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Abstract

Matrix Joint Diagonalization (MJD) is a powerful approach for solv-
ing the Blind Source Separation (BSS) problem. It relies on the construc-
tion of matrices which are diagonalized by the unknown demixing ma-
trix. Their joint diagonalizer serves as a correct estimate of this demix-
ing matrix only if it is uniquely determined. Thus, a critical question
is under what conditions a joint diagonalizer is unique. In the present
work we fully answer this question about the identifiability of MJD based
BSS approaches and provide a general result on uniqueness conditions
of matrix joint diagonalization. It unifies all existing results which ex-
ploit the concepts of non-circularity, non-stationarity, non-whiteness, and
non-Gaussianity. As a corollary, we propose a solution for complex BSS,
which can be formulated in a closed form in terms of an eigenvalue and a
singular value decomposition of two matrices.

Index Terms

Non-unitary joint diagonalization, uniqueness analysis, Complex Blind Source
Separation (BSS), Second-Order Statistics (SOS), Higher-Order Statistics

(HOS).

1 Introduction

Joint diagonalization of a set of square matrices is a prominent algorithmic
paradigm for solving the Blind Source Separation (BSS) problem [1]. One crit-
ical task of the Matrix Joint Diagonalization (MJD) approach is to construct
a set of square matrices, so that there exists a unique joint diagonalizer, which
serves as a correct demixing matrix of the BSS problem. Although uniqueness
and solvability conditions of the BSS problem are well known in the framework
of Independent Component Analysis (ICA), cf. [2], practical identifiability of
MJD based BSS approaches has not been systematically studied yet and is
investigated thoroughly in this work.

By imposing the assumption that source signals are mutually statistically
independent, it is well known that source signals can only be extracted up to
arbitrary scaling and permutation. The statistical independence assumption
leads to the celebrated technique of Independent Component Analysis (ICA)
[2]. One fundamental question is: Under what conditions on the sources can the
mixing process be uniquely identified up to permutation and scaling? General
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identifiability results of the ICA problem have been developed based on either
the Darmois-Skitovitch theorem, cf. [2, 3], or diagonalization of the Hessian of
the characteristic function, cf. [4]. They provide a theoretic ground for develop-
ing ICA algorithms that minimize the so-called contrast functions, cf. [5, 6, 7].
Many popular ICA contrast functions originate from information theory, such
as the mutual information [8] or the differential entropy [9]. Unfortunately, per-
formance of these contrast function based approaches depends significantly on
a correct estimation of the distribution of the sources, which is often an infeasi-
ble undertaking in application scenarios. Although there have been alternative
non-parametric approaches developed to cope with this difficulty, cf. [10, 11],
these methods go along with a high computational burden.

One simple approach to overcome the aforementioned difficulty is to utilize
some additional properties of the sources for the separation task. Although the
standard ICA model does not make any assumption on the temporal structure of
the sources, temporal information is richly available in many real applications,
and has been extensively exploited in developing efficient ICA algorithms, cf.
[12, 13]. Specifically, these approaches utilize only selected second-order statis-
tics (SOS) or higher-order statistics (HOS) of the observations, and often result
in a form of a joint diagonalization problem of a finite number of matrices.
These matrix joint diagonalization based methods are known as the tensorial
BSS approaches. In parallel to the general ICA theory, the present work aims
to answer the following critical question: Under what conditions on the matri-
ces, which are constructed for joint diagonalization, can we identify the mixing
process uniquely up to permutation and scaling?

Early works on Matrix Joint Diagonalization in BSS are restricted to unitary
transformations, as a whitening process on the observed mixtures is often used as
a preprocessing step, cf. [14]. However, it has been shown in [15] that linear BSS
via a Unitary Joint Diagonalization (UJD) approach may have a serious limit
of degraded performance in the presence of additive noise. In particular, many
criterions for joint diagonalization can be significantly distorted by the whitening
process, cf. [16, 17]. To avoid such a limit of UJD, a natural generalization of
UJD, known as Non-Unitary Joint Diagonalization (NUJD), has been proposed
and studied with dramatically increasing attention, cf. [18, 19, 20].

Non-stationarity is a common property, which describes the temporal struc-
ture of a signal. One simple assumption that can be employed for BSS in this
context is that the covariance matrix of the sources varies over time. By ex-
ploiting this property, the signals can be separated via a joint diagonalization
of a finite set of covariance matrices within different time intervals [21]. Identi-
fiability conditions of this approach are developed in [14] for the UJD case, and
in [22] under a limited NUJD setting, where only the real valued ICA problems
are considered. Similar approaches employ also cyclo-stationarity of the sources
[23, 24], or time-frequency distributions at different time frequency points [25].

Another simple temporal concept used in BSS is the non-whiteness of sources.
Pioneering works in [26, 27] show that real valued source signals with distinct
spectral density functions are blindly identifiable by using only the autocorre-
lation of the observations. Similar results in [28] show that stationary colored
complex signals can be blindly separated by using a set of autocorrelation ma-
trices. When source signals are both stationary and white, it requires more
knowledge about the signals, such as higher-order statistics [14]. In particular,
third- and fourth-order cumulants have been used and demonstrate their suc-
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cess in solving BSS problems, cf. [29, 30, 31]. In practice, higher order statistics
are often rearranged in matrix form, so that the matrix joint diagonalization
approach is applicable.

All the aforementioned statistical properties can be used for separating both
real- and complex-valued signals. If the sources are second-order non-circular
and the values of the circularity coefficients are distinct, complex BSS can be
solved effectively by a joint diagonalization of only one covariance matrix and
one pseudo-covariance matrix, cf. [32]. The corresponding method is known as
Strong Uncorrelating Transform (SUT) [33]. Unfortunately, a solution given by
SUT does not in general yield a correct demixing of the sources in real applica-
tions, where noise is commonly present. Recently, generalized SUT approaches
have been proposed independently in [34] and [35] to jointly diagonalize both co-
variance and pseudo-covariance matrices. In particular, the work in [35] demon-
strates that in the presence of noise, this generalized approach outperforms the
state-of-the-art MJD approaches in terms of recovery quality.

To summarize, rich literature is available in the community on developing
the matrix joint diagonalization based BSS methods. Existing identifiability
results are mainly focused on the SOS based approaches. However, identifiability
analysis for the HOS methods has not been addressed systematically. In this
work, we derive the uniqueness conditions of the NUJD setting. It leads us to
the most general result so far on identifiability conditions for the HOS based BSS
methods, and an algebraic solution, i.e. a solution that only involves Eigenvalue
Decompositions (EVD) or Singular Value Decompositions (SVD). Furthermore,
it also provides a rigorous analysis on the convergence properties of existing
iterative algorithms [36]. This is due to the fact that isolated critical points of
functions can be identified which measure the degree of joint diagonality. This
issue is not discussed further in this paper and is subject matter of ongoing work
of the authors.

The paper is organized as follows. Section 2 gives a setting of the complex
BSS problem and motivates the non-unitray joint diagonalization approach as
a solution to BSS. In Section 3 we derive necessary and sufficient conditions for
the uniqueness of non-unitary joint diagonalization. In Section 4 this uniqueness
result is used to analyze the identifiability of tensorial BSS methods and to
propose a new algebraic solution which generalizes the SUT approach and is
able to separate non-circular signals with indistinct circularity coefficients.

2 Complex BSS and Matrix Joint Diagonaliza-
tion

In this section we review the complex linear BSS problem to make this work
self-contained, together with several second- and higher-order statistics based
BSS approaches. Thereafter, we introduce a non-unitary joint diagonalization
approach which is general enough to unify all the existing approaches in the
literature.

2.1 Notations

We denote by (·)T the matrix transpose, by (·)H the Hermitian transpose, and by
(·)∗ the (entry-wise) complex conjugate. Furthermore, |z| =

√
zz∗, <z and =z
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denotes the modulus, the real part and the imaginary part of z ∈ C, respectively.
The complex unit is denoted by i :=

√
−1. (·)† stands optionally for either the

matrix transpose or the Hermitian transpose. Matrices are denoted with capital
Roman and Greek letters, e.g. A,Ω. Vectors are in lower case bold face, e.g.
s,ω. The expectation value of a random variable is denoted by E[·].

By Gl(m) we denote the set of all invertible (m × m)-matrices. Im is the
(m×m)-identity matrix, and the sets of all unitary and real orthogonal (m×m)-
matrices are defined as

U(m) := {X ∈ Gl(m)|XHX = Im} and (1)

O(m) := U(m) ∩ Rm×m, (2)

respectively. The set of all complex orthogonal (m×m)-matrices is given by

O(m,C) := {X ∈ Gl(m)|XTX = Im}. (3)

For C ∈ Cm×m and X ∈ Gl(m), we define the linear transformations

C 7→XCXT, (4a)

C 7→XCXH, (4b)

as the transpose congruence transform and Hermitian congruence transform,
respectively. Finally, we denote by ⊕ the exclusive disjunction operator.

2.2 Properties of Complex Signals

In this work we model a complex signal s(t) = x(t)+iy(t) as a complex stochastic
process indexed by the variable t with real x(t) and y(t). Let [s(t1), . . . , s(tn)]T

be an n-dimensional induced random vector of the signal s(t).

2.2.1 Stationarity

A signal s(t) is said to be completely stationary if the joint probability distri-
bution of [s(t1), . . . , s(tn)]T is identical to the joint probability distribution of
[s(t1 − τ), . . . , s(tn − τ)]T for any n, cf. [37]. A real signal x(t) is said to be
weakly stationary, if the following holds:

(i) E[x(t)] = E[x(t+ τ)] for all τ ∈ R and

(ii) E[x(t1)x(t2)] = E[x(t1 + τ)x(t2 + τ)].

The first property states that the mean of the signal is constant, and the second
that the correlation only depends on the time difference t1 − t2.

2.2.2 Circularity

A complex signal s(t) = x(t) + iy(t) is said to be (weakly) circular, if s(t)
and eiαs(t) have the same probability distribution. The circularity assumption
implies E[s(t)2] = e2iαE[s(t)2] for all α, i.e. E[s(t)2] = 0. Given a complex
signal s(t) with a bounded variance, i.e. E[|s(t)|2] <∞, the following quantity

λs(t) :=
|E[s(t)2]|
E[|s(t)|2]

(5)
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is referred to as the circularity coefficient of s(t). The definition of circularity
can be extended straightforwardly to the case of multiple signals. Let s(t) ∈ Cm
be a vector consisting of m signals. Then s(t) is circular if s(t) and eiαs(t) have
the same probability distribution.

A signal s(t) is said to be completely circular if the induced random vector
[s(t1), . . . , s(tn)]T is circular for all n ∈ N. A signal is circular of order n if the
induced vectors of order lower or equal to n are circular, cf. [38].

2.2.3 Whiteness

A real signal x(t) is said to be white if

(i) E[x(t)] = 0;

(ii) E[x(t1)x(t2)] = cδ(t1 − t2),

where δ is the Kronecker delta function and c some positive constant. We refer
to [39] for generalization of the concept of whiteness to higher order.

2.3 Complex Linear BSS Model

Let s(t) = [s1(t), . . . , sm(t)]T be an m-dimensional mutually statistically inde-
pendent complex signal. The noise-free instantaneous linear complex BSS model
is given by

w(t) = As(t), (6)

where A ∈ Gl(m) is the mixing matrix and w(t) = [w1(t), . . . , wm(t)]T presents
m observed linear mixtures of s(t). Without loss of generality, we assume that
the sources s(t) have zero mean, i.e. E[s(t)] = 0, cf. [1].

The task of the linear complex BSS problem (6) is to recover the source
signals s(t) by estimating the mixing matrix A or its inverse A−1 only based on
the observations w(t) via the demixing model

y(t) = XHw(t), (7)

where XH ∈ Gl(m) is the demixing matrix, which is an estimation of A−1, and
y(t) represents the corresponding extracted signals. The statistical indepen-
dence assumption provides various statistical properties of sources to identify
the demixing matrix. The widely used properties include non-circularity, non-
stationarity, non-whiteness, and non-Gaussianity.

2.4 Second-Order Statistics Based ICA Approaches

In this subsection, we briefly review the second-order statistics based ICA ap-
proaches and motivate our general approach of joint diagonalization.

Given the mixing model (6), the covariance matrix of the observations w(t)
is computed as

Cw(t) := E[w(t)wH(t)] = AE[s(t)sH(t)]︸ ︷︷ ︸
=:Cs(t)

AH (8)

where the covariance matrix of the sources Cs(t) is diagonal and non-negative
following the statistical independence assumption. When the source signals are
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assumed to be non-stationary, i.e. Cw(ti) 6= Cw(tj) for ti 6= tj , the demix-
ing matrix is expected to be identifiable via a joint diagonalization of a set of
covariance matrices at different times.

In order to separate stationary but non-white signals, one possibility is to use
the non-zero autocorrelations at different time instances t1 and t2 with t1 6= t2,
namely

C̃w(t1, t2) := E[w(t1)wH(t2)] = AC̃s(t1, t2)AH. (9)

Note that, although the autocorrelation matrix C̃s(t1, t2) of the sources is still
diagonal, it is not real in general. In other words, the autocorrelation matrix
of the observations is generally not a Hermitian matrix and consequently not
positive definite either. Similarly as above, the demixing matrix is expected to
be identifiable via a joint diagonalization of a set of autocorrelation matrices
with different time pairs.

If the signals have a non-trivial imaginary part, additional properties can be
employed for BSS. Besides the standard covariance matrix (8), a similar statis-
tical quantity of complex valued signals, known as pseudo-covariance matrix, is
defined as

Rw(t) := E[w(t)wT(t] = ARs(t)A
T. (10)

The works in [32, 33] have shown that, if the sources are all non-circular with
distinct circularity coefficients (5), i.e. distinct diagonal entries of Rs(t), the
demixing matrix can be successfully identified by jointly diagonalizing both the
covariance and the pseudo-covariance matrix. The resulting algebraic solution,
referred to as Strong Uncorrelating Transform, provides a simple answer to
the complex BSS problem. However, it fails in separating non-circular signals
with same circularity coefficients. To overcome this problem, one can either
utilize iterative contrast function based algorithms or employ some additional
information, as for example the pseudo-autocorrelation matrix of the signals,
which is defined as

R̃w(t1, t2) := E[w(t1)wT(t2)] = AR̃s(t1, t2)AT. (11)

Note that both the pseudo-covariance and pseudo-autocorrelation matrix are
complex symmetric. Recent work in [40] considers the problem of jointly di-
agonalizing a set of both auto-correlation and pseudo-autocorrelation matrices.
The identifiability results for this approach are still lacking in the literature and
follow from our main result in Section 3.

2.5 Higher-Order Statistics (Tensor) Based ICA Approaches

In many real applications, second-order statistics may not be sufficient to ac-
complish the task of separation. In these situations higher-order statistics can
be exploited. For example, statistically independent non-Gaussian signals can
be blindly separated by using the fourth-order [14], or higher-order cumulants,
cf. [41, 42].

Recalling the model as given in (6), the k-th order cumulant tensor of the

sources s(t), denoted by C(k)
s,ι ∈ (Cm)k, is defined with its (i1, . . . , ik)-th entry
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by

(C(k)
s,ι )i1...ik := cum

(
s

(∗)
i1

(t), . . . , s
(∗)
ik

(t)
)

=

k∑
p=1

(−1)
p−1

(p−1)!E
[∏
q∈J1

s(∗)
q (t)

]
· . . . ·E

[∏
q∈Jp

s(∗)
q (t)

]
,

(12)

where ι = [ι1, . . . , ιk] ∈ {0, 1}k is a binary vector which enables or disables
complex conjugate in each dimension, i.e.

ιi =

{
0 no complex conjugate,
1 complex conjugate.

(13)

The summation in (12) involves all possible partitions {J1, . . . , Jp} (1 ≤ p ≤ k)
of the indices {i1, . . . , ik}. We refer to [41, 43] for further details regarding
higher-order cumulant tensors.

Now, by varying two selected indices, say (ip, iq), with all other indices

fixed, we obtain one cumulant matrix or cumulant slice of C(k)
s,ι , denoted by

(C(k)
s,ι ){p,q} ∈ Cm×m. The assumption that sources are mutually statistically

independent implies that all off-diagonal entries of the cumulant tensors of any

order must be zero, i.e., the cumulant matrices (C(k)
s,ι ){p,q} are diagonal for all

p 6= q. Multilinear properties of the cumulant tensors lead to

(C(k)
w,ι){p,q} = A(C(k)

s,ι ){p,q}A
†, (14)

where (·)† is determined by the construction (12). Similarly, by exploiting
higher-order non-stationarity or higher-order circularity of the sources, the ICA
problem is formulated as jointly diagonalizing a set of slices of the cumulant
tensors via either Hermitian congruence or transpose congruence. Note, that
up to date only specific cumulant tensors have been considered for BSS [42]
via joint diagonalization, that end up with (·)† being Hermitian conjugate in
Equation (14).

In this work, we answer the question on the identifiability of the BSS prob-
lem based on the joint diagonalization of a finite set of higher-order statistics
matrices.

2.6 A Unified NUJD Approach

We summarize the above observations in a unified approach for non-unitary joint
diagonalization. Let {Ci}ni=1 be a set of m×m complex matrices, constructed
by

Ci = AΩiA
†i , i = 1, . . . n, (15)

where Ωi = diag
(
ωi1, . . . , ωim

)
∈ Cm×m and Ωi 6= 0. Note, that Equation

(15) allows mixtures of both Hermitian congruence and transpose congruence
transformations. The task is to find a matrix X ∈ Gl(m) such that the matrices{

XHCi(X
H)†i

∣∣ i = 1, . . . , n
}

(16)

are simultaneously diagonalized. Our present work concentrates on developing
the uniqueness conditions on the set of Ωi’s, such that the matrix A is identifiable
up to permutation and diagonal scaling.
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Note that in the Hermitian congruence case, XHCiX, i = 1, . . . , n, are diag-
onal if and only if X simultaneously diagonalizes the Hermitian and the skew-
Hermitian part of the Ci. Namely, by considering the real and the imaginary
part of Ωi in Equation (15) that corresponds to Ci = AΩiA

H separately, we can
construct two Hermitian matrices as

C ′i = A<ΩiA
H and (17)

C ′′i = A=ΩiA
H. (18)

Therefore, without loss of generality, we study an equivalent formulation of
Problem (15) by restricting Ωi to be real diagonal whenever (·)† is the Hermitian
transpose.

Clearly, the mixing matrix can only be identified up to permutation and
scaling. We define the set of all column-wise permutated diagonal (m × m)-
matrices by

G(m) := {DP | D ∈ Gl(m) is diagonal and

P is a permutation matrix}.
(19)

Since G(m) admits a matrix group structure, we can define the following equiv-
alence class on Cm×m, cf. [44].

Definition 1 (Essential Equivalence). Let X,Y ∈ Gl(m), then X is said to be
essentially equivalent to Y , and vice versa, if there exists E ∈ G(m) such that

X = Y E. (20)

Moreover, we say that the solution of a matrix equation is essentially unique, if
the equation admits a unique solution on the set of equivalence classes.

Since
XHCi(X

H)†i = (XHA)Ωi(X
HA)†i , (21)

we assume without loss of generality for further studies that the Ci = Ωi,
i = 1, . . . , n, are already diagonal. Thus, the identifiability analysis is restricted
to investigating under what conditions the unit equivalence class G(m) admits
the only solutions to the simultaneous diagonalization problem (16).

3 Uniqueness of Non-Unitary Joint Diagonalzi-
tion

In this section we present the main results on the uniqueness analysis of the
NUJD problem given by Equations (15) and (16). In contrast to existing results
on joint diagonalization, we do not assume the matrices to be real as in [22],
positive definite as in [18], nor do we restrict the number of matrices to two as
in [45, 46]. For the sake of readability, we outsource the proofs of the results to
the appendix.

The identifiability results require a notion of collinerarity for diagonal ma-
trices. Let Zi, i = 1, . . . , n, denote n complex diagonal (m ×m)-matrices with
the diagonal entries zi1, . . . , zim. For a fixed diagonal position k, we denote by
zk := [z1k, . . . , znk]T ∈ Cn the vector consisting of the k-th diagonal element of
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each matrix, respectively. Recall that the cosine of the complex angle between
two vectors v,w ∈ Cn is computed as

c(v,w) :=

{
vHw
‖v‖‖w‖ if v 6= 0 ∧w 6= 0,

1 otherwise.
(22)

where ‖v‖ denotes the Euclidean norm of a vector v. We measure the collinear-
ity of a set of n complex diagonal (m ×m)-matrices by means of the complex
angle of the vectors formed by stacking the entries at corresponding positions
together. Precisely, the collinearity measure for the set of Zi’s is defined by

ρ(Z1, . . . , Zn) := max
1≤k<l≤m

|c(zk, zl)|. (23)

Note, that 0 ≤ ρ ≤ 1 and that ρ = 1 if and only if there exists a complex scalar
ω and a pair zk, zl, k 6= l so that zk = ωzl.

Our first result deals with the simple situations where either only purely
Hermitian or purely complex symmetric matrices are involved. The techniques
used for deriving the uniqueness conditions for both cases are adapted from the
work in [22], where only real symmetric matrices are considered.

Theorem 1. (a) Let Ωi ∈ Cm×m, for i = 1, . . . , n, be diagonal, and let X ∈
Gl(m) so that XHΩiX

∗ is diagonal as well. Then X is essentially unique if and
only if ρ(Ω1, . . . ,Ωn) < 1.

(b) Let Ωi ∈ Rm×m, for i = 1, . . . , n, be diagonal, and let X ∈ Gl(m) so
that XHΩiX is diagonal as well. Then X is essentially unique if and only if
ρ(Ω1, . . . ,Ωn) < 1.

The above theorem answers the identifiability question of complex BSS by
means of matrix joint diagonalization approaches, when either purely complex
symmetric, or purely Hermitian matrices are involved. For the situations with
a mixture of Hermitian and complex symmetric matrices, we continue by firstly
considering the case of simultaneously diagonalizing one complex symmetric and
one Hermitian matrix. The following theorem generalizes a result in [47] and
[48], wherein the authors require positive definiteness of the Hermitian matrix.

Theorem 2. Let X ∈ Gl(m) and let Ω1 be a complex and Ω2 a real diagonal
matrix such that

XHΩ1X
∗ and XHΩ2X are diagonal. (24)

Then X is essentially unique if and only if

|ω1k||ω2l| 6= |ω1l||ω2k|, (25)

holds for all pairs (k, l) with k 6= l.

Finally, by considering a mixture of multiple Hermitian and complex sym-
metric matrices, the following theorem completes our answer to the uniqueness
analysis to the NUJD problem.

Theorem 3. Let Ci = XHΩiX
∗ for i = 1, . . . , s and C ′j = XHΩ′jX for j =

1, . . . , h be diagonal. Moreover, let

ρ(Ω1, . . . ,Ωs) = ρ(Ω′1, . . . ,Ω
′
h) = 1, (26)
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then X is essentially unique if and only if there exists no pair (k, l) with k 6= l,
such that the following two conditions hold:

(i) |c(ωk,ωl)| = |c(ω′k,ω′l)| = 1 (27a)

(ii) ‖ωk‖‖ωl‖ = ‖ω′k‖‖ω′l‖. (27b)

4 Applications to Complex BSS

In this section, we firstly apply the uniqueness results from the previous sec-
tion to the NUJD based complex BSS methods. The second application of the
uniqueness results focuses on the development of algebraic solutions, i.e. solu-
tions that only involve eigenvalue or singular value decompositions. Although
the algebraic approaches are in general less powerful and less robust to noise
and estimation errors than their iterative counterparts, cf. [35], these methods
are of particular interest, as they provide simple, efficient solutions based on
various powerful eigensolvers, cf. [45, 49, 50].

4.1 Identifiability of Complex BSS

From the main results developed in Section 3, any existing identifiability re-
sult of complex BSS follows straightforwardly. However, to the best of the
authors’ knowledge there are no general results, which unify HOS based NUJD
approaches.

Let t := [t1, . . . , tm]T ∈ Rm be a set of time instances for each observed
signal wi(t), we define the k-th order auto-cumulant tensor of the observations

w(t), cf. [43], denoted by C(k)
w,ι(t), with its (i1, . . . , ik)-th entry(

C(k)
w,ι(t)

)
i1...ik

:= cum(w
(∗)
i1

(ti1) · . . . · w(∗)
ik

(tik)), (28)

Similarly as in Equation (14), the (p, q)-th slice of the k-th auto-cumulant tensor
with a set of given time t is computed as(

C(k)
w,ι(t)

)
{p,q}

:= A
(
C(k)
s,ι (t)

)
{p,q}

A†. (29)

The identifiability of the complex BSS problem via jointly diagonalizing a set
of higher-order cumulant matrices is summarized as follows.

Theorem 4 (Identifiability of Complex ICA). Given the complex linear BSS
model as in (6) and a set of time instances ti := [ti1, . . . , tim]T for i = 1, . . . , T ,
then the joint diagonalizer of the set{(

C(k)
w,ι(ti)

)
{p,q}

}
i=1,...,T
k=2,...,K

p,q=1,...,m

(30)

is essentially unique and solves the BSS problem up to permutation and scaling,
if and only if the diagonal matrices{(

C(k)
s,ι (ti)

)
{p,q}

}
i=1,...,T
k=2,...,K

p,q=1,...,m

(31)

fulfill one of the following three conditions:
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(i) ρ(S) < 1, where S denotes the set of cumulant matrices constructed via
transpose congruence, i.e.

S :=

{(
C(k)
s,ι (ti)

)
{p,q}

∣∣∣ιp ⊕ ιq = 0

}
; (32)

(ii) ρ(H) < 1, where H is the set of cumulant matrices constructed via Her-
mitian congruence, i.e.

H :=

{(
C(k)
s,ι (ti)

)
{p,q}

∣∣∣ιp ⊕ ιq = 1

}
; (33)

(iii) When both the previous two conditions are violated, Equation (27) still
holds.

Example 1 (Fourth-Order Cumulants). Recall the complex BSS model (6), the
fourth-order cumulant of a subset of chosen sources (si1 , si2 , si3 , si4) is computed
explicitly as

cum(si1 , si2 , si3 , si4) =E[si1(t)si2(t)si3(t)si4(t)]

− E[si1(t)si2(t)]E[si3(t)si4(t)]

− E[si1(t)si3(t)]E[si2(t)si4(t)]

− E[si1(t)si4(t)]E[si2(t)si3(t)].

(34)

By taking into account all possible combinations of complex conjugate on each
component, we have three different fourth-order cumulant tensors

(C(4)
w,ι1)i1...i4 := cum(wi1 , wi2 , wi3 , wi4), (35a)

(C(4)
w,ι2)i1...i4 := cum(w∗i1 , wi2 , wi3 , wi4), (35b)

(C(4)
w,ι3)i1...i4 := cum(w∗i1 , w

∗
i2 , wi3 , wi4). (35c)

Current works in the BSS literature only focus on the cases, where source signals
are assumed to be harmonic, i.e. the quantity (35c) does not vanish, while the
other two are equal to zero, cf. [43]. Theorem 3 in [27] presents a result on the
identifiability of separating harmonic sources using only the 4-th order cumulants
(35c). Certainly, when the sources are non-harmonic, i.e. all possible fourth-
order cumulants (35) do not vanish, then the BSS problem can be still solvable
via a joint diagonalization of fourth-order cumulant matrices, even though the
conditions given in [27] are violated.

4.2 Algebraic Solutions to Complex BSS

In this subsection, we investigate a particularly simple solution to the complex
BSS problem. It is given in closed form in terms of an eigenvalue and a singular
value decomposition of two matrices. We refer to such solutions as algebraic
solutions. These methods are of high interest, since the existence of fast eigen-
solvers turns them into very fast solvers for BSS. Algebraic solutions exist if
either both matrices are complex symmetric or Hermitian, and at least one is
invertible, cf. [45]. For the mixed case, the strong uncorrelating transform
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(SUT), where a combination of an eigenvalue decomposition and a Takagi fac-
torization is used, provides an algebraic solution only if the Hermitian matrix
is positive definite. In this subsection, we extend this approach and investigate
the situation of separating non-circular signals with non-distinct circularity co-
efficients, cf. [51].

Lemma 1. Let C1, C2 ∈ Gl(m) be one complex symmetric and one Hermitian
matrix, respectively, constructed by

C1 := AΩ1A
T and (36)

C2 := AΩ2A
H, (37)

where A ∈ Gl(m), Ω1 is complex diagonal, and Ω2 is real diagonal. Let C2 =
UΣUT be the Takagi factorization of C2. Then,

(i) the matrix C̃1 := Σ−1/2UHC1UΣ−1/2 admits a matrix factorization of the

form C̃1 = V ΛV H, where V ∈ O(m) and Λ is diagonal;

(ii) the matrix X := UΣ−1/2V ∗ satisfies

XHC2X
∗ = I and XHC1X is diagonal. (38)

As the complex symmetric matrix C2 reflects the pseudo second-order statis-
tics of complex signals, we name the matrix X Pseudo-Uncorrelating Transform
(PUT) in referring its connection to SUT. A straightforward computation shows

that the matrix V consists of the eigenvectors of C̃1C̃
T
1 , as

C̃1C̃
T
1 = V ΛV HV ∗ΛV T = V Λ2V T. (39)

Thus, if W is a matrix such that C̃1C̃
T
1 = WΛ′W−1 and if the eigenvalues

Λ′ are pairwise distinct, it follows by the uniqueness of the EVD, that V =
W (WTW )−1/2DP , where P is a permutation and D is diagonal with entries
being ±1. Ultimately, we summarize the procedure for computing the PUT in
Algorithm 1.

Algorithm 1. Pseudo-Uncorrelating Transform (PUT)

Step 1: Construct C1, C2 from the observations w(t),
where C1 and C2 are constructed via Hermitian
congruence and matrix congruence, respectively;

Step 2: Compute the Takagi factorization of C2 = UΣUT;

Step 3: Let C̃1 := Σ−1/2UHC1UΣ−1/2, compute EVD of

C̃1C̃
T
1 = WΛW−1;

Step 4: Compute V = W (WTW )−1/2;

Step 5: Compute the PUT matrix X = UΣ−1/2V ∗;

Remark 1. When the matrix C1 is Hermitian and positive definite, i.e. C1

being the covariance matrix of the observations, then the entries of Λ in (39)
are simply the reciprocal of the circularity coefficients of sources. Our result
coincides with the identifiability condition of SUT, cf. theorem 2 in [33].

12



Remark 2. The second observation is that the SUT of an arbitrary pair of
one positive definite Hermitian and one complex symmetric matrix does always
exist, cf. [48]. In contrast, the existence of the PUT matrix is not guaranteed
for an arbitrary pair of a complex symmetric and a (general) Hermitian matrix.
However, existence of SUT implies the applicability of PUT on an arbitrary pair
of positive definite Hermitian and complex symmetric matrix. In other words,
PUT can be considered as a generalization of SUT.

Corollary 1. For an arbitrary pair of one Hermitian positive definite and one
non-singular complex symmetric matrix, a PUT matrix always exists.

Finally, we characterize the applicability of PUT as an effective BSS tech-
nique. Recall the complex linear BSS model as in (6), let t := [t1, . . . , tm]T ∈ Rm

represent m time instances of individual observations, and denote by C̃s(t) and

R̃s(t) the autocorrelation and pseudo-autocorrelation matrix of the sources s(t),
respectively. Their (i, j)-th entries are computed as(

C̃s(t)
)
ij

:= E[si(ti)s
∗
j (tj)], (40)

and (
R̃s(t)

)
ij

:= E[si(ti)sj(tj)]. (41)

Corollary 2. If one of the two conditions:

(i)
∣∣∣<(C̃s(t))

ii

∣∣∣∣∣∣(R̃s(t))
jj

∣∣∣ 6= ∣∣∣<(C̃s(t))
jj

∣∣∣∣∣∣(R̃s(t))
ii

∣∣∣,
(ii)

∣∣∣=(C̃s(t))
ii

∣∣∣∣∣∣(R̃s(t))
jj

∣∣∣ 6= ∣∣∣=(C̃s(t))
jj

∣∣∣∣∣∣(R̃s(t))
ii

∣∣∣,
is fulfilled for all pairs (i, j) with i 6= j, then the joint diagonalizer of one
Hermitian and one complex symmetric matrix, constructed correspondingly from
the observations w(t) via PUT, is essentially unique and solves the BSS problem
up to permutation and scaling.

5 Conclusions

In this work, we study the problem of simultaneously diagonalizing a set of
complex square matrices, and provide a thorough uniqueness analysis of the
problem. In particular, we focus on its application in the problem of complex
linear BSS. Our work not only characterizes a general result on identifiabil-
ity conditions of the MJD based BSS methods, but also derives a generalized
algebraic BSS solution, i.e. the PUT algorithm. Furthermore, the present re-
sults may also have impact in the areas of beamforming [52], and direction of
arrival estimation [53], where matrix joint diagonalization approaches play an
important role.
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.1 Proof of Theorem 1

(a) First, consider the case m = 2 and let

X =

[
x1 x2

x3 x4

]
∈ Gl(2). (42)

Then XHΩiX
∗ is diagonal for i = 1, . . . , n, if and only if

ω∗i1x1x2 + ω∗i2x3x4 = 0, (43)

for i = 1, . . . , n. The corresponding system of linear equations reads as[
ω11 ω21 . . . ωn1

ω12 ω22 . . . ωn2

]H [
x1x2

x3x4

]
= 0, (44)

which only has a unique trivial solution if and only if the coefficient matrix
has rank 2. This is equivalent to ρ(Ω1, . . . ,Ωn) < 1. The trivial solution, i.e.
x1x2 = x3x4 = 0, together with the invertibility of X yields that either x1 = 0
and x4 = 0, or, x2 = 0 and x3 = 0. This, in turn, is equivalent to X ∈ G(2).

Consider now the case m > 2. If ρ = 1 then there exists a pair (k, l) such
that |c(ωk,ωl)| = 1 and the same argument as above shows that ρ = 1 implies
the non-uniqueness of the joint diagonalizer. For the reverse direction of the
statement, assume that the joint diagonalizer X is not in G(m). We have to
show that this implies ρ = 1.

Now assume first that one of the Ωi’s, say Ω1, is invertible. Then

XHΩiX
∗(XHΩ1X

∗)−1 = XHΩiΩ
−1
1 (XH)−1, (45)

for i = 1, . . . , n, gives the simultaneous eigendecomposition of the diagonal
matrices ΩiΩ

−1
1 . Since X /∈ G(m), there exists a pair (k, l) with k 6= l such

that
ωik
ω1k

=
ωil
ω1l

, (46)

which is equivalent to |c(ωk,ωl)| = 1 and hence ρ(Ω1, . . . ,Ωn) = 1. If
all the Ωi’s are singular, we distinguish between two cases. Firstly, assume
that there is a position on the diagonals, say k, where all ωik = 0. Then
|c(ωk,ωl)| = 1 holds true for any k 6= l and thus ρ = 1. Secondly, if there
is no common position where all the Ωi’s have a zero entry, there exists an
invertible linear combination, say Ω0, which can also be diagonalized via the
same transformations. Then by considering a new set {Ωi}ni=0, the same
argument as from (45) to (46) for the invertible case applies by replacing Ω1

with Ω0. This completes the proof for part (a).
(b) For m = 2, the condition that XHΩiX is diagonal for all i = 1, . . . , n

leads to the system of linear equations[
ω11 ω21 . . . ωn1

ω12 ω22 . . . ωn2

]T [
x1x
∗
3

x2x
∗
4

]
= 0, (47)

which admits a non-trivial solution if and only if ρ(Ω1, . . . ,Ωn) = 1. Now,
x1x
∗
3 = x2x

∗
4 = 0 together with the invertibility of X implies that X is essen-

tially unique. The case for m > 2 is now just as in Section .1 and is omitted
here.
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.2 Proof of Theorem 2

We prove an equivalent formulation of Theorem 2. Namely, a matrix X ∈
Gl(m) \ G(m) that fulfills condition (24) exists, if and only if there exists a
pair (k, l) with k 6= l such that

|ω1k||ω2l| = |ω1l||ω2k|. (48)

Firstly, consider the case m = 2. From Equations (43) and (47) we see that
the condition (24) is equivalent to{

ω∗11x1x2 + ω∗12x3x4 = 0
ω21x1x

∗
2 + ω22x3x

∗
4 = 0.

(49)

Assume now that X ∈ Gl(2) \G(2) and, without loss of generality |x1x2| 6= 0.
Then either |x3x4| 6= 0 and Equation (49) yields

|ω11| = |ω12|
|x3x4|
|x1x2|

, |ω21| = |ω22|
|x3x4|
|x1x2|

, (50)

or |x3x4| = 0. Both cases imply Equation (48).
For the other direction, let Equation (48) hold true. We construct explicitly

a common diagonalizer in Gl(2)\G(2). The case when either Ω1 = 0 or Ω2 = 0
is trivial and not further discussed. Equation (48) implies

Ω1 = r

[
exp (iϕ1)

exp (iϕ2)

]
Ω2, (51)

with suitable ϕi ∈ [0, 2π) and r > 0. Firstly, assume that one, and hence both,
matrices Ω1 and Ω2 are not invertible. We choose without loss of generality
ω22 to be 0. Equation (49) now implies x1x2 = 0, but x3 and x4 can be chosen
arbitrarily. Indeed, it is easily checked that in this case,

X :=

[
1 1
0 1

]
(52)

is a common diagonalizer. Assume now that both, Ω1 and Ω2 are invertible.
Then it is straightforwardly verified that

X := ΘΩ
−1/2
2

[
exp (− i

2ϕ1)
exp (− i

2ϕ2)

]
(53)

is a common diagonalizer for any real orthogonal matrix Θ ∈ O(2).
Now, let m > 2. If Equation (48) holds true, then the case for m = 2

applies and the diagonalizer is not essentially unique.
For the reverse direction, we assume firstly that both Ω1 and Ω2 are not

invertible. Then either there exists an index pair (k, l) with k 6= l, such
that Equation (48) holds true (with zeros on both sides of the equation) and
it follows again from the case m = 2 that the diagonalizer is not essentially
unique. Or, Ω1 and Ω2 both have at most one zero diagonal entry at different
positions. This case will be treated at the end of the proof.

Let us now consider the case where Ω2 is invertible. Assume that the
diagonalizer is not essentially unique, i.e. that X in Equation (24) (and hence
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XH and X∗) differs from a product of a diagonal and a permutation matrix.
The uniqueness of the QR-decomposition of the invertible matrix X, i.e. X =
QXRX , allows by further decomposing RX = DXNX with DX := ddiag(RX)
and NX := D−1

X RX the unique factorization

X = QXDXNX (54)

with unitary QX , positive real diagonal DX , and NX being upper triangular
with ddiag(NX) = Im. Here, ddiag(NX) forms a diagonal matrix, whose
diagonal entries are just those of NX .

Using this decomposition, X is not in G(m) if and only if either NX 6= In
or QX is not a product of a permutation matrix and a diagonal phase shift
matrix. By a diagonal phase shift matrix, we mean all diagonal matrices in
U(m). Using the invertibility assumption on Ω2,

Z : = (XHΩ2X)−1XHΩ1X
∗

= X−1Ω−1
2 Ω1X

∗

= N−1
X D−1

X QH
XΩ−1

2 Ω1Q
∗
XD

∗
XN

∗
X

(55)

is diagonal. This yields

D−1
X QH

XΩ−1
2 Ω1Q

∗
XD

∗
X = NXZ(N∗X)−1, (56)

where the matrix is symmetric on the left hand side and upper triangular on
the right hand side. This leads us to two conclusions, namely that

NXZ(N∗X)−1 is diagonal (57)

and
D−1
X QH

XΩ−1
2 Ω1Q

∗
XD

∗
X is diagonal. (58)

Since DX = D∗X is real and diagonal, the last Equation implies that

R̃ = QH
XΩ−1

2 Ω1Q
∗
X is diagonal (59)

and hence
R̃ = NXZ(N∗X)−1, (60)

Let us have a closer look at Equation (59). By introducing suitable
diagonal phase shift matrices Φ1 and Φ2 we have

Φ1Q
H
XΦ2

|ω11/ω21|
. . .

|ω1m/ω2m|

Φ2Q
∗
XΦ1 = R (61)

where R is diagonal with real and nonnegative entries. Note that Equation (61)
gives a Takagi factorization of R. If QX differs from a product of a permutation
matrix and a phase shift matrix, the uniqueness of the Takagi factorization now
implies that (at least) two diagonal entries have to coincide and consequently
Equation (48) follows.

Assume now that NX differs from the identity, and let its (k, l)-th entry,

say z, differ from 0. Now R̃ = Φ∗21 R and consequently Equation (60) yields

(NX)−1Φ∗21 RNX = Z. (62)
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Note that, by the special structure of NX , namely upper triangular with ones
on the diagonal, this immediately implies Z = Φ∗21 R. Thus, the (k, l)-th entry
of equation (62) reads as

z(Φ∗21 R)kk = z(Φ∗21 R)ll. (63)

Taking absolute values, this implies |Rkk| = |Rll| for the corresponding diagonal
entries of R and Equation (48) follows.

Now let us get back to the case where exactly one diagonal entry of Ω2

is zero and the corresponding diagonal entry of Ω1 differs from zero. Since
Equation (24) is equivalent to

Π1X
HΠ2ΠT

2 Ω1Π2ΠT
2X
∗ΠT

1 is diagonal, (64)

and
Π1X

HΠ2ΠT
2 Ω2Π2ΠT

2XΠT
1 is diagonal, (65)

for any permutation matrices Π1,Π2, we assume without loss of generality
that

X =

[
X̃ x1

xH
2 x

]
,Ω1 =

[
Ω̃1 0
0 ωm

]
,Ω2 =

[
Ω̃2 0
0 0

]
, (66)

where ωm 6= 0 and X̃, Ω̃2 ∈ Gl(m− 1). Now

XHΩ2X =

[
X̃HΩ̃2X̃ X̃HΩ̃2x1

? ?

]
, (67)

and Equation (24) together with the invertibility assumption on X̃ and Ω̃2

implies x1 = 0 and x 6= 0. Thus

XHΩ1X
∗ =

[
X̃HΩ̃1X̃

∗ + ωmx2x
T
2 xωmx2

? ?

]
, (68)

and since x 6= 0 and ωm 6= 0, Equation (24) yields that x2 = 0. Hence, we
just showed that if Ω1 and Ω2 are structured as in Equation (66), X can only
be a common diagonalizer if

X =

[
X̃ 0
0 x

]
. (69)

Now, it is clear that X ∈ Gl(m) \ G(m) if and only if X̃ ∈ Gl(m− 1) \ G(m−
1), and we reduced the problem to the invertible case treated above. This
concludes the proof of the theorem.

.3 Proof of Theorem 3

Again, we firstly consider the case m = 2. Assumption (26) is equivalent to
Condition (27a) and due to the fact that Equations (44) and (47) have both
nontrivial solutions, say

[x1x2, x3x4]T and [x1x
∗
2, x3x

∗
4]T. (70)
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Thus, we have {
x1x2ω1 + x3x4ω2 = 0,
x1x
∗
2ω1 + x3x

∗
4ω2 = 0

(71)

and, by taking absolute values,{
|x1x2|‖ω1‖ = |x3x4|‖ω2‖,
|x1x

∗
2|‖ω1‖ = |x3x

∗
4|‖ω2‖

(72)

and Condition (27b) follows.
To see the reverse direction, let Condition (27b) hold true. If ‖ω1‖ =

‖ω2‖ = 0 or if ‖ω′1‖ = ‖ω′2‖ = 0, the non-uniqueness of X follows from
Theorem 1. Otherwise, (ii) implies (after a possible renumeration)

ω2 = reiϕ1ω1

ω′2 = rω′1,
(73)

with r > 0 and ϕ1 ∈ [0, 2π). Using Equation (71), we find an explicit
diagonalizer that is not in G(m), namely

x1 = r̃exp( i
2ϕ1), x2 = 1

r ,

x3 = 1
r̃ exp( i

2ϕ1), x4 = −1,
(74)

where r̃ 6= 0 can be chosen arbitrarily such that X is invertible.
Let us consider now the case m > 2. If there exists a pair (k, l) with k 6= l,

such that Conditions (27) hold, then we can use the above argument for the
corresponding (2×2)-sub matrix and conclude that the common diagonalizer is
not essentially unique. Now, let X ∈ Gl(m) \ G(m). Assume for the moment
that at least one per Ci’s and C ′j ’s is invertible, say, C1 and C ′1. This implies

that CiC
′
jC
−1
1 C

′−1
1 = XHΩiΩ

′
jΩ
−1
1 Ω

′−1
1 X−1, for i = 1, . . . , s and j = 1, . . . , h,

is a simultaneous eigendecomposition. Since X ∈ Gl(m) \ G(m), there must
be an index pair (k, l) with k 6= l, such that

ωikω
′
jk

ω1kω′1k
=
ωilω

′
jl

ω1lω′1l
(75)

for all i = 1, . . . , s and j = 1, . . . , h. This yields |c(ωk,ωl)| = |c(ω′k,ω′l)| = 1
and hence Equation (i) follows. If none of the Ci is invertible, the same argu-
ment as in Theorem 1 applied to both sets {Ci}si=1 and {C ′j}hj=1 individually
yields the same conclusion as in (27a).

Hence, by permuting k and l if necessary, there exist z1, z2 ∈ C such that

ωk = z1ωl, and ω′k = z2ω
′
l. (76)

On the other hand, by Theorem 2, we obtain

|ωik||ω′jl| = |ωil||ω′jk| (77)

for all i = 1, . . . , s and j = 1, . . . , h, and hence |z1| = |z2|. Equation (76) now
yields Equation (27b) and the proof is complete.
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.4 Proof of Lemma 1

(i) The construction of C2 as in Equations (36) and (37) implies

AΩ2A
T = UΣUT. (78)

As diagonal entries of Σ are all positive, Equation (78) is equivalent to

Σ−1/2UHAΩ2A
TU∗Σ−1/2 = Im. (79)

By inserting Ω2 = (Ω
1/2
2 )2 into the above equation, it can be seen that V :=

Σ−1/2UHAΩ
1/2
2 is complex orthogonal. Now, A = UΣ1/2V Ω

−1/2
2 , and thus

Equations (36) and (37) yield

C1 = AΩ1A
H = UΣ1/2V Ω

−1/2
2 Ω1Ω

−H/2
2︸ ︷︷ ︸

=:Λ

V HΣ1/2UH, (80)

where Λ is diagonal. Then, Equation (80) is equivalent to

Σ−1/2UHC1UΣ−1/2 = V ΛV H. (81)

(ii) It is straightforward to verify that

XHC1X = V TΣ−1/2UHC1UΣ−1/2V ∗ = Λ, (82)

and
XHC2X

∗ = V TΣ−1/2UHC2U
∗Σ−1/2V = Im. (83)
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