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Non-Parametric High-Resolution SAR Imaging
G. O. Glentis∗, Member, IEEE , K. Zhao†, A. Jakobsson∗∗, Senior Member, IEEE , and J. Li†, Fellow, IEEE

Abstract— The development of high-resolution two-
dimensional spectral estimation techniques is of notable
interest in synthetic aperture radar (SAR) imaging. Typically,
data-independent techniques are exploited to form the SAR
images, although such approaches will suffer from limited
resolution and high sidelobe levels. Recent work on data-
adaptive approaches have shown that both the iterative
adaptive approach (IAA) and the sparse learning via iterative
minimization (SLIM) algorithm offer excellent performance
with high-resolution and low side lobe levels for both complete
and incomplete data sets. Regrettably, both algorithms are
computationally intensive if applied directly to the phase
history data to form the SAR images. To help alleviate this,
efficient implementations have also been proposed. In this
paper, we further this work, proposing yet further improved
implementation strategies, including approaches using the
segmented IAA approach and the approximative quasi-Newton
technique. Furthermore, we introduce a combined IAA-MAP
algorithm as well as a hybrid IAA- and SLIM-based estimation
scheme for SAR imaging. The effectiveness of the SAR imaging
algorithms and the computational complexities of their fast
implementations are demonstrated using the simulated Slicy
data set and the experimentally measured GOTCHA data set.

Index Terms— Spectral estimation, synthetic aperture radar
imaging, data adaptive techniques, efficient algorithms.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) systems find applica-
bility in a wide variety of commercial and governmental

applications, including monitoring, mapping, and reconnais-
sance systems, and offers notable benefits due to such systems’
ability to image in all weather conditions and times of the day.
The measured SAR images are generally processed via various
pre- and post-processing techniques, such as data-independent
Fourier transforms and back-projections, estimating the scene
reflectivity intensity to form an intensity image. The Fourier
methods exploit the relationship between the signal phase
history measurements and the scene reflectivity, but generally
suffers from limited resolution and/or sidelobe artifacts, as
well as the speckle phenomena [1]–[5]. To reduce these effects,
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one is typically forced to include various forms of smoothing
and filtering, although this will result in further reduced image
resolution. These drawbacks have led to an interest in finding
improved processing techniques to form the two-dimensional
(2-D) spectral estimate required to form the SAR image
[5]–[10]. Of the presented approaches, the data-dependent
Capon and APES algorithms [7], [10]–[12] seem particularly
promising, although both methods generally require multiple
snapshots (which is hard to satisfy due to the platform motion)
or the use of sub-apertures (which would lead to lower
resolution) to form the required sample covariance matrix
estimate. The use of sparse signal recovery methods have also
been investigated (see, e.g., [13], [14]) as such systems are
well able to recover sparse radar images with high resolution,
without requiring multiple snapshots to do so. Regrettably, this
form of approaches is sensitive to the choice of the various
user parameters, which are typically difficult to select in
practice, as well as lack robustness to varying noise levels [15].
Recently, the iterative adaptive approach (IAA) [16] and the
sparse learning via iterative minimization (SLIM) algorithm
[17] have also been investigated for high-resolution spectral
estimation (see, e.g. [18]–[22]), with both algorithms showing
excellent performance for both complete or incomplete data
sets. Regrettably, both algorithms are computationally inten-
sive, and there has as a result been several works on how to
form computationally efficient 1-D and 2-D implementations
of these estimates for uniformly and non-uniformly sampled
data sequences [22]–[26]. These implementations are formed
exploiting the methods’ inherent low displacement ranks,
together with the development of suitable Gohberg-Semencul
(GS) representations, as well as making use of Levinson-
style and/or (possibly preconditioned) conjugate gradient (CG)
solvers of the resulting linear systems of equations. In this
paper, we further this work by combining and improving on
the earlier presented implementations, including extending the
segmented IAA (SIAA) algorithm introduced in [21] and the
approximative quasi-Newton preconditioning CG algorithm
developed for 1-D data sequences in [26] to 2-D data sets.
Furthermore, we introduce a combined IAA-MAP algorithm
as well as a hybrid IAA- and SLIM-based estimation scheme.

The remainder of this paper is organized as follows. In
the following section, we briefly review the 2-D IAA and
SLIM algorithms, respectively. Then, in Section III, we present
improved efficient implementations of the IAA algorithm,
followed in Section IV with similar improved techniques for
the SLIM algorithm. In Section V, we then introduce sev-
eral hybrid estimation schemes, whereas Section VI presents
the performance of the proposed implementations on both
simulated and measured SAR data sets. Finally, the paper is
concluded in Section VII.
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II. THE 2-D IAA AND SLIM ALGORITHMS

Let y(n1, n2) denote the 2-D phase history data of interest,
and organize the data in a column-wise form, introducing

YN1,N2
=

[
yN1(0) . . . yN1(N2 − 1)

]
(1)

yN1
(n2) =

[
y(0, n2) . . . y(N1 − 1, n2)

]T
(2)

where n1 = 0, 1, . . . , N1 − 1 and n2 = 0, 1, . . . , N2 −
1. Moreover, let yN1N2 = vec {YN1,N2} and YN1,N2 =
mat {yN1N2}, where vec{·} denotes column-wise vectoriza-
tion, and mat{·} the inverse operation, recreating the matrix
from the vectorized matrix. Furthermore, define the 2-D fre-
quency vector

fN1N2
(ω1, ω2) , fN2

(ω2)⊗ fN1
(ω1), (3)

where ⊗ denotes the Kronecker product, and fN (ω) ,[
1 eω . . . e(N−1)ω

]T
. The 2-D data model can then

be written as

yN1N2
= FN1N2,K1K2

αααK1K2
+ eN1N2

(4)

where

FN1N2,K1K2
,
[
fN1N2(ω0, ω0) . . . fN1N2(ωK1−1, ωK2−1

]
is composed by the 2-D frequency vectors of interest, and

αααK1K2
,
[
α(ω0, ω0) . . . α(ωK1−1, ωK2−1)

]T
(5)

contains the complex amplitudes associated with each 2-D
frequency pair (ωk1

, ωk2
), whereas eN1N2

denotes an additive
noise. As detailed in [16], the IAA estimate of αααK1K2 is
formed as the estimate minimizing

min
αααK1K2

∣∣∣yN1N2
− ŷN1N2

(ωk1
, ωk2

)
∣∣∣2[

Re
N1N2

(ωk1
,ωk2

)
]−1 (6)

over α(ωk1
, ωk2

), with (ωk1
, ωk2

), for k1 = 0, 1, . . . ,K1 − 1
and k2 = 0, 1, . . . ,K2 − 1, denoting the 2-D frequency grid
of interest, typically with K1 > N1 and K2 > N2, where

ŷN1N2
(ωk1

, ωk2
) , α(ωk1

, ωk2
)fN1N2

(ωk1
, ωk2

) (7)

and

Re
N1N2

(ωk1 , ωk2) , RN1N2−ŷN1N2(ωk1 , ωk2)ŷH
N1N2

(ωk1 , ωk2)

is the noise plus interference covariance matrix, whereas the
data covariance matrix is estimated as

RN1N2
, FN1N2,K1K2

DK1K2
FH

N1N2,K1K2

=

K1−1∑
k1=0

K2−1∑
k2=0

ŷN1N2
(ωk1

, ωk2
)ŷH

N1N2
(ωk1

, ωk2
)

with DK1K2 = diag
{
|α(ω0, ω0)|2, . . . , |α(ωK1−1, ωK2−1)|2

}
,

|x|2A , xHAx, and (·)H denote the conjugate transpose.
Minimizing (6) with respect to (wrt) α(ωk1

, ωk2
) yields

α(ωk1
, ωk2

) =

fHN1N2
(ωk1

, ωk2
)
[
Re

N1N2
(ωk1

, ωk2
)
]−1

yN1N2

fHN1N2
(ωk1

, ωk2
)
[
Re

N1N2
(ωk1

, ωk2
)
]−1

fN1N2
(ωk1

, ωk2
)

(8)

The 2-D IAA algorithm is then formed by iterating

α(ωk1
, ωk2

) =
fHN1N2

(ωk1
, ωk2

)R−1
N1N2

yN1N2

fHN1N2
(ωk1

, ωk2
)R−1

N1N2
fN1N2

(ωk1
, ωk2

)

,
ψ(ωk1

, ωk2

ϕ(ωk1
, ωk2

)
(9)

RN1N2
= FN1N2,K1K2

DK1K2
FH

N1N2,K1K2
(10)

until convergence, where (9) has been derived from (8) using
the matrix inversion lemma, bypassing the need of computing[
Re

N1N2
(ωk1 , ωk2)

]−1
for each 2-D frequency pair (ωk1 , ωk2).

Typically, RN1N2
is initialized to the identity matrix IN1N2

.
The computational cost of the resulting 2-D IAA algorithm
using brute force is approximately N3

1N
3
2 + (2N2

1N
2
2 +

N1N2)K1K2 operations.
The SLIM algorithm introduced in [17] is instead formed

by minimizing the regularized cost function

N1N2 log(η) +
1

η
|yN1N2 − ỹN1N2 |2+

2

q

K1−1∑
k1=0

K2−1∑
k2=0

(|β(ωk1
, ωk2

)|q − 1) (11)

wrt the system parameters βββN1N2
, formed as

βββK1K2
, [β(ω0, ω0) . . . β(ωK1−1,K2 − 1)]

T
, (12)

and the covariance noise variable η of the underline data model

yN1N2
= ỹN1N2

+ eN1N2
(13)

ỹN1N2
, FN1N2K1K2

βββK1K2
(14)

and with 0 < q ≤ 1. Summarizing, the 2-D SLIM algorithm
is formed by iterating [17]

βββK1K2
= PK1K2

FH
N1N2,K1K2

ΣΣΣ−1
N1N2

yN1N2
(15)

ΣΣΣN1N2 = FN1N2,K1K2PK1K2F
H
N1N2,K1K2

+ ηIN1N2(16)

η =
1

N1N2

∣∣yN1N2 − FH
N1N2,K1K2

βββK1K2

∣∣2 (17)

until practical convergence, with

PK1K2 , diag
{
|β(ω0, ω0)|q−2 . . . |β(ωK1−1, ωK2−1)|q−2

}
where typically, βββK1K2

is initialized by the 2-D DFT of
yN1N2 , i.e.,

βββini
K1K2

= FH
N1N2,K1K2

yN1N2
(18)

whereas η is initialized as

ηini = λ
1

N1N2

∣∣yN1N2 − FH
N1N2,K1K2

βββini
K1K2

∣∣2 (19)

where λ is a positive scaling factor.
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III. FAST COMPUTATION OF THE 2-D IAA ALGORITHM

Given the high complexity required to form the 2-D IAA
estimate, we proceed to examine ways to form computationally
efficient implementations of the algorithm. We first briefly
review the efficient 2-D IAA implementation recently devel-
oped independently in [24], [25], since this implementation
will be the backbone of the schemes then presented herein. In
this implementation, the computational reduction is achieved
by making use of the inherently low displacement rank of
the underlying data covariance matrix, whose Toeplitz block
Toeplitz (TBT) structure allows for fast matrix inversion and
matrix vector multiplication, which together with the fast
computation of the relevant data dependent trigonometric
polynomials (see also [27]) result in computational schemes
several orders of magnitude faster than that of the direct
(brute force) implementation. We then proceed to note that
further computational savings can be achieved by applying
a segmented data procedure, wherein the original image is
first segmented into several possibly overlapped parts, each
of which is subsequently processed by the IAA algorithm.
Finally, reminiscent to the fast approximative implementation
of the 1-D IAA algorithm presented in [26] , where the
data covariance matrix is approximated by a lower order
representation formed using a lower order autoregressive (AR)
model, an approximative 2-D IAA algorithm and its efficient
implementation are also presented. As the 2-D frequency
vector (3) is defined over a uniformly spaced grid of fre-
quencies (ωk1 , ωk2) , (2πk1/K1, 2πk2/K2), where k1 =
0, 1, . . .K1 − 1 and k2 = 0, 1, . . .K2 − 1, the 2-D covariance
matrix RN1N2

, defined by (10), is a TBT matrix of the form

RN1N2 =


R0

N1
R1H

N1
. . . R

(N2−1)H
N1

R1
N1

R0
N1

. . . R
(N2−2)H
N1

...
...

. . .
...

RN2−1
N1

RN2−2
N1

. . . R0
N1

 (20)

where the matrix entries R`
N1

, for ` = 0, 1, . . . N2 − 1, are
Toeplitz matrices of size N1 × N1. As shown in [23]–[25],
RN1N2

may be extracted from a circulant block circulant
(CBC) matrix of higher dimensions as (see also [28])

SK1K2

[
RN1N2

×
× ×

]
ST
K1K2

= WH
K1K2

DK1K2WK1K2 ,

where WK1K2 denotes the 2-D Discrete Fourier Transform
(DFT) matrix and SK1K2 is a suitable permutation matrix. The
TBT structure of RN1N2

allows for a low displacement rank
representation which results in efficient matrix inversion and
fast matrix vector multiplication used in the sequel for solving
the linear system of equations that appears in the numerator
of (9) and defined for further use as dN1N2 , R−1

N1N2
yN1N2 ,

as well as for the efficient computation of the coefficients of
the 2-D polynomial ϕ(ωk1,k2

) that appears in the denominator
of (9). Since (10) is a TBT matrix, it may be partitioned as

RN1N2 =

[
RN1(N2−1) RRRb

N2−1

RRRbH
N2−1 R0

N1

]
=

[
R0

N1
RRRfH

N2−1

RRRf
N2−1 RN1(N2−1)

]
(21)

where RRRb
N2−1 and RRRf

N2−1 denote block matrices of dimen-
sions N1(N2−1)×N1. Applying the matrix inversion lemma
for partitioned matrices to (21) yields (see, e.g. [29])

R−1
N1N2

=

[
R−1

N1(N2−1) 0

0T 0

]
+ B̄BBN2 B̄BB

H
N2

(22)

=

[
0 0
0T R−1

N1(N2−1)

]
+ ĀAAN2

ĀAAH
N2

(23)

where B̄BBN2
and ĀAAN2

are block matrices of dimensions N1N2×
N1 defined by

B̄BBN2 =

[
BBBN2−1

IN1

]
A

−b/2
N1

(24)

ĀAAN2
=

[
IN1

AAAN2−1

]
A

−f/2
N1

(25)

BBBN2−1 = −R−1
N1(N2−1)RRR

b
N2−1 (26)

AAAN2−1 = −R−1
N1(N2−1)RRR

f
N2−1 (27)

Ab
N1

= R0
N1

+RRRbH
N2−1BBBN2−1 (28)

Af
N1

= R0
N1

+RRRfH
N2−1AAAN2−1 (29)

with A
b/2
N1

and A
f/2
N1

denoting the Cholesky factors of Ab
N1

and Af
N1

, respectively. Define a block shifting matrix, ZN1N2
,

as ZN1N2 = ZN2 ⊗ IN1 , where

ZN2 =

[
0T 0

IN2−1 0

]
. (30)

Clearly, [ZN1N2
]
N2 = 0N1N2

. Using the above partitioning
of R−1

N1N2
, its displacement with respect to the lower shifting

block matrices ZN1N2
and ZT

N1N2
takes the form [30]

∇Z,ZT

(
R−1

N1N2

)
, ĀAAN2

ĀAAH
N2
− ZN1N2

B̄BBN2
B̄BBH

N2
ZT

N1N2
(31)

resulting a suitable GS factorization of R−1
N1N2

of the form

R−1
N1N2

=

2∑
i=1

σiLLL(TTT i
N2

)LLLH(TTT i
N2

) (32)

where σ1 = 1, σ2 = −1, TTT 1
N2

, ĀAAN2
, and TTT 2

N2
,

ZN1N2 B̄BBN2 , with LLL(·) denoting a block lower Toeplitz matrix
of block dimensions N2 × N2, having block entries of size
N1×N1 each. Thus, the matrix-vector or matrix-matrix prod-
ucts involving (32) can be organized using the block DFT, and
its fast implementation computed using the FFT [31], provided
that the generator block matrices TTT 1

N2
and TTT 2

N2
are available.

The latter can be efficiently estimated using the celebrated
Levinson-Whittle-Wiggins-Robinson (LWWR) algorithm (see,
e.g., [32]). The computational complexity of the LWWR
algorithm is approximately CLWWR = 1.5N3

1N
2
2 + 4N3

1N2.
Moreover, due to the persymmetric property that each Toeplitz
matrix entry possesses, i.e., as JN1N2

RN1N2
JN1N2

= RT
N1N2

,
where the block exchange matrix, JN1N2 , is defined as a
block anti-diagonal matrix with the exchange matrix JN1

along the (block) anti-diagonal, it holds that [33] AAAN2−1 =
JN1(N2−1)BBB∗

N2−1JN1
and Af

N1
= JN1

AbT
N1

JN1
, which may

be used for further reduction of the computational cost (al-
though the resulting scheme may then be more sensitive to
the numerical implementation). Using the LWWR algorithm
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TABLE I
THE FAST 2-D IAA ALGORITHM

RN1(N2−1)AAAN2−1 = −RRRfN2−1 solve using LWWR

R−1
N1N2

=

2∑
i=1

σiLLL(TTT iN2
)LLLH(TTT iN2

)

dN1N2
= R−1

N1N2
yN1N2

ψ(ωk1 , ωk2 ) = fHN1N2
(ωk1 , ωk2 )dN1N2

ϕ(ωk1 , ωk2 ) = fHN1N2
(ωk1 , ωk2 )R−1

N1N2
fN1N2

(ωk1 , ωk2 )

α(ωk1 , ωk2 ) =
ψ(ωk1 , ωk2 )

ϕ(ωk1 , ωk2 )

DK1K2
= diag

{
|α(ω0, ω0)|2, . . . , |α(ωK1−1, ωK2−1)|2

}
CK1K2

= WH
K1K2

DK1K2
WK1K2

CK1K2
= SK1K2

[
RN1N2 ×
× ×

]
STK1K2

for the computation of the displacement representation of
(32), dN1N2 may be computed at a cost of approximately
2N2

1φ(2N2) + 8N2
1N2 operations, where φ(2N2) denotes the

cost of performing a 1-D FFT (IFFT) of size 2N2 × 1,
since the GS factorization (32) involves products of block
lower Toeplitz matrices, thus allowing for a fast matrix vector
multiplication using the FFT. Finally, the coefficients of the
2-D trigonometric polynomial ϕ(ωk1 , ωk2) that appears in the
denominator of (9) are computed using the GS representation
in (32) and the fast scheme developed in [27]. The resulting
fast IAA (FIAA) implementation, presented independently in
[24], [25], and for the readers convenience summarized in
Table I, requires roughly

CFIAA ≈ mI

[
1.5N2

2N
3
1 + 4N2

1φ(2N2)+

8N2
1N2 + 5N1φ(2N1, 2N2) + 3φ(K1,K2)

]
, (33)

operations, where mI is the number of 2-D IAA iterations and
φ(K1,K2) denotes the cost of performing a 2-D FFT (IFFT)
of size K1 ×K2.

Motivated by the segmented IAA (SIAA) algorithm intro-
duced in [21], which allows for a trade-off between variance
and bias of the estimate, we proceed to develop a fast 2-D
SIAA algorithm, wherein the 2-D data set is divided into L
possible overlapping segments of size S1 × S2 each, with
S1 < N1 and S2 < N2. The 2-D SIAA algorithm is then
formed by iterating

α(`)(ωk1 , ωk2) =
fHS1S2

(ωk1
, ωk2

)R−1
S1S2

y
(`)
S1S2

fHS1S2
(ωk1 , ωk2)R−1

S1S2
fS1S2(ωk1 , ωk2)

,
ψ(`)(ωk1

, ωk2
)

ϕ(ωk1
, ωk2

)
, ` = 1, 2 . . . L (34)

RS1S2
= FS1S2,K1K2

Ds
K1K2

FH
S1S2,K1K2

(35)

until practical convergence, with

Ds
K1K2

, diag {Φs(ω0, ω0) . . .Φs(ωK1−1, ωK2−1)} ,

where

Φs(ωk1
, ωk2

) =
1

L

L∑
`=1

|α(`)(ωk1
, ωk2

)|2 (36)

is the averaged spectra at (ωk1
, ωk2

) over all segments, with
y
(`)
S1S2

, vec
{
Y

(`)
S1S2

}
denoting the vectorized data corre-

sponding to the `-th image segment Y(`)
S1S2

of size S1 × S2.
The 2-D SIAA can be efficiently implemented using a similar
approach as in the case of the 2-D FIAA algorithm, although in
this case, the vectors d`

S1S2
, R−1

S1S2
y`
S1S2

, for ` = 1, 2 . . . L,
that appear in the numerator of (34) are computed using the
GS factorization of R−1

S1S2
. Thus, the overall complexity of

the 2-D fast SIAA (FSIAA) algorithm, including the dominant
factors only, is given by

CFSIAA = mSI

[
1.5S2

2S
3
1 + 5S1φ(2S1, 2S2) + 4S2

1φ(2S2)

6LS1φ(2S2) + (2L+ 1)φ(K1,K2)] ,

where mSI is the number of 2-D SIAA iterations.
The above discussed 2-D FIAA and FSIAA implementa-

tions form exact implementation of the corresponding brute
force algorithms, and although substantially faster than the
brute force implementations, these can still be computationally
prohibitive for some applications. For this reason, we recently
introduced a fast approximative CG-based 1-D IAA algorithm
in [23]. This algorithm has also been extended to a block-
recursive (1-D) formulation applied to blood velocity estima-
tion in ultrasound imaging [34]. Here, we further extend on
this work, allowing the algorithm to also handle 2-D data sets.
The resulting implementation is substantially more efficient
than even the above fast implementations, without having
more than a marginal effect in the accuracy of the estimated
parameters. The implementation is motivated by the Quasi-
Newton (QN) algorithm formulated in [35], and then further
developed in [36]–[39], wherein an efficient implementation
scheme of approximate recursive least squares algorithms
is formed by imposing a low order AR approximation on
the input signal of the adaptive algorithm. In the spectral
estimation case, this concept may be exploited by constructing
a 2-D QN approximation of the covariance matrix by extrap-
olating a lower order, incomplete, solution of the 2-D linear
system for the full size data matrix under consideration. The
thus proposed 2-D QN-IAA algorithm implicitly estimates the
approximative covariance matrix QN1N2 in place of RN1N2 ,
such that

Q−1
N1N2

=

[
0 0T

0 R−1
N1M2

]
+ A2DAH

2D (37)

where A2D , [AAAQ
N2

ZN2
AAAQ

N2
. . .ZN2−M2

N2
AAAQ

N2
] with AAAQ

N2
=

[ĀAAT
M2

0T
(N2−M2)N1

]T , where A2D is a block Toeplitz matrix of
block size N2×(N2−M2) with matrix entries of size N1×N1.
Here, (37) results from an incomplete 2-D LWWR algorithm
where, by construction, the 2-D forward and backward matrix
valued reflection coefficient are set equal to zero, K(`)f

N1
= 0

and K
(`)b
N1

= 0, for ` = M2 + 1,M2 + 2, . . . , N2. Thus, an
approximate 2-D IAA algorithm can be derived by the direct
use of the matrix QN1N2 in place of RN1N2 that appears in
(9). Since the inverse Q−1

N1N2
is already available, no further

computations are required for this purpose. Thus, the resulting
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approximate 2-D IAA algorithm is formed by iterating

α̃(ωk1
, ωk2

) =
fHN1N2

(ωk1 , ωk2)Q−1
N1N2

yN1N2

fHN1N2
(ωk1

, ωk2
)Q−1

N1N2
fN1N2

(ωk1
, ωk2

)

,
ψ̃(ωk1 , ωk2)

ϕ̃(ωk1
, ωk2

)
(38)

RN1M2
= FN1M2,K1K2

D̃K1K2
FH

N1M2,K1K2
(39)

until practical convergence, where

D̃K1K2
, diag

{
|α̂(ω0, ω0)|2 . . . |α̂(ωK1−1, ωK2−1)|2

}
.

The resulting 2D QN-IAA algorithm can be implemented
efficiently using the techniques developed above, although the
variable d̃N1N2

, Q−1
N1N2

yN1N2
that appears in the numerator

of (38) is now computed using (37) as

d̃N1N2
=

[
0 0T

0 R−1
N1M2

]
yN1N2

+ A2DAH
2DyN1N2

(40)

which can efficiently be implemented using the GS factor-
ization of R−1

N1M2
and the fact that the matrix A2D is block

Toeplitz, at a cost of 2N2
1φ(2M2) + 8N2

1M2 +N2
1φ(2M2) +

2N2
1N2 operations. Moreover, ϕ̃(ωk1

, ωk2
) that appears in the

denominator of (38) can be expressed as

ϕ̃(ωk1 , ωk2) = fHN1M2
(ωk1 , ωk2)Q−1

N1M2
fN1M2(ωk1 , ωk2) +

(N2 −M2)
∣∣fHN1M2

(ωk1 , ωk2)ĀM2

∣∣2 (41)

allowing for a reduction in the computational cost for the esti-
mation of the coefficients of the 2D trigonometric polynomial.
The overall computational complexity of the 2-D QN-FIAA
spectral estimation algorithm is given by

CQN−FIAA ≈ m
[
1.5N3

1M
2
2 + 2N2

1φ(2M2) + 8N2
1M2+

N2
1φ(2M2) + 2N2

1N2 + 2N2
1φ(2M2) + 2N2

1φ(N1)+

5N1φ(2N1, 2M2) + 3φ(K1,K2)] , (42)

where m is the number of 2-D QN-IAA iterations. Further
computational savings can be achieved by noting that, in
most situations M2 � N1, implying that the application of
suitable permutations allows us to construct an equivalent
matrix defined as R̃M2N1

= SSSRN1M2
SSST , where SSS is a

permutation matrix and R̃M2N1
is a block Toeplitz matrix

with block size N1 × N1, having Toeplitz matrix entries of
size M2 ×M2. Thus, R−1

N1M2
= SSST R̃−1

M2N1
SSS, implying that

the generators of the inverse matrix may be obtained using
the LWWR algorithm applied to block matrices with entries
of size M2×M2. The new generators are thus ”thinner” than
the previous ones, having width M2 instead of N2, and thus
allowing for a more efficient implementation, requiring only
1.5M3

2N
2
1 operations, which is notably less than the earlier

required 1.5N3
1M

2
2 operations, especially when M2 � N1.

The block GS representation in (32) is then restructured
accordingly to accommodate thinner block matrices, implying
that the first product in (40) can be organized as[

0 0T

0 SSST R̃−1
M2N1

SSS

]
yN1M2

resulting in a cost of 2M2
2φ(2N1) + 8M2

2N1 operations.
Finally, we examine how the forward predictor required in
the construction of ĀAAM2

can be computed. Recall that

RN1M2
ÂAAM2

=

[
IN1

0

]
(43)

or

R̃M2N1
SSSÂAAM2

= SSS
[
IN1

0

]
(44)

which implies that

ÂAAM2
= SSST R̃−1

M2N1
SSS
[
IN1

0

]
(45)

Given the GS representation of R̃M2N1 , this step can be
accomplished in 4N2

1M
2
2 + 3M2N1φ(2N1) operations, and

finally ĀAAM2
= ÂAAM2

[Af
N1

]1/2H , where [Af
N1

]−1 = ÂAAM2
[1],

with [Af
N1

]1/2 denoting the Cholesky factor of Af
N1

. Then, in
total, the computational complexity of this alternative 2-D QN
IAA implementation is

CQN−FIAA ≈ m
[
1.5M3

2N
2
1 +N3

1M2 + 4N2
1M

2
2 +

3M2N1φ(2N1)+2N2
1φ(N1)+5N1φ(2N1, 2M2) + 3φ(K1,K2)] .

Summarizing our analysis, the fast implementation of the 2-D
IAA algorithms discussed so far may be computed at a cost
of approximately

CFIAA
1 ≈ 1.5N3

1N
2
2 + 1.5K1K2 log2(K1K2)

CQNFIAA−I
1 ≈ 1.5N3

1M
2
2 + 1.5K1K2 log2(K1K2)

CQNFIAA−II
1 ≈ 1.5N2

1M
3
2 + 1.5K1K2 log2(K1K2)

operations per IAA iteration. To get some insight into the
above expressions, consider the special, yet common, case
where N , N1 = N2, K , K1 = K2, and let M2 =
N2/3, which result in CFIAA

1 ≈ 1.5N5 + 3K2 log2(K),
CQNFIAA−I
1 ≈ 1/6N5 + 3K2 log2(K) and CQNFIAA−II

1 ≈
1/18N5 + 3K2 log2(K), respectively. On the other hand,
the computational complexity of the 2-D SFIAA algorithm
with L = 5 overlapped segments, each of size equal to
the one fourth of original image, i.e., S1 = S2 = N/2,
reduces to CSFIAA

1 ≈ 3N5/64 + 11K2 log2(K). It is worth
noting that the steps of the algorithm can to a large extent
be parallelized. The algorithm essentially requires two basic
processing components that solves the 2-D TBT linear system
and computes the 2-D FFT. The latter can be implemented
in parallel using a bank of 1-D FFT units, while the former,
which is by far the most computational demanding unit of
the algorithm, allows for a parallel implementation using a
Schur-type implementation [40]–[44]. Such an implementation
avoids the inner product computations inherently involved
in the LWWR recursions, thereby allowing for a parallel
implementation with locally recursive algorithms via a trans-
formation using a canonical mapping methodology [45]–[47],
allowing for an efficient array implementation via a systolic or
a wavefront architecture. The reader is referred to [40]–[49]
for a further discussion on these aspects.
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TABLE II
SUMMARY OF THE FAST 2-D SLIM ALGORITHM

PK1K2
= diag

{
|β(ω0, ω0)|q−2 . . . |β(ωK1−1, ωK2−1)|q−2

}
CoK1K2

= WH
K1K2

PK1K2
WK1K2

CK1K2
= SK1K2

[
ΣΣΣoN1N2

×
× ×

]
STK1K2

ΣΣΣN1N2
= ΣΣΣoN1N2

+ ηIN1N2

rN1N2
= yN1N2

− ΣΣΣN1N2
dN1N2

ρ0 = |rN1N2
|2, κ = 1

while
√
ρk > ε|yN1N2

|2 and κ < κmax

γ = ρκ−1/ρκ−2

pN1N2 = rN1N2 + γpN1N2

wN1N2 = ΣΣΣN1N2pN1N2

δ = ρκ−1/(p
H
N1N2

wN1N2

dN1N2
= dN1N2

+ δpN1N2

rN1N2
= rN1N2

− δwN1N2

ρκ = |rN1N2 |
2, κ = κ+ 1

endwhile

βββK1K2
= PK1K2

FHN1N2,K1K2
dN1N2

η =
1

N1N2

∣∣∣yN1N2 − FHN1N2,K1K2
βββK1K2

∣∣∣2

IV. FAST COMPUTATION OF THE 2-D SLIM ALGORITHM

Brute force implementation of the SLIM algorithm
described by (15)-(17) requires approximately N3

1N
3
2 +

N2
1N

2
2K1K2 operations per iteration, with usually no more

than 10-15 iterations necessary for convergence. Fortunately,
this often prohibitive computational burden may be substan-
tially reduced when the parameters sought correspond to a uni-
formly spaced grid of 2-D frequencies. Indeed, the calculations
in (15)-(17) are very similar to those of the IAA algorithm
described in the previous section, although the SLIM iterations
are actually simpler due to the absence of the trigonometric
polynomial that appears in the denominator of (9) for the IAA
algorithm. As (16) is a TBT matrix whose elements can be
efficiently computed using TBT to CBC embedding and the 2-
D FFT, and σσσ−1

N1N2
yN1N2 that appears in (15) can be computed

by means of the LWWR algorithm, the resulting computational
cost per iteration can be reduced to approximately

CFSLIM ≈ 1.5N3
1N

2
2 + 1.5K1K2 log2(K1K2)

operations. As it has been pointed out in [17], [22], this
figure can be further reduced by using an iterative CG-
based linear solver instead of the LWWR algorithm for the
solution on the TBT linear system involved in (15). This is
particularly suitable as the SLIM algorithm only requires the
solution of the TBT linear system (in contrast to the IAA
case where in addition the displacement representation of the
TBT matrix is also needed) and as the CG algorithm may
be expected to converge much faster than it is anticipated
by the dimensionality of the TBT matrix, since, due to the
assumptions of the line spectral model under consideration,
the rank of (16) can be expected to be relatively small. The
resulting 2-D CG-SLIM algorithm is summarized in Table II,

having a computational complexity of approximately

CFSLIM−CG ≈ κCG (5N1N2 + 2φ(2N1, 2N2)) +

3φ(K1,K2) + φ(2N1, 2N2) ≈ κCG4N1N2 log2(4N1N2)

operations per SLIM iteration, provided that the TBT vector
multiplications are computed using circular embedding and
the 2-D FFT, with κCG denoting the number of CG iterations
required for convergence. Compared to the fast CG 2-D SLIM
implementation presented in [17], [22] and where fast TBT
computations are organized using circular embedding of size
equal to the size of the 2-D frequency grid, resulting in a com-
plexity approximately estimated as κCGK1K2 log2(K1K2),
the proposed approach is faster, yet mathematically equivalent.
For a typical 2-D spectral estimation scenario, where N ,
N1 = N2 and K , K1 = K2, and where K = 5N ,
the proposed implementation requires about 6 times less
computations than that of the previously presented approach;
the larger K is compared to N , the larger the gain is, with
the overall complexity of the fast 2-D SLIM implementations
being about

CFSLIM−GS
1 ≈ 1.5N5 + 1.5K2 log2(K)

CFSLIM−CG
1 ≈ κCG8N2 log2(4N) + 3K2 log2(K)

per SLIM iteration.

V. HYBRID SPECTRAL ESTIMATION SCHEMES

The aforementioned spectral estimation methods possess
various merits and limitations. Below, we consider several
hybrid methods that take advantages of these merits while
overcoming the limitations of the separate methods. First,
we note that the 2-D IAA algorithms will provide a non-
parametric, robust, and user parameter free algorithm, which
has also been found to be more accurate than the corre-
sponding SLIM estimates, although with a notably higher
sidelobe level (see also [22]). In order to achieve sidelobe
levels comparable to those of SLIM, one may instead form
a combined approach that first apply the 2-D IAA estimate
to compute a dense spectral estimate, which is then, upon
convergence, followed by a refinement stage formed as

α̂(ωk1,k2
) , |α(ωk1

, ωk2
)|2fHK1K2

(ωk1
, ωk2

)R−1
N1N2

yN1N2

= |α(ωk1 , ωk2)|2ψ(ωk1 , ωk2) (46)

Since SLIM achieves sparsity based on solving a hierarchical
Bayesian model through maximizing the a posteriori probabil-
ity density function (MAP), this ad hoc step is referred to as a
MAP step, and the resulting algorithm as the 2-D IAA-MAP
algorithm. Using similar arguments, one may similarly form
the 2-D QN-IAA-MAP algorithm by instead using (38)-(39)
followed by the MAP step

ˆ̃α(ωk1,k2
) , |α̃(ωk1

, ωk2
)|2fHK1K2

(ωk1
, ωk2

)Q−1
N1N2

yN1N2

= |α̃(ωk1
, ωk2

)|2ψ̃(ωk1
, ωk2

) (47)

The computational effort of performing the MAP step in both
cases is negligible, and the resulting algorithms can thus be
implemented at cost given by (33) and (42), respectively.
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Fig. 1. Slicy object and benchmark SAR image. (a) Photograph of the object
(taken at 45◦ azimuth angle), and (b) benchmark SAR image formed with a
288× 288 data matrix.

Alternatively, one may note that the 2-D IAA algo-
rithms, being initialized by setting the data covariance matrix
RN1N2

= IN1N2
will result in an initial spectrum which is

identical to the (scaled and zero padded) 2-D DFT of the data
vector yN1N2 . The resulting low resolution and high sidelobe
levels may slow down the 2-D IAA algorithm, necessitating
several iterations to achieve convergence, while at the same
time requiring unnecessary high level of computations in
the earlier iterations. This drawback can be circumvented
if a more accurate and relatively cheap spectral estimate is
used in place of the 2-D DFT during the initialization of
the IAA. Since both the 2-D SFIAA and the 2-D QN-FIAA
are less expensive than the 2-D FIAA algorithm, while at
the same time are capable of producing spectra of higher
quality than that of the 2-D DFT method, a reasonable
hybrid method may be formed by exploiting these cheaper
and somewhat less accurate estimators, followed by more
expensive and accurate estimators at the latter iterations. We
term the method combing msi iterations of the 2-D SFIAA
algorithm followed by mi iterations of the 2-D FIAA al-
gorithm the 2-D H-SFIAA(msi)FIAA(mi) scheme. Similarly,
the 2-D H-QNFIAA(mqi)FIAA(mi) scheme may be formed
by instead using the 2-D QN-FIAA during the earlier mqi

iterations. Finally, we note that the 2-D FIAA, the 2-D SFIAA
or the 2-D QN-FIAA can be used for the initialization of the
2-D SLIM recursions in (15)-(17), in place of (18), resulting
in similar hybrid IAA/SLIM spectral estimation schemes.

VI. NUMERICAL AND EXPERIMENTAL EXAMPLES

We proceed to examine the performance of the discussed es-
timators on the simulated Slicy data set and the experimentally
measured GOTCHA data set. We begin by examining the 2-D
phase-history Slicy data generated at 0◦ azimuth angle using
XPATCH [50], a high frequency electromagnetic scattering
prediction code for complex 3-D objects. A photo of the
Slicy object taken at 45◦ azimuth angle and a SAR image
benchmark obtained via FFT from a complete 288× 288 data
matrix are shown in Figures 1(a) and 1(b), respectively. In
the following, we examine a lower dimensional subset formed
using only the N1 = N2 = 80 center block of the phase-
history data, with K1 = K2 = 400 uniformly spaced 2-D
frequency points. Figure 2 shows the SAR images obtained by
the aforementioned spectral estimation techniques, including

the FFT-based estimate, using 10 SLIM or IAA iterations for
the respective methods, or 9 SFIAA (QN-FIAA) iterations
followed by one FIAA iteration for the hybrid IAA schemes,
as well as 3 additional SLIM-0 iterations at the conclusion
of the 10 iterations of the various algorithms for the hybrid
SLIM variants1. Furthermore, L = 5, M2 = 32, and ε = 10−6

for the SFIAA, QN-FIAA and CG-SLIM algorithms, and
their corresponding hybrid schemes, respectively. As shown
in Figure 2, the FFT is, as expected, found to yield low
resolution and high sidelobes, whereas the IAA and SLIM
based estimates can be found to result in significantly higher
resolution and lower sidelobe levels. As is clear from the
figure, the hybrid methods allows for notably sparser estimates,
with both the (hybrid) IAA-MAP and hybrid SLIM variants
satisfactorily balancing the tradeoff between the image resolu-
tion and detail preservation as compared to SLIM-0 and SLIM-
1. Table III summarizes the computation times needed by the
aforementioned algorithms to form the K1 ×K2 SAR image
from the Slicy data on an ordinary workstation (Intel Xeon
E5506 processor 2.13G Hz, 12GB RAM, Windows 7 64-bit,
and MATLAB R2010b). As previously mentioned, the hybrid
IAA schemes reduce the computation cost significantly with
only a slight performance degradation as compared to their
FIAA counterpart. It is worth noting that by performing several
iterations of SLIM-0 at the conclusion of various algorithms
including the (hybrid) IAA algorithms and SLIM-1, the hybrid
SLIM schemes can greatly suppress the sidelobe levels without
drastically increasing the computation complexities.

We proceed to examine the methods’ performance for
the GOTCHA Air Force Research Laboratory data set. The
GOTCHA volumetric SAR data set, Version 1.0, consists
of SAR phase history data collected at X-band with a 640
MHz bandwidth with full azimuth coverage at eight different
elevation angles with full polarization [51]. The imaging scene
consists of numerous civilian vehicles and calibration targets,
as shown in Figure 3. Here, we examine the performance on
the phase history data with full azimuth coverage collected
at the first pass for a HH polarization channel of a Chevrolet
Malibu, parked in the upper corner of the parking lot as shown
in Figure 3. We use 4◦ subapertures from 0◦ to 360◦ with no
overlap, which results in a total of 90 subapertures. For each
subaperture, one 2-D spatial image is formed by using a 2-D
FFT on the corresponding phase history (k-space) data. An
N1 ×N2 = 80 × 80 block of the spatial data centered about
the Chevrolet Malibu is then chipped out and transformed
back into k-space using an inverse FFT (IFFT) operation.
The discussed spectral estimation techniques are then applied
to the so-obtained N1 × N2 phase history data to get one
K1 ×K2 = 400× 400 image for each subaperture. By using
the auxiliary information provided by the GOTCHA data set
(e.g., the antenna locations, range to scene center, azimuth
and elevation angles), the image is then projected onto the
ground plane and interpolated to form a 2-D ground image.
The resulting 90 2-D ground images are then combined using
the non-coherent max magnitude operator to yield the recon-

1In the examined examples, no significant further improvement was
achieved after the specified number of iterations.
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(c) SLIM0
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(d) SLIM1
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(e) FIAA
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(f) QN-FIAA

SIAA−FIAA, t=8.46s
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(g) H-SIAA(9)-FIAA(1)
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(h) H-QNIAA(9)-FIAA(1)
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(i) FIAA-MAP
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(j) QN-FIAA-MAP
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(k) H-SIAA(9)-FIAA(1)-MAP
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(l) H-QNIAA(9)-FIAA(1)-MAP
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(m) H-FIAA(10)-SLIM0(3)
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−60

−50

−40

−30

−20

−10

0

(n) H-QN-FIAA(10)-SLIM0(3)
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(o) H-SIAA(9)-FIAA(1)-SLIM0(3)
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(p) H-SLIM1(10)-SLIM0(3)

Fig. 2. Modulus of the SAR images of the Slicy object obtained from an 80× 80 data matrix via FFT, (hybrid) IAA (-MAP), and (hybrid) SLIM variants.

structed Malibu image, whose dimensions are [5, 15]×[−10, 0]
meters with grid size 0.05 meters in both dimensions (i.e.,
forming a 201× 201 image). Figure 4 illustrates the resulting
images for the discussed methods, using the above introduced
parameter settings, clearly indicating the superior performance
of the introduced algorithms as compared to the FFT based
approach. As before, the SLIM-0 estimate can be seen to be
too sparse to preserve certain vehicle features, whereas the
hybrid methods are found to again provide high resolution
images with low sidelobe levels. Table III summarizes the
computation times needed by the discussed methods to form
the reconstructed Malibu images (the running times start from
applying the various algorithms to the 80 × 80 phase history

data for each subaperture until the so-obtained 90 subimages
are fused to form the final images as shown in Figure 4).
Table III illustrates that the computational time ratios of the
Gotcha to Slicy data sets for the various algorithms are mostly
near or slightly above 90, which is reasonable since, for the
Slicy data, one process one 80 × 80 data matrix whereas for
the Gotcha data, one process 90 80 × 80 data matrices. The
exceptions are the ratios for FFT, SLIM-0, SLIM-1 and H-
SLIM1-SLIM0. For FFT, the reason for a ratio much higher
than 90 is that the time consumed in the image fusion process
dominates the overall running time for Gotcha. For the CG-
based SLIM variants, the reason for ratios lower than 90 is
that the running time depends largely on the number of total
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TABLE III
COMPUTATION TIMES FOR SAR IMAGING OF THE SLICY DATA (SECOND

COLUMN) AND THE GOTCHA DATA (THIRD COLUMN) AND THE

COMPUTATIONAL TIME RATIOS OF GOTCHA TO SLICY (FOURTH COLUMN).

Algorithm Time (s) Time (s) Ratio
FFT 0.01 4.1 412.6
SIAA 3.72 345.3 92.8
SLIM-0 4.54 183.6 40.4
SLIM-1 2.46 155.7 63.3
FIAA (-MAP) 46.29 5111.1 110.4
QN-FIAA (-MAP) 15.49 1507.4 97.3
H-SIAA-FIAA (-MAP) 8.46 802.2 94.8
H-QNIAA-FIAA (-MAP) 18.42 1947.7 105.7
H-FIAA-SLIM0 47.65 5127.0 107.6
H-QN-FIAA-SLIM0 16.36 1539.6 94.1
H-SIAA-FIAA-SLIM0 9.82 902.8 91.9
H-SLIM1-SLIM0 3.46 201.7 58.3

Fig. 3. 2-D SAR image of the GOTCHA scene (from [51]).

CG iterations required for convergence for a given accuracy
controlled by the error threshold. Take SLIM-0 for example.
The ratio of the running time is around 40 and the total number
of CG iterations required by SLIM-0 for Gotcha and Slicy is
24774 and 1171, respectively. This approximate ratio of 21 is
significantly lower than 90, which explains the low ratio of
running times for SLIM-0.

VII. CONCLUSIONS

In this work, we have presented fast implementations of
the 2-D IAA and SLIM algorithms, exploring the rich internal
structure of the estimators. The proposed implementations are
found to offer a significantly reduced computational complex-
ity, with the proposed approximative implementations offering
even further computational reductions, at the cost of only slight
performance degradation. By including a sparsity promoting
final step at the conclusion of the iterations, notable sidelobe
level reductions are achieved, allowing for a satisfactorily
balance between the image resolution and detail preservation.
The effectiveness of the algorithms have been verified using
both simulated and experimentally measured data sets.
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