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Abstract

This report presents a thorough convergence analysis of Kronecker graphical lasso (KGLasso) algo-
rithms for estimating the covariance of an i.i.d. Gaussian random sample under a sparse Kronecker-product
covariance model. The KGlasso model, originally called the transposable regularized covariance model
by Allen et al [1], implements a pair of ¢; penalties on each Kronecker factor to enforce sparsity in
the covariance estimator. The KGlasso algorithm generalizes Glasso, introduced by Yuan and Lin [2]
and Banerjee et al [3], to estimate covariances having Kronecker product form. It also generalizes the
unpenalized ML flip-flop (FF) algorithm of Dutilleul [4] and Werner et al [S]] to estimation of sparse
Kronecker factors. We establish that the KGlasso iterates converge pointwise to a local maximum of the
penalized likelihood function. We derive high dimensional rates of convergence to the true covariance
as both the number of samples and the number of variables go to infinity. Our results establish that
KGlasso has significantly faster asymptotic convergence than FF and Glasso. Our results establish that
KGlasso has significantly faster asymptotic convergence than FF and Glasso. Simulations are presented
that validate the results of our analysis. For example, for a sparse 10,000 x 10,000 covariance matrix
equal to the Kronecker product of two 100 x 100 matrices, the root mean squared error of the inverse

covariance estimate using FF is 3.5 times larger than that obtainable using KGlasso.

Index Terms

Sparsity, structured covariance estimation, penalized maximum likelihood, graphical lasso, direct

product representation.
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I. INTRODUCTION

Covariance estimation is a problem of great interest in many different disciplines, including machine
learning, signal processing, economics and bioinformatics. In many applications the number of variables
is very large, e.g., in the tens or hundreds of thousands, leading to a number of covariance parameters that
greatly exceeds the number of observations. To address this problem constraints are frequently imposed
on the covariance to reduce the number of parameters in the model. For example, the Glasso model of
Yuan and Lin [2] and Banerjee ef al [3] imposes sparsity constraints on the covariance. The Kronecker
product model of Dutilleul [4] and Werner et al [S] assumes that the covariance can be represented
as the Kronecker product of two lower dimensional covariance matrices. The transposable regularized
covariance model of Allen et al [[1] imposes a combination of sparsity and Kronecker product form on the
covariance. When there is no missing data, an extension of the alternating optimization algorithm of [4],
[S]], called the flip flop (FF) algorithm, can be applied to estimate the parameters of this combined sparse
and Kronecker product model. In this report we call this algorithm the Kronecker Glasso (KGlasso) and
we thoroughly analyze convergence of the algorithm in the high dimensional setting.

As in [5] we assume that there are p f variables whose covariance ¥, has the separable positive definite
Kronecker product representation:

Yo=A)®Byg (D

where Ag is a p X p positive definite matrix and By is an f X f positive definite matrix. This model
is relevant to channel modeling for MIMO wireless communications, where A is a transmit covariance
matrix and By is a receive covariance matrix [[6]. The model is also relevant to other transposable models
arising in recommendation systems like NetFlix and in gene expression analysis [[1].

The Kronecker product Gaussian graphical model has been known for a long time as the matrix
normal distribution in the statistics community [7], [4], [8]. Various properties of the matrix variate
normal distribution have been studied in [8]]. Let us rewrite the problem into matrix form. Consider a
p x f random matrix Z that follows a matrix normal distribution-i.e. Z ~ N, r(0; A, Bg) [8]. Then,

By is the row covariance matrix and Ay is the column covariance matrix-i.e., Z. ; ~ N (0, [Bolx 1 Ao)
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and Z;. ~ N(0,[Ao];;Bo) ﬂ This model further finds applications in geostatistics [9] and genomics
[LO]]. Further applications of matrix-variate normal models include collaborative filtering [11]], multi-task
learning [12] and face recognition [[13]. The Kronecker factorization (I]) can easily be generalized to the
k-fold case, where g = A1 Ay ® --- ® Ap.

Under the assumption that the measurements are multivariate Gaussian with covariance having the
Kronecker product form (T)), the maximum likelihood (ML) estimator can be formulated [14]. While the
ML estimator has no known closed-form solution, an approximation to the solution can be iteratively
computed via an alternating algorithm: the flip-flop (FF) algorithm [[14], [S]. As compared to the standard
saturated (unstructured) covariance model, the number of unknown parameters in (I)) is reduced from
order O(p?f?) to order O(p?) + O(f?). This results in a significant reduction in the mean squared
error (MSE) and the computational complexity of the maximum likelihood (ML) covariance estimator.
This report establishes that further reductions MSE are achievable when the Kronecker matrix factors
are known to have sparse inverses, i.e., the measurements obey a sparse Kronecker structured Gaussian
graphical model.

The graphical lasso (Glasso) estimator was originally proposed in [2], [3] for estimating a sparse inverse
covariance, also called the precision matrix, under an i.i.d. Gaussian observation model. An algorithm
for efficiently solving the nonsmooth optimization problem that arises in the Glasso estimator, based on
ideas from [3], was proposed in [15]]. Glasso has been applied to the time-varying coefficients setting in
Zhou et al [16] using the kernel estimator for covariances at a target time. Rothman et al [[17] derived
high dimensional convergence rates for a slight variant of Glasso, i.e., only the off-diagonal entries of
the estimated precision matrix were penalized using an ¢;-penalty. The high dimensional convergence
rate of Glasso was established by Ravikumar et al [18]. This report extends their analysis to the case
that the covariance has Kronecker structure (I), showing that significantly higher rates of convergence
are achievable.

The main contribution is the derivation of the high-dimensional MSE convergence rates for KGlasso as
n, p and f go to infinity. When both Kronecker factors are sparse, it is shown that KGlasso strictly out-
performs FF and Glasso in terms of MSE convergence rate. More specifically, we show KGlasso achieves

a convergence rate of Op ((p+f) logf;ax(p’f’")> and FF achieves a rate of Op (p2+f2)1°imax(p’f’”)) as

n

n — 0o, while it is known [17]], [16] that Glasso achieves a rate of Op ( ), where s

Here, Z; .. is the ith row and Z. ;, is the kth column of the matrix Z. For concreteness, assume z = [zf, cee zz;]T ~ N(0,X).

Then, Z = [z, ..., zp}T is the p x f data matrix with row covariance By and column covariance Aj.
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denotes the number of off-diagonal nonzero elements in the true precision matrix ®,. Simulations show
that the performance improvements predicted by the high-dimensional analysis continue to hold for small
sample size and moderate matrix dimension. For the example studied in Sec. the empirical MSE of
KGlasso is significantly lower than that of Glasso and FF for p = f = 100 over the range of n from 10
to 100.

The starting point for the MSE convergence analysis is the large-sample analysis of the FF algorithm
(Thm. 1 in [5]]). The KGlasso convergence proof uses a large deviation inequality that shows that the
dimension of one estimated Kronecker factor, say A, acts as a multiplier on the number of independent
samples when performing inference on the other factor B. This result is then used to obtain optimal MSE
rates in terms of Frobenius norm error between the KGlasso estimated matrix and the ground truth. The
asymptotic MSE convergence analysis is useful since it can be used to guide the selection of sparsity
regularization parameters and to determine minimum sample size requirements.

An anonymous reviewer alerted the authors to the related work of Yin and Li [[10], published after
submission of this paper for publication. Yin and Li obtain high-dimensional MSE bounds for the same
matrix normal estimation problem considered here. However, our MSE bounds are tighter than the bounds
given in Yin and Li. In particular, neglecting terms of order log(pf), our bounds are of order p + f as
compared to Yin and Li’s bounds of order pf, which is significantly weaker for large p, f. We obtain

improved bounds due to the use of a tighter concentration inequality, established in Lemma [5]

A. Outline

The outline of the report is as follows. Section |lI] introduces the notation that will be used throughout
the report. In Section the graphical lasso framework is introduced. Section uses this framework
to introduce the KGlasso algorithm. Section [V| shows convergence of KGlasso and characterizes its limit
points. The high dimensional MSE convergence rate derivation for the FF algorithm is included in Section
Section presents a high-dimensional MSE rate result that is used to establish the superiority of
KGlasso as compared to FF and standard Glasso, under the sparse Kronecker product representation (IJ).
Section presents simulations that empirically validate the theoretical convergence rates obtained in

Section

II. NOTATION

For a square matrix M, define |[M|; = ||vec(M)||; and |M| = |[vec(M)|| ., where vec(M) denotes

Hoo’

the vectorized form of M (concatenation of columns into a vector). || M]|, is the spectral norm of
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M. M, ; and [M]; ; are the (4, j)th element of M. Let the inverse transformation (from a vector to a
matrix) be defined as: vec™!(x) = X, where x = vec(X). Define the pf x pf permutation operator
K, ; such that K, svec(N) = vec(NT) for any p x f matrix N. For a symmetric matrix M, A\(M)
will denote the vector of real eigenvalues of M and define A\, (M) = [|[M||, = max \;(M) for p.d.
symmetric matrix, and A, (M) = min A\;(M). Define the sparsity parameter associated with M as
sy = card({(i1,42) : [M]s, 4, # 0,41 # i2}). Let k(M) := ’}\’"L&/I; denote the condition number of a
symmetric matrix M.

For a matrix M of size pf x pf, let {M(i, j) i j—1 denote its f x f block submatrices, where each
block submatrix is M(4,7) = [M]G_1)f41:if,(j—1)f+1:5 - Also let {M(k7l)}£,z:1 denote the p x p block
submatrices of the permuted matrix M = KZ’ MK, ¢.

Define the set of symmetric matrices SP = {A € RP*P : A = AT}, the set of symmetric positive
semidefinite (psd) matrices S% = {A € RP*P : A = AT zTAz > 0,Vz € RP}, and the set of symmetric
positive definite (pd) matrices S¥ = {A € RP*P: A = AT 72T Az > 0,Vz # 0}. I is a d x d identity
matrix. It can be shown that Sﬁ . 18 a convex set, but is not closed [19]. Note that Sﬁ . is simply the
interior of the closed convex cone S .

Statistical convergence rates will be denoted by the Op(-) notation, which is defined as follows.
Consider a sequence of real random variables { X, },,cn defined on a probability space (€2, F, P) and a
deterministic (positive) sequence of reals {b,, }nen. By X, = Op(1) is meant: sup,,cy P(| X, > K) — 0
as K — oo. The notation X, = Op(b,) is equivalent to )b(—: = Op(1). By X,, = 0p(1) is meant

An

P(|Xn| > €) — 0 as n — oo for any € > 0. By A\, < b, is meant ¢; < 3= < co for all n, where

n

c1,cy > 0 are absolute constants.

III. GRAPHICAL LASSO FRAMEWORK

For simplicity, we assume the number of Kronecker components is k& = 2. Available are n i.i.d.
multivariate Gaussian observations {z;}"_,, where z; € RP/, having zero-mean and covariance equal to

3 = Ay ® Byg. Then, the log-likelihood is proportional to:

A

I(X) :=logdet(Z71) —tr(2718S,,), (2)

where X is the positive definite covariance matrix and S, = % Sy z,z] is the sample covariance matrix.
Recent work [3]], [[15] has considered ¢;-penalized maximum likelihood estimators for the saturated model

where 3 belongs to the unrestricted cone of positive definite matrices. These estimators are known as
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graphical lasso (Glasso) estimators and are the solution to the ¢;-penalized minimization problem:

3, € arg gin {12+ A=, 3)
where A > 0 is a regularization parameter. If A > 0 and S, is positive definite, then 3, in is the
unique minimizer.

A fast iterative algorithm, based on a block coordinate descent approach, exhibiting a computational

complexity O((pf)?*), was developed in [I5] to solve the convex program . Under the assumption

A= % solution of (3) was shown to have high dimensional convergence rate [17]:
S +s)lo
G (S0 0) — Oyl = O W D) g(pn) .

where s is an upper bound on the number of non-zero off-diagonal elements of @¢. When s = O(pf),

this rate is better than the non-regularized sample covariance estimator:

N 2 £2
”Sn_EOHF:OP<\/pr> . )

IV. KRONECKER GRAPHICAL LASSO

Let 3 := Ao ® By denote the true covariance matrix, where Ay := X, Land By = Y, ! are the true
Kronecker factors. Let A;,;; denote the initial guess of Ag = X, L

Define J(X,Y) as the negative log-likelihood

N

J(X,Y)=tu(X®Y)S,) — flogdet(X)
— plogdet(Y) (6)

Although the objective (@) is not jointly convex in (X,Y), it is biconvex. This motivates the flip-flop
algorithm [4]], [5]. Adapting the notation from [3], define the mappings A(-), B(-):

f
R 1 -
A(B) =7 [B_l]k,lsn(l7k>7 (7)
BA) =L 3 (A 1,8.0.1 ®)
~ _pi7j:1 1,j9n\J> 1),

where gn = KngnKp,f (see Sec. |II| for definition of K, ;). For fixed B € SLF, A(B) in H is the
minimizer of J(A~!, B~!) over A € Sﬁ 1. A similar interpretation holds for . The flip-flop algorithm
starts with some arbitrary p.d. matrix A;,;; and computes B using (8), then A using (7), and repeats

until convergence. This algorithm does not account for sparsity.
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If ®) = Xy ® Yy is a sparse matrix, which implies that at least one of Xy or Y is sparse, one can

penalize the outputs of the flip-flop algorithm and minimize
X, Y) = J(X,Y) + Ax X[ + Ay |Y]h. ©)

This leads to an algorithm that we call KGlasso (see Algorithm [I), which sparsifies the Kronecker factors

in proportion to the parameters Ax, Ay > 0.

Algorithm 1 Kronecker Graphical Lasso (KGlasso)
1: Input: Qn, p, f,n, Ax >0, A&y >0

2: Output: @KGMSSO

3: Initialize A, to be positive definite satisfying Assumption
3 -1

4: X Aim’t

5: repeat

6 B« % b1 [X]; iSn(j,7) (see Eq. )
7. Y+ G(B, ’_\?Y) where G(-,-) is defined in li
8 A« %Zi,lzl [Y]MS*”(Z, k) (see Eq. )
9. X+ G(A, %)
10: until convergence

11: éKGlasso — X ® Y

The Glasso mapping (3) is written as G(-,\) : §¢ — S,
G(T,)\) = arg_min {tr(G)T) ~ log det(©) +)\|®|1}. (10)
@csS{,
As compared to the O(p*f*) computational complexity of Glasso, KGlasso has a computational com-

plexity of only O(p* + f4) ﬂ

V. CONVERGENCE OF KGLASSO ITERATIONS

In this section, we provide an alternative characterization of the KGlasso algorithm and prove conver-

gence to a local minimum of the objective function.

In the sparse Kronecker factor case, this cost can be reduced to O(p® + f?).
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A. Block-Coordinate Reformulation of KGlasso

The KGlasso algorithm can be re-formulated as a block-coordinate optimization of the penalized

objective function [9]

Lemma 1. 1) Assume Ax,A\y > 0 and X € SLF,Y € S_{Jr. When one argument of J\(X,Y) is
fixed, the objective function (9) is convex in the other argument.
2) Assume S, is positive definite. Consider J\(X,Y) in @) with matrix X € S% __ fixed. Then, the
dual subproblem for minimizing J\(X,Y) over Y is:

max_ log det(W) (11)
(W= 320 21 XisSu () lo <Ay

where \y = Ay /p.
On the other hand, consider (@) with matrix Y € S fr o fixed. Then, the dual problem for minimizing
INX,Y) over X is:

max log det(Z) (12)
1Z— 5 3 o1 YeaSn (L) e SAx

where Sjl = KifSnKpJ and \x = Mx/f.

3) Strong duality holds for (1) and (12).
4) The solutions to and are positive definite.

Proof: See Appendix. [ ]
Note that both dual subproblems (TT)) and (I2) have a unique solution and the maximum is attained in
each one. This follows from the fact that in each case we are maximizing a strictly concave function over
a closed convex set. Lemmais similar to the result obtained in [3], but with (% bim1 X Sn(4, i), Ay)

playing the role of (S,,,\), for the “fixed X subproblem.

B. Limit Point Characterization of KGlasso

We will first show that KGlasso converges to a fixed point. Let J\(X,Y) be as defined in @) and
define J¥ = 7, (X® Y ®)) for k= 0,1,2, ...

Theorem 1. If n > max(%, %) + 1, KGlasso converges to a fixed point. Also, we have J)(\k) AV J)\OO).

Proof: See Appendix. [ ]
The following analysis uses Theorem |[1| to prove convergence of the KGlasso algorithm to a local

minimum. To do this, we consider a more general setting. The KGlasso algorithm is a special case of
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Algorithm [2| Assuming a k-fold Kronecker product structure for the covariance matrix, the optimization

problem (9) can be written in the form:

k
J)\(Xl, Ceey Xk) = Jo(Xl, ey Xk) + Z JZ(Xz) + j\znl(Xz) (13)
=1

where X; € ST, m(X;) == [Xml1, Jo(X1, ..., Xp) = (X1 © Xo ® - ® X)S,,) and J;(X;) =
— Lz div - logdet(X;) fori=1,... k.

Without loss of generality, by reshaping matrices into appropriate vectors, (I3)) can be rewritten as:

k
I, Xk) = Jo(Xas o xk) Y (%) + Aimi(xi) (14)
i=1
where the optimization variable is x := [x],x5,...,x+]|7 € R, where x; € R and d' = Zi-“:l dz.

For example, 7;(X;) = |X;|1 = ||vec(X;)|; = ||xill; = mi(x:). The mapping {J;}¥_, can be similarly
written in terms of the vectors x; instead of the matrices X;.

The reader can verify that the objective function li satisfies the properties (for n > max(?, %) +1)
in Appendix D.

The general optimization problem of interest here is:

min Jy(x) subject to vec !(x;) = X; € Siﬁr,i =1,...,k (15)
x€ERY

The positive definiteness constraints are automatically taken care of by the construction of the algorithm
(see Lemma 4). Let the dimension of the covariance matrix be denoted by d := Hle d;. We assume

n > d. To solve (I3)), a block coordinate-descent penalized algorithm is constructed:

Remark 1. The positive definiteness constraint at each coordinate descent iteration of Algorithms [I| and

need not be explicit since the objective function Jy(-) acts as a logarithmic barrier function.

Note that Algorithm [I]is a special case of Algorithm [2| An extension of Theorem [I| assuming n > d
or Jy > —o0, based on induction, can be used to show that the limit points of the sequence of iterates

(X"™)m>0 = (X", ..., X" )m>0 are fixed points.

Remark 2. Note that a necessary condition for x* to minimize Jy is 0 € 0J)(x*). This is not sufficient

however.

We next show that the limit point(s) of (x™),,>¢ are nonempty and are local minima.
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10

Algorithm 2 Block Coordinate-Descent Penalized Algorithm

1: Input: Sn, diymn,e>0, >0
2: Output: C)
3. Initialize X9, X9, ... ,Xg matrices as positive definite matrices, e.g., scaled identity.

4 Q) XX - o X)

5: m<+ 0

6: repeat

7: é‘)prev — é)

8 X7 < argmina, .o Jy(A1, X5 X
9:  XI'4— argmina,. o J/\(XT,AQ,...,XZL_l)
10:

11: X;C”eargminAwo J/\(XT, T,...,Ak)

12 O« XI'eXyre --oXp
13: m+<m—+1

14: until ||Opey — O < €

Theorem 2. Let (x™) = (x7*,..., X" )m>0 be a sequence generated by Algorithm 2| Assume n > d
1 k Jm> q

1) The algorithm converges to a local minimum.

2) If x° is not a local minimum, strict descent follows.

Proof: See Appendix. [ ]

As a consequence of Theorem [2] we have the following corollary.

Corollary 1. Assuming n > max(% %) + 1, the KGlasso algorithm converges to a local minimizer of

the objective function ([9).

VI. HIGH DIMENSIONAL CONSISTENCY OF FF

In this section, we show that the flip-flop (FF) algorithm achieves the optimal (non-sparse) statistical

convergence rate of Op P2EI® ) This result (see Thm. [3)) allows us to establish that the proposed
g n prop

This requirement on the sample size can be significantly relaxed. For the two-fold case, this can be relaxed to n > max(?, %)"‘

1.
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KGlasso has significantly improved MSE convergence rate (see Thm. ). We make the following standard

assumption on the spectra of the Kronecker factors.

Assumption 1. Uniformly Bounded Spectra

There exist absolute constants k 4, ka, kg, kp, k A,-M?EAMH such that:
la. 0 < ka < Amin(Ao) < Anaz(Ag) < kg < 00
1b. 0 < kg < Apin(Bo) < Maz(Bo) < kp < o0

2.0< EAim.t < )\mzn(Amzt) < )\mam(Ainit) <ka < o0

init

~ A~

Let Xpp(3) := A(B(Amit)) ® E(A(B(Aimt))) denote the 3-step (noniterative) version of the flip-
flop algorithm [5]. More generally, let X (k) denote the k-step version of the flip-flop algorithm, and

denote its inverse as O pp (k) = (Zpp(k))~L.

Theorem 3. Let Ay, B, and Ay, satisfy Assumption|I|and define M = max(p, f,n). Assumep > f > 2

and plog M < C"n for some finite constant C"" > 0. Finally, assume n > ? + 1. Then, for k > 2 finite,

1© 55 (k) — Ol = Op (\/@2 e logM>

(16)
n

as n — oQ.
Proof: See Appendix. ]

Remark 3. The sufficient conditions are symmetric with respect to p and f-i.e. for f > p, the corre-

sponding conditions would become flog M < C"n for some constant C" > 0, and n > % + 1

To achieve accurate covariance estimation for arbitrarily structured Kronecker factors, the minimal
sample size needed is n = Q((p? + f2)log M).

The bound (I6) specifies the rate of reduction of the estimation error for the multi-iteration FF
algorithm, which includes the three step FF algorithm (k = 3) [3] as a special case. The error reduction
decreases as long as p and f do not increase too quickly in n.

Note that (I6) specifies a faster rate than that of the naive sample covariance matrix estimator ().
Furthemore, since the computational complexity for FF is O(p? + f2) which is less than the O(p?f?)
complexity of SCM, by exploiting Kronecker structure FF simultaneously achieves improved MSE

performance and reduced computational complexity.

VII. HIGH DIMENSIONAL CONSISTENCY OF KGLASSO

In this section, consistency is established for KGlasso as p, f,n — oo.
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Fig. 1. Root mean square error (RMSE) performance for the flip-flop estimator (FF) (left) and for the standard sample covariance
matrix estimator (SCM) (right). SCM performs very poorly in comparison to FF when the covariance matrix decomposes as a
Kronecker product. Here, the sample size n is fixed and the dimensions of the Kronecker factors (p, f) vary. Equation @) is
plotted on the left and Equation (B) on the right. Exploiting structure yields a significant reduction in MSE. The magnitude of
the colormap reflects the error up to a constant scaling. The colormap in both images is the same, which visually shows the

lower RMSE of FF as compared to SCM.

A. MSE convergence rate of KGlasso

Define © g iasso(k) as the output of the kth compression and sparsification step (two of these steps

constitute a full KGlasso iteration).

and

Theorem 4. Let Ay, Bo, Ajnir satisfy Assumption Let M = max(p, f,n). Let 5\%/1) =p

yE (L, 1 logM (k) _ (1 | 1 log M ,
)‘X’\(\/ﬁ"'\/f)f ==, Ay A<\/ﬁ+ﬂ)p == as p, f,n — oo forall k > 1 and k' > 2.

Assume sparse Xo and Y, i.e. sx, = O(p), sy, = O(f). Assume max (?, %) log M = o(n). Then, for

k > 2 finite, we have

log M
np

(p+ f)log M

HGKGlasso(k) - (")OHF = Op -

(17)
as p, f,n — oo.

Proof: See Appendix. [ ]
Theorem [] offers a strict improvement over standard Glasso [17], [3] and generalizes Thm. 1 in to
the case of sparse Kronecker product structure. Thm. [] generalizes Thm. [3]to the case of sparse Kronecker
structure. Comparison between the error expressions (@), (I6) and show that, by exploiting both
Kronecker structure and sparsity, KGlasso can attain significantly lower estimation error than standard
Glasso [17] and FF [3]. To achieve accurate covariance estimation for the sparse Kronecker product
model, the minimal sample size needed is n = Q((p + f) log M).
Although Thm. ] shows a rate on the inverse covariance matrix, this asymptotic rate can be shown to

hold for the covariance matrix as well (i.e., the inverse of © kGiasso)-
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Let B; := G(B(Anir), )\g/l))_l, where G is defined in . Then, O g Gasso(1) = G(A(B)), )\g)) ®
G(B(Aini), )\g/l )) denotes the KGlasso output after the the first two steps of the KGlasso algorithm (or
one KGlasso iteration). A graphical depiction of the first three steps of KGlasso is shown in Fig. [
Define B; = G(B(Ajni), )\g,l))_l, where G is given in . Then, O kGiasso(l) = G(A(Bl),)\gp) ®
G(B(Ainit), )\g/l )) denotes the KGlasso output after the the first two steps of the KGlasso algorithm (or
one KGlasso iteration). Although Thm. [ shows a rate on the inverse covariance matrix, this asymptotic

rate can be shown to hold for the covariance matrix as well (see proof of Thm. ] in Appendix).

Fig. 2. Illustration of first three iterations of KGlasso. The squares around the blue dots represent the ¢, balls controlled by
the regularization parameter (see dual programs (TI) and (I2)). As the regularization parameters tend to zero, the balls shrink

to the blue points, and KGlasso becomes identical to the FF algorithm.

Figures [3] and [4] graphically compare the MSE convergence rates of KGlasso, FF and standard Glasso
as a function of p, f for fixed n. Note that the standard Glasso algorithm would yield an inferior rate to
(T7) (recall @)).

The minimal sample size required to achieve accurate covariance estimation is graphically depicted in
Fig. 5] for the special case p = f. The regions below the lines are the MSE convergence regions-i.e., the
MSE convergence rate goes to zero as p,n grow together to infinity at a certain growth rate controlled
by these regions. It is shown that KGlasso allows the dimension p to grow almost linearly in n and still

achieve accurate covariance estimation (see (17)) and thus, uniformly outperforms FF, Glasso and the
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Fig. 3.  Root mean square error performance for Kronecker graphical lasso estimator (KGlasso) (left) and flip-flop estimator

(FF) (right). FF performs very poorly in comparison to KGlasso when the covariance matrix decomposes as a Kronecker product
and both Kronecker factors are sparse. The bound in Equation (T7) is plotted on the left and that in Equation (T6) on the right.

The magnitude of the colormap reflects the error up to a constant scaling.
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Fig. 4. Root mean square error performance for Kronecker graphical lasso estimator (KGlasso) (left) and standard Glasso
estimator (Glasso) (right). Glasso performs very poorly in comparison to KGlasso when the covariance matrix decomposes as a
Kronecker product and both Kronecker factors are sparse. The bound in Equation (T7) is plotted on the left and that in Equation

(E[) on the right. The magnitude of the colormap reflects the error up to a constant scaling.

naive SCM estimators in the case both Kronecker factors are sparse.

B. Discussion

Theorem [] is established using the large deviation bound in Lemma [5} We provide some intuition

on this bound below. Assume that X,z = Xo, or At = X5 5, = Ag. Define W = X(l)/ 2 ® I, and

init

z; = Wz, with i.i.d. z; ~ N(0,Ap ® By), t = 1,...,n. Then, z; has block-diagonal covariance
COV(it) =1p & Bo.

When W is applied to the transformed pf x pf sample covariance matrix, S};V = WS, W7 the first step
of KGlasso produces an iterate v = G(B, \y) with B = % b SW(i,i) (recall ). For suitable

Ay = )\g/l), Yﬁf) converges to Yo with respect to maximal elementwise norm at a rate Op ( IOELM )
The convergence of YS) is easily established by applying the Chernoff bound and invoking the jointly

Gaussian property of the measurements and the block diagonal structure of Cov(z;). Lemma [5] in the
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Fig. 5.  Graphical depiction of minimal sample size required for KGlasso, FF, Glasso and naive SCM estimators to achieve
accurate covariance estimation. The region below the lines constitute the MSE convergence regions-i.e. traveling along a path

(p(n),n) as n — oo within such regions implies the MSE convergence rate tends to zero (see (3),().(16) and (17)).

Appendix establishes that this rate holds even if X;,;; # X in Assumption (I} In view of the rate of
convergence of Y(l), to achieve a reduction in the MSE of Y, either the sample size n or the dimension
p must increase. Lemma [5] provides a tight bound that makes the dependence of the convergence rate
explicit in p, f and n. Theorem [ uses Lemma [5] to show that KGlasso converges to Xy ® Y with rate

Op ( (p+f)nl°gM> with respect to Frobenius norm.

VIII. SIMULATION RESULTS

In this section, we empirically validate the convergence rates established in previous sections using
Monte Carlo simulation.

Each iteration of the KGlasso involves solving an ¢; penalized covariance estimation problem of
dimension 100 x 100 (Step 6 and Step 8 of KGlasso specified by Algorithm [I)). To solve these small
sparse covariance estimation problems we used the Glasso algorithm of Hsieh et al [20] where the Glasso
stopping criterion was determined by monitoring when the duality gap falls below a threshold of 1073,

To evaluate performance, Monte Carlo simulations were used. Unless otherwise specified, the true

matrices X 1= A, Land Yy := B, ! were unstructured randomly generated positive definite matrices
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based on an Erdos-Rényi graph model. First, a square binary matrix C was generated based on indepen-
dently and identically distributing “0s” with a probability p* and “1s” with a probability 1 — p*. Then,
C := (C+CT)/2 symmetrizes the matrix. The perturbation level p was selected as p = 0.05 — Apin(C),
producing Yy := C + pI - the sparse inverse matrix. There was a total of 20 trial runs for each fixed
number of samples n. Performance assessment was based on normalized Frobenius norm error in the

covariance and precision matrix estimates. The normalized error was calculated using

N
ZM:C 10 — 2017
NMC i=1 ”ZOHF

where Nj;c is the number of Monte Carlo runs and ﬁ)(z) is the covariance output from the ith trial run.
The same formula can be adapted to calculate the normalized error in the precision matrix ©o. In the
implementation of KGlasso, the regularization parameters were chosen as follows. The initialization was
Xinit = I,. The regularization parameters were selected as )\g,) =y log )\g?) = cg 1°g + )\g/),
)\g/z) = )\g?), )\g?) = )\g?), etc. For Examples 1 and 2 below, the (positive) scahng constants (cm,cy) in

front of the regularization parameters were chosen experimentally to optimize respective performances.

For Example 3, we simply set ¢; = ¢, = 0.4.

A. Example 1

We consider the simple case that Xy and Y are sparse matrices of dimensions p = 20 and f = 10.
Figure [6] shows that Xo ® Y| is a perturbation of I,;. Figures [7] and [§] compare the root-mean squared
error (RMSE) performance in precision and covariance matrices as a function of n. As expected, KGlasso
outperforms both naive Glasso and FF over the range of n for both the covariance and the inverse
covariance estimation problem. As expected, the FF algorithm suffers in the small sample regime. KGlasso

outperforms FF in this regime since it exploits sparsity in addition to Kronecker structure.

B. Example 2

We consider the case when Ay is identity and Y is dense (see Fig. [9). Figures [10] and [I1] show similar

trends to those exhibited in Figures [/ and [§| for the case that both X and Y are sparse.

C. Example 3

We considered the setting where X and Y are large sparse matrices of dimension p = f = 100 (see

Fig.[I2). Only 5% of the off-diagonal entries were nonzero for both matrices X and Y. The dimension
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Fig. 6. Doubly sparse Kronecker matrix representation for simulation example 1. Left panel: left Kronecker factor. Middle

panel: right Kronecker factor. Right panel: Kronecker product inverse covariance matrix
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Fig. 7. Normalized RMSE of precision matrix estimate © = 3! as a function of sample size n for structure exhibited in
Fig. [f] KGlasso (Kronecker graphical lasso) uniformly outperforms FF (flip-flop) algorithm and standard Glasso algorithm for
all n. Here, p = 20 and f = 10.
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Fig. 8. Normalized RMSE of covariance matrix estimate 3 as a function of sample size n for structure exhibited in Fig. @
KGlasso (Kronecker graphical lasso) uniformly outperforms FF (flip-flop) algorithm and standard Glasso algorithm for all n.
Here, p = 20 and f = 10.
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Fig. 9. Sparse Kronecker matrix representation for simulation example 2. Left panel: left Kronecker factor. Middle panel: right

Kronecker factor. Right panel: Kronecker product inverse covariance matrix.
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Normalized RMSE performance for precision matrix as a function of sample size n. KGlasso (Kronecker graphical

lasso) uniformly outperforms FF (flip-flop) algorithm and standard Glasso algorithm for all n. Here, p = 20 and f = 10.
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Normalized RMSE performance for covariance matrix as a function of sample size n. KGlasso (Kronecker graphical

lasso) uniformly outperforms FF (flip-flop) algorithm and standard Glasso algorithm for all n. Here, p = 20 and f = 10.
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of ®¢ is d = 10,000, which was too large for implementation of standard Glasso. Figures and
compare the root-mean squared error (RMSE) performance in precision and covariance matrices as a
function of n. As expected, KGlasso outperforms both naive Glasso and FF over the range of n for both
the covariance and the inverse covariance estimation problem. As expected, the FF algorithm suffers in
the small sample regime. KGlasso outperforms FF in this regime since it exploits sparsity in addition to
Kronecker structure.

For n = 10, there is a 69% (&~ 5.09 dB) RMSE reduction for the precision matrix and 35% RMSE
reduction for the covariance matrix when using KGlasso instead of FF. For n = 100, there is a 41%
(=~ 2.29 dB) RMSE reduction for the precision matrix and 26% RMSE reduction for the covariance
matrix. For the small sample regime, there is approximately a 5.09 dB reduction for the precision matrix,

which is a significant performance gain.

D. Example 4

Here, the true covariance matrix factors Xy = Ag Land Yy = B, ! were unstructured randomly
generated positive definite matrices. First, p random nonzero elements were placed on the diagonal of a
square p X p matrix C'. Then, on average p nonzero elements were placed on the off-diagonal and symmetry
was imposed. On average, a total of 3p elements were nonzero. The resulting matrix C was regularized
to produce the sparse positive definite inverse covariance Yy = C+ ply, where p = 0.5 — )\mm(é)

We also compare KGlasso to a natural extension of the FF algorithm that accounts for both sparsity
and Kronecker structure. The flip-flop thresholding method (FF/Thres) that we consider consists of first
computing the FF solution and then thresholding each estimated precision matrix. To ensure a fair
comparison we set the threshold level of FF/Thres that yields exactly the same sparsity factor as the
KGLasso estimated precision matrices.

For n = 10, there is a 72% (= 5.53 dB) RMSE reduction for the precision matrix and 41% RMSE
reduction for the covariance matrix when using KGlasso instead of FF. For n = 10, there is a 70%
(=~ 5.23 dB) RMSE reduction for the precision matrix and 62% RMSE reduction for the covariance
matrix when using KGlasso instead of FF/Thres. For n = 100, there is a 53% (= 3.28 dB) RMSE
reduction for the precision matrix and 33% RMSE reduction for the covariance matrix when using
KGLasso instead of FF. For n = 100, there is a 50% (= 3.01 dB) RMSE reduction for the precision
matrix and 41% RMSE reduction for the covariance matrix when using KGLasso instead of FF/Thres.
For the small sample regime, there is approximately a 5.53 dB reduction for the precision matrix, which

is a significant performance gain.
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Fig. 12. Sparse Kronecker matrix representation. Left panel: left Kronecker factor. Right panel: right Kronecker factor.
Max number of iter. = 20, Trials = &0, (p f=(100,100)
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Normalized RMSE performance for precision matrix as a function of sample size n. KGlasso (Kronecker graphical

lasso) uniformly outperforms FF (flip-flop) algorithm for all n. Here, p = 100 and f = 100. For n = 10, there is a 69% RMSE

reduction.
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Fig. 14. Normalized RMSE performance for covariance matrix as a function of sample size n. KGlasso (Kronecker graphical

lasso) uniformly outperforms FF (flip-flop) algorithm for all n. Here, p = 100 and f = 100. For n = 10, there is a 35% RMSE

reduction.
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Fig. 15. Sparse Kronecker matrix representation. Left panel: left Kronecker factor. Right panel: right Kronecker factor. As the
Kronecker-product covariance matrix is of dimension 10,000 x 10,000 standard Glasso is not practically implementable for

this example.
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Fig. 16. Normalized RMSE performance for precision matrix as a function of sample size n. KGlasso (Kronecker graphical
lasso) uniformly outperforms FF (flip-flop) algorithm and FF/Thres (flip-flop thresholding) for all n. Here, p = f = 100 and
Narc = 40. The error bars are centered around the mean with & one standard deviation. For n = 10, there is a 72% RMSE

reduction from the FF to KGLasso solution and a 70% RMSE reduction from the FF/Thres to KGLasso.
Max number of iter. = 100, Trials = 40, (p,f)=(100,100)
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Fig. 17. Normalized RMSE performance for covariance matrix as a function of sample size n. KGlasso (Kronecker graphical
lassenbaritormply; outperforms FF (flip-flop) algorithm for all n. Here, p = f = 100 and Nasc = 40. The error bars are ceypared
around the mean with &+ one standard deviation. For n = 10, there is a 41% RMSE reduction from the FF to KGLasso solution

and a 62% RMSE reduction from the FF/Thres to KGLasso.
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We finally remark that the benefit obtained in the reduced convergence rate is not only due to the
covariance estimation method chosen, but to the problem it addresses as well-i.e. the assumed true

covariance structure.

E. Empirical Rate Comparison

Next, we illustrate the rates obtained in for the dimension setting p(n) = f(n) = [8n®], where
a € {0.1,0.2,0.3}. According to the theory developed, for large n, the MSE converges to zero at a
certain convergence rate. The predicted rates of FF and KGlasso are fitted on top of the empirical MSE
curves by ensuring intersection at n = 1000. Fig. [I§] shows that the empirical rates match the predicted

rates well.

FF: Emp. c.=0.1
FF:Pred =01 ]
FF: Emp. =02
©FF: Pred c=02
FF: Emp. c.=0.3
FF: Pred cw=03
—S—KGL Emp. &=01
[y —&—KGL Pred. =01 ]
—— KGL Emp. =02
—H—KGL Pred. =02
KGL Emp. cc=03
KGL: Pred. o.=0.3

KGlasso & FF

O &0

Ernpirical & Predicted MSE for Precision Matrix

! L L L L L ! ! i
200 300 400 500 600 700 800 500 1000
n

Fig. 18.  Precision Matrix MSE convergence as a function of sample size n for FF and KGlasso. The dimensions of the
Kronecker factor matrices grow as a function of n as: p(n) = f(n) = [8-n®]. The true Kronecker factors were set to identity
(so their inverses are fully sparse). The predicted MSE curves according to Thm. [3|and Thm. |4 are also shown. For both KGlasso
and FF, the predicted MSE matches the empirical MSE well, thus verifying the rate expressions (I€) and (I7).

We also show a borderline case p = f = [n%6]. In this case, according to Thm. [3{and Thm. |4, the FF

diverges (MSE increases in n), while the KGlasso converges (MSE decreases in n). This is illustrated in

Fig. [I9] Our predicted rates are plotted on top of the empirical curves.
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Fig. 19.  Precision Matrix MSE as a function of sample size n for FF and KGlasso. The dimensions of the Kronecker factor
matrices grow as a function of n as: p(n) = f(n) = [n°%]. The true Kronecker factors were set to identity (so their inverses
are fully sparse). The predicted MSE curves according to Thm. [3] and Thm. [4] are also shown. As predicted by our theory, and
by the predicted convergent regions of (n,p) for FF and KGlasso in Fig. [5 the MSE of the FF diverges while the MSE of the

KGlasso converges as n increases.

IX. CONCLUSION

We established high dimensional consistency for Kronecker Glasso algorithms that use iterative /¢1-
penalized likelihood optimization that exploit both Kronecker structure and sparsity of the covariance.
A tight MSE convergence rate was derived for KGlasso, showing significantly better MSE performance
than standard Glasso [[17]], [3] and FF [5]. Simulations validated our theoretical predictions.

As expected, the proposed KGlasso algorithm outperforms other algorithms (Glasso, FF) that do not
exploit all prior knowledge about the covariance matrix, i.e., sparsity and Kronecker product structure,
that KGlasso exploits. The theory and experiments in this paper establish that this performance gain is
substantial, more so as the variable dimension increases. Furthermore, as compared to a simple thresholded
FF algorithm, which does account for both sparsity and Kronecker structure, KGlasso has significantly

better estimation performance.
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APPENDIX A
PROOF OF LEMMAI]
Proof:
1) Let # € (0,1). Let Xy,X5 € Sﬁ 1. Then, by the properties of the Kronecker product and trace:
tr(((0X1 + (1 — 0)X2) ® Y)S,,)
= 0tr(X1 ®Y)S,) + (1 — (X2 ® Y)S,,)
The function g(X;) := —logdet(X;) is a convex function in X; over the set SLF [19]. By the

triangle inequality:

‘(9X1 + (1 — H)Xgh < G‘Xl‘l + (1 — 9)‘X2‘1

Finally, the sum of convex functions is convex. The set S7 | is a convex set for any p € N. The

other half of the argument follows by symmetry.

2) By symmetry we only need prove that is the dual of miny, s, JA\(X,Y). By standard duality

relations between ¢; and /¢, norms [19] and symmetry of Y:

Y| = max  tr(YU)
UeSF:|U|<1
The maximum is attained at U; ; = §—7| for Y;; # 0 and at U; ; = 0 for Y; ; = 0. Using this

in (9) and invoking the saddlepoint inequality:

min tr((X ® Y)S,) — plogdet(Y) + pAy[Y]|y
YeST,

= min max tr((X®Y Sn — plogdet(Y
Yes§+|U|m§Ay{ ( )Sn) — plogdet(Y)

+ ptr(YU)}

> max min {tr(X®Y)S,)— plogdet(Y
wmmgwe%{ (X ®Y)S,) - plog det(Y)

+ ptr(YU)} (18)

When the equality in is achieved, (U,Y) is a saddlepoint and the duality gap is zero. Rewrite

the objective function, denoted .J A(+, ), in the minimax operation :

X, Y) = (X2 Y)(S, + UX))) — plogdet(Y)
where U(X) = p%. Define M = S,, + U(X). To evaluate minycgr j,\(X,Y)l in li
we invoke the KKT conditions to obtain the solution Y = (% Zf i1 X”M(],z))) . Define
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W = Y ! as the dual space variable. Using this in :

max. {plogdet(W) +pf} (19)
W2 3701 Xi5Sn ()| <Ay

where the constraint set was obtained in terms of W by observing that U(X)(j, i) = %I (j =1),
and I(-) is the indicator function. It is evident that (19) is equivalent to (11).

3) It suffices to verify that the duality induced by the saddle point formulation is equivalent to
Lagrangian duality (see Section 5.4 in [19]). Slater’s constraint qualification (see Section 5.3.2
in [19]) trivially holds for the convex problem miny, S, JA(X,Y) and and the corresponding
convex problem miny, . s, JA\(X,Y). Since the objective function of each dual problem has an
optimal objective that is bounded below, Slater’s constraint qualification also implies that the dual
optimal solution is attained.

4) From [5], it follows that if Sn is p.d., each “compression step” (see lines 6 and 8 in Algorithm
yields a p.d. matrix. Combining this with the positive definiteness of the Glasso estimator [3], we
conclude that the first subiteration of KGlasso yields a p.d. matrix. A simple induction, combined
with the fact that the Kronecker product of p.d. matrices is p.d., establishes that (TT) and (12)) are
p.d.

APPENDIX B

PROOF OF THEOREM 1]

Proof: Recall that the basic optimization problem (3) is

min , IX,Y)
Xesh | ,)Yesy,

Let J* := ianESQvYES«{Jr JA\(X,Y) be the optimal primal value. Note that J; > —oo when n >
max(?7 %) + 1. Now, consider the first step in Algorithm Fix X = X (=1 and optimize over Y € S fr 4
Invoking Lemma we have Y¥) = arg minYesi+ JA(X*=D Y). Note, by induction Y*) remains
positive definite if X(%) is positive definite. Considering the second step in Algorithm |1| we fix Y = Y¥)

and obtain X¥) = arg minxesr, Ji(X, Y *), so that
IXE Y E) < gy (XED vy Ry < gy (x B y D) (20)
By induction on the number of iterations of the penalized flip-flop algorithm, we conclude that the

iterates yield a nonincreasing sequence of objective functions. Since Ax|X|1, Ay |Y]1 > 0, we see that
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the objective function evaluated at the Kronecker structured MLE provides a lower bound to the optimal

primal value |

J)\(XKGlassoyYKGlasso) Z J;\k Z J)\(XMLEaYMLE) > —00 (21)

Thus, the sequence {.J )(\k) : k > 0} forms a nonincreasing sequence bounded below (since for n > pf, the
log-likelihood function is bounded above by the log-likelihood evaluated at the sample mean and sample
covariance matrix). The monotone convergence theorem for sequences [21] implies that {.J )(\k)} converges
monotonically to J/(\OO) = infy, J/(\k). By the alternating minimization, we conclude that the sequence of

iterates {(X(*) Y (%))}, converges since the minimizer at each Glasso step is unique. [ |

APPENDIX C

SUBDIFFERENTIAL CALCULUS REVIEW

As sparse Kronecker Glasso involves non-smooth objective functions, we review a few definitions and

facts from subdifferential calculus [22].

- . J .
Definition 1. By J-attentive convergence denoted as, X" — x, we mean that: X" — x with J(x") — J(x)

as n — Q.

The role of J-attentive convergence is to make sure that subgradients at a point X reflect no more than

the local geometry of epi(.J) around (X, J(X)).

Definition 2. Consider a proper lower semicontinuous (LSC) function g : R — R U {+0c0}. Let X be

such that J(X) < oc.

For v € R%,
a) v is a regular subgradient of J at X (i.e., v € 5J(i)) if liminfy sx x % J(x)_‘]‘(‘i)_;‘f(x_i) > 0.
b) v is a general subgradient of J at X (i.e., v € 0J(X)) if there exists subsequences X" % % and

v € OJ(x") such that v"" — v.

Let X be such that J(X) < co. It can be shown that 8.J(X) = limsup_,_ dJ(x), 8J(X) C dJ(X) and
X—X
both sets are closed.
Define the set of critical points Cj := {x: 0 € 0J(x)} = Cmin U CJsaddie Y CJmaz. Where Cmin
contains all the local minima, Cj 4447 contains all the saddle points and C'j 4, contains all the local

maxima.

The Kronecker structured MLE (Xarze, Yaoe) exists for n > max(%, %) + 1
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Definition 3. Ler A C R". Define the distance from a point x € R" to the set A as d(x,A) =

infaca ||x — al|s.

APPENDIX D

PROPERTIES OF OBJECTIVE FUNCTION J)

The following set of properties will be used in Lemmas and Theorem

Property 1. 1. Jy : R? — R is continuously differentiable (i.e., fo € C')
2. VJo : R* = R? is uniformly continuous on bounded subsets B C R?

3. J; :RE — RU {400} is properﬂand lower semicontinuous (LSC), for i =1,...,k

4. m; - R — Ry is uniformly continuous and bounded on bounded subsets B C R, for i =1,.

5. Jy is bounded below-i.e. Jy > —o0

6. Jy is strictly convex in at least one block (for all the rest of the blocks held fixed)

where J{ = infy _ga Irn(X1,...,X}) is the optimal primal value.
€0y

APPENDIX E

LEMMA

Lemma 2. Given the notation established in Definition 2 and J given by (I4), we have:

DINXL, ..., xp) = XX (Ve Jo(x1,. .., xp) + 0Ji(x;)
+ Ni0mi(x;)}
= xI {0x, In(xX1, ..., Xk)}
where Oy, Jx(X1,...,Xy) is the partial differential operator while all {x; : j # i} are held fixed.

A function J : X — R U {+£oo} is proper if dom(J) = {z € X: J(z) < oo} # 0 and J(z) > —o0,Vx € X.
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Proof: First note that we have:

k
8J)\(X1, ... ,Xk) = VJO(Xl, ... ,Xk) + 8{2 Jz(xz)
=1

k
+ ) Nimi(xi)} 23)
=1
k k ~
= Vo(x1, .y xi) + 00 Jixi)} + 00> Ami(xi)} (24)
=1 =1
= VJo(x1,. .., xx) + <1 {07i(xi) } + x4 {Ni0n;(x:)} (25)
= XN (Vi Jo(x1,. .., xp) + 0Ji(x) + Nidn; (%)} (26)

where follows from Property [T and Exercise 8.8(c) in [22]], follows from Corollary 10.9 in
[22]], follows from Proposition 10.5 and Equation 10(6) p.438 in [22] since \; > 0, and finally

follows from Minkowski sum properties.

|
APPENDIX F
LEMMA [3]
Lemma 3. Let m denote the iteration index. For m € N, define:
(x1")7 == Vx, Jo(x]", x5" . .. 7XZI)
— Vi, Jo(x x5t x
(x5")° = Vx, Jo(X]", X5 ..., X}")
VXz‘]O(qunann?Xgn ! 7XZI_1)
(x")% = Vi, Jo (", x3" - xi)
— Vi, Jo(x7", ... ,x}n,x}ﬁ__ll .. ,le_l)
() =0
Then, ((x7")°,...,(x}")°) € OJ\(XT",...,x}"). Also, for all convergent subsequences (x™); of the
sequence (X)m, we have
d(0,0Jx(x77,...,x,7)) = 0 as j — oo

November 4, 2013 DRAFT



29

Proof: From Algorithm [2| we have:

x]" € arg min JA(xl,xgb_l, . ,x?_l)
X1
Xy € argrgin J)\(XT,XQ,XQ%I, . ,x’knfl)
2
xXp € argn)l(in I X, X))
k
The first subiteration step of the algorithm implies that 0 € Oy, Jx(x]*, x5!, ... ,ka’l), the second
subiteration step implies 0 € O, Jx (x]", x5, xé”_l, .. ,xZ‘_l), etc. Rewriting these using Lemma [2, we

have:

0 € Vi, Jo(x, x5 o x4+ 01 (x]") + Ao (x7)

0 € Vx,Jo(x7", x5, Xgnfl, .. ,x?il) + 0Ja2(x5") + 7\2n2(x§”)

0 € Vi, Jo(x", x5, ..., X1 + OJp(X7) + MO (x7)
This implies that for ¢ = 1,...,k:
(x)° € Vi, Jo(xT, x5, .. x) + 0J;(x7) 4 X0 (x7)

It is important to note that 9n;(x) # 0,¥x € R%, for i = 1,...,k, as a result of property 4. To see
why, apply Corollary 8.10 in [22]] since 7); is finite and locally LSC at every point in its domain. This in
turn implies ((x7)°,..., (x}")°) € OJ\(xXT",...,x}") by Lemma

Now, take an arbitrary convergent subsequence (x;",...,x; "), of (xJ*,...,x}"),,. The convergence of
m; m; ol . m; mjfl m]»fl . m; m; mjfl m;—
(x17,...,%;7); implies the convergence of (x;7,x,7 *,...,x, 7 )j,and (x;7,...,%; ', X, .71 ..., X,

fori =2,...,k—1. Taking j — oo and using properties 2, we see that lim;_, d(0,0J\(x]7, ..., %)) =

0 since lim;_,o0 ((x77)°,..., (x.7)°) = (0,...,0).

APPENDIX G

PROOF OF THEOREM

Proof:
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1) Let L(x%) = L(xY,...,x}) be the set of all limit points of (x™),,>o starting from x°. The block-

coordinate descent algorithm, Algorithm [2} implies

Jo(x1", xg"fl, . .. ,xZLil) + Ji(x7") + A (x7")
< Jo(ar, x5 x0T 4+ Ji(an) + M (eq)

for any a; € R%. Now, assume there exists a subsequence (x); of (x™),, that converges to x*,
where x* is a limit point. This implies that (XT"’,xgnjfl, . ,xz,nj*l) — x* as j — oo. The above

inequality combined with properties [I]1 and [T]4 (i.e. the continuity .Jy and 7;) then implies that

limsupJy (x7"7) + Jo(x}, ..., x5) < Ji(an)
j—00

+ Jo(an, %3, ..., X5) + Ar(m(ar) —m(x7))

for all a; € R%. Taking oy = x7 then yields lim SUD; 00 J1(x1"7) < Ji(x3). Using the lower semi-
continuity property of J; (property 3), we have lim inf; oo J1(x]") > J1(x}). Thus, lim;j o J1(x]"7) = J1(x}).

m;

By a similar line of reasoning, it can be shown that J;(x;

) = Ji(x}) as j — oo, for i =
1,...,k. As a result, Zle Ji(x;") — Zle Ji(x}) as j — oo. Since Jy(+) is jointly continuous,
Jo(x1", ..., x.7) = Jo(x},...,x}). By continuity of ;(-), S (X)) = SR Nmi(x).
Thus, Jy\(x™) — Jy(x*) as j — oo.

Now, Lemma [3 implies that ((x™)°) € 9.Jy(x™). Since the subsequence (x™); is convergent,
by Lemma 3] we have (x™/)° — 0 as j — oc. As a result, since 9.J)(x™) is closed (see Theorem
8.6 in [22]) for all j, we conclude that x* € C;. Thus, L(x%) C C}.

We have thus proved that limit points are critical points of the objective function.

We can rule out convergence to local maxima thanks to property [I}6. Let us show this rigorously.
Assume there exists a local maximum at x’ = (x},...,x}). Then, there exists 7 > 0 such that
Ja(x) < Ji(x') for all x such that ||x — x'||, < 7. Fix x; = x| for all ¢ # 1. Without loss of
generality, assume J), is strictly convex in the first block. Since strict convexity is maintained through
linear transformation, without loss of generality, assume d; = 1. Let € < r. Define x1, = ) —€
and x2 = 2} + €. Define zy = 0z + (1 — 0)xa,, where 6 € (0,1). Since ||[zg;x21] — X'||, =
|zg — | = €(1 — 20) < r, by the local maximum definition, there exists € € (0,7) small enough

such that

0\(@1,6,X041) + (1 = 0) I\(@2,e, Xs1) < (w0, Xy1)
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for some 6 € (0,1). Since € > 0, we have z1, # x2 ., and this contradicts strict convexity. Thus,
there are no local maxima. [

Next, we use the non-existence of local maxima and continuity of Jy to rule out convergence to
saddle points. Assume there exists a saddlepoint at x,. Then, by definition, 0 € J)(x;) and x; is
not a local maximum or a local minimum. Since X, is not a local minimum, for all ¢ > 0, there
exists a point X" such that ||x’ — x|, < € and J)(x) > J\(x). By continuity, it follows that there
exists 6 > 0 such that for all x satisfying ||x — x'||, < d, we have J)(x;) > Jy(x), which implies
that x; is a local maximum. This is a contradiction and thus, x, is a local minimum. So, no saddle
points exist.

Theorem |1| implies that L(x°) is nonempty and singleton.

2) We show that if we do not start at a local minimum, strict descent follows. Let u(-) denote the
point-to-point mapping during one iteration step, i.e., X! = p(x™). We show that if x° ¢ C},
then L(x°) C Cjmin. The result then follows by using the proof of the first partﬂ To this end,
let X' be a fixed point under y, i.e., u(x ) = x. Then, the subiteration steps of the algorithm
yield 0 € Ox, Jx(X},...,x;) for i = 1,...,k, which implies 0 € dJ)(x), ie., x € C,. The
contrapositive implies that if x ¢ C, then Jy(u(x)) < Jx(x) (strict descent). A simple induction

on the number of iterations then concludes the proof.

APPENDIX H

LEMMA

The following technical lemma will be used in the proof of Lemma [5

Lemma 4. Let z ~ N(0, Ag®@By),where Ay € Sf__i_, By € S_{_+. Then, for m > 0, we have the moment

bound.:
m+2

p
E Z Xij ([2 1) 4.2l -1y 41 — [Ao)ij[Bolk,)
ij—1

ax
1<k<f

m-+2
< (2m+ 2 ( . [Bon,kuxuzquuz)

An alternative way to get a contradiction is to assume there exists a strict local maximum and use only convexity, instead of

strict convexity.

The first part of the proof showed C; = Cjmin.
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Remark 4. In the symmetric X € SP case, the bound in Lemma [ can be tightened to
m—+2

Z Xij ([2)i-1)p+rl2l 1) r+1 — [Aolij[Bolk)
i,j=1

< (2m + 2)!)( m;?X [Bolk,e)" F2r((XAg)" )

Proof:
Consider the index set {{i1,71}, {i2,j2},- -, {im+2, jm+2}}. Define groups Gy = {ix, ji} for k =
1,...,m+ 2. Let the generic notation 7(-) denote the permutation operator of a set of indices.
Define the set of indices M,,+2 = Mp42(i1,71,- -, im+2, Jm+2) as the set containing sequences
(I1,J1, .-y I;my2, Jmy2) satisfying the properties:
) {Ii,J1,...,I;m+2, Jm+2} is a permutation of the index set {i1, j1,. .., tm+2, Jm+2}

-Le. {117J17" m+27 m+2}—77({11,]1,--~7im+2;jm+2})

2) For each ¢ € {1,...,m + 2}, indices I, and .J, must belong to disjoint groups {G}}7""2

3) Suppose a sequence {I1,J1,..., Int2, Jmt2} satisfies the first two properties. Then, add it to

M2 and M, 2 does not contain (block-permuted) sequences of the form

{r({m({11, Ji}), 7({ 2, J2})s - 7({Tmet2s Sz} D}
It can be shown that card(M,,12) = (2m + 2)!l.

As an illustrative example, consider the case m = 1.

Example 1. For m =1, the set M,,+2 contains the following 4!! = 8 elements:

{{ix,in}, {51, i3}, {d2, g3t} {{in i}, o1, s}, {2, s} )
{{ix, g2} {nyis}, iz, gs}y, {{in, g, {dv, gs}s {de, st}
{{i,is}, {gr, o}, {d2, g} }, {{in, is}, {on, da b, {ia, Js} ),
{{ix,gs} o, gk {iasdst )y, {{in, dsds {2}, {2, i} )

Of course, other equivalent possibilities for Mo are possible.
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Note that tr((XAg)™*"2) > 0 for all m > 0. From Isserlis’ formula [23], we have:

m-+2
p
E Z Xij ([Z](i—l)f+k[z](j—1)f+l - [AO]i,j [Bo]k,l)
i,j=1
p D
= z o Z Xil’jl T Xim+2’jm+2
i1,J1=1 tmt2,Jm+2=1
m+2
x E[ I1 ([Z](in—l)f%[Z](ja—l)fﬂ — [Ao)ia.ja [Bo}k,z)}
a=1
p p
m+2 . - ... . .
S (1Iéllgg}(f[B0]k’k) . Z o . Z Xll’]l X7’"n+27]m+2
i1,J1=1 Imt2,Jm+2=1
m+2

X Z H [Ao]1,,7,

{quJq :zn=+12€Mm+2 a=1

2 2
< (lrgnlggf[Bo]lc,xc)m+ (2m + 2)Up(|IX [l Aolly)™ "

APPENDIX |

LEMMA

The following lemma will be used in the proof of Theorem [3] and Theorem {4} The method of proof
is by moment generating functions. A similar bound can be obtained under the same set of assumptions

using standard decoupling arguments and Gaussian chaos Talagrand-based bounds.

Lemma 5. Let X be a p x p data-independent matrix. Define the linear operator T as T(X) = B(X™1),

where B(-) is defined in . Assume maxy,[Bolg i, | X||5, |[Aolly are uniformly bounded constants as

p, [ — oo. Define B, := %Bo. Let ¢,7 > 0. Define (u) = > 7, (2’”7:;2)”um ﬂ Let C =
4(2+471)% max(2,c) . o 9
(g) ¢ « log(me:(f,n)) ﬂ Then, with probability 1 — TR

D)~ Bl < K- /1005 max(2, ) [ 2220

np
The double factorial notation is defined as
m-(m—2)----- 3.1 if m > 0is odd
ml=¢ m-(m—-2)----- 4.2 if m > 0 is even
1 ifm=—-1lorm=0

Ifp=f= n® for some ¢ > 0, this condition will hold for n large enough.
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where k = maxk[Bo]k,k : HX||2HA0H2'

Remark 5. Choosing ¢ < 2 in Lemma [5] the best relative constant is obtained by taking T to infinity,
which yields \/4¢(2+%) max(2,c) — 4.

Remark 6. For the case of symmetric matrices X € SP, the constant k can be improved to max;, Bo)k.k

X Aol

Proof: This proof is based on a large-deviation theory argument. Fix (k,1) € {1,..., f}2. Note that
E[T(X)] = B.. First we bound the upper tail probability on the difference T'(X) — B, and then we turn

to the lower tail probability. Bounding the upper tail by using Markov’s inequality, we have

P([T(X)kt — Bulk > €)

)

: r(X Ao)

J [Sn (4, )]kl - [Bo]kl > €

1
D,
n

= (3

p
> X
,j=1
p
Z (Zm (i—1) f+k[Zm] i-1) f+1
— [Aoli [Bo]k,l> > npf)
n p
= ]P(exp{t Z Z X <[Zm](ifl)erk[zm](jfl)erl
m=14,j=1
~ [AoliBolks)} > exp{tnpe})
n p
t"”eE{ I exp {t > Xz‘,j<[Zm](ifl)erk[zm](jfl)fH

m=1 i,j=1

— [Aglij [Bo]k,z) H
< gtnwe (E[exp {tff(k’l) H )n @7)

where we used the i.i.d. property of the data in and Y& .= S8 i1 Xi([2) ey perl2l 1) g1 —
[Aoli,j[Bo]k,1). Define p*x1 random vector (") as [z ; 1y, ;= [2](i 1) p (2] (1) p11—[Aoli [Bolk.
for 1 <4,5 < p. Clearly, this random vector is zero mean. The expectation term inside the parenthe-
ses in lb is the MGF of the random variable Y *!) = vec(X)Tz(*). For notational simplicity, let
by (t) = E[etY] denote the MGF of a random vector Y. As a result, E[fe!Y *"] = by (1).

Performing a second order Taylor expansion on ¢~>1~,<k,” about the origin, we obtain:

dﬁg{/wz)(o)t + 1d2¢~>{/(k,l>(5t) 2

Py (t) = Py0en (0) + dt 2 dt?
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for some § € [0, 1]. Trivially, d;f,(k,,)(O) =1 and d(ﬁ%i”(o) = E[vec(X)7z*!] = 0. Using the linearity
of the expectation operator, we have:

i) (1)

i (V00274

I
=

(61)™

m)!

E[(vec(X)TzF)m+2]

ol

=0
Y for y > —1, and after some algebra, we have:

o 3

Using the elementary inequality 1+ y <
[e.9]
~ n
NG (1) < 52D Tu(t) (28)
m=0

where T}, (t) := Y E[(vec(X)Tz*))m+2]. Note that

m!

tm+2 p
PT(t) < — E{( > Xij(lzl-nserll-nra

,j=1

— [Aqlij [BO}kvl))mH}

tm+2 p

P
= — E E Xiy gy Xi i jonsn

11,51=1 Tmt2,Jm+2=1
m+2

x E[ 11 ([Z](ia—l)f+k[z](ja—1)f+l — [Aoli g {BO]’“Z)]

a=1

m-+2

<
- m!

(2m +2)!!

= (k)

where (29) follows from Lemma ﬂ Also, we defined k = maxy<x<f[Bolkx - || X||5]|Ao|ly. Summing

" m+2
(2m + 2)--p(1glg§f[Bo]k,kllelg||Ao||2) (29)

the result over m, and letting u := tk > 0, a,,(u) := %um, Y(u) == > " am(u), we obtain:

o0
2 2
2 Tult) <pu*y(u)| (30)

m=0
By the ratio test [21]], the infinite series >~ an,(u) converges if u < 1/2. To see this, note

m—00 Gy, (u)
) 2m+4! m!
= lim u
m—oo  (2m 4 2)!! (m + 1)!

In the symmetric X case, this bound can be tightened using tr((XAq)""?) < p(|[XAql,)™ 1.
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Using (30) in (28)), and the result in (27)), we obtain the exponential bound:

P([T(X)]ky — [Blgs > ¢€)

tk)?
Sexp{—tnpe—{—nm2)

w(tk) }

Let t < [0 )k and € < 2+7w(2+T)k < 0. By the monotonicity of v(-), we have:

npt2E2 1
P((T(X)]k; — [BuJrg > €) < exp{ — tnpe + )} 31

()

Optimizing over t, we obtain t* = m% Clearly, t* < (2+ I . Plugging this into ( , we obtain:

PTX)lki = Bulrs > €) < exp{ npg}

2k Y (35)
— 1 - 1
Define C := o) Since 9(535) < 0o, C > 0. Thus, for all € < 2+7¢( —)k, we have
P(IT(X)]kt — Buliy > €) < e (32)

where C > 0 is independent of n, p, f.

Next, we bound the lower tail:

PTX) ks — E[TX)]xa] < —e)

_IP(Z Z Zm (j— 1)f+k[zm](z 1) f+l

m=11,j=1

— [Aoi,;[Bolkt) > npe)
< gmtnpe (@gy(k,m(—t))n

where gz%,(k,,) is the MGF of Y (k) Performing a second order Taylor expansion as before, we have:

~ - dpgan(0) 1 d2Pgn (5t)
Py (—1) = Py 0 (0) — Y(dt) t 2 Yc;t2> a
22X,
=1+5 X_:OTm(t)

where 77 (t) := %E[(< vec(X),z(F0) >)mH+2] = (—1)™T,,(t) < Tpn(t) and 6 € [0, 1]. Proceeding
similarly as above, it can be shown that for all € < QJ%T@ZJ(Q_%T)E

P([T(X)]k — E[[T(X)]iy] < —¢) < e7C (33)
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where C' was defined as before. From li and 1) we conclude that for all € < ﬁw(ﬂ%)ﬁ
P[TX)]ks = E[T(X)]rl| > €)
< P(TX)]ky = E[[T(X)]ka] > €)

)

+ P(T(X)]ky — E[[T(X)]ra] < —€)

< 2€—npe20
The union bound over (k,1) € {1,..., f}? completes the proof. Let us rewrite this. If 4max(2.c) 1"5?@‘)( fin )24 r)”
24T
np, then with probability 1 — m,
log((2f2)/ 2/ max(f,n)°))
T <k-
T(X) - BT < 2+T¢
B 1
-7 \/w ) max(2, ¢) | 28 n)
247 np

APPENDIX J

PROPOSITION ]

Proposition 1. Let S, 7., be a d' x d' (where d' = p or d’ = f) random matrix such that with probability
2
1-2,

Sp.f.n—Bxloo < Tp,f.n- Assume B, € S++ has uniformly bounded spectrum as p, f — oo (analog
to Assumption 1). Choose N\, t, = c- 1)ty for some absolute constant ¢ > 0. Consider the Glasso
operator G(-,-) defined in (m) Let s = s@. be the sparsity parameter associated with ©, = X1,
Assume \/d' + s - 1 ., = 0(1). Then, with probability 1 —

nZ’

2v/2(1 + ¢)
IG(Sp, .5 Ap.fin) — Oullp < FWSN SN d'+s-Tpfn

as n — Q.

Proof: The proof follows from a slight modification of Thm. 1 in [17], or Thm. 3 in [16]]. This

modification is due to the different r, ¢ ,. u

APPENDIX K

PROOF OF THEOREM [3]

Proof: As in the proof of Thm. 1 in [3]], let B, = MBO and A, = (%)*IAO.

Note that Assumption 1 implies that ||B,|[, = ©(1) and ||A.||, = ©(1) as p, f — oo. For conciseness,
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the statement “with probability 1 — cn~2 (where ¢ > 0 is a constant independent of p, f,n)” will be
abbreviated as “w.h.p.”’-i.e., with high probability.

For concreteness, we first present the result for £k = 2 iterations. Then, we generalize the analysis to
all finite flip-flop iterations by induction. The growth assumptions in the theorem imply

p (virenfieni\

max p?f)i)
p p+f

log M < C'n 34)

for some constant C’ > 0 large enoughﬂ In fact, the growth assumption in the theorem statement can be

relaxed to (34).
As in the proof of Thm. 1 in [S]], we vectorize the operations and (8):

vec(A(B)) = ;f{Avec(B_l)

vec(B(A)) = ;RBvec(A_l)

where R4 and Rp are permuted versions of the sample covariance matrix [3].

Define intermediate error matrices:

These inverses exist if n > max(% %) + 1 (see [24]]). Define the error ﬁ)FF(k) = Xpr(k) — g for

k > 2. For notational simplicity, let B{*** := maxy[Bo|; r and AJ*" := max;[Aqlis, V7 = @b(ﬂ%),
where (-) is defined in Lemma
Lemma [5] implies that for “2 ,
-
n > (12;) log M (35)
then with probability 1 — 2n~2, we have:
IB%llp < Cofp'/? 9%% (36)

This constant is independent of p, f, n, but may depend on the constants in Assumpti0n|z|
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where Cy = 2¢/20, BI"|| AL Agl|,.
Let € > 1. Note that from (36)), for

n > (€Co) f*p~ ' log M 37)
with probability 1 — 2n~2,
Ain(B(Ainit)) = Amin(B® + B.) > Anin(B.) — B
> A (B) = Bl > (1= ) dia(B) > 0
Thus, letting Al =Y, -Y,, w.h.p.,
1AV F = IY1(B(Amir) — Bo) Yl

Bl

1\"! 12 [log M
< Co (1—6,) IVl =0 (38)

vec(Al) = }RAVCC(YQ — vec(Ay)
_ “(&)]CA%”)V%(AO) +vee(A(B.) — A,)

+ }]::{Avec(A%/) (39)

<YYo lBY =

Expanding Al

where we used R4 = vec(Ag)vec(B)T (see Eq. (91) from [5]]). Using the triangle inequality in ,

the Cauchy-Schwarz inequality, and standard matrix norm bounds:

~ p ~
1Ay < \/;IﬁollzllA%fllp +PIA(B.) — Asloo

T
Ty
Pg 1
+ ?HRAVCC(AY)HOO
T3
We note upon expanding:
1 < < tr(BoAL)
—HRAvec(Ay = Y [AV]eSa(k, 1) - ——— A
fk,l:l !

From (38), there exists ¢ > 0 such that:

P <T1 > C1f'2f M) <en?
n
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where C) = [|Zo/|,Co(1 — 1/¢')~"[[Y.||3 is an absolute constant. Lemma [3| implies:

log M
P <T2 > Cyf 12 °g> < 2n 72

n

where Cy = 2/2¢, A7"**||'Y .. By|, is an absolute constant. To bound 73, we define the following events:

Cl _ logM
E(): {HAY”F— HE H fp 1/2 n }

f _ 1
= '[I‘(B()A ) mazx B IOgM
2 : S k1) — %AO‘ <2\/MA ||AyHFH OHZ nf

k=1

a-{

|~

log M
Egz{ngch/pf = }

where C3 = 2/21 A" **||By]|,Co (1 — 1/6/)_1||Y*||3 is an absolute constant. From |i it follows that
P(Eyg) > 1 —cn~? and from Lemma , it follows that P (E;|Eg) > 1 — 2n~2. As a result, we have
P(Ey) > P(E1 N Ey) = P(E1|Ey)P(Ep) > 1 — (c+ 2)n~2. Putting it together with the union bound, we

I log M
(HA [y > (CLfY? + Copf~ 1/2)\/? Cs\/pf 08 )
§P<T1 Z?fl/?\/@) HP(B APy logM>
n n

<T3> 3\/>logM>

<dn7? (40)

have:

for some ¢ > 0 absolute constant.

Let ¢; > 0. For

Cs ’ pf
n > (Cl max(C1,C'2)> (F12  pf-172)2 log M (41)

then, from (#0), we have w.h.p.,

A < max(Cr, Co)(1+ ) (/7 +pf 2 [ER @)

Using properties of the Kronecker product:
Yrr(2) = A'@B, + A, @B’

+A'oB° (43)
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From (36),[@2), @3)), under conditions (35)),(37), and @I), w.h.p.,
1Zrr2)llp < A1l plBxllg

+ A Bl 7 + 1A B

<C“(p+2f)r

where C3 = max(||B.||, max(Cy, C2)(1 + ¢1), Col|As|ly) and Cy = Cpmax(Cy,Ca)(1 4 ¢1) are con-

log M

(44)

stants.

Let c5 > 0. For

\/7+\ﬁ log M

0362 (p+2f)?

then, from (44) w.h.p.,
log M

IZrr2)p < Cs(1+e2)(p +2f)

The proof for k = 2 iterations is complete. Using a simple induction, it follows that the rate holds
for all k£ finite.
Next, we show that the convergence rate in the precision matrix Frobenius error is on the same order

as the covariance matrix error. Let @ p(2) := Xpp(2) L. From (42 ., for
> (€| X[l max(Cy, Co) (1 + e1))*(V/f + pf /%) log M

then, letting A% = X, — X, we have w.h.p.,

1\ -
8%l < (1- 7)) IXIBC 0+ e

x (VT +pf N 45)

1©Fr(2) = @l p < [|AX|pIIY

Using and (@5), we have w.h.p.,

Ay plIXullp + Xl AY [

_b1<2f+p>\/biM+Da<f\/g+ Jﬁ)@ (46)

where D and Do are constants.

For

FV P+ Vbl
n>(D1d,)( 2 11 L) 10g 11

November 4, 2013 DRAFT



42

the bound (#6) becomes w.h.p.,

1©7F(2) = Ol p < Di(1 + d')(2f +p)\WnM

Thus, the same rate Op <\/ (pz+fjl)logM> holds for the precision matrix Frobenius error.

APPENDIX L
PROOF OF THEOREM [4]
Proof: We show that the first iteration of the KGL algorithm yields a fast statistical convergence
rate of Op (\/ (p+f)nl°gM> by appropriately adjusting the regularization parameters. A simple induction
finishes the proof. Adopt the notation from the proof of Thm. [3]

Lemma [5] implies that for

8(2 2
n > (JT) log M @7
T
then with probability 1 — 2n 72,
~ _ log M
B < Cop™!/?\/ =2 (48)

where B? = B(Aim-t) — B.. From Proposition [1| and li we obtain w.h.p.,

Y1 = Yellp < 2V2(1 + ¢) /T + ex, Y.l

flog M
np

XC()

where we also used sy, < cy,f and Y1 := G(B(Ainit), )\g/l)) = B! Note that fp~log M = o(n)
was used here. Let A%/ =Y;—-Y..
Let Al := A(B;) — A,. Then, we have

vec(Al) = ;f{Avec(Yl) —vec(A)

. tI'(B()A%/>
B !

+ chRAvec(A%/) (50)

vec(Ag) + vec(A(B,) — A,)

where we used R4 = vec(Ag)vec(BE)T (see Eq. (91) in [3]).
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From (50), applying the triangle inequality and using the Cauchy-Schwarz inequality:

) VIIBolly Ay ] A
Al < Jf S Aploo + [A(B) — Al
N— —

J/

T
T

1 =~
+ fllRAvecm%v)Hoo (51)

T3

(52)
Let Co = Co2v2(1 + ¢,) /T ey, || Y.l3 and C1 = Co|Ag|oo||Bolly. The bound implies

~ [log M
P <T1 > Ch o8 > <en?
np

for some ¢ > 0. Let Cy = 24/2¢p; A%®||Y ,By||,. Lemma [5| implies

P (Tg > 02 logM) < on 2
\ nf

Let C3 = Co2+/2¢,; A7 ||By||,. To bound T3, we use the same technique as in the proof of Thm.

Define the events:

~ log M
Eoz{uAlyanco flog }

np

1. -~ mazx IOgM
E| = {f||RAvec(A%/)||Oo < 20/20 A7 | Boll, | AY | o nf}

_ 1 loeM
E2={T3§C3 o8 }
VP

From (#9), we have P(Ep) > 1 — en~? and from Lemma [5| we have P(FE;|Ep) > 1 — 2n~2. Thus,
P(E) > P(E1|Ey)P(Ey) > 1 —cn™2.
Using (51)) and the union bound:

N 1 Cy logM  Cslog M
P|A" > (=2 + =2 +

Ci1 [logM Cy [log M
<P|Ty>—4/ PlT, > ——
< (13\/13 " )-i— (23\/f "
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for some ¢’ > 0. Thus, for n > (%)2 log M, ¢; > 0, we have w.h.p.,

|A! o < max(Cy, Co)(1+ c1) <f + \})

Let A}X = X; — X,. From Proposition |1| and , we obtain w.h.p.:

10g M

(33)

IAK 7 < 2V2(1 + ) /T + cx, || X |3 max(Cr, Ca) (1 + 1)

log M
(I

where we used sx, < cx,p and X; := G(A(B,), /\g?), X, := A; L. Note that (1+ /p/f)*log M =

o(n) was used here.

Finally, using (49) and (54), we obtain w.h.p.:
1@kcL(2) = Oollp = X1 @Y1 =X @ Y| p

< AV pVEIXlly + 1AK ]/ FIY

+lAypl Ay

< 0‘/3(2\/?+\/13)\/10gnM L 01+ ﬁ)lognM (55)

where C’3 and C’4 are constants [25]]. For

L+ VI
n > C_”gé) (%/f—l-\/f?) log M

the bound (53) further becomes:

1©kcL(2) — Ol < C'3(1+2)(2V/f + v/P) log M

Note that ||@xar(2) — Q|3 = Op (W) = Op (M#) as p, f,n — oo. This
concludes the first part of the proof. The rest of the proof follows by similar bounding arguments coupled
with induction. The rate remains the same as the number of iterations increases, but the constant on front
may change.

Next, we show that the convergence rate in the covariance matrix Frobenius error is on the same order
as the inverse. From (#9)), for

> (€CollY.lly)* fp~ " log M
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we have w.h.p. Ain(Y1) = Amin (Vi) = [ Y1= Y| p = (1= 2)Amin(Y+), which in turn implies w.h.p.,
IAE]p = B1 =By < (1 1/¢)"'Co|B. |3

C

X

2{ log M (56)

n

Using a similar argument, from , for n > C'(1 + \/?)HogM (for some constant C’) we have
w.h.p.,

1ALlF = A1 = Aulp < (1= 1/¢) | ALCk

Ci
(14 P log M (57)
f n
where A = Xfl.

Let EKGL(Q) = @KGL(Q)il = A; ® B;. Then, w.h.p.,

IZxcr(2) = Dollp < 1AL B ¢

+ ALl plAdp + AL Fl ALl

< Di(2V/T + ﬁ)\/loiM +D2(1+\/g>1°gnM (58)

where D; and D, are constants [23]. For

7 2
D2 ). H\/; log M
= g
Dyd” \ 2/f+ /D

n > (

then implies w.h.p.,

log M

IZkan(2) — Sollp < Di(1+d)(2V/f + v/p) -

Thus, the same rate Op < (erf)nlogM) holds for the error in the covariance matrix.

Here, B1 =Y, L exists since Y7 is positive definite (see ).
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