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Abstract

Adaptive networks consist of a collection of agents with adaptation and learning abilities. The

agents interact with each other on a local level and diffuse information across the network through

their collaborations. In this work, we consider two types ofagents: informed agents and uninformed

agents. The former receive new data regularly and perform consultation and in-network tasks, while the

latter do not collect data and only participate in the consultation tasks. We examine the performance

of adaptive networks as a function of the proportion of informed agents and their distribution in space.

The results reveal some interesting and surprising trade-offs between convergence rate and mean-square

performance. In particular, among other results, it is shown that the performance of adaptive networks

does not necessarily improve with a larger proportion of informed agents. Instead, it is established that

the larger the proportion of informed agents is, the faster the convergence rate of the network becomes

albeit at the expense of some deterioration in mean-square performance. The results further establish that

uninformed agents play an important role in determining thesteady-state performance of the network, and

that it is preferable to keep some of the highly connected agents uninformed. The arguments reveal an

important interplay among three factors: the number and distribution of informed agents in the network,

the convergence rate of the learning process, and the estimation accuracy in steady-state. Expressions

that quantify these relations are derived, and simulationsare included to support the theoretical findings.

We further apply the results to two models that are widely used to represent behavior over complex

networks, namely, the Erdos-Renyi and scale-free models.
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I. INTRODUCTION

Adaptive networks consist of a collection of spatially distributed nodes that are linked together through

a connection topology and that cooperate with each other through local interactions. Adaptive networks

are well-suited to perform decentralized information processing and inference tasks [2], [3] and to model

complex and self-organized behavior encountered in biological systems [4], [5], such as fish joining

together in schools [6] and birds flying in formation [7].

In previous works on adaptive networks [2], [3], [6], and in other related studies on distributed and

combination algorithms [8]–[21], the agents are usually assumed to be homogeneous in that they all have

similar processing capabilities and are able to have continuous access to information and measurements.

However, it is generally observed in nature that the behavior of a biological network is often driven more

heavily by a small fraction of the agents as happens, for example, with bees and fish [22]–[24]. This

phenomenon motivates us to study in this paper adaptive networks where only afraction of the nodes are

assumed to be informed, while the remaining nodes are uninformed. Informed nodes collect data regularly

and perform in-network processing tasks, while uninformednodes only participate in consultation tasks

in the manner explained in the sequel.

We shall examine how the transient and steady-state behavior of the network are dependent on its

topology and on theproportion of the informed nodes and their distribution in space. The results will

reveal some interesting and surprising trade-offs betweenconvergence rate and mean-square performance.

In particular, among other results, the analysis will show that the performance of adaptive networks does

not necessarily improve with a larger proportion of informed nodes. Instead, it is discovered that the larger

the proportion of informed nodes is, the faster the convergence rate of the network becomes albeit at the

expense of some deterioration in mean-square performance.The results also establish that uninformed

nodes play an important role in determining the steady-state performance of the network, and that it is

preferable to maintain some of the highly connected nodes uninformed. The analysis in the paper reveals

the important interplay that exists among three factors: the number of informed nodes in a network,

the convergence rate of the learning process, and the estimation accuracy. We shall further apply the

results to two topology models that are widely used in the complex network literature [25], namely, the

Erdos-Renyi and scale-free models.
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To establish the aforementioned results, a detailed mean-square-error analysis of the network behavior

is pursued. However, the difficulty of the analysis is compounded by the fact that nodes interact with

each other and, therefore, they influence each other’s learning process and performance. Nevertheless,

for sufficiently small step-sizes, we will be able to derive an expression for the network’s mean-square

deviation (MSD). By examining this expression, we will establish that the MSD is influenced by the

eigen-structure of two matrices: the covariance matrix representing the data statistical profile and the

combination matrix representing the network topology. We then study the eigen-structure of these matrices

and derive useful approximate expressions for their eigenvalues and eigenvectors. The expressions are

subsequently used to reveal that the network MSD can be decomposed into two components. We study

the behavior of each component as a function of the proportion of informed nodes; both components show

important differences in their behavior. When the components are added together, a picture emerges that

shows how the performance of the network depends on the proportion of informed nodes in an manner

that supports analytically the popular wisdom thatmore information is not necessarily better[26].

The organization of the paper is as follows. In Sections II and III, we review the diffusion adaptation

strategy and establish conditions for the mean and mean-square stability of the networks in the presence of

uninformed nodes. In Section IV, we introduce two popular models from the complex network literature.

In Section V, we analyze in some detail the structure of the mean-square performance of the networks and

reveal the effect of the network topology and node distribution on learning and adaptation. Simulation

results appear in Section V in support of the theoretical findings.

II. D IFFUSION ADAPTATION STRATEGY

Consider a collection ofN nodes distributed over a domain in space. Two nodes are said to be

neighbors if they can share information. The set of neighbors of nodek, including k itself, is called

the neighborhood ofk and is denoted byNk. The nodes would like to estimate some unknown column

vector,w◦, of sizeM . At every time instant,i, each nodek is able to observe realizations{dk(i), uk,i} of

a scalar random processdk(i) and a1×M vector random processuk,i with a positive-definite covariance

matrix, Ru,k = Eu
∗
k,iuk,i > 0, whereE denotes the expectation operator. All vectors in our treatment

are column vectors with the exception of the regression vector, uk,i, which is taken to be a row vector

for convenience of presentation. The random processes{dk(i),uk,i} are assumed to be related tow◦ via

a linear regression model of the form [27]:

dk(i) = uk,iw
◦ + vk(i) (1)
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where vk(i) is measurement noise with varianceσ2v,k and assumed to be spatially and temporally

independent with

Ev
∗
k(i)vl(j) = σ2v,k · δkl · δij (2)

in terms of the Kronecker delta function. The noisevk(i) is assumed to be independent oful,j for all

l and j. The regression datauk,i is likewise assumed to be spatially and temporally independent. All

random processes are assumed to be zero mean. Note that we useboldface letters to denote random

quantities and normal letters to denote their realizationsor deterministic quantities. Models of the form

(1)-(2) are useful in capturing many situations of interest, such as estimating the parameters of some

underlying physical phenomenon, or tracking a moving target by a collection of nodes, or estimating the

location of a nutrient source or predator in biological networks (see, e.g., [6], [7]).

The objective of the network is to estimatew◦ in a distributed manner through an online learning

process, where each node is allowed to interact only with itsneighbors. The nodes estimatew◦ by

seeking to minimize the following global cost function:

Jglob(w) ,

N∑

k=1

E|dk(i)− uk,iw|2 (3)

Several diffusion adaptation schemes for solving (3) in a distributed manner were proposed in [2], [3],

[28]; the latter reference considers more general cost functions. It was shown in these references, through

a constructive stochastic approximation and incremental argument, that the structure of a near-optimal

distributed solution for (3) takes the form of the Adapt-then-Combine (ATC) strategy of [3]; this strategy

can be shown to outperform other strategies in terms of mean-square performance including consensus-

based strategies [29], [30]. Hence, we focus in this work on ATC updates. The ATC strategy operates as

follows. We select anN ×N left-stochastic matrixA with nonnegative entries{al,k ≥ 0} satisfying:

AT
1 = 1 andal,k = 0 if, and only if, l /∈ Nk (4)

where1 is a vector of sizeN with all entries equal to one. The entryal,k denotes the weight on the link

connecting nodel to nodek, as shown in Fig. 1. Thus, condition (4) states that the weights on all links

arriving at nodek add up to one. Moreover, if two nodesl andk are linked, then their corresponding

entry al,k is positive; otherwise,al,k is zero. The ATC strategy consists of two steps. The first step(5a)

involves local adaptation, where nodek uses its own data{dk(i), uk,i}. This step updates the weight

estimate at nodek from wk,i−1 to an intermediate valueψk,i. The second step (5b) is a combination

(consultation) step where the intermediate estimates{ψl,i} from the neighborhood are combined through
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Fig. 1. A connected network with informed and uninformed nodes. The weightal,k scales the data transmitted from nodel

to nodek over the edge linking them.

the weights{al,k} to obtain the updated weight estimatewk,i. The ATC strategy is described as follows:






ψk,i = wk,i−1 + µku
∗
k,i[dk(i)− uk,iwk,i−1] (5a)

wk,i =
∑

l∈Nk

al,kψl,i (5b)

whereµk is the positive step-size used by nodek. To model uninformed nodes over the network, we

shall setµk = 0 if node k is uninformed. We assume that the network contains at least one informed

node. In this model, uninformed nodes do not collect data{dk(i), uk,i} and, therefore, do not perform

the adaptation step (5a); they, however, continue to perform the combination or consultation step (5b).

In this way, informed nodes have access to data and participate in the adaptation and consultation steps,

whereas uninformed nodes play an auxiliary role through their participation in the consultation step only.

This participation is nevertheless important because it helps diffuse information across the network. One

of the main contributions of this work is to examine how the proportion of informed nodes, and how

the spatial distribution of these informed nodes, influencethe learning and adaptation abilities of the

network in terms of its convergence rate and mean-square performance. It will follow from the analysis

that uninformed nodes also play an important role in determining the network performance.

III. N ETWORK MEAN-SQUARE PERFORMANCE

The mean-square performance of ATC networks has been studied in detail in [3] for the case where

all nodes are informed. Expressions for the network performance, and conditions for its mean-square

stability, were derived there by applying energy conservation arguments [27], [31]. In this section, we

start by showing how to extend the results to the case in whichonly a fraction of the nodes are informed.

The condition for mean-square stability will need to be properly adjusted as explained below in (13) and

(14). We start by examining mean stability.
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A. Mean Stability

Let the error vector for any nodek be denoted by:

w̃k,i , w◦ −wk,i (6)

We collect all weight error vectors and step-sizes across the network into a block vector and block matrix:

w̃i , col{w̃1,i, · · · , w̃N,i} , M , diag{µ1IM , · · · , µN IM} (7)

where the notation col{·} denotes the vector that is obtained by stacking its arguments on top of each

other, and diag{·} constructs a diagonal matrix from its arguments. We also introduce the extended

combination matrix:

A , A⊗ IM (8)

where the symbol⊗ denotes the Kronecker product of two matrices. Then, starting from (5a)-(5b) and

using model (1), some algebra will show that the global errorvector in (7) evolves according to the

recursion:

w̃i = AT (INM −MRi)w̃i−1 −ATMsi (9)

where

Ri , diag{u∗
1,iu1,i, · · · ,u∗

N,iuN,i}, si , col{u∗
1,iv1,i, · · · ,u∗

N,ivN,i} (10)

Since the regressors{uk,i} are spatially and temporally independent, then the{uk,i} are independent

of w̃i−1. Taking expectation of both sides of (9), we find that the meanrelation for w̃i evolves in time

according to the recursion:

Ew̃i = B · Ew̃i−1 (11)

where we introduced the block matrices:

B , AT (INM −MR), R , ERi = diag{Ru,1, · · · , Ru,N} (12)

In the following statement, we provide conditions to ensuremean stability of the network, namely, that

Ew̃i → 0 as i→ ∞, even in the presence of uninformed nodes.

Theorem 1 (Mean stability). The ATC network (5) with at least one informed node convergesin the

mean sense if the step-sizes{µk} and the combination matrixA satisfy the following two conditions:

1) For every informed nodel, its step-sizeµl satisfies:

0 < µl · ρ(Ru,l) < 2 (13)
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where the notationρ(·) denotes the spectral radius of its matrix argument.

2) There exists a finite integerj such that for every nodek, there exists an informed nodel satisfying:

[
Aj
]

l,k
> 0 (14)

That is, the(l, k)th entry ofAj is positive. [This condition essentially ensures that there is a path

from nodel to nodek in j steps.]

Proof: We first introduce a block matrix norm. LetΣ be anN × N block matrix with blocks of

sizeM ×M each. Its block matrix norm,‖Σ‖b, is defined as:

‖Σ‖b , max
1≤k≤N

(
N∑

l=1

‖Σk,l‖2
)

(15)

whereΣk,l denotes the(k, l)th block of Σ and ‖ · ‖2 denotes the largest singular value of its matrix

argument. That is, we first compute the 2-induced norm of eachblock Σk,l and then find the∞-norm

of theN × N matrix formed from the entries{‖Σk,l‖2}. It can be verified that (15) satisfies the four

conditions for a matrix norm [32]. To prove mean stability ofthe ATC network (5), we need to show

that conditions (13)-(14) guaranteeρ(B) < 1, or equivalently,ρ(Bj) < 1 for any j. Now, note that

ρ(Bj) ≤ ‖Bj‖b = max
1≤k≤N

(
N∑

l=1

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2

)

(16)

By the rules of matrix multiplication, the(k, l)th block (of sizeM ×M ) of the matrixBj is given by:

[
Bj
]

k,l
=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

Bk,m1
Bm1,m2

· · · Bmj−1,l (17)

whereBk,l is the (k, l)th block (of sizeM ×M ) of the matrixB from (12) and is given by

Bk,l = al,k · (IM − µlRu,l) (18)

Then, using the triangle inequality and the submultiplicative property of norms, the 2-induced norm of

[Bj]k,l in (17) is bounded by:

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

‖Bk,m1
‖2 · ‖Bm1,m2

‖2 · · · ‖Bmj−1,l‖2 (19)

Note that in the case wherel ∈ Nm, we obtain from condition (13) and expression (18) that

‖Bm,l‖2 = al,m · ρ (IM − µlRu,l)







< al,m, if node l is informed

= al,m, if node l is uninformed
(20)
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where we replaced the 2-induced norm with the spectral radius because covariance matrices are Hermitian.

Relation (20) and condition (4) imply that
∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2
≤

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1
· · · al,mj−1 (21)

Strict inequality holds in (21) if, and only if, the sequence(l,mj−1, . . . ,m1, k) forms a path from node

l to nodek using j edges and there exists at least one informed node along the path. Since we know

from condition (14) that there is an informed node, say, nodel◦, such that a path withj edges exists

from nodel◦ to nodek, we then get from (16) and (21) that

ρ(Bj) ≤ max
1≤k≤N





∥
∥
∥

[
Bj
]

k,l◦

∥
∥
∥
2
+
∑

l 6=l◦

∥
∥
∥

[
Bj
]

k,l

∥
∥
∥
2





< max
1≤k≤N

N∑

l=1





N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1
· · · al,mj−1





= max
1≤k≤N

N∑

l=1

[
Aj
]

l,k

= 1

(22)

where the last equality is from condition (4) because(AT )j1 = 1 if AT
1 = 1.

Condition (14) is satisfied if the matrixA is primitive [32]. Since, by (4),A is left-stochastic, it

follows from the Perron-Frobenius Theorem [32] that the eigen-structure ofA satisfies certain prominent

properties, which will be useful in the sequel, namely, that(a) A has an eigenvalue atλ = 1; (b) the

eigenvalue atλ = 1 has multiplicity one; (c) all the entries of the right and left eigenvectors associated

with λ = 1 are positive; and (d)ρ(A) = 1 so that all other eigenvalues ofA have magnitude strictly

less than one. We remark that since in this paper we will be dealing with connected networks (where a

path always exists between any two arbitrary nodes), then condition (14) is automatically satisfied. As

such, the ATC strategy (5) will converge in the mean wheneverthere exists at least one informed node

with its step-size satisfying condition (13). In the next section, we show that conditions (13)-(14) further

guarantee mean-square convergence of the network when the step-sizes are sufficiently small.

B. Mean-Square Stability

The network mean-square-deviation (MSD) is used to assess how well the network estimates the weight

vector,w◦. The MSD is defined as follows:

MSD , lim
i→∞

1

N

N∑

k=1

E‖w̃k,i‖2 (23)
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where‖·‖ denotes the Euclidean norm for vectors. To arrive at an expression for the MSD, we first derive

a variance relation for the ATC network; the variance relation indicates how the weighted mean-square

error vector evolves over time [27]. LetΣ denote an arbitrary nonnegative-definite Hermitian matrixthat

we are free to choose, and letσ = vec(Σ) denote the vector that is obtained by stacking the columns

of Σ on top of each other. We shall interchangeably use the notation ‖x‖2Σ and ‖x‖2σ to denote the

same weighted square quantity,x∗Σx. Following the energy conservation approach of [27], [31],we can

motivate the following weighted variance relation:

E‖w̃i‖2Σ = E

(

‖w̃i−1‖2(INM−RiM)AΣAT (INM−MRi)

)

+ Tr(ΣATMSMA) (24)

where

S , Esis
∗
i = diag{σ2v,1Ru,1, . . . , σ

2
v,NRu,N} (25)

Relation (24) can be derived from (9) directly by multiplying both sides from the left bỹw∗
iΣ and taking

expectations. Some algebra will then show that for sufficiently small step-sizes, expression (24) can be

approximated and rewritten as (see [3] for similar details,where terms that depend on higher-order powers

of the small step-sizes are ignored):

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ +
[
vec(YT )

]T
σ (26)

where

F , BT ⊗ B∗, Y , ATMSMA (27)

Relation (26) is very useful and it can be used to study the transient behavior of the ATC network, as

well as its steady-state performance. The following resultensures thatE‖w̃i‖2σ remains bounded and

converges to some constant asi goes to infinity.

Theorem 2 (Mean-square stability). The ATC network (5) with at least one informed node is mean-square

stable if the step-sizes{µk} and the combination matrixA satisfy conditions (13)-(14), and the step-sizes

{µk} are sufficiently small such that higher-order powers of themcan be ignored.

Proof: Expression (26) holds for sufficiently small step-sizes. Asshown in [3], the mean-square

convergence of (26) is guaranteed ifρ (F ) < 1. But since

ρ (F) = ρ
(
BT ⊗ B∗

)
= [ρ (B)]2 (28)

and conditions (13)-(14) guaranteeρ (B) < 1 from Theorem 1, it also holds thatρ (F) < 1.
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C. Mean-Square Performance

Now, assume the network is mean-square stable and let the time indexi tend to infinity. From (26),

we obtain the steady-state relation

lim
i→∞

E‖w̃i‖2(IN2M2−F)σ =
[
vec(YT )

]T
σ (29)

Since the eigenvalues of the matrixF are within the unit disc, the matrix(IN2M2 −F) is invertible. Thus,

the network MSD, as given by (23), can be obtained by choosingσ = (IN2M2 −F)−1 vec(INM )/N ,

which leads to the following useful expression

MSD =
1

N

[
vec(YT )

]T
(IN2M2 −F)−1 vec(INM ) (30)

Expression (30) relates the network MSD to the quantities{Y,F} defined by (27). These quantities

contain information about the data statistical profile, thespatial distribution of informed nodes, and the

network topology through their dependence on{R,M,A}. Using the following equalities for arbitrary

matrices{U,W,Σ} of compatible dimensions:

vec(UΣW ) = (W T ⊗ U)σ, Tr(ΣW ) =
[
vec(W T )

]T
σ (31)

and the fact that, for any stable matrixF , it holds:

(IN2M2 −F)−1 =

∞∑

j=0

F j (32)

we can obtain an alternative expression for the network MSD from (27) and (30), namely,

MSD =
1

N

∞∑

j=0

Tr[BjY(B∗)j ] (33)

This expression for the MSD will be the starting point for ouranalysis further ahead, when we examine

the influence of the proportion of informed nodes on network performance.

D. Convergence Rate

We denote the convergence rate of the ATC strategy (5) byr so that the smaller the value ofr is,

the faster the rate of convergence ofE‖w̃i‖2 is towards its steady-state value. As indicated by (26), the

convergence rate is determined by the spectral radius of thematrix F in (27), i.e.,

r = ρ(F) = [ρ(B)]2 (34)

Let NI denote the set of informed nodes, i.e.,k ∈ NI if nodek is informed. From now on, we introduce

the assumption below, which essentially assumes that all informed nodes have similar processing abilities
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in that they use the same step-size value while observing processes arising from the same statistical

distribution.

Assumption 1. Assume thatµk = µ for all informed nodes and that the covariance matrices across all

nodes are also uniform, i.e.,Ru,k = Ru. We continue to assume that the step-size is sufficiently small so

that it holds that0 < µ · ρ(Ru) < 1.

Then, we have the following useful result.

Lemma 1 (Faster convergence rate). Consider two configurations of the same network: one withNI,1 in-

formed nodes and another withNI,2 informed nodes. Letr1 andr2 denote the corresponding convergence

rates for these two informed configurations. IfNI,2 ⊇ NI,1, thenr2 ≤ r1.

Proof: Under Assumption 1, we have that

IM − µlRu,l =







IM − µRu, if node l is informed

IM , if node l is uninformed
(35)

Then, the matrix[Bj ]k,l in (17) can be written as:

[
Bj
]

k,l
=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1
· · · al,mj−1

· (IM − µRu)
ql,k (36)

where the exponentql,k denotes the number of informed nodes along the path(l,mj−1, . . . ,m1, k).

Note that [Bj]k,l is a nonnegative-definite matrix because(IM − µRu) > 0 in view of the condition

0 < µρ(Ru) < 1. In fact, all eigenvalues of(IM − µRu) lie within the line segment(0, 1). Moreover,

sinceNI,1 ⊆ NI,2, we have thatq(1)l,k ≤ q
(2)
l,k and, therefore, the matrix difference

[

B(1)j
]

k,l
−
[

B(2)j
]

k,l
=

N∑

m1=1

N∑

m2=1

· · ·
N∑

mj−1=1

am1,k · am2,m1
· · · al,mj−1

×
[

(I − µRu)
q(1)l,k − (I − µRu)

q(2)l,k

]

(37)

is a nonnegative-definite matrix, where the superscripts denote the indices of the informed configurations,

NI,1 or NI,2. Since[B(1)j ]k,l, [B(2)j ]k,l, and[B(1)j ]k,l− [B(2)j ]k,l are all nonnegative-definite, then it must

hold that
∥
∥
∥
∥

[

B(1)j
]

k,l

∥
∥
∥
∥
2

≥
∥
∥
∥
∥

[

B(2)j
]

k,l

∥
∥
∥
∥
2

(38)

Relation (38) can be established by contradiction. Supposethat (38) does not hold, i.e.,ρ([B(1)j ]k,l) <

ρ([B(2)j ]k,l) as [B(1)j ]k,l and [B(2)j ]k,l are Hermitian from (36). In addition, letx denote the eigenvector
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that is associated with the largest eigenvalue of[B(2)j ]k,l, i.e., ([B(2)j ]k,l)x = ρ([B(2)j ]k,l)x. Then, we

obtain the following contradiction to the nonnegative-definiteness of[B(1)j ]k,l − [B(2)j ]k,l:

x∗
([

B(1)j
]

k,l
−
[

B(2)j
]

k,l

)

x = x∗
([

B(1)j
]

k,l

)

x− ρ

([

B(2)j
]

k,l

)

x∗x < 0 (39)

by the Rayleigh-Ritz Theorem [32]. By the definition of the block matrix norm in (15), we arrive at

(∥
∥
∥

[

B(1)j
]∥
∥
∥
b

)1/j
≥
(∥
∥
∥

[

B(2)j
]∥
∥
∥
b

)1/j
(40)

for all j. Let j tend to infinity and we obtain that

ρ
(

B(1)
)

≥ ρ
(

B(2)
)

(41)

where we used the fact thatρ(B) = limj→∞(‖Bj‖)1/j for any matrix norm [32].

The result of Lemma 1 shows that if we enlarge the set of informed nodes, the convergence rate

decreases and convergence becomes faster. The following result provides bounds for the convergence

rate.

Lemma 2 (Bound on convergence rate). The convergence rate is bounded by

[1− µ · λM (Ru)]
2 ≤ r < 1 (42)

whereλM (Ru) denotes the smallest eigenvalue ofRu.

Proof: Since the ATC network is mean-square stable, i.e.,ρ(B) < 1, the upper bound is obvious.

On the other hand, from Lemma 1, the value ofρ(B) achieves its minimum value when all nodes are

informed, i.e., the matrixM in (7) becomesM = µINM . In this case, the matrixB in (12) can be

written as:

B◦ = AT ⊗ (IM − µRu) (43)

where the superscript is used to denote the matrixB when all nodes are informed. Then,

ρ(B) ≥ ρ(B◦)

= ρ(AT ) · ρ(IM − µRu)

(44)

We already know thatρ(AT ) = 1. In addition, because(IM − µRu) > 0, we have that

ρ(IM − µRu) = 1− µ · λM (Ru) (45)

and we arrive at the lower bound in (42).
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IV. T WO NETWORK TOPOLOGY MODELS

Before examining the effect of informed nodes on network performance, we pause to introduce two

popular models that are widely used in the study of complex networks. We shall call upon these models

later to illustrate the theoretical findings of the article.For both models, we letnk denote the degree

(number of neighbors) of nodek. Note that since nodek is a neighbor of itself, we havenk ≥ 1. In

addition, we assume the network topology is symmetric so that if node l is a neighbor of nodek, then

nodek is also a neighbor of nodel.

A. Erdos-Renyi Model

In the Erdos-Renyi model [33], there is a single parameter called edge probabilityand is denoted by

p ∈ [0, 1]. The edge probability specifies the probability that two distinct nodes are connected. In this

way, the degree distribution of any nodek becomes a random variable and is distributed according to a

binomial distribution, i.e.,

f(nk) =




N − 1

nk − 1



 pnk−1(1− p)N−nk (46)

The expected degree for nodek, denoted bȳnk, is then

n̄k = (N − 1)p + 1 (47)

Note that, in this model, all nodes have the same expected degree since the right-hand side is independent

of k. Therefore, the expected network degree,η̄, becomes

η̄ ,
1

N

N∑

k=1

n̄k = (N − 1)p + 1 (48)

B. Scale-Free Model

The Erdos-Renyi model does not capture several prominent features of real networks such as thesmall-

world phenomenonand thepower-law degree distribution[25]. The small-world phenomenon refers to

the fact that the number of edges between two arbitrary nodesis small on average. The power-law degree

distribution refers to the fact that the number of nodes withdegreenk falls off as an inverse power of

nk, namely,

f(nk) ∼ cn−γ
k (49)

with two positive constantsc and γ. Networks with degree distributions of the form (49) are called

scale-free networks [34] and can be generated using preferential attachment models. We briefly describe
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the model proposed by [35]. The model starts with a small connected network withN0 nodes. At every

iteration, we add a new node, which will connect tom ≤ N0 distinct nodes besides itself. The probability

of connecting to a node is proportional to its degree. As timeevolves, nodes with higher degree are more

likely to be connected to new nodes. Eventually, there are a few nodes that connect to most of the

network. This phenomenon is observed in real networks, suchas the Internet [25]. IfN ≫ N0, the

expected degree of the network approximates to

η̄ ≈ 2m+ 1 (50)

because every new arrival node contributes2m+ 1 degrees to the network.

V. EFFECT OFTOPOLOGY AND NODE DISTRIBUTION

We are now ready to examine in some detail the effect of network topology and node distribution on

the behavior of the network MSD given by (33) and the convergence rate given by (34).

A. Eigen-structure ofB

To begin with, we observe from (33) and (34) that the network MSD and convergence rate depend

on the matrixB from (12) in a non-trivial manner. To gain insight into the network performance, we

need to examine closely the eigen-structure ofB, which is related to the combination matrixA and the

covariance matrixRu. We start from the eigen-structure ofA. To facilitate the analysis, we assume that

A is diagonalizable, i.e., there exists an invertible matrix, U , and a diagonal matrix,Λ, such that

AT = UΛU−1 (51)

Now, let rk and sk (k = 1, . . . , N ) denote an arbitrary pair of right and left eigenvectors ofAT

corresponding to the eigenvalueλk(A). Then,

U =
[

r1 · · · rN

]

, U−1 = col{s∗1, . . . , s∗N}, Λ = diag{λ1(A), . . . , λN (A)} (52)

Obviously, it holds thats∗l rk = δkl sinceUU−1 = IN . We further assume that the right eigenvectors of

AT satisfy:

|r∗l rk| ≪ ‖rk‖2 (53)

for l 6= k. Condition (53) states that the{rk} are approximately orthogonal (see example below). Without

loss of generality, we order the eigenvalues ofAT in decreasing order and assume1 = λ1(A) > |λ2(A)| ≥
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· · · ≥ |λN (A)|. The eigen-decomposition ofAT can also be written as:

AT =

N∑

k=1

λk(A) · rks∗k (54)

Note that any symmetric combination matrix satisfies both conditions (51) and (53) since thenr∗l rk = δkl.

Another example of a useful combination matrixA that is not symmetric but still satisfies (51) is the

uniform combination matrix, i.e.,

al,k =







1/nk, if l ∈ Nk

0, otherwise
(55)

Lemma 3 (Diagonalization of uniform combination matrix). For a connected and symmetric network

graph, the matrixA defined by (55) is diagonalizable and has real eigenvalues.

Proof: We introduce the degree matrix,D, and the adjacency matrix,C, of the network graph, whose

entries are defined as follows:

D = diag{n1, . . . , nN}, [C]k,l =







1, if l ∈ Nk

0, otherwise
(56)

Then, it is straightforward to verify that the matrixAT in (55) can be written as:

AT = D−1C (57)

which shows thatAT is similar to the real-valued matrixAs defined by:

As , D1/2ATD−1/2

= D−1/2CD−1/2
(58)

whereD1/2 = diag{√n1, . . . ,
√
nN}. Since the topology is assumed to be symmetric, the matrixC is

symmetric, and so isAs. Therefore, there exists an orthogonal matrix,Us, and a diagonal matrix with

real diagonal entries,Λ, such that

As = UsΛU
T
s (59)

From (58), we let

U = D−1/2Us, U−1 = UT
s D

1/2 (60)

and we obtain (51).

Note that since the matricesUs andD1/2 in (60) are real-valued, so are eigenvectors of the uniform

combination matrix,{rk, sk}. Furthermore, from (60), we can express{rk, sk} in terms of the eigenvectors
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of As defined in (58). Letrsk denote thekth eigenvector ofAs and letrsk,l denote thelth entry of rsk.

Likewise, let{rk,l, sk,l} denote thelth entries of{rk, sk}. Then, we have

rk,l =
rsk,l√
nl
, sk,l =

√
nl · rsk,l (61)

For the Erdos-Renyi model, since nodes have on average the same expected degree given by (47), i.e.,

nk ≈ n̄k = η̄, then the right eigenvectors{rk} of the uniform combination matrix defined by (55) are

approximately orthogonal in view of

∣
∣rTl rk

∣
∣ =

∣
∣
∣
∣
∣

N∑

m=1

rsl,mr
s
k,m

nm

∣
∣
∣
∣
∣
≈ 1

η̄

∣
∣
∣
∣
∣

N∑

m=1

rsl,mr
s
k,m

∣
∣
∣
∣
∣
=

1

η̄
δkl (62)

Approximation (62) is particularly good whenN is large since most nodes have degree similar toη̄.

Even though this approximation is not generally valid for the scale-free model, simulations further ahead

indicate that the approximation still leads to good match between theory and practice.

Remark 1. We note that for networks with random degree distributions,such as the Erdos-Renyi and

scale-free networks of Sec. IV, the matrixA is generally a random matrix. In the sequel, we shall

derive expressions for the convergence rate and network MSDfor realizationsof the network — see

expressions (122) and (123) further ahead. To evaluate theexpectedconvergence rate and network MSD

over a probability distribution for the degrees (such as (46) or (49)), we will need to average expressions

(122) and (123) over the degree distribution. �

For the covariance matrixRu, we letzm (m = 1, . . . ,M ) denote the eigenvector ofRu that is associated

with the eigenvalueλm(Ru). Then, the eigen-decomposition ofRu is given by:

Ru =

M∑

m=1

λm(Ru) · zmz∗m (63)

where the{zm} are orthonormal, i.e.,z∗nzm = δmn, and the{λm(Ru)} are again arranged in decreasing

order withλ1(Ru) ≥ λ2(Ru) ≥ · · · ≥ λM (Ru) > 0. In the sequel, for any vectorx, we use the notation

xk:l to denote a sub-vector ofx formed from thekth up to thelth entries ofx. Also, we letNI denote

the number of informed nodes in the network. Without loss of generality, we label the network nodes

such that the firstNI nodes are informed, i.e.,NI = {1, 2, . . . , NI}. The next result establishes a useful

approximation for the eigen-structure of the matrixB defined in (12); it shows how the eigenvectors and

eigenvalues ofB can be constructed from the eigenvalues and eigenvectors for {AT , Ru} given by (54)

and (63).
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Lemma 4 (Eigen-structure ofB). For a symmetric ATC network (5) with at least one informed node,

the matrixB = AT (I −MR) has approximate right and left eigenvector pairs{rbk,m, sbk,m} given by:

rbk,m ≈ rk ⊗ zm, k = 1, . . . , N ; m = 1, . . . ,M (64)

sb∗k,m ≈ λk(A)

λk,m(B) ·
[

(1− µλm(Ru)) · s∗k,1:NI
⊗ z∗m s∗k,NI+1:N ⊗ z∗m

]

(65)

whereλk,m(B) denotes the eigenvalue of the eigenvector pair{rbk,m, sbk,m} and is approximated by:

λk,m(B) ≈ λk(A) ·
[
1− µλm(Ru) · s∗k,1:NI

rk,1:NI

]
(66)

Proof: We first note from (8) and (54) that the matrixAT can be written as

AT =

N∑

l=1

λl(A)(rl ⊗ IM )(s∗l ⊗ IM ) (67)

Then, the matrixB in (12) becomes

B =

N∑

l=1

λl(A)(rl ⊗ IM )(s∗l ⊗ IM )



INM −




µINIM

0(N−NI)M



 (IN ⊗Ru)





=

N∑

l=1

λl(A)(rl ⊗ IM )
[

s∗l,1:NI
⊗ (IM − µRu) s∗l,NI+1:N ⊗ IM

]

(68)

Multiplying B by therbk,m defined in (64) from the right, we obtain

B · rbk,m =

N∑

l=1

λl(A) · (rl ⊗ IM )
[
s∗l,1:NI

rk,1:NI
⊗ (1− µRu)zm + s∗l,NI+1:Nrk,NI+1:N ⊗ zm

]

=

N∑

l=1

λl(A) ·
[
(1− µλm(Ru)) s

∗
l,1:NI

rk,1:NI
+ s∗l,NI+1:Nrk,NI+1:N

]
(rl ⊗ IM )(1 ⊗ zm)

=

N∑

l=1

λl(A) ·
[
s∗l rk − µλm(Ru) · s∗l,1:NI

rk,1:NI

]
· (rl ⊗ zm)

= λk(A) ·
[
1− µλm(Ru) · s∗k,1:NI

rk,1:NI

]
· (rk ⊗ zm)

− µλm(Ru)
∑

l 6=k

λl(A) · s∗l,1:NI
rk,1:NI

· (rl ⊗ zm)
(69)

where we used thats∗l rk = δkl. For sufficiently small step-sizes, we can ignore the secondterm in the

last equation of (69) and write:

B · rbk,m ≈ λk(A) ·
[
1− µλm(Ru) · s∗k,1:NI

rk,1:NI

]
· (rk ⊗ zm)

= λk,m(B) · rbk,m
(70)
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Note that approximation (70) is particularly good for the uniform combination matrix in (55) since, from

(61) and by the Cauchy-Schwarz inequality, we have

|s∗l,1:NI
rk,1:NI

| =
∣
∣
∣
∣
∣

NI∑

m=1

rsl,mr
s
k,m

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

NI∑

m=1

(rsk,m)2

∣
∣
∣
∣
∣
= |s∗k,1:NI

rk,1:NI
| (71)

Following similar arguments, we can verify that

sb∗k,m · B =
λk(A)

λk,m(B) ·
N∑

l=1

λl(A) ·
[
s∗l rk − µλm(Ru) · s∗l,1:NI

rk,1:NI

]

× (1⊗ z∗m)
[

s∗l,1:NI
⊗ (IM − µRu) s∗l,NI+1:N ⊗ IM

]

≈ λk(A)

λk,m(B) · λk,m(B) ·
[

(1− µλm(Ru)) s
∗
k,1:NI

⊗ z∗m s∗k,NI+1:N ⊗ z∗m

]

= λk,m(B) · sb∗k,m

(72)

Now, we argue that the approximate eigenvalues ofB in (66) have magnitude less than one, i.e.,

|λk,m(B)| < 1 for all k andm. Note that, since|λk(A)| < 1 for k > 1 and for sufficiently small step-sizes,

we have|λk,m(B)| ≈ |λk(A)| < 1 for k > 1. For k = 1, λ1(A) = 1. However, since the eigenvectors

{r1, s1} have all positive entries, as we remarked before, we have0 < s∗1,1:NI
r1,1:NI

≤ s∗1r1 = 1. In

addition, from Assumption 1 that0 < µρ(Ru) < 1 andλm(Ru) > 0 for all m, we know that

0 < 1− µρ(Ru) ≤ 1− µλm(Ru) · s∗1,1:NI
r1,1:NI

< 1 (73)

and we conclude that|λ1,m(B)| < 1 for all m. For the uninform combination matrix defined in (55),

since all eigenvectors and eigenvalues ofA are real-valued, we further have that the{λk,m(B)} are real.

B. Simplifying the MSD Expression (33)

Using the result of Lemma 4, we find that the eigen-decomposition for the matrixBj has the approx-

imate form:

Bj ≈
N∑

k=1

M∑

m=1

λjk,m(B) · rbk,msb∗k,m (74)

we can rewrite the network MSD (33) in the form:

MSD ≈ 1

N

∞∑

j=0

N∑

k,l=1

M∑

m,n=1

Tr
[

λjk,m(B)λ∗jl,n(B) · rbk,msb∗k,mYsbl,nrb∗l,n
]

=

N∑

k,l=1

M∑

m,n=1

(

rb∗l,nr
b
k,m

)

·
(

sb∗k,mYsbl,n
)

N ·
[

1− λk,m(B)λ∗l,n(B)
]

(75)
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Moreover, from (64) and assumption (53), since

rb∗l,nr
b
k,m = (r∗l rk)⊗ (z∗nzm)

≈ ‖rk‖2 · δkl · δmn

(76)

expression (75) simplifies to:

MSD ≈
N∑

k=1

M∑

m=1

‖rk‖2 · sb∗k,mYsbk,m
N · [1− |λk,m(B)|2] (77)

Expression (77) can be simplified further once we evaluate the term in the numerator. We start by

expressing the matrixY from (27) as:

Y = ZΩ−1Z∗ (78)

where

Z = ATMR (79)

Ω = diag{σ−2
v,1Ru, . . . , σ

−2
v,NRu} = Σ−1

v ⊗Ru (80)

with Σv , diag{σ2v,1, . . . , σ2v,N}. Then, we get

sb∗k,mYsbk,m = ‖sb∗k,mZΩ−1/2‖2 (81)

Note from (67) and (68) that the matrixZ in (79) can be written as:

Z = AT −B =

N∑

l=1

λl(A)(rl ⊗ IM )
[

s∗l,1:NI
⊗ µRu s∗l,NI+1:N ⊗ 0M

]

(82)

We then obtain from (65), (79), and (82) that:

sb∗k,mZΩ−1/2 =

N∑

l=1

λl(A) · sb∗k,m(rl ⊗ IM ) ·
[

s∗l,1:NI
⊗ µRu s∗l,NI+1:N ⊗ 0M

]

Ω−1/2

≈ λk(A)

λk,m(B) · λk,m(B) · (1⊗ z∗m)
[

s∗k,1:NI
Σ
1/2
v,1:NI

⊗ µR
1/2
u 01×(N−NI )M

]

= λk(A) ·
[

s∗k,1:NI
Σ
1/2
v,1:NI

⊗ µλ
1/2
m (Ru)z

∗
m 01×(N−NI )M

]

(83)

Therefore, the termsb∗k,mYsbk,m in (81) becomes

sb∗k,mYsbk,m =
(

sb∗k,mZΩ−1/2
)(

sb∗k,mZΩ−1/2
)∗

≈ µ2λm(Ru)|λk(A)|2 · s∗k,1:NI
Σv,1:NI

sk,1:NI

(84)

where we used thatz∗mzm = 1. Then, substituting (66) and (84) into (77), we arrive at thefollowing

expression for the network MSD in terms of the eigenvalues and eigenvectors ofAT and the eigenvalues

of Ru.
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Theorem 3 (Network MSD). The network MSD of the ATC strategy (5) can be approximately expressed

as

MSD ≈
N∑

k=1

M∑

m=1

µ2λm(Ru)|λk(A)|2 · ‖rk‖2 · s∗k,1:NI
Σv,1:NI

sk,1:NI

N

[

1− |λk(A)|2 ·
∣
∣
∣1− µλm(Ru) · s∗k,1:NI

rk,1:NI

∣
∣
∣

2
] (85)

�

Since the matrixA has a single eigenvalue atλ1(A) = 1, and its value is greater than the remaining

eigenvalues, we can decompose the MSD in (85) into two components. The first component is determined

by λ1(A), i.e.,k = 1 in (85), and is denoted by MSDk=1. The second component is due to the contribution

from the remaining eigenvalues ofA, i.e., k > 1 in (85), and is denoted by MSDk>1. Sinceλ1(A) = 1,

and for sufficiently small step-sizes, we introduce the approximation for the denominator in (85):

|λ1(A)|2 ·
∣
∣1− µλm(Ru) · s∗1,1:NI

r1,1:NI

∣
∣2 ≈ 1− 2µλm(Ru) · sT1,1:NI

r1,1:NI
(86)

Then, the term MSDk=1 becomes

MSDk=1 ≈
Mµ‖r1‖2

2N
·
∑NI

l=1 σ
2
v,ls

2
1,l

∑NI

l=1 r1,ls1,l
(87)

For the second part, MSDk>1, since |λk(A)| < 1 for k > 1, and for sufficiently small step-sizes, the

denominator in (85) can be approximated by:

1− |λk(A)|2 ·
∣
∣1− µλm(Ru) · s∗k,1:NI

rk,1:NI

∣
∣2 ≈ 1− |λk(A)|2 (88)

Comparing to (86), we further ignore the term2µλm(Ru)|λk(A)|2 · s∗k,1:NI
rk,1:NI

in (88) since this term

is generally much less than1 − |λk(A)|2, especially for well-connected networks, i.e., high valueof η̄

(see (97) further ahead). Then, MSDk>1 becomes

MSDk>1 ≈
µ2Tr(Ru)

N

N∑

k=2

[

|λk(A)|2 · ‖rk‖2
1− |λk(A)|2

·
NI∑

l=1

σ2v,l|sk,l|2
]

(89)

As shown by (85), (87), and (89), the network MSD depends strongly on the eigenvalues and eigenvectors

of the combination matrixA. In the next section, we examine more closely the eigen-structure of the

uniform combination matrixA from (55). In a subsequent section, we employ the results to assess how

the MSD varies with the proportion of informed nodes — see expressions (103) and (115) further ahead.



21

C. MSD Expression for the Uniform Combination Matrix from (55)

C.1) Eigenvalues ofA: We start by examining the eigenvalues of the uniform combination matrixA

from (55). We define the Laplacian matrix,L, of a network graph as:

L , D −C (90)

in terms of theD andC from (56). Then, the normalized Laplacian matrix is defined as [36]:

L , D−1/2LD−1/2 = I −As (91)

whereAs is the same matrix defined earlier in (58). From Lemma 3, we know that the matricesA and

As have the same eigenvalues and we conclude that

λk(L) = 1− λk(A) (92)

In other words, the spectrum ofA is related to the spectrum of the normalized Laplacian matrix. There

are useful results in the literature on the spectral properties of the Laplacian matrices for random graphs

[36]–[39], such as the graphs corresponding to the Erdos-Renyi and scale free models of Sec. IV. We

shall use these results to infer properties about the spectral distribution of the corresponding combination

matricesA that are defined by (55). In particular, reference [36] givesan expression for the eigenvalue

distribution ofL for certain random graphs; this expression can be used to infer the eigenvalue distribution

of A, as we now verify. First we note from (4) that one is an eigenvalue of A, i.e., ρ(A) = λ1(A) = 1.

In the following, we use the results of [36] to characterize the remaining eigenvalues (namely,λk(A) for

k > 1) of uniform combination matrix.

Theorem 4 (Eigenvalue distribution ofA). Let n̄k denote the average degree of nodek in a random

graph. Let

η̄ ,
1

N

N∑

k=1

n̄k (93)

denote the average degree of the graph. Then, for random graphs with expected degrees satisfying

n̄min , min
1≤k≤N

{n̄k} ≫ √
η̄ (94)

the density function,f(λ), of the eigenvalues ofA converges in probability, asN → ∞, to the semicircle

law (see Fig. 2), i.e.,

f(λ) =







2
πR

√

1−
(
λ
R

)2
, if λ ∈ [−R,R]

0, otherwise
(95)
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where

R =
2√
η̄

(96)

Moreover, if n̄min ≫ √
η̄ log3(N), the second largest eigenvalue ofA converges almost surely to

|λ2(A)| = R (97)

Proof: See Thms. 5 and 6 in [36].

Simulations further ahead (see Fig. 2) show that expressions (95) and (97) provide accurate approx-

imations for the Erdos-Renyi and scale-free network modelsdescribed in Section IV. In addition, for

ergodic distributions, the value of̄η in (93) will be close to its realizationη for largeN , whereη is

defined as

η ,
1

N

N∑

k=1

nk (98)

In the following, we determine an expression for|λk(A)| by using (95). To do so, we letk denote the

number of eigenvalues ofA that are greater than some valuey in magnitude for0 ≤ y ≤ R. Then, the

value ofk is given by:

k = N ·
[

1−
∫ y

−y
f(λ)dλ

]

, N · g(y)
(99)

where we denote the expression inside the brackets byg(y). Note that the integral
∫ y
−y f(λ)dλ in (99)

computes the proportion of eigenvalues ofA within the region[−y, y]. Then, thekth eigenvalue ofA

can be approximated by evaluating the value ofy in (99), i.e.,

|λk(A)| ≈ g−1

(
k

N

)

(100)

From (95) and using the change of variablesλ/R = sin θ, we obtain thatg(y) in (99) has the form:

g(y) = 1− 2

π
sin−1

( y

R

)

− 2

π

y

R

√

1−
( y

R

)2
(101)

In Fig. 2, we show the averaged distribution of|λk(A)| for Erdos-Renyi and scale-free models over 30

experiments. We observe that for both network models, the theoretical results in (97) and (100) match

well with simulations.
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Fig. 2. Density function (left) for the eigenvalues ofA as given by (95) forN → ∞, and averaged eigenvalues (right) of the

combination matrixA defined by (55) over30 experiments withη = 5. The dashed line on the right represents theory from

(100) and the dash-dot line represents linear approximation given further ahead by (112).

C.2) MSD Expression fork = 1: From (87), MSDk=1 depends on the eigenvectors{r1, s1}. For the

uniform combination matrixA in (55), it can be verified that the right eigenvector forAs defined in (58)

corresponding to the eigenvalue one has the following form:

rs1 =
1√
Nη

col{√n1, . . . ,
√
nN} (102)

Then, from (61) and (102), expression (87) becomes

MSDk=1 ≈
Mµ

2N
·
∑NI

l=1 σ
2
v,ln

2
l

η
∑NI

l=1 nl
(using uniform combination matrix (55)) (103)

Expression (103) reveals several interesting properties.First, we observe that the term MSDk=1 does not

depend on the matrixRu, which is also a property of the MSD expression for stand-alone adaptive filters

[27]. Second, expression (103) is inversely proportional to the degree of the network realization,η. That

is, when the network is more connected (e.g., higher values of p andm in the Erdos-Renyi and scale-free

models), the network will have lower MSDk=1. Third, expression (103) depends on the distribution of

informed nodes through its dependence on the degree and noise profile of the informed nodes.If the

number of informed nodes increases by one, the value ofMSDk=1 may increase or decrease(i.e., it does

not necessarily decrease). This can be seen as follows. From(103) we see that MSDk=1 will decrease

(and, hence, improve) only if
∑NI

l=1 σ
2
v,ln

2
l + σ2v,NI+1n

2
NI+1

∑NI

l=1 nl + nNI+1

<

∑NI

l=1 σ
2
v,kn

2
l

∑NI

l=1 nl
(104)
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or, if the degree of the added node satisfies:

σ2v,NI+1nNI+1 <

∑NI

l=1 σ
2
v,kn

2
l

∑NI

l=1 nl
(105)

C.3) MSD Expression fork > 1: For MSDk>1, we apply relation (61) and approximation (62). Then,

expression (89) can be approximated by:

MSDk>1 =
µ2Tr(Ru)

Nη

N∑

k=2

[

λ2k(A)

1− λ2k(A)
·
(

NI∑

l=1

σ2v,lnl · (rsk,l)2
)]

(106)

where we replaced̄η by η for largeN . Expression (106) requires knowledge of the eigenvectors{rsk}
of As in (58). Note that fork = 1 and from (102), we have

(rs1,l)
2 =

nl
Nη

≈ 1

N
(107)

since the nodes have similar degree in the Erdos-Renyi model. We are therefore motivated to introduce

the following approximation:

(rsk,l)
2 ≈ 1

N
(108)

for all k. Observe that expression (108) is independent ofk, and we find that expression (106) simplifies

to:

MSDk>1 ≈
µ2Tr(Ru)

Nη
·
(

NI∑

l=1

σ2v,lnl

)

· 1

N

N∑

k=2

λ2k(A)

1− λ2k(A)
(109)

Furthermore, from (100), we can approximate the summation over k in (109) by the following integral:

1

N

N∑

k=2

λ2k(A)

1− λ2k(A)
≈
∫ 1

0

[
g−1(x)

]2

1− [g−1(x)]2
dx (110)

where we replacedk/N by x. However, evaluating the integral in (110) is generally intractable. We

observe though from the right plot in Fig. 2 that|λk(A)| (and alsog−1(k/N)) decreases in a rather linear

fashion fork > 1. Note that the functiong(y) in (101) has values1 at y = 0 and0 at y = R ≈ 2/
√
η.

We therefore approximateg(y) by the linear function

g(y) ≈ 1−
√
η

2
y (111)

Then,

g−1(x) ≈ 2√
η
(1− x) (112)

and expression (110) becomes

1

N

N∑

k=2

λ2k(A)

1− λ2k(A)
≈
∫ 1

0

4/η · (1− x)2

1− 4/η · (1− x)2
dx

= h

(
2√
η

)
(113)
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Fig. 3. The functionh(α) (left) from (87) and the derivative ofα2h(α)/4 with respect toα (right).

where the functionh(α) is defined as

h(α) ,

[
1

2α
log

(
1 + α

1− α

)

− 1

]

(114)

Substituting expression (113) into (109), we find that the MSD contributed by the remaining terms (k > 1)

has the following form:

MSDk>1 ≈
µ2Tr(Ru)

Nη
·
(

NI∑

l=1

σ2v,lnl

)

· h
(

2√
η

)

(using uniform combination matrix (55)) (115)

Note that, in contrast to MSDk=1 in (103), MSDk>1 in (115) always increases when the number of

informed nodes increases.Moreover, the functionh(α), shown in Fig. 3, has the following property.

Lemma 5. The functionh(α) defined in (114) is strictly increasing and convex inα ∈ (0, 1).

Proof: From (113), we note thath(α) can be written in the integral form:

h(α) =

∫ 1

0

α2x2

1− α2x2
dx (116)

Taking the derivative ofh(α) in (116) with respect toα, we obtain:

dh(α)

dα
=

∫ 1

0

2αx2

(1− α2x2)2
dx > 0 (117)

for α ∈ (0, 1). To show convexity, we take the second derivative ofh(α) for α ∈ (0, 1) and find that

d2h(α)

dα2
=

∫ 1

0

2x2 + 6α2x4

(1− α2x2)3
dx > 0 (118)

The result of Lemma 5 implies that whenη (or, p orm) increases, MSDk>1 in (115) decreases. That is,

in a manner similar to MSDk=1 in (103), the value of MSDk>1 is lower if the network is more connected.
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In addition, we observe that whenη is too low (or,α is too large in Fig. 3), the value ofh(2/
√
η) will

increase rapidly and so does the value of MSDk>1. Note from (115) that MSDk>1 depends onη through

the functionh(2/
√
η)/η, or equivalently,α2h(α)/4 by replacing2/

√
η with α. We show the derivative

of α2h(α)/4 with respect toα in the right plot of Fig. 3. It is seen that the derivative function increases

rapidly beyondα = 0.8. To maintain acceptable levels of accuracy, it is preferable for the derivative to

be bounded by a relative small value, say,0.5. Then, the value ofα should be less than0.8, or η ≥ 6.25.

That is, the average neighborhood sizes should be kept around 6-7 or larger.

D. Convergence Rate Expression

From (66),|λk,m(B)| can be expressed as:

|λk,m(B)| = |λk(A)| · |1− µλm(Ru) · s∗k,1:NI
rk,1:NI

| (119)

Since |λk(A)| < |λ1(A)| = 1 for k > 1, and for sufficiently small step-sizes, the maximum value of

|λk,m(B)| (namely,ρ(B)) occurs whenk = 1. Recall that all entries ofr1 and s1 are positive, which

implies that|λ1,m(B)| increases asm increases (i.e. smallerλm(Ru)). Then, we arrive at the following

expression forρ(B):

ρ(B) = |λ1,M (B)| = 1− µλM (Ru) · sT1,1:NI
r1,1:NI

(120)

The square of this expression determines the rate of convergence of the ATC diffusion strategy (5). Note

that expression (120) satisfies Lemmas 1 and 2. For the uniform A in (55), we obtain from (61), (102),

and (120) that

ρ(B) = 1− µλM (Ru) ·
∑NI

l=1 nl
Nη

(using uniform combination matrix (55)) (121)

Expression (121) can be motivated intuitively by noting that the decay ofρ(B) will be larger as informed

nodes have higher degrees. Simulations further ahead show that expression (121) matches well with

simulated results.

E. Behavior of the ATC Network

Combining expressions (103), (115), and (121), we arrive atthe following result for ATC diffusion

networks.

Theorem 5 (Network MSD under uniform combination weights). The ATC network (5) with uniform

step-sizes and regression covariance matrices (µk = µ andRu,k = Ru) and with the uniform combination
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matrix A in (55) has approximate convergence rate:

r ≈
(

1− µλM (Ru) ·
∑

l∈NI
nl

Nη

)2

(122)

and approximate network MSD:

MSD ≈ Mµ

2Nη
·
∑

l∈NI
σ2v,ln

2
l

∑

l∈NI
nl

︸ ︷︷ ︸

MSDk=1

+
µ2Tr(Ru)

Nη
· h
(

2√
η

)

·
∑

l∈NI

σ2v,lnl

︸ ︷︷ ︸

MSDk>1

(123)

whereη and h(·) are defined in (98) and (114), respectively. �

Note that the summations in (122) and (123) are over the set ofinformed nodes,NI . Expressions (122)

and (123) reveal important information about the behavior of the network. First, the convergence rate in

(122) and the network MSD in (123) depend on the network topology only through the node degrees,

{nl}, and the network degree,η. In general, the higher values ofη are, the slower the convergence

rate is (an undesirable effect) and the lower the network MSDis (a desirable effect). Second, as the

set of informed nodes,NI , increases, we observe from (122) that the faster the rate ofconvergence

becomes (a desirable effect). However, as we will illustrate in simulations, the behavior of the terms

MSDk=1 and MSDk>1 ends up causing the network MSD given by (123) to increase (anundesirable

effect) asNI increases. Figure 4 illustrates the general trend in the behavior of the network MSD and

its components, MSDk=1 and MSDk>1. Two scenarios are shown in the figure corresponding to the case

whether the added informed nodes satisfy (105) or not. The figure shows that depending on condition

(105), the curve for MSDk=1 can increase or decrease withNI . Nevertheless, the overall network MSD

generally increases (i.e., becomes worse) with increasingNI . These facts reveal an important trade-off

between the convergence rate and the network MSD in relationto the proportion of informed nodes. We

summarize the behavior of the ATC network in Table I and show how the rate of convergence and the

MSD respond when the parameters{η,NI ,Tr(Ru)} increase. We remark that slower convergence rate

and worse estimation correspond to increasing values ofr and MSD (an undesirable effect).

For a proper evaluation of how the proportion of informed nodes influences network behavior, we

shall adjust the step-size parameter such that the convergence rate remains fixed as the set of informed

nodes is enlarged and then compare the resulting network MSDs. To do so, we set the step-size to the

following normalized value:

µ =
µ0

∑

l∈NI
nl

(124)
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Fig. 4. Sketch of the behavior of the network MSD as a functionof the number of informed nodes,NI , depending on whether

relation (105) is satisfied (left) or not (right).

TABLE I

BEHAVIOR OF THE ATC NETWORK IN RESPONSE TO INCREASES IN ANY OF THE PARAMETERS{η,NI ,Tr(Ru)}

convergence rater (122) MSD (123) MSDk=1 (103) MSDk>1 (121)

NI ↑ faster worse in general may be better or worse (see (105)) worse

η ↑ slower better better better

Tr(Ru) ↑ faster worse independent of Tr(Ru) worse

for someµ0 > 0. Note that this choice normalizesµ0 by the sum of the degrees of the informed nodes.

In this way, the convergence rate given by (122) becomes

r ≈
(

1− µ0λM (Ru)

Nη

)2

(125)

which is independent of the set of informed nodes. Moreover,the network MSD in (123) becomes

MSD ≈ Mµ0
2Nη

·
∑

l∈NI
σ2v,ln

2
l

(∑

l∈NI
nl
)2 +

µ20Tr(Ru)

Nη
· h
(

2√
η

)

·
∑

l∈NI
σ2v,lnl

(∑

l∈NI
nl
)2 (126)

Using the same argument we used before in (104), if we increase the number of informed nodes by one,

the first term in (126) (namely, MSDk=1) will increase if the degree of the added node satisfies:

nNI+1 ≥ 2

[

σ2v,NI+1

(∑

l∈NI
nl
)2

∑

l∈NI
σ2v,ln

2
l

− 1

]−1

︸ ︷︷ ︸

c1

∑

l∈NI

nl (127)

and the second term in (126) (namely, MSDk>1) will increase if the degree of the added node satisfies:

nNI+1 ≤
(

σ2v,NI+1

∑

l∈NI
nl

∑

l∈NI
σ2v,lnl

− 2

)

︸ ︷︷ ︸

c2

∑

l∈NI

nl
(128)
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In the following, we show that there exist conditions under which both requirements (127) and (128)

are satisfied. That is, when this happens and interestingly,the network MSD ends up increasing (an

undesirable effect) when we add one more informed node in thenetwork. In the first example, we assume

that the degrees of all nodes are the same, i.e., setnl = n for all l. Then,c1 andc2 in (127)-(128) become

c1 = 2(NIβ − 1)−1, c2 = β − 2 (129)

where

β =
σ2v,NI+1

∑

l∈NI
σ2v,l/NI

(130)

It can be verified that if

β ≥ 2 +
1

NI
(131)

(or, if the noise variance at the added node is large enough),both (127) and (128) are satisfied and then

the MSD will increase (i.e., become worse). A second exampleis obtained by setting the noise variances

to a constant level, i.e.,σ2v,l = σ2v for all l. Then,c1 andc2 in (127)-(128) become

c1 = 2

[(∑

l∈NI
nl
)2

∑

l∈NI
n2l

− 1

]−1

, c2 = −1 (132)

In this case, the second term in (126) always decreases, whereas the first term in (126) will increase

if the degree of the added informed node is high enough. However, as the number of informed nodes

increases, the step-size in (124) will become smaller and the first term in (126) becomes dominant. As a

result, the network MSD worsens if (127) is satisfied, i.e., when the added node has large degree.These

results suggest that it is beneficial to let few highly noisy or highly connected nodes remain uninformed

and participate only in the consultation step (5b).

VI. SIMULATION RESULTS

We consider networks with 200 nodes. The weight vector,w◦, is a randomly generated5×1 vector (i.e.,

M = 5). The regressor covariance matrixRu is a diagonal matrix with each diagonal entry uniformly

generated from[0.8, 1.8], and noise variances are set toσ2v,k = 0.01 for all k. The step-size for informed

nodes is set toµ = 0.01. Without loss of generality, we assume that the nodes are indexed in decreasing

order of degree, i.e.,n1 ≥ n2 ≥ · · · ≥ nN .

We first verify theoretical expressions (33) and (34) for thenetwork MSD and convergence rate. Figure

5 shows the MSD over time for two network models with parameters p = 0.02, m = 2, andN0 = 10.

For each network model, we consider two cases: 200 or 50 (randomly selected) informed nodes. We
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Fig. 5. Transient network MSD over the Erdos-Renyi (left) and scale-free (right) networks with200 nodes. The dashed lines

represent the theoretical results (33) and (34).

observe that when the number of informed nodes decreases, the convergence rate increases, as expected,

but interestingly, the MSD decreases. The theoretical results are also depicted in Fig. 5. The MSD decays

at rater in (34) during the transient stage. When the MSD is lower thanthe steady-state MSD value from

(33), the MSD stays constant at (33). We observe that the theoretical results match well with simulations.

The theoretical results (33) and (34) will be used to verify the effectiveness of the approximate expressions

(122) and (123).

We examine the effect of the proportion and distribution of informed nodes on the convergence rate

and MSD of the network. We increase the number of informed nodes from the node with the highest

degree, i.e., from node 1 to nodeN . The convergence rate and MSD are shown in Fig. 6. For each

model, we consider two possible values of parameters:p = 0.02 and 0.075 in the Erdos-Renyi model

and them = 2 and8 in the scale-free model. Simulation results are averaged over 30 experiments. Note

from (48) and (50) that the two models have similar network degree. As expected, the convergence rates

decrease when we add more informed nodes and expression (122) matches well with expression (34).

In addition, the convergence rates in the scale-free model are lower in the beginning because there are

some nodes with very high degrees.

Interesting patterns are seen in the MSD behavior. We show MSDk=1 from (103) and MSDk>1 from

(115) in Fig. 7. We observe from Fig. 7 that MSDk=1 decreases, whereas MSDk>1 increases withNI .

If two network models have similar degree, the scale-free model will have higher values of MSDk=1

and MSDk>1 than the Erdos-Renyi model, and therefore higher values of MSD. This is because the

scale-free model has higher values ofnl. Since MSDk=1 decreases and MSDk>1 increases, the resulting

MSD in (123) can either increase or decrease. The curve of MSDdepends on the values of MSDk=1



31

TABLE II

NETWORK DEGREE AND|λ2(A)| FOR TWO NETWORK MODELS

Erdos-Renyi (p) Scale-free (m)

Parameter (p or m) 0.02 0.075 2 8

η 5.13 15.83 4.93 16.33

|λ2(A)| 0.883 0.503 0.900 0.495

Fig. 6. Convergence rate (left) and steady-state MSD (right) for Erdos-Renyi and scale-free models with the addition of

informed nodes in decreasing order of degree. The dashed lines represent approximate expressions (122) and (123).

and MSDk>1. We observe from Fig. 6 that in most cases, the MSD decreases whenNI is small, and

then increases withNI . As in the case of a stand-alone adaptive filter, there existsa trade-off between

the convergence rate and the MSD. Interestingly, for the scale-free model with higher values ofm, we

see from Fig. 6 that the MSD decreases withNI . We also see that the approximation for the MSD in

(123) matches well with expression (33).
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Fig. 7. MSDk=1 (left) and MSDk>1 (right) for Erdos-Renyi and scale-free models with the addition of informed nodes in

decreasing order of degree. The dashed lines represent approximate expressions (103) and (115).

expression (??) becomes

MSD ≈ Mµσ2v
2

·
∑N

l=1 n
2
l

(
∑N

l=1 nl

)2 + µ2Tr(Ru)σ
2
v · h

(
2√
η

)

(133)

From the Cauchy-Schwarz inequality and for a fixed value ofη, we know that
(

N∑

l=1

nl

)2

≤ N ·
N∑

l=1

n2l (134)

with equality if, and only if,nl = η for all l, i.e., all nodes have the same degree. Then, we obtain a

lower bound for the MSD:

MSD ≥ Mµσ2v
2N

+ µ2Tr(Ru)σ
2
v · h

(
2√
η

)

(135)

Since the nodes in the Erdos-Renyi model have similar degree, it will achieve lower MSD than the

scale-free model if all nodes are informed.

A. MSD with Fixed Convergence Rate

We vary the value of step-size as in (124) withµ0 = 0.1 and show the network MSD over the number

of informed nodes in Fig. 8. To show the MSD possibly increases withNI , we reverse the order in adding

informed nodes, i.e., from nodeN to node 1. It is interesting to note that for the scale-free model, the

MSD increases when the number of informed nodes is large. This is because in the scale-free model,

there are few nodes connected to most nodes in the network andcondition (127) is satisfied. The results

suggest that in the scale-free model, we should let few highly connected nodes remain uninformed and

perform only the consultation step (5b).
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Fig. 8. Steady-state MSD with the deployment for nodeN to node1 for Erdos-Renyi and scale-free models. The dashed lines

represent approximate expression (126).

VII. C ONCLUDING REMARKS

In this paper, we derived useful expressions for the convergence rate and mean-square performance

of adaptive networks. The analysis examines analytically how the convergence rate and mean-square

performance of the network vary with the degrees of the nodes, with the network degree, and with the

proportion of informed nodes. The results reveal interesting and surprising patterns of behavior. The

analysis shows that there exists a trade-off between convergence rate and mean-square performance in

terms of the proportion of informed nodes. It is not always the case that increasing the proportion of

informed nodes is beneficial.
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