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Blind Adaptive Interference Suppression Based on
Set-Membership Constrained Constant-Modulus
Algorithms with Time-Varying Bounds

Rodrigo C. de Lamare and Paulo S. R. Diniz

Abstract—This work presents blind constrained constant mod-
ulus (CCM) adaptive algorithms based on the set-membership
filtering (SMF) concept and incorporates dynamic bounds for
interference suppression applications. We develop stockdc
gradient and recursive least squares type algorithms basedn
the CCM design criterion in accordance with the specificatios
of the SMF concept. We also propose a blind framework that
includes channel and amplitude estimators that take into acount
parameter estimation dependency, multiple access interfence
(MAI) and inter-symbol interference (ISI) to address the impor-
tant issue of bound specification in multiuser communicatios. A
convergence and tracking analysis of the proposed algoriths is
carried out along with the development of analytical expresions
to predict their performance. Simulations for a number of
scenarios of interest with a DS-CDMA system show that the
proposed algorithms outperform previously reported technques
with a smaller number of parameter updates and a reduced risk
of overbounding or underbounding.

Index Terms—Interference suppression, blind adaptive estima-
tion, set-membership estimation, spread spectrum systems

to obtain in practice due to the lack of knowledge of the
environment and its dynamics. In wireless networks charact
ized by non-stationary environments, where users oftearent
and exit the system, it is very difficult to choose an error
bound and the risk of overbounding (when the error bound is
larger than the actual one) and underbounding (when the erro
bound is smaller than the actual one) is significantly inseea
leading to a performance degradation. In addition, when the
measured noise in the system is time-varying and the meiltipl
access interference (MAI) and the intersymbol interfeeenc
(ISl) encountered by a receiver in a wireless network are
highly dynamic, the selection of an error-bound is further
complicated. This is especially relevant for low-comptexi
estimation problems encountered in applications thauatel
mobile units and wireless sensor netwoiks [O]] [10], whbee t
sensors have limited signal processing capabilities ameepo
consumption is of central importance. These problems sigge
the deployment of mechanisms to automatically adjust the
error bound in order to guarantee good performance and a

I. INTRODUCTION low update rate (UR).

Set-membership filtering (SMF)1[2][3].[5].][6] is a class
of recursiv_e estimation algorithms that, on the basis of & prior and Related Work
pre-determined error bound, seeks a set of parameters that ) .
yield bounded filter output errors. These algorithms have !N this context, blind methods are appealing because they
been applied to a variety of applications including adaptivan alleviate the need for training sequences or pilotsethe
equalization[[5] and multi-access interference suppoes], increasing the_ throughput and_ efficiency of wireless net-
[7]. The SMF algorithms are able to combat conflictinéj"or_ks_- In_ partlcula_r, blind aIg_onthms ba_sed on constrdine
requirements such as fast convergence and low misadjustrfpfimization techniques are important in several areas of
by introducing a modification on the objective function. $ae Signal processing and communications such as beamforming
algorithms exhibit reduced complexity due to data-selectiand interference suppression. The constrained optiroizati
updates, which involve two steps: a) information evaluatig@guired in these applications deals with linear constsain
and b) update of parameter estimates. If the filter upddftdt correspond to prior knowledge of certain parameters
does not occur frequently and the information evaluatictich as the direction of arrival (DoA) of user signals in
does not involve much computational complexity, the overs@intenna array processing [23] and the signature sequence of
complexity can be significantly reduced. the degred s!gnal in DS-CDMA systen1§__[24]:|[25]. There-

Adaptive SMF algorithms usually achieve good convergenf@®: linear signal models and constraints can be used to
and tracking performance due to the use of an adaptive sf§pcribe various wireless communications systems inogudi
size or an adaptive forgetting factor for each update. THRUlt-input multi-output (MIMO) and orthogonal frequency
translates into reduced complexity due to the data sekectfivision multiplexing (OFDM) systems. For instance, linea
updating. However, the performance of SMF techniques de@nstraints that incorporate the knowledge of user sigaatu

pends on the error-bound specification, which is very diffic®f @ DS-CDMA system can also be used to exploit the
knowledge of the spatial signatures of MIMO systems. A
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number of blind algorithms with different trade-offs betme
performance and complexity have been reported in the last
decades[[24]-[36]. Local scattering, synchronization asel
timation errors, imperfectly calibrated arrays and impely
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known wave field propagation conditions are typical sources Il. DS-CDMA SYSTEM MODEL AND LINEARLY
of uncertainties that can lead to a performance degradation CONSTRAINED RECEIVERS

of blind algorithms. The literature indicates that the CCM- | ot us consider the uplink of a symbol synchronous DS-

based algorithms'[30]-[36] have a superior performance {gy\1a system with K users,N chips per symbol and.
algorithms based on the constrained minimum variance (CM}Qopaga r

S : c A\~ tion paths. A synchronous model is assumed for sim-
criterion [24]- [27]. The CCM-based algorithms exploit@ri jiciry since it captures most of the features of more réialis

knowledge about the constant modulus property of sigrieds lizqy nchronous models with small to moderate delay spreads.
M-PSK, which results in an improved performance over CMVrpe moqyiation is assumed to have constant modulus. Let
type techniques and a performance that is very close to e 55sume that the signal has been demodulated at the base
linear minimum mean-square error (MMSE) training-basegytion the channel is constant during each symbol and the

tech_niques. Mpreover, the_ CCM-type algorithms are _rObur%ceiver is perfectly synchronized with the main channéhpa
against errors in the effective signature sequence redifre ¢ received signal after filtering by a chip-pulse matched

blind parameter estimation, which prevents a severe perfQior and sampled at chip rate yields aW-dimensional
mance degradation in the presence of uncertainties. Thesgaived vector at time

features make CCM-type algorithms excellent candidates fo

interference suppression in wireless networks. The need fo _ s I . . .

the adjustment of parameters (step size, forgetting faetd rlil= Z Axlilbr[))C xRk li] + mi[i] + mil, (1)

the computational complexity of CCM-based techniquesscall =

for approaches like SMF. Prior work on SMF blind algorithmwhere M = N + L, — 1, n[i] = [mli] ... nu[i]]”

for interference suppression is very limiteéd [7]] [8]. Theeu is the complex Gaussian noise vector with zero mean and
of time-varying bounds is also restricted to applicatiotere E[n[iin’[i]] = ¢*I independent and identically distributed

one assumes that the "true” error bound is consfart [16] asa@mples(.)” and(.)” denote transpose and Hermitian trans-

to the parameter-dependent error bound recently propeseddse, respectively, anfl].] stands for expected value. The user

[13], [15]. The time-varying bound techniques so far repdrt symbols are denoted iy, ], the amplitude of usek is A[i],

are not blind and do not exploit these mechanisms for chanagldn,[:] is the intersymbol interference (ISI) for usker The

and parameter estimation. signature of usek is represented by, = [cx(1) ... cr(N)]7,
the M x L,, constraint matrixC', that contains one-chip shifted
versions of the signature sequence for usemd theL, x 1

B. Contributions vector hy[i] with the multipath components are described by

In this work, we propose set-membership blind adaptive cr(1) 0 ,
constrained algorithms based on the CCM criterion. Prelim- : Toe(1) hieoli]
inary results have been reported [n][22]. In particular, weCr = . s hili] = :
derive stochastic gradient (SG) and recursive least sguare cx(NV) : ez, 1]
(RLS)-type CCM algorithms designed in accordance with the 0 o e(N) o
specifications of the SMF concept. The second contribugon i 2

a low-complexity blind framework for parameter estimationrhe MAI comes from the non-orthogonality between the
and tracking of parameter evolution, MAI and ISI that reliegeceived signature sequences. The ISI originates from the
on simple estimation techniques and employs the proposeditipath propagation effects of the channel, depends en th
set-membership CCM algorithms with a time-varying boundength of the channel response and how it is related to the
The third contribution of this work is an analysis of thé@ength of the chip sequence. We defihe as the ISI span,
optimization problem that gives rise to the proposed atbors j.e., the number of symbols affected by the channel. For
along with a mean-squared error (MSE) convergence and = 1, Ly = 1 (no ISI), for1 < L, < N,Ls = 3,
tracking analysis using the energy conservation apprd@@h [for N < L, < 2N,Ls = 5, and so on. At time instant
for predicting the performance of the algorithms. A simlat we will have ISI coming not only from the previous time
study considers an interference suppression applicati@$t instants but also from the next symbols. The linear model
CDMA systems, which compares the performance of the (I) can be used to represent other wireless communica-
proposed and existing algorithms, and discusses the madns systems including multi-input multi-output (MIMOhd
features of the algorithms. orthogonal frequency-division multiplexing (OFDM) systs.
This paper is structured as follows. Section Il describér example, the user signatures of a DS-CDMA system are
the DS-CDMA system model and briefly reviews linearlequivalent to the spatial signatures of a MIMO system.
constrained receivers. Section Il introduces the SM baikd  In order to describe the design of linearly constrained
gorithms with time-varying bound. Section IV proposes 8linreceivers, we consider the received veatfi, the M x L,
parameter dependent and interference dependent boumds atmnstraint matrixC';, that contains one-chip shifted versions of
with blind channel and amplitude estimation algorithmsc-Sethe signature sequence for ugeaind theL,, x 1 vectorhy[i] =
tion V is dedicated to the analysis of the proposed algowthnihy o[i] ... hgr,—1[:]]7 with the multipath components to
Section VI is devoted to the presentation and discussion lué estimated. The CCM linear receiver design is equivalent
numerical results, while Section VII gives the conclusions to determining an FIR filterw[i] with M coefficients that



provide an estimate of the desired symbol as follows effects. In SM filtering[[2], the parameter vectay, [:] for user
) Hiq ot k is designed to achieve a specified bound on the magnitude of
zli] = wy [i]ri], (3 an estimated quantity,[i]. As a result of this constraint, the
where the detected symbol is given byi] = Q(w[i]r[i]), SM blind adaptive algorithm will only perform filter updates
whereQ(-) is a function that performs the detection accordin%r certain data. Le®©/[i] represent the set containing af; [¢]
to the constellation employed. that yield an estimation quantity upper bounded in mageitud
The design of the receive filtetw,[i] is based on the by a time-varying error boundy[i]. Thus, we can write

optimization of the CM cost function oli] = m (wy, € cM | zli] 1< veli]} @)

Jen(wili]) = B[ (w irfi]? - 1)?] (4) (rlibes

) ) ) where r[i] is the observation vectorS is the set of all
subject to the constraints given hy/’[i]p,[i] = v, where possible data pairéb,[i], =[i]) and the se©]i] is referred
pilil = Cyrhyli] is the effective signature vector thakg as the feasibility set, and any point in it is a valid
corresponds to the convolution b_etween the original sigeat gstimates, [i] = wH[i]r[i]. Since it is not practical to predict
sequence and the channel gains, ands a constant t0 g data pairs, adaptive methods work with the membership
ensure the convexity of the optimization problem as will bgg¢ v = ﬂ:nlem provided by the observations, where
discussed later on. This approach assumes the knowlegge _ {wy, ccM . 12[i]| < 4x[i]}. In order to devise an
of the channel. However, when multipath is present theggective SM algorithm, the boung [i{] must be appropriately
parameters are unknown and time-varying, requiring chlanR@osen. Due to the time-varying nature of many practical
estimation. The CCM receive filter expression that iteeiv enyironments, this bound should also be adaptive and capabl
solves the constrained optimization problemlih (4) is gibgn of estimating certain characteristics for the SM estinmatio

, i , Hriarlr. N1 technique. We devise SM-CCM algorithms equipped with
wi[i+ 1] = R, [i] [dk [i] — (Pk [ R, " [i]py, [2]) variable step sizes and forgetting factors that are ablaito a
A pEAR ilduli] — . — 1.9 tomatically tune to different situations, which is an adeaye
(Pk [i| Ry, " [ildy[i] — v )p k [2]}’ LTae over methods operating with fixed parameters in time-varyin
(®)  scenarios. In what follows, we derive SM-CCM algorithms
where z[i] = wiilrli], R[] = E[zli]*r[i]r[i]], for blind parameter estimation that assume time-varyimgrer
dpli] = Elz[i]r[i]]. A detailed derivation of the CCM bounds.

estimation approach can be found[inl[33],1[34].1[36]. It sklou
be remarked that the expression[ih (5) is a function of previoA. Set-Membership CCM Stochastic Gradient-Type Algorithm
values of the filterw ,[i] and therefore must be iterated in order Here we develop the set-membership CCM stochastic

to reach a solution. In addition to this, the iterative metih® 4 ragient-type (SM-CCM-SG) algorithm. The basic idea is to
() assumes the knowledge of the channel parameters. Sigggise a gradient descent strategy to compute a parameter
there is a large number of applications that have to deal Wifactor w, for userk that minimizes the instantaneous CM
unknown multipath propagation, it is also important to beabgost function subject to certain constraints, which reggifor
to blindly estimate the multipath components. adaptation that the square of the eredfi] exceeds a specified

In order to blindly estimate the channel, a designer caiqor boundy2[i]. Mathematically, the proposed SM-CCM-SG

adopt the blind channel estimation procedure based on the Sb.'!?orithm solves the following optimization problem

space approach reported 2 41] and which is describe
bl)ol PP P In[26]. [41] minimize Jeoa (wili]) = (|wkH[i]r[i]|2 - 1)2 = ¢? [i]

hili] = arghmi[x_} hi [ CE R [i)Chyli] (6)  subject to wi [ipli] =v (8)
133

subject to||h.[i]|| = 1, where R[i] = E[r[i]rf[i]]. The

solution is the eigenvector of t%xLP matrix corresponding
to the minimum eigenvalue of',’ R™'[i]C, obtained by an
eigenvalue decomposition (EVD). Here, we WBg[i] in lieu  L(wyl[i], 1) = (lwil [i|r[i]|* = 1)* + [(wf [i]py [i] — v)r}]

of RJ[i] to avoid the estimation of botR[i| and R [i], which + [k (P [iwei] — v)]

shows no performance loss as reported and investigated in RAEK ’ 9)

[33], [34], [36].

whenever e2[i] > 2 [i]

This problem can be solved using the method of Lagrange
multipliers using the equality constraiaf[i] = vZ[i] [1]:

where k. is a Lagrange multiplier. Computing the gradient

I1l. SET-MEMBERSHIPBLIND ADAPTIVE CONSTRAINED terms of [9) and equating them to zero, we obtain

ALGORITHMS WITH TIME VARYING ERRORBOUNDS Vs L(wi i), k1) = 2(ex[ilr[i]z;[i]) + pylilrr =
In this section, we describe an adaptive filtering framework V.. £(w[i], k) = wil [i]p,[i] — v = 0.

that combines the set-membership (SM) concept with b"We employ a gradient descent rule to solve for the above

constrained algorithms based on the CCM design. We al : . ! :
introduce simple time-varying error bounds to take intosidn gauatlons. Using the first equation pI10), we have

eration the evolution of the receive filter and the MAl and ISl wy[i + 1] = wy[i] — pk(exld)zg[i]r[i] + pelilee)  (11)

0
(10)



Using the second equation ¢f {10), we obtain

wyli+1] = I [i] (wili] - prex[i) 2 [i)r i) +vpe i) (pF [ [i])

(12)
where y;, is the effective step sizegili] = |z[i]]> —
1 is the error signal for user, and IIj[i| I

pli) (P2 [i]p,[i]) ~pi[i] is a projection matrix that ensures
the constraint and is an identity matrix. By imposing the

condition to update whenevet [i] > ~Z[i] we arrive at the
set of allwy, that satisfy

1—yli] < Jwil[i + 1rfi]] < V1491 (13)

the exponentially-weighted CM cost function subject to-con

_ straints that require that the squared error of the filteeegc

a specified time-varying error boungf[i]. Mathematically,
the proposed SM-CCM-RLS algorithm solves the optimization
problem

oA (el e - 1)?
=1
subject to wi[ilp,[i] = v

minimize J53,(wy[i]) =

whenever e2[i] > ~v2[i],
(21)

It can be verified that the set above is non-convex anghere ), [i] is a time-varying forgetting factor. Similarly to
comprises two parallel hyper-strips in the parameter spagge case of the SM-CCM-SG algorithm, this problem can be

From the above conditions we consider two case@wi [i +

rli]] < /1 +[i] and ii) Jwf [i+1]r[i]| > /1 — y[i]. By
substituting the recursion obtained [nX(12) into [i +1]r]i]|,
we have

i i+ 1r[i]] = [2x[i] — peldlen i 2 [l ™ [T [i]r[2]]. (14)
Using the above expression we have for case i):
|2 [i] = pldler i zuldr™ [T [drli] = 1+l (15)

which leads to

i) = (1 —

Using [14) we have for case ii):

|2 [i] — plilen i zuldr™ [Tk [rli)] = V1 -l (17)

which results in the following

i 1 — /1 —yli] 1

1 =

e el ) el ]
The resulting SM-CCM-SG algorithm is described by

A L O T

1+7k[i]> 1

(18)

wi[i+1] = T [i] (wy[i] - px [dex i)z [i]7[i]) +vp [i] (pF [i]py,[i]) Fitstly, we need to computey]i]

(19)
where
1—+/14~5[1] 1
[z [d]] er [rH [T [d]r (4]
prli] = 1— /T4 [1] L . ,
ST | emermmem ] <
0 otherwise
(20)

The SM-CCM-SG algorithm described ih_{19)-[20) requires

M + UR(5M — 1) additions andM + 1 + UR(5M + 4)
multiplications per received symbol, whet® is the update
rate.

B. Set-Membership CCM RLS-Type Algorithm

solved with the method of Lagrange multiplielr$ [1] alongtwit
the use of the condition; [i] > ~72[i] to save computations
Llwg[i] en) = YN [l [(r [0 — 1)
=1
+ [ex (or! [iJwili] — )],
where ¢, is a Lagrange multiplier. Computing the gradient

terms of the Lagrangian if_(22) and equating them to zero,
we obtain

(22)

%

Vg Lwii ex) = D N7 [(zll* = D (rfilr™ [Jwsli] + pylier =

=1
Ve L(wi[il, ) = wi [i]p,[i] — v = 0.
(23)
Solving for the above equations, we have
weli+1] = B[ 1 - (ot A timul) s
(PR i)l = v ) pilil.
where  zi] = wilirli],  Ryli] =

S N il Pre (1, dili) = S5 A )= ().
)| and this is performed by
the following recursion

dufi] = dili — 1]+ Melil=g i) (25)

if |ze[i]l > /(1 + Aelhis point, we need to computi, [i] efficiently and this

is done by applying the matrix inversion lemma [1], which

(1 —¥legs

Melillen iRy [ e iRy i~ 1]
1+ Neldllzlil 2rH [ Ry i — 1)r]i
+ Al 2] PrA[i] Ry, [i — 1] 22]6)
The last step of the SM-CCM-RLS algorithm is the use of the
conditione? [i] > ~7[i] to save computations and to adjust the
optimal A [i]. In order to adjust\;[¢], the authors in[[6] have
advocated a strategy that yields bounding ellipsoids i |
to a simple innovation check with linear complexity, which
considers the cost function

R, 'li| = R, [i-1)-

In this part, we derive the set-membership CCM recursive

least-squares-type (SM-CCM-RLS) algorithm. The idea &

i . i 1
) IA[z‘]Z/\k[l] 2[] _ — T - | =1
to devise a least-squares method to calculate a parametéef Vel \ 1+ A Jar B[R, [i — 1)r[i]

vector w;, used at the receiver for usdr that minimizes

(27)



The maximization of the cost function il (27) leads to theeceiver, estimate the channel modeled as an FIR filter for th
innovation check of the proposed SM-CCM-RLS algorithm:RAKE receiver and obtain the detected symigi], which is
combined with an amplitude estimatg, [i] for subtracting the

Aeli] = ﬂmm%uw<%W—Q 1 Jeiil] >l Gesied signal from he culpuk ] of the RAKE, Then. e
x[¢] between the desired signal and[i] is used
0 otherwise. (28) to estimate the MAI and ISI power.
28
The SM-CCM-RLS algorithm described in_(24)-{26) ahd](28);] T 2] b [i]
requires M + UR(4M? + 3M) additions andM + 2 + » Blind linear > Q) >
UR(4M?2 +6M +3) multiplications per received symbol. It is receiver wi[i]
worth mentioning that the computational savings can beequit
substantial if the algorithm operates with a lIaR. l A i
IV. BLIND PARAMETER ESTIMATION AND TIME-VARYING Bi;‘éidnf;‘t?gﬁel - Bh;iigﬁgiwe
BOUNDS
This section presents a blind framework employed to com- by 1] .
pute time-varying error boundsg;[:] based on parameter and ki dyi] .
: , . : _ O [7]
interference dependency. The proposed blind framework is [ .| RAKE receiver ) MALI and ISI >
an extension of the approach in_[21] that computes time- i + power estimation

varying error bounds, and performs interference estimatio
and tracking. In contrast td [21] that considers trainiragdd Fig. 1. Block diagram of the proposed blind scheme.
recursions, a blind procedure for estimating MAI and ISI
power levels is presented with a set-membership blind aslann
estimator and a blind amplitude estimator, which are emgaloy . o ]
in the adaptive error bound for the SM adaptive algorithmsC- Blind Interference Estimation and Tracking
Let us consider the RAKE receiver with perfect channel
knowledge, whose parameter vecy|i| = Chy[i] for user

k (desired one) corresponds to the effective signature segue

Here, we describe a parameter dependent bound (PDR)the receiver, i.ez;]i] = Cyhyli]. The output of the RAKE
that is similar to the one proposed ih [13] and considefsceiver is given by

the evolution of the parameter vectar[i] for the desired

A. Parameter Dependent Bound

user (userk). The PDB recursion computes a bound for SM o P . I B
adaptive algorithms and is described by zili] = F lilrli] = Axlilbsl 5 [exli] + ) Alilb; [0 £ [ i)
desired signal ‘]::2
el 1] = (1= B)li] + v ollwili[P6%[,  (29) ’ Z
MAI

where 5 is a forgetting factor that should be adjusted to Hr: . Hia r:
ensure an appropriate time-averaged estimate of the eolut +M+w’
of the power of the parameter vectar,[i]. The quantity ISI noise 30
allwg[i]]|?62]i] is the variance of the inner product afy[i] (30)

with n[i] which provides information on the evolution ofwhere £/ [ij¢,[i] = pili] and £[ile;[i] = p1[i] for j #
wy[i], wherea is a tuning parameter antf i is an estimate 1, The symbolp,, represents the cross-correlation (or inner
of the noise power. This kind of recursion helps avoiding togroduct) between the effective signature and the RAKE with
high or low values of the squared normeef; [i] and provides a perfect channel estimates. The symbgl;[i] represents the
smoother evolution of its trajectory for use in the timeyag  cross-correlation between the RAKE receiver and the éffect
bound. The noise power at the receiver should be estimatggnature of usej. The second-order statistics of the output
via a time average recursion. In this work, we will assumgf the RAKE in [30) are described by

that it is known at the receiver. - . -
Ellarld”) = Axldpkle] Bllbx[i]]"]
——

B. Parameter and Interference Dependent Bound P —1

In '_[hls part, we develop a bl_lnd mtgrference estimation and + Z Z A? [i] E[b;]i]b; [Z-]]ffajéﬁfj
tracking procedure to be combined with a parameter depénden = =
bound and incorporated into a time-varying error bound for j#k  I#k

SM recursions. The MAI and ISI power estimation scheme,
outlined in Fig.[1, employs both the RAKE receiver and the " 0t - T
linear receiver described in (3) for subtracting the deksirser + i Emelilne” () f 1 + fi Enlin™[i]] f} .
signal fromr[:] and estimating MAI and ISI power levels. —o2fHf,

With the aid of adaptive algorithms, we design the linear (31)

K ~ ~Hrs
=ik £71858] 1S




From the previous development, we can identify the sumy[i] = Ax[i]bk[i]p,[i], wherep, [i] = Crhi[i]. Let us now
of the power levels of MAI, ISI and noise terms from thegerform an eigen-decomposition dd

second-order statistics. Our approach is to obtain instestus %
estimates of the MAI, the ISI and the noise from the output _ A H A H 2
of a RAKE receiver, subtract the detected symbo[in (3) from B ; Blevlile U]+ Bl [ime i) + 071
this output (using the more reliable linear multiuser reeei

(wy[i])) and to track the interference (MAI + ISI + noise) = (¢, &,

power as shown in Fig. 1. Let us define the difference between
the output of the RAKE receiver and the detected symbol féhereé, and¢,, are the signal and noise subspaces, respec-

(36)

2
][A“;”I(ﬁl [, ¢.]"

userl: tively. Since¢, and¢,, are orthogonal, we have the condition
K o wli] = ¢y Axlilbrlilpy[i] = &, Aklilbr[i|Crhili] = 0.
di[i] = @xli] — Agli]br[i] ~ Z Aelilbr (i) £5 [i)3k[d] + £ [i]mw[FfENCE, We have
- IST I = ki [i] C{ b [i] Ai[i] b, ¢, Arlilbr[i]Cy by li]
MAI > (37)
+ £ [inli]. . - _
— The above relation allows to blindly estimate the channel
nowse (32) hili]. To this end, we need to compute the eigenvector

corresponding to the smallest eigenvalueXof. It turns out
By taking expectations oftl, [i]|? and taking into account the that we can use the fact théin, ,..(R/0%)" = ¢, ¢/
assumption that MAI, ISI and noise are uncorrelated we haJg8g] and, in practice, it suffices to uge= 1 or 2. Therefore,

K to blindly estimate the channel of usérin the DS-CDMA
El|di[i]|?] =~ Z ka[i]&k [i]& (i) f , [4] system we need to solve the optimization problem
k=2 S . Hr- . . .
, , , ) ) , hy[i] = argmin hy, [i] Y ghi[i], subject to [|hgld]|] =1,
+ Fi T Emelime ()£ 1] + o £ £ [0, halil
(33) (38)

In order to solve[(38) efficiently, we rely on the SM estimatio

where the a_\bove equation represents the interference POWRhiegy and a variant of the power methbd] [33] that uses a
Based on time averages of the instantaneous values of gﬂﬁme shift is adopted to yield the SM-BCE

interference power, we consider the following algorithm to A X A
estimate and tracl||d [i]|?] hili] = (I — m[i]| Yr[i])heli — 1], (39)
oli + 1] = (1 — B)oli] + Bldx[i])?, (34) where7.[i] = 1/tr[Yy[i]] and hyli] + hylil/||hs]i]]| to

where 3 is a forgetting factor. To incorporate parameterr]ormallze the channel. The quanti[i] is estimated by

dependency and interference power for computing a more Yk[i] = Tk[i —1] +/\k[z’]CfAZ[i]Pi[i]Ak[i]Ck, (40)
effective bound as an alternative to replace (29), we employ

the parameter and interference dependent bound (PIDB) Where A.[i] is a variable forgetting factor that is obtained
by (28) andP,[i] is computed according td_(P6). Next, we

Y[t + 1] = (1 = B)weli] + 5(\/7 o2[i] + \/04||wk||252[i]27 describe a procedure to estimate the amplitude.

(35) In general, amplitude estimation is an important task at
where ¢[i] is the estimated interference power in thehe receiver that is useful for interference cancellation a
multiuser system and is a weighting parameter that musfpower control. The proposed blind interference estimadiod
be set. The equations if_(34) and](35) are time-averagescking algorithm needs some form of amplitude estimation
recursions that are aimed at tracking the quantitigsi]|*> in order to accurately compute the interference power. To
and (\/792[i] + \/al|w|[?62[i]), respectively. The equationsestimate the amplitudes of the associated user signals, we
in (34) and [(3b) also avoid undesirable too high or lowescribe the following procedure to estimate the absolaiigey
instantaneous values which may lead to inappropriate timgf-the output of the RAKE receiver defined in_{30) as given
varying boundhy|[i]. by

qili + 1] = (1 = B)qrli] + |2k [d]]. (41)

The amplitude can be estimated by removing the square-root

D. Blind Channel and Amplitude Estimation . . :
) ) of the interference power from the above estimate according
Let us now present a set-membership blind channel es}i-

mation (SM-BCE) algorithm to design the RAKE and linear it 1 ANA a1 .

receivers. Consider the constraint matfi that contains one- Apli 1] = (1= B)Ax o] + (lax bl = [onlel]) (42)

chip shifted versions of the signature sequence for userThe above procedure is simple and effective to estimate the
defined in (2) and the assumption that the symlbg[g] are amplitude for use in the interference power estimation pro-
independent and identically distributed (i.i.d), andistatally cedure. Since one recursion depends on the other, a designer
independent from the symbols of the other users. Consi@er #hall start the procedure with an interference power equal t
covariance matrixR = [r[i]r*[i]] and the transmitted signalzero (or equivalentlyvy[i]| = 0).



V. ANALYSIS OF THE ALGORITHMS Therefore, we have for the desired uskerthe following

. . . equivalences
In this section, we study of the properties of the op'u—q

mization problems associated with the design of the SM- . ) ) ] ] ) ]
CCM-based algorithms and examine the convergence drdf] = Awpi! lilwili] = Achy![i] O wi[i] = Achi! (i) ).
tracking performances of the proposed algorithms. In order hy[d]

to ensure the convergence of the SM-CCM-RLS a persistence (47)

of excitation condition on the received daté&] must hold BY considering the noise and the ISI negligible we can write
and the transmitted symbols,[i] and the noisen[i] have the cost function in[(43) as

to be uncorrelated. To this end, the variable bound must

adapt such that the above conditions are met, following thdcn(t) = El|zx[i]|* — 2|zk[i][* + 1]

same procedure established for OBE algorithm§in [18].€inc = EB[(t"bb"t)%] — 2E[(t"bbTt] + 1

the SM-CCM-RLS algorithm is expected to converge without K % %
misadjustment to the Wiener filter and certain aspects of the -8 )2 — A4S ()2 =4Sttt + 1
convergence analysis of the SM-CCM-SG algorithm are of (; i) ;( i) ; 7

greater interest, we will focus on the latter. The CCM-based K K
algorithms are inherently nonlinear and deal with timeyiray =8(D+ Z tjtj-)Q _4D? _ 4 Z(tjt;)z
environments, which leads to difficulties in the study ofithe = =
performance. For this reason, we will resort to an effective K

approach termed energy conservation principlé [38] thadde 4D — 4 Z (tt]) + 1,

itself to such analysis. =1,k

(48)

wheret = f(wyg[i]) is a linear function of the receive filter

wy[i], the terms multiplying the summations in the third line
Let us consider the optimization problem that needs to loé (48) are obtained by evaluating the expected values in the

solved for the design of the blind receiver and can be solvedcond line of{48)[31], and) = tith = u2|Ak|2|ﬁkH[z']hk[i]|.

by the algorithms proposed in Section Il The strategy we employ to enforce the convexity of the

optimization problem relies on the adjustment of the patame

A. Analysis of the Optimization Problem

C N HiAn12 _ 1)2
minimize Joar (wi[i]) = El(wy [er[l” 1)2 ) v and a transformation of variables on the cost functiofi i, (48
= Ellz[i]|" - 2[z[d]|" + 1] which will be detailed in what follows.
subject to wi [i]p,[i] = v Let us now transform the above cost function taking into
whenever (Jw?[i]p,[i]]> — 1) > 72[i] account the constraintw!![i]p,[i{] = v and the fact that
n (43) Wwe are interested in demodulating uderand rejecting the
remaining users. Therefore, we introduce another paramete
Let us rewrite the received vector as vectort = [ty ...tx_1 tgr1...tx]T = Bwy[i] that excludes
% the userk and is responsible for the interference suppres-
rli] = ZAkbk[i]pk[i] +n,.[i] + nli], (44) sion tf;ls_kHof_the rema.mlng user; (all bgt usey, .Where
_ B = AP, Pli| = [p,[i] ... pr_1lt] Priili]. .. pkli]] and
@k [1] A = diag[A; ... Ax_1 Apy1...Ag]. The transformed cost
where p,[i] = Cihilil, R = S + G + 021, § — functionis given by
K . . K . . .
B[y, miliay [i]], andG = E[3"," ny[ilng ], bi] are . e Yy Haw
independent and identically distributed random variabdesl Jom(t) =8(D+t7t)° —4(D*+1t't) (49)
are statistically independent frofaz]. — 4D+t + 1.

Consider uselk as the desired user and let;[:] be the

receive filter for this user. Our strategy to analyze the @0\t this point we need to take into account the constraint
optimization problem and its properties is to transform th%M(wk[z’]) < ~2[i]. Sincet = Bwy]i] is a linear mapping
variables and rewrite the problem in a convenient form thgle have an equivalent constraift, (£) < ¥2[i], wherey2[i]
provides more insight about the nature of the problem. Let Usihe hound modified by the linear mapping. It can be verified
now define the signal of the desired and the signal of all thgat the constraint set generated By (t) < 77l is not
users after applying the receive filtar; [i]: convex and leads to two disjoint parallel hyperstrips in the
. arameter space.

th 2 AupPwili], and t2 APMwy, = [ty ... 157, (45) P38 o .

¥ ePk wli] k=t k", (45) Given that the constraint is not convex, the optimization
where P 2 [p,...ps], A 2 diag[A;,... Ag] and b £ problem is clearly non convex. Hc_>wever, in_ this context non-
[b1...bk]T. The relation between the receive filter, the chargonvexity only poses a problem if local minima are present

nel and the signature sequence can be written as and prevent an algorithm from reaching the global minimum.
It turns out that a designer can adjust the parametarorder

w [i|p,[i] = wi [i|]Crhyli] = v. (46) to enforce the convexity for each hyperstrip. Computing the



Hessian[[4B8]H = BZLHWCTJ{(” we obtain where R,., = Ele.[i]v[i]r [i]] and Ry, wope = 0.
From the above, it can be concluded that[i] converges
H = 16[(D_1/4)I+ to wyope and [B5) is stable if and only iff[;°,(I —
t7er + 18" — diag (|1 [i]% . [tho1[? [t 2 - [tk [d]]?) JE[urli]] Ror) — 0, which is a necessary and sufficient
condition forlim; , o El€w,] = 0 and E[wy[i]] — wg,opt-
(50) For stability, a sufficient condition fol (55) to hold impiie
that
The conditionD = 2| A, ||k, [i]hx[i]|> > 1/4 ensures that 0 < Bu(c0)] < min 37«
there is no local minimum in each of the hyperstrips resgltin RYN
from the optimization problem and convexity can be enforceghere)\!" is thekth eigenvalue ofR,,,. that is not necessarily
in each of the hyperstrips. Sinde = Bwyl[i] is a linear real smceRm is not symmetric.
function of wg[i] then Jeop(t) preserves the maxima and
minima properties off-ys (wy[i]). For sufficiently high signal- )
to-noise ratio (SNR) values, the extrema of the cost functi&- Steady-State Analysis
can be considered a small perturbation of the noise-free casin this part of the analysis we are interested in devising

positive or positive semi—definite terms

(56)

[37]. a formula to predict the excess MSE, which depends on the
MAI, the ISI, the noise at the receiver and the parameters of
B. Stability Analysis the SM-CCM-SG algorithm. The excess MSE is related to the

error in the filter coefficients,,, [i] via thea priori estimation

In this part, we discuss the stability analysis of the S Srror, which is defined as

CCM-SG algorithm described in subsection Ill.A. In particu
lar, we consider the range of step-size values for conversyen eqli] = egk [i]r[4], (57)

Let us now rewrite the update equation of the algorithm as
hereewk[ ] = Wopy —wi[i], andw,p is the optimum linear

wi[i + 1] = T [i] (wy[i] — pxliler iz [i]r[i]) + voy i) (0} [[]PANISE receiver. Consider the MSE at tinie
= wy[i] — pelilen i) [iJwi[i] (I — %)r[i] MSE[i] = E[[bx[i] — wj! [i]r[i]|’]
kTR = €min + E[|€a[ 11?] + P[] Elew, [i]] + Eleg, [illp[i]

— Blwggrlilrf[ilew, [i]] — Eleg, [dr(ilr [{wy,op].
(58)

= wi[i] — plilex iv[i]r™ [i]wxl[i]
(I — pxliex [iodr™ [i)wp[i],

(51)
where e,[i] £ el

where v, [i] = (I — %r[z]) and the expression in E[|bg[i] —wE

the second line ofI]Bl) is obtained by substitutifig[i] = and Ele,, [i
I — p,[i](pf [ilp,[i]) ~*pH[i] into the first line and further )
manipulating the terms. Let us now define the error vector lim MSE[i] = émin + lim Ef[eq[i]|] (59)

12— 00

€ Jrli] = (wopt — wy[i])r[i] and emin =
t7“[2] Wheni — oo, we havewy[i] — wg opt
— 0 and the steady-state MSE

[d
).

m IS

T

._.ch

€w, [i + 1] = Wik,opt — wi[i + 1] The steady-state excess MSE is then defined [1] as

= 8 = e outlr™ WDews i+ elleslouliromon oy gy ey 60

In order to proceed with the analysis, we need to resort to Bi)ging the energy conservation principle [38], the proposed
assumption. SM-CCM-SG algorithm can be written in the form
Assumption 1Let us suppose that for the algorithm [n(51)

wheni — oo wy[i+1] = wg[i]+peli] (—exli]z5[i]) (I - iiz[[l]zz; H)T[ZL
Elux[ilei[il] = Eluw[il] Ele}[4]). (53) F., i -

This assumption holds ji;[i] is a constant, and we claim that _ _ _ _ (61)
it is approximately true ifiu;[i] varies slowly around its meanwhere F¢, [i] is a generic scalar function determined by the
value. By writing adaptive algorithm. Subtracting the above recursiondgf: +

. ' . ' o 1] from wy, o, We obtain
Elprlilex[i]] = Elpk[i]| Eleyli]] + E[(urli] — Elpe[d]])ex[4]], .
(54) €w, [i + 1] = €w, [i] — pr[t]ur[i] Fe, [i] (62)

we can notice that the second term on the right-hand side will oot .
be small compared with the first one provided thati] varies OSiNg thea priori estimation erroe,|i ] = ey, [iJri]. Rewrit-

slowly around its mean value. ing the previous equation, we obtain

By taking expec;tations on both sides bf](52) and using theea[i] epli] + pliju [i]rli 1F i)
previous assumption, we have

= epli] + puelilr Pl e
Elew,[i + 1] = (I - E[ux[il| Rpo)Elew, [, (55) = epli] + il ”<I o7 ilp. m) [IEE, i




Sincer|i] (I - M)r[i] = ul [i]u]i], we have wi![i]r[i] into (70), we obtain

pi [Py 4]
Bl [i]| Blug! [iJur il AB[eali] )
epli] = eali] — prlilu [ 2 [i]. 64)  + 3B il Bluf! [iux[i]| EIMAT? Ef|e,[i] ]

+3E[ R[] Bl [ (] B[] Eleali]*]

Using the fact thatF} [i] = % we can rewrite B[] Blug! [iur [{] BE[1*[i]] + 1) Elleald]|"]

€w,[]] @s ' [ # [ B! [iJug[i] B + Bl [ Eluy [iux[i]) Ellea[i]]%]

c
i +1] = €w, [i] - ukli] e li] — e o5y = 2Eluxlill(EIMAT]Elleali]|*] + E[v? i1 Eleali]]’]
el O pp e+ Eleal)
Rearranging, we obtain i (71)

wili] wli] WhereA = 3 + 30*MAI + 60MAIU + 6oma1o? + 30t +
ka[i-f—l]-f—%e*[i] :ewk[i]++e:§[i] (66) 60202 + 30, andB—a +3020 +30’MAIO' +08 + 602+

H
ug [ilunli] wp [iJuxl] UZQIUMAI + 3UMAIU + 3UMAIU 1 Ulf\j/lAI + UMAI + 2%% +
Oy 4 203 a1 + 2034102 + Oaar + 402 +20 + 20341 + 2.
By defining zi[i{] = 1/(ull[i]uk[i]), squaring the previous Upon convergence( —  00), we can assume that
equation and taking expectations, we obtain the relation E[MAT*"|(E [MAI D™ = oftkn Bl = (E[?)™ =
ox, and E[v*™] = (E[v?])™ = o}™, whereoyar, oy,

are the variances of the Gaussian distribution. In this
Elll€w, [i+1)II*}+E| ”’“ gﬁﬁion the high power ternis||e, [i]|4] and E[|e,[i]|*] may
) be neglected as these values are typically very small caedpar
with the remaining terms. The excess MSE is obtained as
follows

El||ew, [il") = Elllew, [i+1]|]’], and Elfillealil|*] = Elax[illep[i]]*] B2 (00 E[ut [i]ux[i]] B
(68) &= E[|€a[l]|2] = 2E[,Uk(00)](‘71%/[A1 +Zg + 0727) i E[M%(O;%]E[ukH[l]uk[

Elllew, [i-+1]|P]+ Bl illep[i]]] =

In the steady state, we can write

The energy preserving equation can be used to compute
the excess MSE. It can be obtained by cancelling the terms
E[||€w, [i+1]]|*] and E[||€w, [i]||?] in (67) and by substituting

(64) into [67), which yields D. Tracking Analysis
_ In this subsection, we assess the proposed SM-CCM-SG
Eliglilleail2] = Elflilles]i] — [ 69) algorithm in a non-stationary environment, in which theocalg
ik li]leal?]|") i lilleals] ik [7)] el (69) rithm has to track the minimum point of the error-performanc

surface. Specifically, we derive an expression for the exces
where F,, [i] = —ex[i]z;[i] = (1 — |zi]|?)2[i] and z,[i] = MS_E qf a innd. adaptive linear receiver when the channel
(Wiopt — €w, [i)7[i] = wll 7[i] — eali] = Apbyli] + Varesin time. Differently from the works in [38]. [40], whe
MAI + n,.[i] + v[i] — eali]. SubstltutlngFek [i] and [63) into EXPressions were derived for the constant modulus (CM)

(69) and manipulating the terms, we obtain algorithm and the CCM algorithm, respectively, we consider
’ a set-membership approach. In the time-varying scenafios o

interest, the optimum receive filter coefficients are assutoe

. . . 112
Eluli] Elea[il2x[i] (1 — |2x[]]7)] vary according to the modeb,[i + 1] = wpt + q[i], Where
+ B [i)| E[px[i)] Eleali) 22 [i)(1 — |21[4]]%))] qli] denotes a random perturbation. This is consistent with
4 (70) tracking analyses of adaptive filtering algorithms and nesgu
— Bl () Bluf! [unli) 2l (0L = |02 an assumption. e
Assumption 3The sequencg]i] is a stationary sequence
F of independent zero-mean vectors and positive definite-auto
correlation matrixQ = E|qli]q" [i]], which is mutually inde-
At this point we need to resort to another assumption Bendent of the sequencésy[i]}, {v[i]}, {MAI[i]}, {n[i]}.
continue with our analysis. Let us consider the weight-error vectog, [i] = wg.opt —
Assumption 2in the steady statey/! [i|u,[i] and|F.,[i]|> wy[i], which satisfies
are uncorrelated. The quantitiédy[i], MAT, n[i], v[i], e.[7]} _ _
are zero mean random variables, and are mutually independen  €w; [i + 1] = €w, [i] — p[i]urli] Fe, [i] + qli]. (73)
We use the fact tha'[b?™] = 1 for any positive integem and 0ot r 0 H .
that the residual MAI and ISI are Gaussian random vanablevéllth cali] = €y, [irli] andey[i] = ey, [i 4 1]r(i], we have

Using the previous assumption and substituting[i] = eali] = ep[i] + pur[i]|ur [i]| P F7, [i]. (74)



10

Using [73) and[{74), we obtain VI. SIMULATION RESULTS

. - R w1 In this section we assess the performance of the pro-
w 1 — €w . . . .
€w, [0 + 1] + fk[iugiley [i] = €w, [i] + qli] + fxli]ur []6(7@) posed and analyzed adaptive algorithms in terms of mean-
Square error (MSE) and bit error rate (BER). In particular,

S i d taking th ted val both sid
quaring[(7b) and taking the expected value on both sides, we consider the proposed SM-CCM-SG and SM-CCM-RLS

obtain adaptive algorithms and the existing CMV-SG and CMV-
Ell|€w, [i + 1]|I?] + Elfx[i]|ea[i]|*] = El|l€w, [i] + qli]|[’] ~ RLS reported in [[26], the CCM-SG[32] and the CCM-
+ Elfg[i]|e,[i]]?], RLS [33] algorithms, the SM-CMV-SG and SM-CMV-RLS
(76) reported in[[Y] with and without the proposed blind PDB and
PIDB time-varying bounds described in Section IV. The DS-
where CDMA network employs Gold sequences of lendth= 31,
E||€uw, [i] + q[i]||?] = Eillewk[i]IIQ] + Elew, [i] + qli]] the users are randomly distributed and communicate over
Hr . Hi 1 multipath channels. The channels experienced by different
+ Ela” [lew, [l + Elg [Z]q[z]]('w) users are independent and different since we focus on an
uplink scenario. The DS-CDMA system under consideration
Using Assumption 3 we have Ele wk[ ilq[i]] — employs quadrature phase-shift keying (QPSK) modulation.
E[qH[i]ewk[i] = 0. Wheni — oo El|lew,[i + 1]|[}] = The channel coefficients are given By, [i] = pxc.lil,
E|||€w, [1]||?], the energy preserving equation describing th&here ay,[i] (I = 0,1,...,L, — 1, k = 1,2,...,K) are
tracking performance is given by obtained with Clarkes modeIEBM] angik,l represent the

) powers of each channel path. We show the results in terms
Bl [i)|eald]]?] = Tr(Q)"'E[ﬂk[iHQa[i]—Nk[l] F* [i]|? (78) of the normalized Doppler frequencgT (cycles/symbol),

fed] where f, is the maximum Doppler shift an@ is the symbol

Expanding the equation above, it can be simplified to interval. We use three-path channels with relative powenesng
by 0, —3 and —6 dB,where in each run the spacing between
C=Tr(Q)+ D, (79) paths is obtained from a discrete uniform random variable

betweenl and2 chips. The proposed blind channel estimator
whereC and D are defined in[(71). The excess MSE is thefescribed in Section IV and that df [41] model the channel

obtained as as a finite impulse response (FIR) filter and we employ a
€ = E|eq[i]|?] filter with 6 taps as an upper bound for the experiments. The
B2 (00)| E[|Juri]||?) B + Tr(Q) phase ambiguity derived from the bI_ind channel esti_mation

= SB[ (00) (020; & 02 + 02) — E[i2(o0)| E[uri] ] A method in [41] is addressed in our simulations by_ using the

v N k phase of h;(0) as a reference to remove the ambiguity and

(80) for time-varying channels we assume ideal phase tracking.

Alternatively, differential modulation can be used to amtb
E. Computation of Moments for the phase rotations. The tuning parametgthe forgetting

In order to compute the expressions obtaineddd (72) affftor# and the weighting parameterrequired by the time-
(80), we need to obtain the first and second-order moments vgfying bounds described in Section IV have been obtained
1u1.[00]. To this end, we resort to the expression for the variaby €xPerimentation and chosen such that the performance

step size in[{20) and the methodology employedn [3], whid¥ the algorithms is optimized. The update r_ate (_UR) has
after some algebraic manipulations yields been computed by counting, for each simulation ttiathe

number of updatesN, ;) performed and then dividing it by

soll = ; (1 — Pup) E[Ag[i]] the number of received symbol&/( ;). Then, thel/ R is given
Bluxlool) = Blmelil] Fup + E[%[z’]r]) El|ug[d][?] (81) by UR = LS & N £, whereT = 1000 is the total number
i B . (1— Pyy) E[A2[] of trials.
pxloo]] = Elveli]] Pup + Ellil] Elluli][*]’ (82)

A. MSE Analytical Results

The aim of this part is to verify the validity of the analytica
Pup = Pr{lexli]| > E[v[il] = Pr(lexlil]> > E[lwl[i]|?] results obtained in Section V. Specifically, we shall evaua
Elli] the analytical MSE obtained with the analytical formulas in
= 2Q(7>, (72) and [(8D), and compare them to the results obtained by
Te (83) simulations. We consider first a scenario with fixed channels
(f2 = 0) and assess the MSE curves usihgl (72) against the

where Pr[-] denotes the probability)(x) is the complemen- number of received symbols and also versus the signal-to-

tary Gaussian cumulative distribution function[44] givien  noise ratio (SNR) defined by, /No, as shown in Fid.12. The
results show that the analytical curves match very well éhos

) = /Oo Lefﬁ/zdt. (84) obtained via simulations, showing the validity of our arsagy
vV and assumptions.

where the probability of updatg,,, is given by



11

a) N=31, K=10 users, E /N, =15 dB b) N=31, K=10 users a) N=31, E /N = 12 dB, K=10, f dT:5x10‘3 b) N=31, E /N = 12 dB, K=10, ,T=5x10"
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Fig. 2. MSE performance against a) the number of receivedbsismat Fig. 4. Performance of the a) interference power estimatind tracking
Ey/No = 15dB and b)E, /Ny (dB). and b) amplitude estimation algorithms &}, /No = 12dB.

B. Interference Power and Channel Estimation

The tracking analysis of the proposed SM-CCM-SG algo- At this point, we wish to evaluate the effectiveness of
rithm in a time-varying multipath fading channel is discess the proposed algorithms for estimating and tracking the in-
next. We consider the same scenario as before except for thderence power and the amplitude. To this end, we have
fact that the channel is now time-varying and the analyticahrried out an experiment, depicted in FI[d. 4, where the
results of the tracking analysis ifi_{80) are employed. Wsroposed algorithm estimates of the MAI and ISI powers
consider a Jakes’ model with a typical normalized fading raand the amplitude of the desired user are compared to the
faT. We computeTr(Q) with the aid of Jo(27f4T) [44], actual interference power and amplitude. The results shatv t
which is the autocorrelation function of the Jakes’ model arthe proposed algorithms are very effective for estimating a
where.J, is the zero-order Bessel function of the first kind. Aracking the interference power in dynamic environmengs, a
comparison of the curves obtained by simulations and by tHepicted in Fig[4.
analytical formulas is shown in Fig] 3. Similarly to the case We assess the proposed channel estimation (CE) algorithm,
of fixed channels, the analytical and simulated curves agreslled SM-CCM-CE, with the time-varying bounds PDB and
and show the validity of the proposed formulas. Neverttsgles?IDB, and also with a fixed bound, and compare them to
the curves indicate a higher misadjustment as compareato the CMV-based method (CMV-CE) reported {n_[41] and the
curves in Fig[R due to the time-varying process and extsabspace algorithm of [42] in terms of the MSE between
effort of the adaptive filters to track the channel variasion the actual and the estimated channels using the following

dynamic scenario. The system has initiallp users, the
power distribution among the interferers follows a logmat
za> N=31, K=10 users, E,/N;=15 dB, f,T=10"* L PIN=SLK=10users distribution with associated standard deviatior3adB. After
1| - Simulated(a=5,r-0.25, p-0.38) ‘ ‘ 1500 symbols,6 additional users enter the system and the
+g';§'r¥1‘§a' 1 power distribution among interferers is loosen6a@B. The
results, shown in Fil5, reveal that the proposed SM-CCM-
CE algorithm outperforms the CMV-CE technique reported in
[41] because SM-CCM-CE uses a variable forgetting factor.
The proposed SM-CCM is also computationally simpler than
CMV-CE due to the sparse updates, whereas it is substgntiall
less complex than the subspace method df [42]. This is becaus
the SM-CCM-CE needs to compute the principal eigenvector
of the L, x L, matrix Ckf%,;l[z‘]Ck, while the subspace
technique in [[4R] requires the principal eigenvector of the
‘ ‘ ‘ ‘ s ‘ ‘ M x M matrix R [i]. Since L, < M in most practical
0 ﬁﬂmberlcg(ieceivﬁosymbi?g 250 10 =N « 32)0 25 scenarios SM-CCM-CE is typically considerably simplemtha
bo the subspace method.

ok

L
-2t I

MSE (dB)
&

-10}

ol TRy

-14

Fig. 3. MSE performance against a) the number of receivedbsismat
E,/No = 15dB and b) E}, /Ny (dB). C. BER Performance

The SM-CCM algorithms are assessed in a non-stationary
environment where users enter and exit the system, as ddpict



12

N=31, /N, =15 0B, ,T = 00001 N=31, E /N =15 dB, f T=0.0001

—6&— SM-CCM-CE-UR=20% J —©~ SM-CCM-SG-UR=20.4%
—#*— SM-CCM-CE-PDB-UR-17.8% —— SM-CMV-SG-UR=19.1%
—%*— SM-CCM-CE-PIDB-UR-16.7% 1071 —4— SM-CCM-SG-PDB-UR=14.2%
] ¢ gNLV—CE —&— SM-CMV-SG-PDB-UR=12.9%
10’165 —+— Subspace —%— SM-CCM-SG-PIDB-UR=8.3%
—

SM-CMV-SG-PIDB-UR=6.9%

MSE (dB)

0 500 1000 150_0 2000 2500 3000 -3 ; ; ; ; ;
Number of received symbols 0 500 1000 1500 2000 2500 3000
Number of received symbols

Fig. 5. MSE performance of channel estimation versus nurobeeceived

symbols in a dynamic scenario where receivers opera&\ak = £, /No =  Fig. 6. BER performance of the algorithms versus number oftmys for

15 dB for the desired user. a non-stationary scenario. The parameters sare- 1.3 for the SM-CMV,
~v = 0.65 for the SM-CCM.

N=31, Eb/N0 =154dB, de:0.0001

in Figs.[6 andJ7. The system starts withinterferers with7 1078
H ’ H . —&— SM-CCM-RLS-UR=12.4%
dB above the desired user’s power level md_terferers with S OM_CMV-RLS-UR-12.19¢
the same power level of the desired one, which corresponds —+#— SM-CCM-RLS-PDB-UR=10.2%
. . . + —| —| — —| = 0,
the signal-to-noise ratid, /Ny = 15 dB. At 1000 symbols, gm_gm_ii_?ﬁ_UURRZQ._—E@,

2 interferers with10 dB above the desired signal power leve ~+ SM-CMV-RLS-PIDB-UR=5.3%
and 1 with the same power level enter the system, where '
1 interferer with7 dB above the desired signal power leve
leaves it. At2000 symbols,1 interferer with 10 dB above,
and 5 interferers with the same power level of the desire
signal exit the system, whilé interferer with 15 dB above
the desired user enters the system. The resultd G0rruns
show that the proposed SM-CCM-RLS algorithm achieve
the best performance, followed by the proposed SM-CM\ ‘ } ‘ ‘
RLS recursion, the CCM-SG and the CMV-SG methods. | 0 500 ﬁfngberofréigf\)/edsymzbg?g 2500 3000
summary the SM-CCM algorithms outperform the SM-CM\
Fechnlques in all scenarios and the S,M_CCM_RLS algomhmg. 7. BER performance of the algorithms versus number oflmyfs for
is the best among the analyzed algorithms. a non-stationary scenario. The parameters are- 1.3 for the SM-CMV,

In a near-far scenario the eigenvalue spread of the covari= 0-65 for the SM-CCM.
ance matrix of the received vectofi| is large, affecting the
convergence performance of the SG algorithms with fixed step
size and making it very difficult to compute a pre-determine@chniques as expected and have loweR. Moreover, the
value [1] for the step size. In this case, the SM-CCM algaigorithms with the PIDB approach achieve the best perfor-
rithms are able to deal with near-far situations since tftBpa mance, followed by the algorithms with the PDB method and
variable step size or variable forgetting factor mechasisnthe SM recursions with fixed bounds. With respect tothe,
ensuring good tracking performance in dynamic scenari@fe PIDB technique results in the smallest number of upgates
and an improved performance over the existing CCM-tyggllowed by the PDB approach and the fixed bound.
algorithms. In addition, due to their data-selective updat The BER performance VerSLE,/NO and number of users
feature the SM algorithms can save significant computaltiona shown in Fig[ID. We consider data packetsfof= 1500
resources as they only require parameter updates for ab&yhbols and compare the proposed SM-CCM-RLS algorithm
20% of the time for the SG-type recursions and aroua with a fixed bound, with the PIDB mechanism, the training-
for the RLS-based techniques. based BEACON algorithm with the PIDB mechanism/[21] and

The same scenario illustrated in F[d. 6 is considered ftite linear MMSE receiver that assumes perfect knowledge of
the SM-CCM algorithms with time-varying error bounds, athe channels and the noise variance. We have measured the
shown in Figs[B and]9. The results indicate that the proposBHR after 200 independent transmissions and the BEACON
time-varying bounds are capable of improving the perforoeanalgorithm [6],[21] is trained with200 symbols and is then
of SM algorithms, while further reducing the number ofwitched to decision-directed mode. The curves illusttiade
updates. The RLS-type algorithms outperform the SG-basth@ proposed blind SM-CCM-RLS algorithm can approach the




N=31, Eb/N0:15 dB, de:0.0001
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Fig. 10. BER performance versus (&),/No with K = 10 users and (b)
Fig. 8. BER performance of the SG algorithms versus numbesynfbols number of users (K) af, /No = 15 dB .

for a non-stationary scenario with time-varying boundse farameters are
a =8, 7=0.35 and 3 = 0.95 for the time-varying bounds.

N=31, Eb/N0 =15dB, de:0.0001

10° T T T
—6— SM-CCM-RLS-UR=12.4%

—#*— SM-CCM-RLS-PDB-UR=10.2%)
—*— SM-CCM-RLS-PIDB-UR=5.4%

[2]
0 500 1000 1500 2000 2500 3000
Number of received symbols

3]
Fig. 9. BER performance of the RLS algorithms versus numbeymbols [4]
for a non-stationary scenario with time-varying boundse farameters are
a =38, 7=0.35and 3 = 0.95 for the time-varying bounds.

[5]

performance of the supervised BEACON algorithm and that

of the linear MMSE receiver. (6

]

VII. CONCLUSIONS 7]
We have proposed SM-CCM adaptive algorithms for inter-

ference suppression in DS-CDMA systems. We have analyzed
the optimization problem that gives rise to the SM-CCM g
algorithms and devised analytical expressions to predait t
MSE performance with a good accuracy. The proposed SM-
CCM algorithms are equipped with variable step sizes ano[g]
forgetting factors and are only updated for a small fractén
time without incurring any performance degradation. A #lin [10]
framework for SM estimation that takes into account paramet
estimation dependency and MAI and ISI for multiuser commu-
nications has also been introduced to provide a time-vgryin1l
bound that is robust against channel and SNR variations. Sim
ulations have shown that the proposed SM-CCM algorithms

outperform previously reported blind techniques for saler
scenarios.
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