATIONS WITH TOLERANCE 10−3

Link Failures Evolution with Motion Random Networks

1087.2 1032.4 9.4

467



The number of iterations required to achieve the same accuracy (tolerance of 10−3) using (18)468

with different parameters is shown in Tables IV, V and VI for the Link Failures, Evolution with469

Motion and Random Networks scenarios respectively.

TABLE IV

NUMBER OF ITERATIONS FOR LINK FAILURES

λm\λM 0.25 0.5 0.75 0.9 0.95

-0.25 ≥ 3000 ≥ 3000 1298.1 383.3 267.9

-0.5 ≥ 3000 ≥ 3000 1328.6 418.9 293.5

-0.75 ≥ 3000 ≥ 3000 1356.6 452.3 316.8

-0.9 ≥ 3000 ≥ 3000 1321.0 470.9 330.0

-0.95 ≥ 3000 ≥ 3000 1326.4 476.9 334.5

TABLE V

NUMBER OF ITERATIONS FOR EVOLUTION WITH MOTION

λm\λM 0.25 0.5 0.75 0.9 0.95

-0.25 ≥ 3000 1738.0 600.1 457.2 260.9

-0.5 ≥ 3000 1765.2 665.6 461.9 306.5

-0.75 1726.5 1793.5 703.6 506.3 309.8

-0.9 1740.0 1813.0 708.5 564.9 311.0

-0.95 1744.5 1818.0 710.4 564.9 311.5

TABLE VI

NUMBER OF ITERATIONS FOR RANDOM NETWORKS

λm\λM 0.25 0.5 0.75 0.9 0.95

-0.25 8.1 8.3 11.8 25.4 ∞

-0.5 8.3 8.9 11.6 22.3 42.1

-0.75 8.7 9.6 11.8 21.7 37.8

-0.9 8.9 10.0 12.0 21.7 36.8

-0.95 9.0 10.1 12.0 21.7 36.5

470



With these results we can extract some interesting remarks. First of all, for the parameters471

tested in the experiment, the algorithm is convergent in almost all the cases. Only in the Random472

Networks the algorithm diverges when λM = 0.95 and λm = −0.25 (Table VI first row and473

sixth column). The cells with “≥ 3000” iterations point that for these parameters the algorithm474

converges but in a slow way. A second interesting detail is that, similarly to the fixed topology475

case, we can always find parameters that make our algorithm achieve the consensus faster than476

using (8) (results of Table III). However, it is surprising which parameters achieve this goal in477

the different scenarios. For the Link Failures and the Evolution with Motion, the best parameters478

are exactly the parameters that make the algorithm diverge for the Random Networks scenario,479

i.e., λM = 0.95 and λm = −0.25 with 267.9 and 260.9 iterations respectively. On the other480

hand, the best parameters for the Random Networks are those who give the slowest convergence481

rate for the other two scenarios, i.e., λM = 0.25 and λm = −0.25 with 8.1 iterations in Table482

VI versus more than 3000 in Tables IV and V. The explanation for this phenomenon appears in483

the variability of the eigenvectors of the weight matrices. When the topology changes arbitrarily484

at each iteration, there is a great variability in the eigenvectors of the weight matrices, which485

turns out in a great variability of x(n). This situation is closer to the worst case we have shown486

in section IV to proof the convergence of the algorithm. Therefore, a good convergence rate487

requires a large value of c − d, achieved when λM and λm have small modulus. When the488

topology changes smoothly, as in the Link Failures and the Motion Evolution, the eigenvectors489

almost do not change and the algorithm behaves similarly to the fixed case. For that reason, the490

parameters that achieve the best convergence rate are the same as in the fixed case. However,491

we must be careful because for larger values of λM the algorithm may diverge.492

A final detail is that, in all the cases, the convergence seems to be more affected by λM than493

λm. This is explained by the use of the local degree weights. As we have mentioned earlier,494

these matrices do not have symmetric eigenvalues with respect to zero. In these matrices λmax495

dominates the convergence rate, so the convergence is more sensible to the parameter λM .496

In conclusion, when the topology of the network changes, the parameters should be chosen497

taking into account the nature of these changes. For small changes similar parameters to the498

fixed case should be assigned whereas if the network is expected to change a lot we should pick499

small parameters for the algorithm to guarantee convergence.500



VII. Conclusions501

In this paper we have analyzed the properties of Chebyshev polynomials to design a fast502

distributed consensus algorithm. We have shown that the proposed algorithm significantly re-503

duces the number of communication rounds required by the network to achieve the consensus.504

We have provided a theoretical analysis of the properties of the algorithm in both fixed and505

switching communication topologies. We have also evaluated our method with an extensive set506

of simulations. Both theoretical and empirical analysis show the goodness of our proposal.507
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APPENDIX581

A. Proof of Theorem 4.1582

We introduce two auxiliary results to proof the convergence.583

Lemma 1.1: Given x1 > 1, for any x2 such that |x2| < x1 it holds that584

lim
n→∞

Tn(x2)

Tn(x1)
= 0. (39)

Proof. For |x2| ≤ 1, |Tn(x2)| ≤ 1, ∀n, and since Tn(x1)→∞ with n, eq. (39) is true. Now,585

if 1 < |x2| < x1, then using (5) we have586

Tn(x2)

Tn(x1)
=
τ(x1)

n

τ(x2)n
1 + τ(x2)

2n

1 + τ(x1)2n
. (40)

But in this case 1 > |τ(x2)| > τ(x1) > 0 and the result holds immediately.587

Lemma 1.2: Given x > 1, for any complex number z, such that |τ(z)| = min{|z+
√
z2 − 1|, |z−588

√
z2 − 1|} > τ(x), then limn→∞ Tn(z)/Tn(x) = 0.589

Proof. It is a straightforward consequence of (40).590

Proof of Theorem 4.1. Let Q = A−1wT
1 /wT

1 1, whose eigenvalues are 0, with v1 its correspond-591

ing right eigenvector, and λ2, . . . , λN with the same eigenvectors as A. Since v1 = wT
1 x(0)1/wT

1 1,592

then 1wT
1 (x(0)− v1) = 0. Taking this into account it is easy to see that593

An(x(0)− v1) = Qn(x(0)− v1), ∀n ∈ N, (41)

and therefore Pn(A)(x(0)− v1) = Pn(Q)(x(0)− v1).594

Also Av1 = v1 and Pn(1) = 1, then Pn(A)v1 = v1 and595

‖x(n)− v1‖2 = ‖Pn(A)(x(0)− v1)‖2 = ‖Pn(Q)(x(0)− v1)‖2 ≤ ‖Pn(Q)‖2‖x(0)− v1‖2. (42)

In addition, since A is diagonalizable, so is Q, which implies that Q can be decomposed,596

Q = PDP−1, with D =diag(0, λ2, . . . , λN). Using algebra rules we get that Pn(Q) = PPn(D)P−1597



and then598

‖Pn(Q)‖2 ≤ ‖P‖2 ρ(Pn(Q)) ‖P−1‖2 = K max
i 6=1
|Pn(λi)| = K max

i 6=1

|Tn(cλi − d)|
Tn(c− d)

, (43)

with K the condition number of P.599

For any x ∈ (λM +λm−1, 1) we have that |cx−d| < c−d, then for all the real eigenvalues of600

A but λ1, |cλi−d| < c−d. Noting that c−d is strictly larger than 1 and τ(c−d) < τ(cλz−d),601

for any complex eigenvalue λz, by Lemmas 1.1 and 1.2, pn(λi)→ 0 for all i 6= 1, which proves602

the convergence of the algorithm.603

604

B. Proof of Theorem 4.2605

In order to proof Theorem 4.2 we will use the following auxiliary results.606

Lemma 1.3: Let λm, λM such that [λN , λ2] 6⊆ [λm, λM ] and |cλN − d| < cλ2 − d. Then, for607

fixed c, ν(c, d) is a decreasing function of d.608

Proof. Let us see that ∂ν(c, d)/∂d < 0.609

ν(c, d) =
τ(c− d)

|τ(cλ2 − d)|
=

τ(c− d)

τ(cλ2 − d)
> 0

Then610

∂ν

∂d
=
−τ ′(c− d)τ(cλ2 − d) + τ(c− d)τ ′(cλ2 − d)

τ(cλ2 − d)2
.

But since for x > 0, τ ′(x) = −τ(x)/
√
x2 − 1, then611

∂ν

∂d
=

τ(c− d)

τ(cλ2 − d)

[
1√

(c− d)2 − 1
− 1√

(cλ2 − d)2 − 1

]
which is negative because 1 < (cλ2 − d)2 < (c− d)2.612

Lemma 1.4: Let λm, λM such that [λN , λ2] 6⊆ [λm, λM ] and |cλN − d| > |cλ2 − d| with613

cλN − d < 0. Then, for fixed c, ν(c, d) is an increasing function of d.614

Proof. Let us see that ∂ν(c, d)/∂d > 0.615

ν(c, d) =
τ(c− d)

|τ(cλN − d)|
=

τ(c− d)

−τ(cλN − d)
> 0

Then616

∂ν

∂d
=
τ ′(c− d)τ(cλN − d)− τ(c− d)τ ′(cλN − d)

τ(cλN − d)2



But since, for x < 0, τ ′(x) = τ(x)/
√
x2 − 1, then617

∂ν

∂d
=

τ(c− d)

−τ(cλN − d)

[
1√

(c− d)2 − 1
+

1√
(cλ2 − d)2 − 1

]
which is positive.618

Proposition 1.5: Let λm, λM such that λM − λm = 2/c is fixed and [λN , λ2] 6⊆ [λm, λM ].619

Then620

i) If λ2−λN > λM−λm, ν(c, d) ≥ ν(c, d∗), d∗ being the value such that λM +λm = λ2 +λN ,621

that is, for a fixed c, ν(c, d) is minimum when λm, λM are symmetrically placed with respect622

to λN , λ2.623

ii) If λ2 − λN ≤ λM − λm and λM < λ2 then ν(c, d) ≥ ν(c, d∗), d∗ being such that λM = λ2,624

and in this case [λN , λ2] ⊆ [λm, λM ]625

iii) If λ2− λN ≤ λM − λm and λm > λN then ν(c, d) ≥ ν(c, d∗), d∗ being such that λm = λN ,626

and in this case [λN , λ2] ⊆ [λm, λM ]627

Proof.628

i) The result follows from Lemmas 1.3 and 1.4. If λ2 > λM , then cλ2 − d > |cλN − d|629

and ν(c, d) is a decreasing function of d = (λM + λm)c/2 which means that it decreases630

as λM increases. The maximum value of λM for which these conditions hold is λM =631

1/c+ (λ2 + λN)/2 for which cλ2 − d = |cλN − d|.632

If λN < λm, then cλ2 − d < |cλN − d| and ν(c, d) is an increasing function of d =633

(λM + λm)c/2 which means that it increases when λM increaseses. The minimum value of634

λM for which these conditions hold is λM = 1/c+(λ2+λN)/2 for which cλ2−d = |cλN−d|.635

ii) In this case cλ2− d > |cλN − d|, and ν(c, d) is a decreasing function of d = (λM +λm)c/2636

which means that it decreases when λM increases. The maximum value of λM for which637

these conditions hold is λM = λ2.638

iii) In this case cλ2−d < |cλN −d|, and ν(c, d) is an increasing function of d = (λM +λm)c/2639

which means that it increases when λm increases. The minimum value of λm for which640

these conditions hold is λm = λN .641

642

And finally, we are able to proof the theorem.643

Proof of Theorem 4.2. If [λ2, λN ] ⊆ [λm, λM ] the result was proved in [33]. Let us suppose644

then that [λ2, λN ] 6⊆ [λm, λM ]. If λ2−λN ≤ λM −λm, it has been shown in Proposition 1.1 that645



ν(c, d) has smaller values for c, d such that [λN , λ2] ⊆ [λm, λM ], and in this case λ2 = λM and646

λN = λm yields to the minimum ν(c, d).647

If λ2−λN > λM−λm, we have seen in Proposition 1.1 that ν(c, d) is smaller for c, d such that648

λm, λM are symmetrically placed with respect to λN , λ2, that is, λM = λ2−α and λm = λN +α,649

α ≥ 0. Let us see that ν(c, d) is minimum for α = 0. First, note that650

c =
2

λM − λm
=

2

λ2 − λN − 2α
, and d =

λM + λm
λM − λm

=
λ2 + λN

λ2 − λN − 2α
.

Thus651

ν(c, d) =
τ(c− d)

τ(cλ2 − d)
=

τ(c− d)

−τ(cλN − d)

and taking into account that652

d
d α

(cλ− d) = 2
2λ− λ2 − λN

(λ2 − λN − 2α)2
= 2

cλ− d
(λ2 − λN − 2α)

,

d ν(c, d)

d α
=

−2τ(c− d)

τ(cλ2 − d)(λ2 − λN − 2α)

[
c− d√

(c− d)2 − 1
− cλ2 − d√

(cλ2 − d)2 − 1

]
> 0.

Then ν(c, d) is increasing with α and the minimum value is obtained for α = 0.653

C. Proof of Theorem 5.5654

First of all, let us state the notation we will follow along the proof. For any weight matrix A(n)655

we denote its eigenvectors by vi(n), i = 1, . . . , N . Let us denote V(n) = [v1(n), . . . , vN(n)]656

the matrix with all the eigenvectors of A(n). Thus, A(n)V(n) = V(n)D(n), with D(n) =657

diag(λ1(n), . . . , λN(n)). Since A(n) is symmetric, it is diagonalizable and we can choose the658

base of eigenvectors in such a way that V(n) is orthogonal. Therefore, v1(n)Tvi(n) = 0,∀i =659

2, . . . , N, and v1(n) = 1/
√
N = v1, for all n.660

Let Q(n) = A(n) − 1
N

11T , whose eigenvalues are 0, with v1(n) = 1/
√
N its corresponding661

eigenvector, and λ2(n), . . . , λN(n), with the same eigenvectors as A(n). Taking all of this into662

account it is easy to see that 11T (x(0)− (1Tx(0))v1) = 0, and663

A(n)(x(n)− (1Tx(0))v1) = Q(n)(x(n)− (1Tx(0))v1). (44)

Given two consecutive matrices, Q(n) and Q(n−1), let P(n) be the matrix such that V(n−1) =664

V(n)P(n), that is, the matrix that changes from the base of eigenvectors of Q(n − 1) to the665



base of eigenvectors of Q(n). In a similar way, R(n) will be such that V(n− 2) = V(n)R(n).666

The orthogonality of V(n), implies that the matrices P(n) = V(n)−1V(n − 1) and R(n) =667

V(n)−1V(n− 2) are also orthogonal, and ‖P(n)‖2 = ‖R(n)‖2 = 1.668

Recalling the Chebyshev recurrence (18), we define the error at iteration n by x(n)−(1Tx(0))v1.669

The equivalence670

v1 = 2
Tn(c− d)

Tn+1(c− d)
(cA(n)− dI)v1 −

Tn−1(c− d)

Tn+1(c− d)
v1. (45)

allows us to express the error by e(n)/Tn(c − d), with e(0) = x(0) − (1Tx(0))v1, e(1) =671

(cQ(1)− dI)e(0) and672

e(n) = 2(cQ(n)− dI)e(n− 1)− e(n− 2). (46)

Each vector e(n) can be expressed as a linear combination of the eigenvectors of Q(n),673

e(n) =
N∑
i=1

αi(n)vi(n) = V(n)α(n). (47)

Replacing e(n) by (47) in (46),674

e(n) = 2(cQ(n)− dI)V(n− 1)α(n− 1)− V(n− 2)α(n− 1)

= 2(cQ(n)− dI)V(n)P(n)α(n− 1)− V(n)R(n)α(n− 2)

= 2V(n)(cD(n)− dI)P(n)α(n− 1)− V(n)R(n)α(n− 2)

= V(n)[2(cD(n)− dI)P(n)α(n− 1)− R(n)α(n− 2)] = V(n)α(n).

(48)

Therefore, the vectors α(n) satisfy the recurrence675

α(n) = 2(cD(n)− dI)P(n)α(n− 1)− R(n)α(n− 2), (49)

with α(0) = α(1).676

Taking spectral norms,677

‖α(n)‖2 = ‖2(cD(n)− dI)P(n)α(n− 1)− R(n)α(n− 2)‖2 ≤

≤ 2‖(cD(n)− dI)‖2‖P(n)‖2‖α(n− 1)‖2 + ‖R(n)‖2‖α(n− 2)‖2 ≤

≤ (2 max
i
|cλi(n)− d|‖α(n− 1)‖2 + ‖α(n− 2)‖2).

(50)

By Lemma 5.4 we can bound the norm of ‖α(n)‖ by678

‖α(n)‖ ≤ κ1(xmax)
n‖α(0)‖, (51)



where the parameter xmax in this case is679

xmax = max
n

max
i=2,...,N

|cλi(n)− d| = max
n
{|cλ2(n)− d|, |cλN(n)− d|} =

= max{|cλmax − d|, |cλmin − d|}.
(52)

Therefore, in order to make the error go to zero we require that680

lim
n→∞

κ1(xmax)
n

Tn(c− d)
= 0. (53)

Using (5)681

κ1(xmax)
n

Tn(c− d)
=
κ1(xmax)

nτ(c− d)n

1 + τ(c− d)2n
, (54)

which goes to zero if κ1(xmax)τ(c−d) < 1. When this happens limn→∞ x(n) = (1Tx(0)/1T1)1,682

and the consensus is achieved.683

684
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