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The Feasibility Conditions for Interference
Alignment in MIMO Networks
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Abstract—Interference alignment (IA) has attracted great at-
tention in the last few years for its breakthrough performance
in interference networks. However, despite the numerous works
dedicated to IA, the feasibility conditions of IA remains unclear
for most network topologies. The IA feasibility analysis is chal-
lenging as the IA constraints are sets of high-degree polynomials,
for which no systematic tool to analyze the solvability conditions
exists. In this work, by developing a new mathematical frame-
work that maps the solvability of sets of polynomial equations to
the linear independence of their first-order terms, we propose a
sufficient condition that applies to MIMO interference networks
with general configurations. We have further proved that this
sufficient condition matches with the necessary conditions under
a wide range of configurations. These results further consolidate
the theoretical basis of IA.

I. INTRODUCTION

Interference has been a fundamental performance bottleneck
in wireless communication. Conventional schemes either treat
interference as noise or use channel orthogonalization to avoid
interference. However, these schemes are non-capacity achiev-
ing in general. Interference alignment (IA), first proposed in
[1], significantly improves the performance of interference
networks by aligning the aggregated interference from multiple
sources into a lower dimensional subspace. For instance, in
a system with K transmitter-receiver (Tx-Rx) pairs and N
antennas at each node, the IA achieves a total throughput
which scales as O

(
KN
2 log(SNR)

)
[2]. This scaling law is

optimal and well dominates that of conventional orthogonal-
ization schemes, i.e. O (N log(SNR)). The IA solution in
[2] is also applied to other topologies such as the MIMO-
X channels [3] and MIMO relay channels [4] and achieves
the optimal throughput scaling law. As such, there is a surge
in the research interests of IA.

To achieve the optimal scaling law of throughput, the IA
solution in [2] requires O((KN)2K

2N2

) dimensions of signal
space, which is realized by time or frequency domain symbol
extension. Such symbol extension approach is difficult to
implement in practice due to the huge dimensions of the signal
space involved. To overcome this problem, IA designs with
signal space dimension limited by the number of antennas,
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are proposed in [5]–[9] for practical MIMO systems. In
the IA designs proposed in [5]–[7], closed-form solutions
are obtained for few specific and simple configurations. For
instance, in [5], all Rx have 2 antennas. In [6], all nodes
have (K + 1) antennas. And in [7], there are only 2 Rxs
in the network. Moreover, in all the works mentioned above,
each Tx only has one independent data stream. Iterative IA
solutions based on alternating optimization are proposed for
MIMO interference networks with general configurations in
[8], [9]. However, these approaches may not converge to the
global optimal solution.

When the signal space dimension is limited, the IA is
not always feasible. Therefore, the characterization of the
feasibility conditions under limited signal space dimension
is the primary issue to address. In general, the feasibility
of the IA problem is associated with the solvability of a
set of polynomial equations, which is the focus of algebraic
geometry [10], [11]. There are very few works that studied the
feasibility condition of IA problems using algebraic geometry
[12]–[15]. In [12], the authors studied the feasibility condition
of IA problem in single stream MIMO interference networks
using Bernstein’s Theorem in algebraic geometry [11, Thm.
5.4, Ch. 7]. This work has been extended to the multiple stream
case by two parallel works [13], and [14,15], respectively. The
first approach in [13] established some necessary conditions
for the IA feasibility condition for general network topology
by analyzing the dimension of the algebraic varieties [10].
The authors further showed that these conditions are also
sufficient when the number of antennas and data streams at
every node are identical. The second approach in [14], [15]
established a similar necessary conditions for the IA feasibility
problem based on algebraic independence between the IA
constraints. The authors further proved that these conditions
are also sufficient when the number of data stream at every
node is the same and the number of antennas at every node is
divisible by the number of data streams. In summary, the afore-
mentioned works have proposed some necessary conditions
for MIMO interference networks with general configuration,
but the proposed sufficient conditions are limited to specific
configurations.

In this paper, we develop new tools in algebraic geometry
which allows us to address the IA feasibility issue in the
general configuration. The newly developed tool maps the
solvability of a set of general polynomial equations to the
linear independence of their first order terms. Based on
this new tool, we can extend our understanding on the IA
feasibility conditions in the following aspects:

ar
X

iv
:1

21
1.

34
84

v1
  [

cs
.I

T
] 

 1
5 

N
ov

 2
01

2



2

A. Further tighten the IA feasibility conditions from the
necessary side;

B. Propose and prove a sufficient condition of IA feasibil-
ity which applies to MIMO interference networks with
general configurations;

C. Prove that scaling the number of antennas and data
streams of a network simultaneously preserves IA fea-
sibility;

D. Determine the necessary and sufficient conditions of IA
feasibility in a wider range of network configurations
comparing with the results given in [13]–[15].

Organization: Section II presents the system model and
define the IA feasibility problem. Section III-A pairs the ana-
lytical results of this paper to their contributions. Section III-B
provides the proofs of the results based on a new mathematical
framework. Section IV gives the conclusion.

Notations: a, a, A, and A represent scalar, vector, ma-
trix, set/space, respectively. N, Z and C denote the set of
natural numbers, integers and complex numbers, respectively.
The operators (·)T , (·)H , det(·), rank(·), and N (·) denote
transpose, Hermitian transpose, determinate, rank, and null
space of a matrix. And the operators 〈·〉, V(·) denote the
ideal, and the vanishing set [16] of a set of polynomials.
For a field K, K[x1, ...xj ] represents the field of rational
functions in variables x1, ..., xj with coefficients drawn from
K. size(·) represents the size of a vector and | · | represents
the cardinality of a set. I(·) is the indicator function. dim(·)
denotes the dimension of a space. span(A) and span({a})
denote the linear space spanned by the column vectors of
A and the vectors in set {a}, respectively. gcd(n,m) de-
notes the greatest common divisor of n and m, n|m de-
notes that n divides m, and mod(n,m) denotes n modulo
m, n,m ∈ Z. diagn(A, ...,X) represents a block diagonal
matrix with submatrixes A, ...,X on its n-th diagonal. For

instance, diag−1([2, 1], [1, 2]) =

[
0 0 0 0 0 0
2 1 0 0 0 0
0 0 1 2 0 0

]
. diag(A, ...,X) =

diag0(A, ...,X), and diag[n](A) = diag(A, ...,A︸ ︷︷ ︸
n times

). The sym-

bol “∼=” denotes the isomorphism relation [17].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MIMO interference network consisting of K Tx-
Rx pairs, with Tx k sending dk independent data streams to
Rx k. Tx k is equipped with Mk antennas and Rx k has Nk

antennas. The received signal yk ∈ Cdk at Rx k is given by:

yk = UH
k

HkkVkxk +

K∑
j=1,6=k

HkjVjxj + z

 (1)

where Hkj ∈ CNk×Mj is the channel state matrix from Tx j to
Rx k, whose entries are independent random variables drawn
from continuous distributions. xk ∈ Cdk is the encoded infor-
mation symbol for Rx k, Uk ∈ CNk×dk is the decorrelator of
Rx k, and Vj ∈ CMj×dj is the transmit precoding matrix at
Tx j. z ∈ CNk×1 is the white Gaussian noise with zero mean
and unit variance.

Following the previous works on IA for K-pairs MIMO
interference networks [12]–[15], [18], in this work, we focus
on the feasibility issue of the following problem:

Problem 1 (IA on MIMO Interference Networks):
For a MIMO interference network with configuration
χ = {(M1, N1, d1), (M2, N2, d2), ..., (MK , NK , dK)},
design transceivers {Uk ∈ CNk×dk ,Vj ∈ CMj×dj},
k, j ∈ {1, ...,K} that satisfy the following constraints:

rank
(
UH

k HkkVk

)
= dk, ∀k, (2)

UH
k HkjVj = 0, ∀k 6= j. (3)

III. FEASIBILITY CONDITIONS

In this section, we will first list the main results and pair
them with the contributions. Then we prove these results in the
second subsection. Readers can refer to [19] for a summary
of the main theoretical approaches prior to this work, and a
brief introduction to the concept of algebraic independence.

A. Main Results
1) Theorems Applicable to General Configurations: The

following two theorems summarize the main result on the
necessary side and the sufficient side, respectively.

Theorem 3.1 (Necessary Conditions of IA Feasibility): If
Problem 1 has solution, then the network configuration χ
must satisfy the following inequalities:

min{Mj , Nj} ≥ dj , ∀j ∈ {1, ...,K} (4)

max{
∑

j:(·,j)∈
Jsub

Mj ,
∑

k:(k,·)∈
Jsub

Nk} ≥
∑

j: (·,j) or (j,·)∈
Jsub

dj , (5)

∑
j:(·,j)∈
Jsub

dj(Mj − dj) +
∑

k:(k,·)∈
Jsub

dk(Nk − dk) ≥
∑

(k,j)∈
Jsub

djdk, (6)

∀Jsub ⊆ J , where J = {(k, j) : k, j ∈ {1, ...,K}, k 6= j},
(·, j) (or (k, ·)) ∈ Jsub denote that there exists k (or j) ∈
{1, ...,K} such that (k, j) ∈ Jsub.

Remark 3.1 (Tighter Necessary Conditions): (5) is the
newly proposed necessary condition. If the cardinality of set
Jsub is restricted to be 1, we have that (5) is reduced to

max{Mj , Nk} ≥ dk + dj , ∀j 6= k, (7)

which is one of the necessary inequalities given in the prior
works [13]–[15]. Note that the necessary conditions given in
Thm. 3.1 are strictly tighter than those given in [13]–[15].

Theorem 3.2 (Sufficient Condition of IA Feasibility): If the
matrix described in Fig. 1 (denote this matrix as Hall) is full
row rank, Problem 1 has solutions almost surely.

The submatrices HU
kj ∈ C(dkdj)×(dk(Mk−dk)), HV

kj ∈
C(dkdj)×(dj(Nj−dj)) in Fig. 1 are defined by:

HU
kj=diag[dk]


hkj(dk+1,1), hkj(dk+2,1), · · ·, hkj(Nk,1)
hkj(dk+1,2), hkj(dk+2,2), · · ·, hkj(Nk,2)

...
...

. . .
...

hkj(dk+1,dj), hkj(dk+2,dj),· · ·, hkj(Nk,dj)

(8)

HV
kj=


diag[dj ]

(
hkj(1,dj+1), hkj(1,dj+2), · · ·, hkj(1,Mj)

)
diag[dj ]

(
hkj(2,dj+1), hkj(2,dj+2), · · ·, hkj(2,Mj)

)
· · · · · ·

diag[dj ]
(
hkj(dk,dj+1), hkj(dk,dj+2),· · ·, hkj(dk,Mj)

)
(9)
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Position of the Submatrices

Fig. 1. The matrix scattered by the coefficient vectors of the linear terms in the polynomial form of IA constraints, i.e. (19).

where hkj(p, q) denotes the element in the p-th row and q-th
column of Hkj , k 6= j, k, j ∈ {1, ...,K}.

Remark 3.2 (Interpretation of the Sufficient Condition):
The row vectors of Hall are the coefficients of the linear
terms of polynomials in the IA constraint (3). Please refer to
(19), (20) for details. Hence, Thm. 3.2 claims that the linear
independence of these coefficient vectors is sufficient for the
IA problem to be feasible. This fact is a direct consequence
of the mathematical tool we developed in algebraic geometry,
i.e. Lem. 3.1–3.3. Please refer to Fig. 2 for an intuitive
illustration of this mathematical tool.

Remark 3.3 (Contributions of Thm. 3.2): In literature, suf-
ficient conditions of IA feasibility are limited to special net-
work configurations. Thm. 3.2 proposes a sufficient condition
which applies to MIMO interference networks with general
configuration.

Following Thm. 3.2, we have two corollaries that depict the
relation between network configuration χ and IA feasibility.

Corollary 3.1 (Configuration Dominates IA Feasibility):
Under a network configuration χ, Hall is either always rank
deficient or full row rank almost surely. Hence, if Hall is
full row rank under one realization of channel state {Hkj},
Problem 1 has solution almost surely in this network.

Following Cor. 3.1, we define the notation of “IA feasible
network”, if Problem 1 has solution almost surely in this
network.

Remark 3.4 (Numerical and Analytical Contributions):
Cor. 3.1 highlights the fact that the network configuration χ,
rather than the specific channel state {Hkj} dominates the IA
feasibility. This phenomenon is useful in both numerical test
and theoretical analysis: In practice, to test the IA feasibility

of a specific network, we only need to randomly generate
one channel state and check if Hall is full rank. Similarly, to
prove that a certain category of network is IA feasible, we
can try to construct some specific channel state that makes
Hall full row rank for all the networks in this category. In
fact, we will exploit this property in the proof of Cor. 3.3.

Corollary 3.2 (Scalability of IA Feasibility): If a network
with configuration χ = {(M1, N1, d1), ..., (MK , NK , dK)}
is IA feasible, then scaling it by a factor, i.e. χc =
{(cM1, cN1, cd1), ..., (cMK , cNK , cdK)}, c ∈ N preserves its
IA feasibility.

2) Corollaries Applicable to Special Configurations: In the
following analysis, we show that the necessary conditions in
Thm. 3.1 and the sufficient condition in Thm. 3.2 match in
some network configurations. The conditions align in wider
range of configurations than the existing results in [12]–[15].

Corollary 3.3 (Symmetric Case): When the network con-
figuration χ is symmetric, i.e. dk = d, Mk = M , Nk = N ,
∀k∈{1, ...,K}, and min{M,N} ≥ 2d, Problem 1 has solution
almost surely if and only if inequality (10) is true, where

M +N − (K + 1)d ≥ 0. (10)

Remark 3.5 (Backward Compatible to [13]): If we further
assume that M = N and K ≥ 3, the feasibility conditions in
Cor. 3.3 is reduced to 2N−(K+1)d ≥ 0, which is consistent
with the IA feasibility conditions given in [13].

Corollary 3.4 (“Divisible” Case): When the network con-
figuration χ satisfies 1) dk = d, ∀k, and 2) d|Nk, ∀k or
d|Mk, ∀k, Problem 1 has solution almost surely if and only
if inequality (11) is satisfied, where



4

Algebraically Independent Non-empty Vanishing Set

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
| {z }
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A new systematic tool that connects linear independece

to the solvability of polynomial equation sets.

Linearly Independent Algebraically Independent

Lem 3.1: Linear Inde-

pendence Leads to Alge-

braic Independence

Fig. 2. Illustration of the new systematic tool that links linear independence to the solvability of polynomial equation sets.

∑
j:(·,j)∈Jsub

(Mj − d) +
∑

k:(k,·)∈Jsub

(Nk − d) ≥ d|Jsub|, ∀Jsub ⊆ J . (11)

Remark 3.6 (Backward Compatible to [12], [14], and [15]):
If we further assume that d = 1, then d|Mk, d|Nk for all
k ∈ {1, ...,K}. In this case, Cor. 3.4 corresponds to that in
[12]. Similarly, if we require both Nk and Mk are divisible
by d, Cor. 3.4 is reduced to the feasibility conditions given
by [14], [15].

B. Proof of the Feasibility Conditions

1) Proof of Theorem 3.1: Note that the necessity of (4) and
(6) is proved in [13]–[15]. We need to prove the necessity of
(5).

Suppose Problem 1 is feasible. Without loss of generality,
assume for a certain set J †sub ⊆ J ,∑

k:(k,·)∈J †sub

Nk = max

{ ∑
j:(·,j)∈J †sub

Mj ,
∑

k:(k,·)∈J †sub

Nk

}
. (12)

Then for J †sub, (5) can be rewritten as:∑
k:(k,·)∈J †sub

Nk ≥
∑

j: (·,j) or (j,·)∈J †sub

dj (13)

We will prove that if Problem 1 has a solution, (13) must
be true. Denote T as the set of the indices which appears in
J †sub as Tx index but not Rx index, i.e. T , {j1, ..., jm} =
{j : ∃k s.t. (k, j) ∈ J †sub and (j, k) 6∈ J †sub}, and denote R as
the set of indices which appears in J †sub as Rx index, i.e. R ,
{k1, ..., kn} = {k : ∃j s.t. (k, j) ∈ J †sub}. Denote {U∗k,V∗k}
as one of the solution. Construct three matrices:

V∗T =


V∗j1 , 0 ,· · ·, 0
0 ,V∗j2 ,· · ·, 0
, · · · · · ·

0 , 0 ,· · ·,V∗jn

, U∗R=


U∗k1

, 0 ,· · ·, 0
0 ,U∗k2

,· · ·, 0
, · · · · · ·

0 , 0 ,· · ·,U∗km

,

HJsub
=


Hk1j1 ,Hk1j2 ,· · ·,Hk1jn

Hk2j1 ,Hk2j2 ,· · ·,Hk2jn

, · · · · · ·
Hkmj1 ,Hkmj2 ,· · ·,Hkmjn

.

Then from (2) and (3), we have that:

dim (span(V∗T )) =
∑
j∈T

dj , dim (span(U∗R)) =
∑
k∈R

dk, (14)

U∗HR HJ †sub
V∗T = 0. (15)

From (12),
∑

j∈T Mj ≤
∑

j:(·,j)∈J †sub
Mj ≤

∑
k∈RNk,

which means in J †sub, the number of rows is no more than the
number of columns. Further note that the elements of HJ †sub
are independent random variables, we have that N (HJ †sub

) =

{0} almost surely. Therefore

dim
(

span(HJ †subV
∗
T )
)
= dim (span(V∗T )) =

∑
j∈T

dj (16)

almost surely. From (15), span(HJ †subV
∗
T ) ⊥ span(U∗R),

hence we have:∑
k∈R

Nk ≥ dim
(

span(HJ †subV
∗
T ) + span(U∗R)

)
= dim

(
span(HJ †subV

∗
T )
)
+ dim (span(U∗R))

=
∑
j∈T

dj +
∑
k∈R

dk =
∑

j: (·,j) or (j,·)∈J †sub

dj (17)

From (17), (13) is true. This completes the proof.
2) Proof of Theorem 3.2: The IA feasibility issue is chal-

lenging as there is no systematic tool to address the solvability
issue of high-degree polynomial equation sets. In the following
analysis, we first elaborate three lemmas. As illustrated in
Fig. 2, these lemmas construct a new systematic tool that
links linear independence to the solvability of polynomial
equation sets. The newly developed tool is not only the key
steps to handle the IA feasibility issue in this work, but also
a good candidate of handling the solvability issue of sets of
polynomial equations in general.

Lemma 3.1: (Linear Independence Leads to Algebraic In-
dependence) Suppose K is an algebraically closed field. Con-
sider L polynomials fi ∈ K[x1, x2, ...xS ], i ∈ {1, ..., L}
which are given by: fi =

∑S
j=1 hijxj + gi, where gi are

polynomials consisting of terms with degree no less than 2. If
the coefficient vectors hi = [hi1, hi2, ..., hiS ] are linearly inde-
pendent, then polynomials {fi} are algebraically independent.

Proof: Please refer to Appendix-A� for the proof.
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Lemma 3.2: (Algebraic Independence is Invariant up to
a Random Constant) Suppose K is an algebraically closed
field. Polynomials fi ∈ K[x1, x2, ...xS ], i ∈ {1, ..., L} are
algebraically independent, and ci are independent random
variables drawn from continuous distribution in K. Then
gi = ci + fi are algebraically independent almost surely.

Proof: Please refer to Appendix-B� for the proof.
Lemma 3.3: (Algebraic Independence Leads to Non-empty

Vanishing Set) Suppose K is an algebraically closed field.
If polynomials fi ∈ K[x1, ..., xS ], i ∈ {1, ..., L} are alge-
braically independent, then the vanishing set of these poly-
nomials, i.e. V(f1, ..., fL) = {(x1, ..., xS) : fi = 0, i ∈
{1, ..., L}} is non-empty.

Proof: Pleaser refer to Appendix-C� for the proof.
In the following analysis, we prove Thm. 3.2 by applying

the new tool developed above. First we transfer the IA problem
(Problem 1) into another equivalent form.

Lemma 3.4 (Problem Transformation): Problem 1 is equiv-
alent to Problem 2 (defined below) almost surely.

Problem 2 (Transformed IA Processing): Find {Uk,Vk}
such that rank(Uk) = rank(Vk) = dk, ∀k and satisfy (3).

Proof: Please refer to Appendix-D� for the proof.
In Problem 2, to ensure that rank(Uk) = rank(Vk) = dk,

it is sufficient to assume that the first dk × dk submatrix of
Uk, Vk, denoted by U

(1)
k , V(1)

k , are invertible. Then we can
define Ũk ∈ C(Nk−dk)×dk , Ṽj ∈ C(Mj−dj)×dj as follows:[

Idk×dk

Ũk

]
=Uk

(
U

(1)
k

)−1
,

[
Idj×dj

Ṽj

]
=Vj

(
V

(1)
j

)−1
. (18)

Then (3) is transformed into the following form:1

fkjpq,hkj(p,q)+

Nk−dk∑
n=1

hkj(dk+n,q)ũ
H
k (n,p)

+

Mj−dj∑
m=1

hkj(p,dj+m)ṽj(m,q)

+

Nk−dk∑
n=1

Mj-dj∑
m=1

hkj(dk+n,dj+m)ũHk (n,p)ṽj(m,q)

=hkjpqv+

Nk−dk∑
n=1

Mj−dj∑
m=1

hkj(dk+n,dj+m)ũHk (n,p)ṽj(m,q)

= 0 (19)

where hkj(p, q), ũk(p, q), and ṽj(p, q) are the elements in the
p-th row and q-th column of Hkj , Ũk and Ṽj , respectively,

v=
[
ũH1 (1,1), ũ

H
1 (2,1), ..., ũ

H
1 (N1−d1,1), ũH1 (1,2), ...,

ũH1 (N1−d1,d1), ũH2 (1,1), ..., ũHK(NK−dK ,dK),

ṽ1(1,1) , ṽ1(2,1) , ..., ṽ1(M1−d1,1) , ṽ1(1,2) , ...,
ṽ1(M1−d1,d1) , ṽ2(1,1) , ..., ṽK(MK−dK ,dK)

]T
(20)

1Here k, j, p, and q represent the index of Rx, Tx, data stream at Rx side,
and data stream at Tx side, respectively. We intensively use this subscript
sequence in this paper, e.g. hkjpq , ctkjpq , and crkjpq .

and {hkjpq} is the r-th row of Hall defined in Fig. 1, where
r(k, j, p, q) is given by:

r(k,j,p,q)=

k−1∑
k†=1

K∑
j†=1

6=k†

dk†dj†+

j−1∑
j†=1
6=k

dkdj†+(p−1)dj+q. (21)

Substituting (19) to Lem. 3.1–3.3, we can prove that Prob-
lem 1 has solution almost surely if Hall defined in Fig. 1 is
full row rank.

3) Proof of Corollary 3.1: Note that Hall ∈ CC×V , where
C=

∑K
k=1

∑K
j=1
6=k

dkdj , V =
∑K

k=1 dk(Mk +Nk − 2dk). Hall

is full row rank if and only if at least one of its C×C sub-
matrices has non-zero determinant. Therefore, the statement is
proved if the following proposition holds:

Proposition 3.1: Under a network configuration χ, the de-
terminant of a C×C sub-matrix of Hall is either always zero
or non-zero almost surely.

To prove Prop. 3.1, we first have the following lemma:
Lemma 3.5: Suppose x1, ..., xS ∈ C are independent ran-

dom variables drawn from continuous distribution, f is a non-
constant polynomial ∈ C[x1, ..., xS ]. Then f(x1, ..., xS) 6= 0
almost surely, i.e. the polynomial evaluated at (x1, ..., xS) is
non zero with probability 1.

Proof: When k = 1, from the Fundamental Theorem of
Algebra [17], f(x1) = 0 only has finite number of solutions.
On the other hand, x1 is drawn from continuous distribution.
Hence f(x1) 6= 0 almost surely.

For k ≥ 2, the lemma can be proved by using mathematical
induction w.r.t. k. We omit the details for conciseness.

From the Leibniz formula [20, 6.1.1], the determinant of
a C×C sub-matrix of Hall can be written as a polynomial
f ∈ C(hkj(p, q)) with no constant term, where k 6= j ∈
{1, ...,K}, p ∈ {1, ..., Nk}, q ∈ {1, ...,Mj}. Further note that
the coefficients of f is determined by the configuration of
the network χ. Hence, under a certain χ, f is either a zero
polynomial or a non-constant polynomial. In the latter case,
by applying Lem. 3.5, we have that f 6= 0 almost surely. This
completes the proof.

4) Proof of Corollary 3.2: As illustrated in Fig. 3, from
(8) and (9), after the scaling, each HU

kj (or HV
kj) is composed

of repeating a submatrix with independent elements cdk (or
cdj) times. Denote the s-th time of appearance of this matrix
as HU

kj(s) (or HV
kj(s)). Moreover, we can evenly partition

every HU
kj(s), H

V
kj(s) into c2 independent blocks. Denote the

l-th diagonal block in HU
kj(s) (or HV

kj(s)) as HU
kj(s, l) (or

HV
kj(s, l)), l ∈ {1, ..., c}. Rewritten Hall as a sum of two

matrices, one consists of the diagonal blocks {HU
kj(s, l)},

{HV
kj(s, l)} and the other contains the rest of the blocks.

Denote the two matrices as HD
all, H

D̃
all, respectively.

Since HD
all, H

D̃
all are independent, it is sufficient to show that

HD
all is full row rank. As illustrated in Fig. 3, by combining
{HU

kj(s, l) : s ∈ {(l′−1)dk+1, (l′−1)dk+2, ..., l′dk}} with
{HV

kj(s
′, l′) : s′ ∈ {(l−1)dj+1, (l−1)dj+2, ..., ldk}}, l, l′ ∈

{1, ..., c}, we obtain c2 combinations. By collecting the blocks
with the same combination index (l, l′) in different HU

kj and
HV

kj , we obtain c2 submatrices identical to the Hall before
scaling. Since these submatrices are full rank almost surely
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==============| {z }
H

~D
all

HV
kj

(1)

z }| {
===

==============| {z }
HD

all

HU
kj

(1)

z }| {
===

=

1

¢ ¢ ¢ + ¢ ¢ ¢

evenly partition into c2 blocks

HU
kj

(2)

z }| {
===

HV
kj

(2)

z }| {
===

(1,1)

(2,1)

(1,2)

(2,2)

Fig. 3. Partition of Hall. In this figure, dk = dj = 1, c = 2.

and are on different rows and columns of HD
all, H

D
all is full

rank almost surely. This completes the proof.
5) Proof of Corollary 3.3: For notational convenience, we

will use notation (M×N, d)K to represent the configuration of
a symmetric MIMO interference network, where the meaning
of the letters are the as same those in Cor. 3.3.

The “only if” side can be easily derived from (6). We adopt
the following procedures to prove the “if” side:
A. Construct one special category of channel state {Hkj}.
B. Show that Hall is full rank almost surely under the special

category of channel state.
C. From Cor. 3.1, if Procedure B is completed, Hall is full

rank almost surely and hence we prove the corollary.
Now we start the detailed proof following the outline

illustrated above. We first have two lemmas.
Lemma 3.6 (Sufficient Condition for Full Rankness):

Denote HV
k = span({hkjpq : j ∈ {1, ...,K}, j 6=

k, p, q ∈ {1, ..., d}}) ∩ V , where V = span
([

0DU×DV

IDV×DV

])
,

DU = K(N−d)d, DV = K(M−d)d. When N ≥ 2d, Hall

is full row rank almost surely if the basis vectors of all HV
k ,

k ∈ {1, ...,K} are linearly independent.
Proof: Please refer to Appendix-E� for the proof.

Lemma 3.7 (Full Rankness of Special Matrices): A matrix
Hsub with the following structure is full rank almost surely.
S1. Hsub is composed of d×d blocks, each block is composed

of K ×K sub-blocks, and each sub-block is aggregated
by M − d number of 1 ×M − d vectors. Matrix 1© in
Fig. 4 illustrates an example with d = 2, K = 2, M = 4.

S2. Denote the sub-blocks as Bss′kk′ , s, s′ ∈ {1, ..., d},
k, k′ ∈ {1, ...,K}, where s, s′ denote the vertical and
horizontal position of the block, and k, k′ denote the
vertical and horizontal position of the sub-block within
the block (e.g. B1211 in Fig. 4). All diagonal blocks are
block-diagonal, i.e. Bsskk′ = 0, if k 6= k′. Denote the
k-th diagonal sub-block in block s as BD

sk (e.g. BD
12 in

Fig. 4).
S3. The elements in every BD

sk are independent random
variables drawn from continuous distribution.

S4. BD
sk is independent of all the diagonal sub-blocks with

different sub-block index, i.e. {BD
s′k′ : k′ 6= k} and

all the sub-blocks in the same columns and rows, i.e.

{Bss′kk′ ,Bs′sk′k : s′ 6= s or k′ 6= k}. The vectors in the
off-diagonal blocks are either 0, or independent of all
diagonal sub-blocks, or repetition of a certain vector in
the diagonal sub-blocks (positioned in different columns).

S5. Define diagonal sub-blocks BD
sk and BD

s′k′ are associated,
if a certain vectors in sub-blocks Bss′kk′ or Bs′sk′k, s 6=
s′, k 6= k′ is a repetition of a certain vector in the diagonal
sub-blocks. Each diagonal sub-block BD

sk is associated
with at most one diagonal sub-block in the neighboring
blocks with different sub-block index, i.e. BD

(s−1)k′ and
BD

(s+1)k′′ , for some k′, k′′ 6= k. Note that when s = 1 or
d, each diagonal sub-block is associated with at most one
sub-block.

1£2 vectors
z}|{
hkj 2°'12° 11°1

3°1 4°1

hkj hkj
| {z }

hkj hkj
| {z }

hkj
|{z}

hkj
|{z}

=

2£2
sub¡blocks

+

#

2£ 2 blocks

!

BD
12

B1211

Fig. 4. Outline of the proof of Lem. 3.7.

Proof: Please refer to Appendix-F� for the proof.
Now we start the main procedures of the proof. We first

narrow down the scope:
- When K = 2, the proof is straightforward.
- If the corollary is true in the boundary cases, i.e. M +
N = (K + 1)d, it is true in general.

- With Cor. 3.2, it is sufficient to consider the case in which
gcd(d,N,M) = 1. In the boundary cases, since d|(M+
N), gcd(d,N,M) = 1⇒ gcd(d,M) = 1.

- If d = 1, the corollary is reduced to a special case of
Cor. 3.4.

Hence, we focus on cases in which K ≥ 3, M+N = (K+1)d,
gcd(d,M) = 1, and d ≥ 2. To improve readability of the
proof, we adopt a (7 × 8, 3)4 network as an example. From
Fig. 1, matrix Hall of the example network is given by the
first matrix2 in Fig. 5.
A. Specify {HU

kj} as in Fig. 6, in which

P (k, j)=mod
(
d(mod(j−k,K)−1), N−d

)
(22)

R(k, j)=

d if mod(j−k,K)≤bNdc,
mod(N−1, d) if mod(j−k,K)=bNdc+1,
0 otherwise.

(23)

Matrix 1© in Fig. 5 serves as an example of this spec-
ification. Both (22), (23) are cyclic symmetrical w.r.t.

2Note that here the value of the submatrices HU
kj are specified. We will

explain how we construct this specification later.
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hkj(3)

diagonal sub-

block BD
33

HV
21 HV

21 HV
13

| {z }

2°11° 12

6
6
6
6
6
6
6
6
6
6
6
4

HU
12 0 0 0 0 HV

12 0 0

HU
13 0 0 0 0 0 HV

13 0

HU
14 0 0 0 0 0 0 HV

14

0 HU
21 0 0 HV

21 0 0 0

0 HU
23 0 0 0 0 HV

23 0

0 HU
24 0 0 0 0 0 HV

24

HU
34

...

0 0 0 HU
43 0 0 HV

43 0

3

7
7
7
7
7
7
7
7
7
7
7
5

!

2

6
6
6
6
6
6
6
6
6
6
6
4

HU
12 0 0 0 0 HV

12 0 0

HU0

13 0 0 0 0 HV0

12H
V
13 0

HU0

14 0 0 0 0 0 0 HV
14

0 HU0

21 0 0 HV
21 0 0 0

0 HU
23 0 0 0 0 HV

23 0

0 HU0

24 0 0 0 0 HV0

23H
V
24

HU
34

...

0 0 0 HU0

43 0 0 HV
43 0

3

7
7
7
7
7
7
7
7
7
7
7
5

diag[3]

1000

0100

0010

diag[3]

0001

1000

0100

diag[3]

0000

0000

0000

diag hkj(1);hkj(1);hkj(1)

diag hkj(2);hkj(2);hkj(2)

diag hkj(3);hkj(3);hkj(3)

diag[3]

1000

0100

0010

diag[3]

0001

0000

0000

diag[3]

0000

0000

0000

diag h13(1);h13(1);h13(1)

diag h13(2);h13(2);h13(2)

diag h13(3);h13(3);h13(3)

¡

diag-1h23(1);h23(1)

diag-1h23(2);h23(2)

diag-1h23(3);h23(3)

vectors not independnet

of diagonal sub-blocks

vectors independent of
diagonal sub-blocks

the 3-th block of HV
kj

Fig. 5. Illustration of proving that Hall is full rank in a (7× 8, 3)4 network.

0

0

1

1

0

9
>>>>=

>>>>;

N(k; j) number

of nonzero rows

P (k;j) number of 0
z }| {
====

HU
kj =diag[d]

0

B
B
B
B
B
B
B
B
B
B
B
@

0 ¢ ¢ ¢ 0 1 0 ¢ ¢ ¢ 0

0 ¢ ¢ ¢ 0 0 1 ¢ ¢ ¢ 0
...

0 ¢ ¢ ¢ 0 0 0 ¢ ¢ ¢ 1

1 ¢ ¢ ¢ 0 0 0 ¢ ¢ ¢ 0

0 ¢ ¢ ¢ 0 0 0 ¢ ¢ ¢ 0
...

0 ¢ ¢ ¢ 0 0 0 ¢ ¢ ¢ 0

1

C
C
C
C
C
C
C
C
C
C
C
A

\1" stay on a diagonal

of the matrix

Fig. 6. Specify {HU
kj}.

user indices k, j, i.e. index pairs (k, j) and (mod(k +
δ),mod(j + δ)) lead to the same P (k, j) and R(k, j),
∀δ ∈ Z. This property will help us to exploit the
symmetry of the network configuration in the proof.

B. From (9), each HV
kj consists of d independent 1×(M−d)

vectors repeating for d times. For notational convenience,
denote these vectors as hkj(1) ∼ hkj(d) and denote their
s-th time of appearance as the s-th block of HV

kj . The
small matrix below matrix 1© in Fig. 5 has given such an
example. As illustrated by matrix 2© in Fig. 5, under the
specification in Fig. 6, we can adopt row operations to
remove the “1”s that reappear in the same columns. From
Lem. 3.6, it is sufficient to prove that the row vectors
which are occupied by the s-th block of HV

kj are linearly
independent, where s, k, and j satisfy:

s∈

∅ if mod(j−k,K)≤bNdc−1,
{mod(N, d)+1, ..., d} if mod(j−k,K)=bNdc,
{1, ..., d} otherwise.

(24)

Also note that after the row operation, the 1 ∼ (d − 1)-
th block of HV

kj , k = mod(j − 2,K) + 1 is replicated,
taken a minus sign and moved to other rows. Denote
these new submatrices as {HV′

kj}, k = mod(j−2,K)+1,
j ∈ {1, ...,K}. Now we can adopt Lem. 3.7 to prove the
linear independence of the row vectors specified by (24).
Specifically, for every j ∈ {1, ...,K}, select the following

vectors:
– When k = mod(j − 2,K) + 1: hkj(1) ∼ hkj(d− s)

in the s-th block of HV′

kj , where s ∈ {1, ..., d− 1}.
– When k = mod(j − bNd c − 1,K) + 1: hkj(d

†) ∼
hkj(d) in the s-th block of HV′

kj , where d† = d +
mod(N, d) + 1− s, s ∈ {mod(N, d) + 1, ..., d}.

– When k = mod(j − bNd c − 2,K) + 1: hkj(d
†) ∼

hkj(d) in the s-th block of HV′

kj , where d† =

max
(
1,mod(N, d) + 1− s

)
, s ∈ {1, ..., d}.

– When k = mod(j− l,K)+1: l ∈ {bNd c+3, ...,K}:
all vectors in HV

kj .
Then as illustrated by the small matrices on the right
side of Fig. 5, by adopting this selection mechanism,
we have chosen Kd(M − d) vectors, which form Kd
number of (M −d)× (M −d) submatrices positioned on
different rows and columns. Denote these submatrices as
Bsj , where s ∈ {1, ..., d} and j ∈ {1, ...,K} represent
the block and user index, respectively. Map Bsj to BD

s′j

in Lem. 3.7, where s and s′ satisfy: s = mod
(
d + (d −

s′)mod(M,d) − 1, d
)
+ 1. As gcd(M,d) = 1, this is a

one to one mapping. Since the submatrices are positioned
on different rows and columns, we can move them to the
principle diagonal and verify that the structures required
in Lem. 3.7 are satisfied. This completes the proof.

6) Proof of Corollary 3.4: We first prove some key lemmas
and then turn to the main flow of the proof.

Lemma 3.8 (Sufficient Conditions for IA Feasibility): If
there exists a set of binary variables {ctkjpq, crkjpq ∈ {0, 1}},
k, j ∈ {1, ...,K}, k 6= j, p ∈ {1, ..., dk}, q ∈ {1, ..., dj}
that satisfy the following constraints, Problem 1 has solution
almost surely.

ctkjpq + crkjpq = 1, (25)
K∑

j=1,6=k

dj∑
q=1

crkjpq ≤ Nk − dk, ∀k, (26)

K∑
k=1,6=j

dk∑
p=1

ctkjpq ≤Mj − dj , ∀j, (27)
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ctkj1q = ... = ctkjdkq
, ∀k, j, q, OR

ctkjp1 = ... = ctkjpdj
, ∀k, j, p. (28)

Proof: Please refer to Appendix-G� for the proof.
Remark 3.7 (Interpretation of ctkjpq, c

r
kjpq): The binary

variables ctkjpq, c
r
kjpq represent a constraint allocation

policy. An IA constraint fkjpq = 0 (defined in (19)) can
be assigned to transceivers with non-zero coefficients in
fkjpq , i.e. ũkp ∈ C1×(Nk−dk) or ṽjq ∈ C1×(Nj−dj). Here ũkp

(ṽjq) denotes the p (q)-th column of Ũk (Ṽj). crkjpq = 1
(ctkjpq = 1) means that the IA constraint fkjpq = 0 is assigned
to the decorrelator (precoder) for the p (q)-th stream at Rx k
(Tx j).

Remark 3.8 (Meaning of Constraints in Lem. 3.8):
• (25): Each IA constraint fkjpq = 0 is assigned once and

only once.
• (26): The total number of constraints assigned to the

decorrelator of any stream, i.e. ũkp is no more than the
length of this decorrelator, i.e. size

(
ũkp

)
= Nk − dk.

• (27): The dual version of (26).
• (28): The constraint assignment policy {crkjpq, ctkjpq} is

symmetric w.r.t. Rx side stream index p or Tx side stream
index q.

The following lemma illustrate the relation between the suf-
ficient conditions proposed in Lem. 3.8 and the necessary
conditions proposed in Thm. 3.1.

Lemma 3.9 (Necessary Conditions of IA Feasibility): A
network configuration χ satisfies the necessary feasibility
condition (6), if and only if there exists a set of binary
variables {ctkjpq, crkjpq ∈ {0, 1}}, k, j ∈ {1, ...,K}, k 6= j,
p ∈ {1, ..., dk}, q ∈ {1, ..., dj} that satisfy (25)–(27).

Proof: Please refer to Appendix-H� for the proof.
Remark 3.9 (Insight of Lem. 3.8, 3.9): Prior works study-

ing the IA feasibility problem on MIMO interference networks
have shown that the properness3 condition, i.e. (6), is the major
factor that characterizes the IA feasibility conditions. However,
(6) contains O(2K2

) number of correlated inequalities. Such
a complicated condition is hard to trace in both analysis and
practice.

Lem. 3.9 enables us to significantly simplify (6). By exploit-
ing the idea of constraint allocation, Lem. 3.9 converts (6) to
(25)–(27), which consist of only O(K) number of constraints.
Lem. 3.8 shows that with an additional requirement (28) on the
constraint allocation policy {ctkjpq, crkjpq}, the IA feasibility is
guaranteed.

Now we turn to the main flow of the proof for Cor. 3.4.
The “only if” side is directly derived from (6). The “if” side
is completed by adopting Lem. 3.8. Please refer to Appendix-I�
for the details of constructing {ct∗kjpq, cr∗kjpq} which satisfy
(25)–(28).

IV. SUMMARY AND FUTURE WORK

This work further consolidates the theoretical basis of
IA. We have proved a sufficient condition of IA feasibility

3This terminology is first defined in [12], which means the number of the
free variables in transceiver design must be no less than the number of the
IA constraints.

which applies to MIMO interference networks with general
configurations and discovered that IA feasibility is preserved
when scaling the network. Further analysis show that the
sufficient condition and the necessary conditions coincide in
a wide range of network configurations and provide some
simple analytical conditions. These results unify and extend
the pertaining theoretical works in the literature [12]–[15] and
facilitate future analysis on MIMO interference networks.

Despite the progress made in the prior works and this
work, the issue of IA feasibility is yet not fully solved. In
particular, there may be gaps between the necessary conditions
in Thm. 3.1 and the sufficient condition in Thm. 3.2 and
therefore the exact feasibility conditions of IA are still not
determined in general. Merging the gap between the necessary
and the sufficient side shall be the direction for future works.

APPENDICES

A. Proof of Lemma 3.1

When vectors {hi} are linearly independent, we have that
L ≤ S. Note that if the lemma holds when L = S, it must hold
in general. We will use contradiction to prove the statement.
Suppose fi, i ∈ {1, 2, ..., L} are algebraically dependent. Then
from the definition, there must exist a nonzero polynomial
p, such that p(f1, f2, ..., fS) = 0. Without loss of generality,
denote p = p0 + p1 + ...+ pD, where pd contains all the d-th
degree terms in p, D ∈ N. Then we have:

p(f1, f2, ..., fS) = p0+p1(

S∑
j=1

h1jxj , ...,

S∑
j=1

hSjxj) +

(
p1(g1, ..., gS)+

D∑
d=2

pd(f1, f2, ..., fS)
)
=0 (29)

Note that all the terms in (p1(g1, ..., gS) +∑D
d=2 pd(f1, f2, ..., fS)) have degree no less than 2, from

(29), p1(
∑S

j=1 h1jxj , ...,
∑S

j=1 hSjxj) = 0, ∀x1, ..., xj ∈ K.
Denote yi =

∑S
j=1 hijxj , we have that:

p1(y1, ..., yS) = 0. (30)

Note that the coefficient vectors hi are linearly independent,
[x1, ..., xS ]→ [y1, ..., yS ] is a bijective linear map. Therefore,
{y1, ..., yS} ∼= {x1, ..., xS} = KS . Hence, from (30), we have
that V(p1) = {y1, ..., yS} ∼= KS , which means p1 must be a
zero polynomial.

Similarly, when p1 is a zero polynomial, by analyzing
the coefficients of the second order terms, we have that
V(p2) ∼= KS and therefore p2 is also a zero polynomial. By
using mathematical induction, we can show that p1, p2, ...pD
are zero polynomials and hence p a zero polynomial, which is
a contradiction with the assumption that fi, i ∈ {1, 2, ..., L}
are algebraically dependent. This completes the proof.

B. Proof of Lemma 3.2

We first prove that g1, f2, ..., fL are algebraically inde-
pendent. Then the Lemma can be proved by repeating the
same trick L times. We will use contradiction to prove
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the statement. Suppose g1, f2, ..., fL are algebraically depen-
dent, i.e. there exists a non zero polynomial p such that
p(g1, f2, ..., fL) = 0. Without loss of generality, denote
p(g1, f2, ..., fL) =

∑D
d=0 g

d
1pd(f2, ..., fL), D ∈ N, where pd

is a polynomial function of f2 ∼ fL. Then we can define
polynomial p†(f1, f2, ..., fL):

p†(f1, f2, ..., fL) , p(f1 + c1, f2, ..., fL) =
D∑

d=0

fd1 pd + c1

D∑
d=0

d−1∑
s=0

( s
d

)
c
(d-1)
1 f

(d-s)
1 pd(f2, ..., fL) (31)

where
(

s
d

)
denotes the number of s-combination of a set with

d elements. Note that
∑D

d=1 f
d
1 pd = p(f1, ..., fL) is nonzero,

and c1 is independent of the coefficients in pD, we have that
p† is nonzero almost surely. However, p†(f1, f2, ..., fL) = 0,
which contradicts with the assumption that f1, ..., fL are
algebraically independent. This completes the proof.

C. Proof of Lemma 3.3

Since {fi} are algebraically independent, from [21,
Thm.0.4, Lecture 2], K[f1, ..., fL] ∼= K[y1, ..., yL], where
y1, ..., yL are variables in K. Hence, 〈f1, ..., fL〉 ∼= 〈y1, ..., yL〉,
where 〈z1, ..., zL〉 denotes the ideal generated by z1, ..., zL.
Note that ideal 〈z1, ..., zL〉 is proper, i.e. does not contain 1,
so is ideal 〈f1, ..., fL〉. From Hilbert’s Nullstellensatz Theorem
[22, Thm. 3.1, Chap. I], V(f1, ...fL) is non-empty.

D. Proof of Lemma 3.4

Firstly, it is easy to see that a solution of Problem 1 is a
solution of Problem 2. Conversely, since the channel state of
the direct links {Hkk} are full rank with probability 1 and are
independent of that of cross links {Hkj}, k 6= j, a solution of
Problem 2 is also a solution of Problem 1 with probability 1.

E. Proof of Lemma 3.6

We first have two lemmas.
Lemma -E.1:� In Hall, the row vectors that are related to a

same Rx are linearly independent almost surely, i.e. for every
k ∈ {1, ...,K}, vectors hkjpq , j ∈ {1, ...,K}, j 6= k, p, q ∈
{1, ..., d}, are linearly independent almost surely.

Proof: From (8), and the fact M − d ≥ d, we have that
every submatrix HV

kj is full rank almost surely. Since for a
given k, submatrices HV

kj , j ∈ {1, ...,K}, j 6= k position on
different rows and columns in Hall, the lemma is proved.

Lemma -E.2:� As illustrated in Fig. 5, denote hU
kjpq as the

vector consists of the first K(N−d)d elements of hkjpq . For all
k, j, k†, j† ∈ {1, ...,K}, k 6= k†, p, p† ∈ {1, ..., dk}, q, q† ∈
{1, ..., dj}: hU

kjpq ⊥ hU
k†j†p†q† .

Proof: Straight forward from the structure of Hall.
We will prove the lemma by proving its converse-negative

proposition. From Lem.-E.1� , if Hall is not full row rank, there
must exists a non-zero vector h and set A,B ⊂ {1, ...,K},
A ∩ B = ∅ such that

h ∈
(
∪k∈A Hk

)
∩
(
∪k∈B Hk

)
, (32)

where Hk = span({hkjpq : j ∈ {1, ...,K}, j 6= k, p, q ∈
{1, ..., d}}). Furthermore, from Lem.-E.2� and the fact that A∩
B = ∅, we have that the first K(N−d)d elements of h must
be 0. By combining this fact with (33), we have that:

h ∈
(
∪k∈A HV

k

)
∩
(
∪k∈B HV

k

)
, (33)

which means the basis vectors of HV
k , k ∈ A∪B are linearly

dependent. This completes the proof.

F. Proof of Lemma 3.7

As illustrated by matrix 2© and 2©′ in Fig. 4, we can separate
Hsub into two matrices, one consists of the diagonal sub-blocks
and sub-blocks that are not independent of the diagonal blocks
and the other consists of the sub-blocks that are independent
of the diagonal sub-blocks. It is sufficient to show that the
first matrix is full rank almost surely. From S3, each diagonal
block is full rank almost surely. Hence, as illustrated by matrix
3© in Fig. 4, we can sequentially use row operation to make

sub-blocks {B(d−1)dkk′}, {B(d−2)(d−1)kk′},..., {B12kk′} equal
to 0 and make the matrix block upper-triangular. Noticing
the association pattern S5, and the inter-block independence
property S4, these operations preserves the block diagonal
structure S2 and the full rankness of the diagonal sub-blocks.
Then we can further adopt row operation to make the matrix
block diagonal, e.g. matrix 4© in Fig. 4. Since each sub-block
is full rank almost surely, the entire matrix is full rank almost
surely.

G. Proof of Lemma 3.8

1) Illustration of the Proof: We first illustrate the outline
of the proof via an example and give out the rigorous proof
in the next subsection.

Consider a 3-pairs MIMO interference network with con-
figuration χ = {(2, 2, 1), (2, 2, 1), (4, 2, 2)}. The constraint
allocation {ctkjpq, crkjpq} is given by (34).

cr1211, c
r
2111, c

r
3111, c

r
3221 = 1

cr1311, c
r
1312, c

r
2311, c

r
2312, c

r
3121, c

r
3211 = 0

ct1211, c
t
2111, c

t
3111, c

t
3221 = 0

ct1311, c
t
1312, c

t
2311, c

t
2312, c

t
3121, c

t
3211 = 1

(34)

From Thm. 3.2, to prove the lemma, we only need to show
that Hall is full row rank almost surely.

As illustrated by Fig. 7, consider the matrix Hall (we have
rearranged the order of the rows for clearer illustration). In this
network, we have 10 polynomials in (19) and 10 variables in
Ũk, Ṽj . Hence Hall is a 10 × 10 matrix. We need to prove
that Hall is nonsingular, i.e. det (Hall) 6= 0 almost surely.

The major properties of Hall that lead to its nonsingularity
are labeled in Fig. 7. We first carefully arrange the order of
vectors {hkjpq}. In particular, index sequences (k, j, p, q) that
satisfy crkjpq = 1 or ctkjpq = 1 are placed in the upper and
lower part of Hall, respectively. We partition Hall by rows
according to whether crkjpq = 1 or ctkjpq = 1, and by columns
according to whether the column is occupied by {HU

kj} or
{HV

kj}. Then as illustrated by Label A in Fig. 7, Hall is
partitioned into four submatrices. H11

all and H22
all are block-

diagonal as we have reordered the rows in Hall. As highlighted
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2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

h1211

h2111

h3111

h3221| {z }
h3121

h3211

h1311

h2311

h1312

h2312

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

h12(2;1) 0 0 0 0 h12(1;2) 0 0 0 0

0 h21(2;1) 0 0 h21(1;2) 0 0 0 0 0

0 0 h31(3;1) 0 h31(1;2) 0 0 0 0 0

0 0 0 h32(3;1)
| {z }

0 h32(2;2) 0 0 0 0

0 0 0 h31(3;1) h31(2;2) 0 0 0 0 0

0 0 h32(3;1) 0 0 h32(1;2) 0 0 0 0

h13(2;1) 0 0 0 0 0 h13(1;3)h13(1;4) 0 0

0 h23(2;1) 0 0 0 0 h23(1;3)h23(1;4) 0 0

h13(2;2) 0 0 0 0 0 0 0 h13(1;3)h13(1;4)

0 h23(2;2) 0 0 0 0 0 0 h23(1;3)h23(1;4)

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

"
H11

all H12
all

H21
all H22

all

#

A. Seperate Hall into four submatrices, H11
all, H

12
all, H21

all, and H22
all;

B. Submatrices H11
all, H22

all are block-diagonal;

C. The diagonal blocks in H11
all, H

22
all are full rank almost surely;

D. H22
all is independent of the other three submatrices of Hall.

Fig. 7. Illustration of the matrix aggregated by vectors {hkjpq} and its
properties. Here hkj(p, q), ũk(p, q), and ṽj(p, q) denote the element in the
p-th row and q-th column of Hkj , Ũk and Ṽj , respectively.

by Label C, all the diagonal blocks of H11
all, H

22
all are full rank

almost surely. Thus we have H11
all, H

22
all are nonsingular almost

surely, i.e. detH11
all 6= 0, detH22

all 6= 0, almost surely.
From condition (28), if an element hkj(p, q) appears in H22

all,
it will not appear in other sub-matrices of Hall. Hence, as
illustrated by Label D in Fig. 7, H22

all is independent of the
other three submatrices. Then from the Leibniz formula, we
have that det(Hall) 6= 0 holds almost surely.

2) Extending to General Configurations: We will show that
properties of Hall illustrated by Labels A–D in Fig. 7 hold for
generic configurations.

Denote {ct∗kjpq, cr∗kjpq} as a set binary variables that satisfy
(25)–(28). Without loss of generality, suppose condition (28)
holds for {ct∗kjpq}.

Reorder the rows of Hall such that the row vectors
which satisfy {hkjpq : cr∗kjpq = 1} appear in the up-
per part of the matrix. To show that Hall is full row
rank, we need to show there exists a sub-matrix H†all ∈
C(

∑K
k=1

∑K
j=1, 6=k dkdj)×(

∑K
k=1

∑K
j=1, 6=k dkdj) of Hall, whose de-

terminant is non-zero almost surely. Construct H†all by remov-
ing the columns which contain the coefficients of ũk(p, q),
ṽj(p

†, q†), where k, j, q, q†, p, and p† satisfy:

1 + cr∗kp ≤ p ≤ Nk − dk, (35)

1 + ct∗jp† ≤ p† ≤ Mj − dj , (36)

where cr∗kp =
∑K

j=1
6=k

∑dj

q=1 c
r∗
kjpq , ct∗jq =

∑K
k=1
6=j

∑dk

p=1 c
t∗
kjpq .

In the following analysis, we will partition Hall in the same
way as that in the example above and show that the major
properties labeled in Fig. 7 still hold.
• H11

all is full rank almost surely: Consider the 1 ∼ cr∗11
columns of H†all. From (35), these columns are also the
first cr∗11 (note that from (26), cr∗11 ≤ N1 − d1) columns
of Hall. Hence from the form of vectors {hkjpq}, we
have that elements in these columns are non-vanishing
if and only if index k = 1, j = 1. In H11

all, only
the first cr∗11 rows are non-vanishing. Repeat the same

analysis for other columns and we can show that H11
all

is a
∑K

k=1

∑dk

p=1 c
r∗
kp ×

∑K
k=1

∑dk

p=1 c
r∗
kp block diagonal

matrix, with diagonal block sizes cr∗11, ..., c
r∗
1d1
, ..., cr∗KdK

,
respectively. From Fig. 1, (8), and (9), we have that the
elements in a same diagonal blocks are independent of
each other, hence detH11

all 6= 0 almost surely.
• H22

all is full rank almost surely: Using the analysis
similar to above, we can show that H22

all is also block-
diagonal and detH22

all 6= 0 almost surely.
• H22

all is independent of H11
all, H12

all, and H21
all: From

Fig. 1, (8), and (9), an element hkj(p, dj + s), p ∈
{1, ..., dk}, s ∈ {1, ...Mj − dj} only appears in vectors
hkjp1, ...,hkjpdj

. Hence condition (28) assure that if
hkj(p, dj + s) appears in H22

all, it appears in neither of
the other three sub-matrices. This proves that H22

all is
independent of H11

all, H
12
all, and H21

all.

The three facts above show that det
(
H†all

)
6= 0 almost

surely. This completes the proof.

H. Proof of Lemma 3.9

We first prove the “only if” side. Denote {ct∗kjpq, cr∗kjpq} as
a set of binary variables that satisfy (25)–(27). Then we have:∑

j:(·,j)∈Jsub

dj(Mj − dj) +
∑

k:(k,·)∈Jsub

dk(Nk − dk)

≥
∑
j:(·,j)
∈Jsub

∑
k:(k,·)
∈Jsub

dj∑
q=1

dk∑
p=1

(ctkjpq + crkjpq) (37)

=
∑

(k,j)∈Jsub

dkdj (38)

∀Jsub, where (37) is true due to (26), (27), and (38) is given
by (25). This completes the “only if” side of the proof.

Then we turn to the “if” side. We adopt a constructive
approach. In following algorithm4, we will propose a method
to construct the binary variables {ct∗kjpq, cr∗kjpq} and show that
when conditions (6) is true, the binary variables {ct∗kjpq, cr∗kjpq}
constructed by Alg. 1 satisfy (25)–(27).

We first define two notions which will be used in the
algorithm. To indicate how far the constraint assignment policy
{crkjpq, ctkjpq} is from satisfying constraints (26), (27), we
define:

Definition 1 (Constraint Pressure):

P t
jq,Mj−dj−

K∑
k=1
6=j

dk∑
p=1

ctkjpq, P
r
kp,Nk−dk−

K∑
j=1
6=k

dj∑
q=1

crkjpq. (39)

To update the constraint assignment policy, we introduce
the following data structure.

Definition 2 (Pressure Transfer Tree (PTT)): As illustrated
by Fig. 8A, define a weighted tree data structure with the
following properties:

- The weight of the nodes in this tree is given by the
constraint pressure, i.e. {P t

jq, P
r
kp}.

4 Note that this algorithm may not be the only way to construct
{ct∗kjpq , c

r∗
kjpq}.
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- The constraint pressure of a parent node and its child
nodes have different superscript, i.e. t or r.

- The link strength between two nodes, e.g. P t
jq and P r

kp

is given by ctkjpq , if P t
jq is the parent node, or crkjpq , if

P r
kp is the parent node.

Algorithm 1 (Construct {ct∗kjpq, cr∗kjpq}):
• Initialize the constraint allocation: Randomly generate

a constraint allocation policy, i.e. {ctkjpq, crkjpq} such
that: ctkjpq, c

r
kjpq ∈ {0, 1}, ctkjpq + crkjpq = 1, k, j ∈

{1, 2, ...,K}, p ∈ {1, ..., dk}, q ∈ {1, ..., dj}. Calculate
{P t

jq, P
r
kp} according to (39).

• Update the constraint allocation policy: While there
exist “overloaded streams”, i.e. P t

jq < 0 or P r
kp < 0, do

the following to update {ctkjpq, crkjpq}:
– A. Initialization: Select a negative pressure, e.g.
P t
jq < 0. Set P t

jq to be the root node of a PTT.
– B. Add Leaf nodes to the pressure transfer tree:

For every leaf nodes (i.e. nodes without child nodes)
e.g. P t

jq , with depths equal to the height of the tree
(i.e. the nodes at the bottom in Fig. 8):

For every k ∈ {1, 2, ...,K}, p ∈ {1, ..., dk}: If
crkjpq = 1, add P r

kp as a child node of P t
jq.

– C. Transfer pressure from root to leaf nodes:
For every leaf node just added to the tree in Step
B with positive pressure, i.e. P t

jq( or P r
kp) > 0,

transfer pressure from root to these leafs by updating
{ctkjpq, crkjpq}. For instance, as illustrated in Fig. 8B,

P t
j1q1

ctk1j1p1q1
=1

−−−−−−−→ P r
k1p1

crk1j2p1q2
=1

−−−−−−−→ P t
j2q2

is a root-
to-leaf branch of the tree (red lines). Transfer pres-
sure from P t

j1q1
to P t

j2q2
by setting: ctk1j1p1q1

= 0,
crk1p1j1q1

= 1, crk1j2p1q2
= 0, ctk1j2p1q2

= 1. Hence
we have P t

j1q1
is increased by 1 and P t

j2q2
is reduced

by 1. This operation can also be done for the green
line in Fig. 8B.

– D. Remove the “depleted” links and “neutralized”
roots:
∗ If the strength of a link, i.e. crkjpq or ctkjpq ,

becomes 0 after Step C: Separate the subtree
rooted from the child node of this link from the
original tree.

∗ If the root of a pressure transfer tree (including
the subtrees just separated from the original tree)
is nonnegative, remove the root and hence the
subtrees rooted from each child node of the root
become new trees. Repeat this process until all
roots are negative. For each newly generated pres-
sure transfer tree, repeat Steps B–D (Please refer
to Fig. 8C for an example).

– E. Exit Conditions: Repeat Steps A–D until one of
the following cases appears.
Case 1: All trees become empty.
Case 2: No new leaf node can added for any of the
non-empty trees in Step B.
Set {ct∗kjpq, cr∗kjpq} to be the current value of
{ctkjpq, crkjpq} Exit the algorithm.

Note that if Alg. 1 exits with Case 1, we have that Mj−dj−

∑K
k=1
6=j

∑dk

p=1 c
t
kjpq ≥ 0, and Nk−dk−

∑K
j=1
6=k

∑dj

q=1 c
r
kjpq ≥ 0,

∀k, j, p, q, which lead to (6). Hence to prove the “if” side, we
only need to prove the following proposition:

Proposition -H.1 (Exit State of Alg. 1):� When (6) is true,
Alg. 1 always exits with Case 1.

We prove Prop-H.1� by contradiction. (6) is equivalent to the
following inequalities:∑
(j,q):(·,j,·,q)
∈Lsub

(Mj−dj)+
∑

(k,p):(k,·,p,·)
∈Lsub

(Nk−dk)≥|Lsub|, ∀Lsub⊆L (40)

where L = {(k, j, p, q) : k, j ∈ {1, ...,K}, k 6= j, p ∈
{1, ..., dk}, q ∈ {1, ..., dj}}, (·, j, ·, q) (or (k, ·, p, ·)) inLsub

denotes that there exists k, p (or j, q) such that (k, j, p, q) ∈
Lsub. If Alg. 1 exits with Case 2, from the exit condition,
there must exist a non-empty pressure transfer tree such that:
• Root node has negative pressure.
• All other nodes are non-positive. This is because positive

nodes are either “neutralized” by the root in Step C or
separated from the tree in Step D.

• No other nodes can be added to the tree, which implies
crkjpq = 0 and ctk†j†p†q† = 0 for any P t

jq, P r
k†p† in the

tree and P r
kp, P t

j†q† not in the tree.
Hence, set Lsub in (40) to be {(k, j, p, q) : both P r

kp and P t
jq

are in the tree} that are in the remaining pressure transfer tree,
we have:∑

(j,q):(·,j,·,q)
∈Lsub

(Mj−dj)+
∑

(k,p):(k,·,p,·)
∈Lsub

(Nk−dk)−|Lsub|

=
∑

(j,q):(·,j,·,q)
∈Lsub

(Mj−dj−
∑

(k,p):(k,·,p,·)
∈Lsub

ctkjpq)+
∑

(k,p):(k,·,p,·)
∈Lsub

(Nk−dk−
∑

(j,q):(·,j,·,q)
∈Lsub

crkjpq)

=
∑

(j,q):(k,j,p,q)
∈Lsub

(Mj−dj−
K∑

k=1

dk∑
p=1

ctkjpq)+
∑

(k,p):(k,·,p,·)
∈Lsub

(Nk−dk−
K∑
j=1

dj∑
q=1

crkjpq)

=
∑

(j,q):(·,j,·,q)
∈Lsub

P t
jq+

∑
(k,p):(k,·,p,·)
∈Lsub

P r
kp<0 (41)

which contradicts with (40).

I. Construct {ct∗kjpq, cr∗kjpq} to Prove Corollary 3.4

Without loss of generality, assume d|Nk, ∀k. Modify Alg. 1
in Appendix-H� to construct {ct∗kjpq, cr∗kjpq}.

Algorithm 2 (Variation of Algorithm 1): Adopt Alg. 1 with
the following modifications:
• In the Initialization Step: set ctkjp1 = ... = ctkjpdj

,
crkjp1 = ... = crkjpdj

.
• In Step C: All pressure transfer operations must be

symmetric w.r.t to index q, i.e. the operations on ctkj1q
(crkj1q), ..., ctkjdkq

(crkjdkq
) must be the same.

Suppose Prop-H.1� still holds for Alg. 2. Then the output of
Alg. 2 {ct∗kjpq, cr∗kjpq} satisfies (25)–(28). Therefore, we focus
on proving Prop.-H.1� .

From (39), after initialization, we have that

P t
j1 = ... = P t

jdj
, d|P t

jq, ∀n, q. (42)

Since all ctkjpq , crkjpq , P t
jq , and P r

kp are symmetric w.r.t. to
index q, after we perform Steps A, B of the constraint updating
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P t
j4q4

= 0P t
j2q2

= 1

P t
j1q1

= 0P t
j1q1

= ¡2

P r
k1p1

= ¡1

P t
j2q2

= 2 P t
j3q3

= 0

P r
k2p2

= ¡1

P t
j4q4

= 1

New root nodes
P t

j1q1
= 0

P r
k1p1

= ¡1

P t
j2q2

= 1 P t
j3q3

= 0

P r
k2p2

= ¡1

P t
j4q4

= 0

A B

P r
k1p1

= ¡1

P t
j3q3

= 0

P r
k2p2

= ¡1

C

ct
k1j1p1q1

= 1 ct
k2j1p2q1

= 1

cr
k1j2p1q2

= 1 cr
k1j3p1q3

= 1 cr
k2j4p2q4

= 1

ct
k1j1p1q1

= 0

cr
k1j2p1q2

= 0 cr
k1j3p1q3

= 1

ct
k2j1p2q1

= 0

cr
k2j4p2q4

= 0 cr
k1j3p1q3

= 1 cr
k2j4p2q4

= 0

ct
k2j1p2q1

= 0

cr
k1j2p1q2

= 0

ct
k1j1p1q1

= 0

Fig. 8. Illustrative example of the “pressure transfer tree” and the corresponding operations in Alg. 1. A) A tree generated in Step A and B; B) Pressure
transfer in Step C; C) Removal of depleted links and neutralized roots in Step D.

process, the pressure transfer trees are also symmetric w.r.t. to
index q. Further note that d|P t

jq , in Step C, the symmetric
operation is always feasible. As a result, we can follow the
analysis used in Appendix-H� , and prove Prop-H.1� .
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