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Constructing test instances for Basis Pursuit Denoising
Dirk A. Lorenz

Abstract—The number of available algorithms for the so-called Basis
Pursuit Denoising problem (or the related LASSO-problem) is large and
keeps growing. Similarly, the number of experiments to evaluate and
compare these algorithms on different instances is growing.

In this note, we present a method to produce instances with exact
solutions which is based on a simple observation which is related to the
so called source condition from sparse regularization.

EDICS: DSP-RECO, DSP-ALGO

I. INTRODUCTION

“Lately, there has been a lot of fuss about sparse approximation.”
is the beginning of the paper [30] from 2006 and this note could
have started with the same sentence. Three different minimization
problems have gained much attention. We follow [31] and denote
them as follows: For a matrix A ∈ Rk×n and b ∈ Rk and positive
numbers σ, λ and τ we define the Basis Pursuit Denoising ( [7])
with constraint by

min
x
‖x‖1 subject to ‖Ax− b‖2 ≤ σ, (BPσ)

the Basis Pursuit Denoising with penalty ( [7]) by

min
x

1
2
‖Ax− b‖22 + λ ‖x‖1 , (QPλ)

and the LASSO (least absolute shrinkage and selection operator [29])
by

min
x
‖Ax− b‖2 subject to ‖x‖1 ≤ τ. (LSτ )

All three problems are related: if we denote with xQP(λ) a solution
of (QPλ), this also solves (BPσ) for σ = ‖AxQP(λ)− b‖2 and (LSτ )
for τ = ‖xQP(λ)‖1 (see e.g. [25], [31]). However, this relation is
implicit and relies in general on the knowledge of the solutions.
Hence, it is not totally true that these problems are equivalent.

One may argue, that (BPσ) is harder than the other problems since
its objective is nonsmooth and shall be minimized over a complicated
convex set (e.g. projecting on this set is difficult). Moreover, one may
argue, that (QPλ) is harder than (LSτ ) since the latter has a smooth
objective (to be minimized over a somehow simple convex set) while
the first has a nonsmooth objective. Computational experience with
with these problems lead to the same conclusion.

Recently, minimization problems similar to Basis Pursuit De-
noising have appeared in several contexts, e.g. group sparsity (or
joint sparsity) [13], [26], [32] for sparse recovery, nuclear norm
minimization for low-rank matrix recovery [28] to name just two.

A. Notation

With ‖x‖p we denote the p-norm of a vector x ∈ Rn, AT is the
transpose of a matrix A, the range of a matrix A is denoted with
rgA and with Sign(x) we denote the multivalued sign, i.e.

y ∈ Sign(x) ⇐⇒ yi


= 1 if xi > 0

= −1 if xi < 0

∈ [−1, 1] if xi = 0

.
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II. CONSTRUCTION OF INSTANCES WITH KNOWN SOLUTION

In this section we illustrate how instances (i.e. tuples (A, b, λ))
can be generated, such that the solution x∗ of (QPλ) is known up to
machine precision. This is achieved by prescribing the solution x∗

(and the matrix A and the value λ) and computing a corresponding
right hand side b.

The basis is the following simple observation which has a one-line
proof:

Lemma 1: Let A ∈ Rk×n, λ > 0 and x∗ ∈ Rn and let w ∈
rgAT fulfill w ∈ Sign(x∗). Then it holds: If y is a solution to
AT y = w and b is defined by b = λy + Ax∗, then x∗ is a solution
of (QPλ).

Proof: Simply check

−AT (Ax∗ − b) = −AT (Ax∗ − λy −Ax∗)
= λAT y = λw ∈ λSign(x∗).

Hence x∗ fulfills the necessary and sufficient condition for optimality.

Remark 2: The existence of the vector w is exactly the source
condition used in sparse regularization of ill-posed problems. There
one shows that a vector x† for which such a vector w exists can be
reconstructed from noisy measurements bδ with

∥∥Ax† − bδ∥∥
2
≤ δ

by solving (QPλ) with bδ instead of b and λ � δ and that one
achieves a linear convergence rate, i.e. for the solution xδλ one gets∥∥xδλ − x†∥∥1 = O(δ), see [16], [17], [23].
The following corollary reformulates the above lemma in a way
which is more suitable for an algorithmic reformulation.

Corollary 3: Let {1, . . . , n} be partitioned into sets I, A+ and
A− and let x∗ ∈ Rn be any vector such that

x∗i > 0, i ∈ A+

x∗i < 0, i ∈ A−
x∗i = 0, i ∈ I

(1)

and let λ > 0. Furthermore assume that y ∈ Rk fulfills

(AT y)i = 1, i ∈ A+

(AT y)i = −1, i ∈ A−
|AT y|i ≤ 1, i ∈ I

(2)

and define b = λy +Ax∗. Then x∗ is a solution of (QPλ).
According to this corollary we can construct an instance (A, b, λ)
with known solution x∗ as follows:

1) Specify A ∈ Rm×n and a sign-pattern (given by the partition
A+, A−, I).

2) Construct a vector y ∈ Rm which fulfills (2).
3) Choose any λ > 0 and any x∗ ∈ Rn which complies with the

sign-pattern, i.e. (1) holds.
4) Define b = λy +Ax.

The vector y can be constructed by several methods which are outline
in Appendix A. These methods have been implemented in the Matlab
package L1TestPack in the function construct_bpdn_rhs 1.
One should note that a vector y as in Corollary 3 need not to exist.

1The package is available at http://www.tu-braunschweig.de/iaa/personal/
lorenz/l1testpack.
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Indeed, for a fixed matrix A not every sign-pattern of x∗ can occur
as a minimizer of any (QPλ).

Remark 4: For injective A everything is much simpler: Since AT

is surjective, we can just choose some w ∈ Sign(x∗), solve AT y = w
and set b = λy +Ax∗.

We discuss advantages and disadvantages of our approach:
Advantages:
• The algorithm is independent of the value of λ while the

performance of solvers for (QPλ) usually deteriorates for smaller
λ, see, e.g. [11], [12] and Section III-A.

• The algorithm is independent of the dynamic range of the
optimal value x∗, however, several experiments have recorded
that the performance of solvers for (QPλ) depends greatly on
the dynamic range, see, e.g. [4] and Section III-C.

• For square matrices A with full rank, one immediately get
a desired vector y by solving AT y = w for some vector
w ∈ Sign(x∗). While this setting is unusual, e.g., in compressed
sensing, one encounters such situations in regularization with
sparsity constraints, see [6], [9], [10], [18], [22], [27].

Disadvantages
• The construction of b from x∗ leads to a specific noise model,

namely, the noise is given by λy. Hence, there is no control
about the noise distribution2. This limits the use of instances
constructed in this way to the comparison of solvers for basis
pursuit denoising. For other sparse reconstruction methods like
matching pursuit algorithms they seem to be useless.

• The algorithm produces one particular element w ∈ Sign(x∗)
and it is not clear if this has any additional properties. Usually,
several w ∈ Sign(x∗)∩ rgAT exist and probably the proposed
method favors a particular form of w.

III. ILLUSTRATIVE INSTANCES

Numerous papers contain comparisons of different solvers for the
three problems (BPσ), (QPλ) and (LSτ ), see e.g. [3], [4], [11], [18],
[20], [25], [31], [34]. Hence, we not aim at yet another comparison of
solvers but try to illustrate, how different features of the measurement
matrix and the solution influence the difficulty of the problem.

From the zoo of available solvers we have chosen four. The
choice was not uniformly at random but to represent four different
classes: fpc [20] as a simple tuning of the basic iterative thresholding
algorithm, FISTA [3] as a representative of the “optimal algorithms”
in the sense of worst case complexity, GPSR [11] as a highly tuned
basic gradient method and YALL1 [33] as a member of the class of
alternating directions methods3. All these solvers proceed iteratively
and use (basically) one application of A and one of AT for each
iteration. Hence, the runtime of these algorithms is mainly related to
the number of iterations. We did not include higher order solvers like
fss [21] or ssn [18] and also did not use any variant of homotopy
approaches [24].

For algorithms we overrode the implemented stopping criteria by
the criterion that the relative error in the reconstruction

Rn =
‖xn − x∗‖
‖x∗‖

falls below a given threshold.

2However, one observes that the noise level ‖Ax∗ − b‖ = λ ‖y‖ is pro-
portional to λ which, again, motivates that one should choose λ proportional
to the noise level.

3Sources: fpc version 2.0 http://www.caam.rice.edu/∼optimization/L1/fpc/,
GPSR version 6.0 http://www.lx.it.pt/∼mtf/GPSR/, YALL1 version 1.0 http:
//yall1.blogs.rice.edu/ and an own implementation of FISTA.
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Fig. 2. Results for from Section III-B on the influence of the sparsity level
s.

A. Influence of the parameter λ

Here we consider a standard example from compressed sensing,
namely a sensing matrix A which consists of random rows of a DCT
matrix. The setup is as follows:

Dimensions:
• n = 1000 variables,
• k = 200 measurements

Matrix A:
Random rows of a DCT matrix

Solution x∗:
s = 20 non-zero entries, magnitude normally distributed
with mean zero and variance one.

λ: 10−1, 10−2, 10−4

Results:
In general, all solver slow down for smaller values of λ.
However, some solvers depend greatly on the size of λ, see
Figure 1.

B. Influence of the sparsity level

While the construction of a test instance is independent of the
parameter λ, it gets harder for less sparsity. The behavior of the
solvers with respect to the sparsity level is illustrated by this example:

Dimensions:
• n = 2000 variables,
• k = 200 measurements

Matrix A:
Bernoulli ensemble, i.e. random ±1

Solution x∗:
s = 4, 80 non-zero entries, respectively; magnitude nor-
mally distributed with mean zero and variance one.

λ: 10−1

Results:
Most solvers take longer for less sparsity; however, surpris-
ingly, YALL1 is even faster for lower sparsity, see Figure 2.

C. Influence of the dynamic range of the entries in x∗

As claimed in the introduction, the dynamic range

Θ(x∗) =
max{|x∗| : x∗ 6= 0}
min{|x∗| : x∗ 6= 0}

also influences the performance.

http://www.caam.rice.edu/~optimization/L1/fpc/
http://www.lx.it.pt/~mtf/GPSR/
http://yall1.blogs.rice.edu/
http://yall1.blogs.rice.edu/
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Fig. 1. Results for from Section III-A on the influence of λ.

Dimensions:
• n = 3000 variables,
• k = 1000 measurements

Matrix A:
Union of three orthonormal basis: the identity matrix, the
DCT matrix and an orthonormalized random matrix

Solution x∗:
s = 50 non-zero entries, with a dynamic range of approxi-
mately 9, 701 and 55.000, respectively.

λ: 10−1

Results:
Some solvers dramatically slow down for larger dynamic
range, see Figure 3

D. Influence of the coherence of A

To illustrate that also a large coherence can cause solvers to slow
down, we have chosen the following setup: We considered square
matrices A ∈ Rn×n which are zero expect on the diagonal and a
certain number K of lower off-diagonals, scaled to have ‖A‖ = 1:

AK = c



1 0 · · · · · · · · · 0
...

. . .
. . .

...

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 · · · 1


.

︸ ︷︷ ︸
K columns

We also considered the extreme case K = n, also known as the
Heaviside matrix. Denoting the columns of AK by aj , we calculate
the coherence of the matrix AK as

µ = max
i6=j

〈ai| aj〉
‖ai‖ ‖aj‖

=

√
K − 1

K
.

Dimensions:
• n = 300 variables,
• k = 300 measurements

Matrix A:
Increasingly coherent matrices with K = 5, 40, 100, 300

Solution x∗:
s = 30 non-zero entries, Bernoulli, i.e. randomly selected
+1 and −1.

λ: 10−1

Results:
This problem, while with an square and invertible matrix,
is known the be notoriously hard. Especially for large K
all solvers deteriorate, see Figure 4.

APPENDIX A
ALGORITHMS

Instead of y ∈ Rm we construct a vector w ∈ Rn such that

w ∈ rgAT ∩ Sign(x∗)

which can be reformulated as

wi = 1, i ∈ A+

wi = −1, i ∈ A−
|wi| ≤ 1, i ∈ I

and w ∈ rgAT . Then y can be found by solving AT y = w.

A. Solution by projection onto convex sets

The condition w ∈ rgAT ∩ Sign(x∗) can be seen as a convex
feasibility problem [1] since both the sets rgAT and Sign(x∗) are
convex. Moreover, the projection onto each set is computationally
feasible: The projection onto the range of AT can be calculated
explicitly, e.g. with the help of QR factorization. If AT = QR
with orthonormal Q and upper triangular R, the projection PrgAT

is given by PrgAT = Q(:, 1 : k)Q(:, 1 : k)T . Projecting onto the
convex set Sign(x∗) is even simpler: Set the fixed components to
±1 respectively and clip the others by x 7→ max(min(x, 1)x,−1).
We done the projection onto Sign(x∗) by PSign(x∗).

Now we find w by alternatingly project an initial guess onto both
sets, a strategy knows as projection onto convex sets (POCS) [8],
[19]. This is given as pseudo code in Algorithm 1.

B. Solution by quadratic programming

We sketch another approach by quadratic programming: We call
A = A+ ∪ A− the active set and I the inactive set and define
s ∈ RA by

si = 1, i ∈ A+

si = −1, i ∈ A−.
(3)

Furthermore we denote with PA : Rn → RA the projection which
deletes the “inactive” components and with PI : Rn → RI the
projection which deletes in “active” components and the respective
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Algorithm 1 Calculation of y by POCS

Require: Input A ∈ Rm×n, a partition A+, A− and I of
{1, . . . , n} (coded as Sign(x∗)), a tolerance ε > 0 and an initial
guess w0.

1: for i = 0, 1, . . . do
2: vn = PrgATwn

3: wn+1 = PSign(x∗)v
n

4: if max(‖vn − wn‖ ,
∥∥wn+1 − vn

∥∥) ≤ ε then
5: break
6: end if
7: end for
8: Solve AT y = w
9: return y

adjoint PTA and PTI which fill up the vectors be zeros. With this
notation, we aim at finding w ∈ rgAT such that

PAw = s, and ‖PIw‖∞ ≤ 1.

To fulfill the condition w ∈ rgAT we use the orthogonal projection
on rgAT , denoted by PrgAT and require PrgATw = w. Since w is
determined on the active set A we rewrite is as

w = PTAs+ PTI z (4)

with a z ∈ RI . Putting this together we have to find a vector z ∈ RI

such that

(PrgAT − Id)PTI z = (Id−PrgAT )PTAs, ‖z‖∞ ≤ 1.

We the abbreviations

P̄ = (PrgAT − Id)PTI

v̄ = (Id−PrgAT )PTAs
(5)

we reformulate this as the optimization problem

min
z∈RI

1
2

∥∥P̄ z − v̄∥∥2 s.t. ‖z‖∞ ≤ 1. (6)

This quadratic programming or constrained regression problem can
be solved by various methods [5] including the simple gradient
projection [15] or the conditional gradient method [2], [14]. Note
that we require that the optimal value of (6) is indeed zero.

Algorithm 2 gives pseudo-code for calculating y.
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