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ABSTRACT

We consider anomaly/change point detection given a time se-
ries of graphs with categorical attributes on the edges. Various
attributed graph invariants are considered, and their power for
detection as a function of a linear fusion parameter is pre-
sented.

Index Terms— Anomaly Detection, Attributed Random
Graphs, Fusion, Random Dot Product Graphs

1. TIME SERIES OF ATTRIBUTED GRAPHS

Given a time series of attributed graphs G(t) = (V,ϕ(·, t)),
t = 1, 2, · · · , where the vertex set V = [n] = {1, · · · , n}
is fixed throughout and edge attribution functions ϕ(·, t) :�V

2

�
→ {0, · · · , K} are time-dependent, we wish to detect

anomalies and/or change points. Let us consider vertices to
represent “actors,” and an edge between vertex u and vertex
v at time t (uv ∈ E(t), where the edge set E(t) is given
by E(t) = {uv ∈

�V
2

�
: ϕ(uv, t) > 0}) represents the ex-

istence of a communications event between actors u and v
during the time period (t − 1, t]. Categorical edge attributes
ϕ(uv, t), when non-zero, represent some mode of the com-
munication event between actors u and v during (t− 1, t]; for
instance, a topic label derived from the content of the com-
munication. We will not consider directed edges or hyper-
graphs (hyper-edges consisting of more than two vertices) or
multi-graphs (more than one edge between any two vertices
at any time t) or self-loops (an edge from a vertex to itself) or
weighted edges, although all of these generalizations of sim-
ple attributed graphs may be relevant for specific applications.

The specific anomaly we will consider is the “chatter” al-
ternative – a small (unspecified) subset of vertices with altered
communication behavior during some time period in an oth-
erwise stationary setting, as depicted in Figure 1. This figure
notionally depicts the entire vertex set V behaving in some
null state for t = 1, · · · , t∗ − 1; then, at time t∗, a collection
of vertices VA ⊂ V (|VA| = m, 2 ≤ m � n) exhibits prob-
abilistically altered behavior. (The remaining vertices remain
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in their null state throughout.) Our statistical inference task is
to determine whether or not there has emerged a chatter group
at some time t = t∗.

t = 1 t = t∗ − 1 t = t∗ t = tmax

1

Fig. 1. Notional depiction of a time series of graphs in which
the entire vertex set V behaves in some null state for t =
1, · · · , t∗ − 1 and then, at time t∗, a subset of vertices VA

exhibits a change in behavior.

The latent process model for time series of attributed
graphs presented in [1] provides for precisely this tem-
poral structure. Each vertex is governed by a continu-
ous time, finite state stochastic process {Xv(t)}v∈V , with
the state-space given by {0, 1, · · · , K}. The probability
of edge uv at time t is determined by the inner prod-
uct of the sub-probability vectors specified by pw,k(t) =� t

t−1 I{Xw(τ) = k}dτ , k = 1, · · · , K, for w = u, v. The
attribute ϕ(uv, t) for edge uv at time t, given that there is
indeed an edge, is given by P [ϕ(uv, t) = k|ϕ(uv, t) >

0] = pu,k(t)pv,k(t)/
�K

κ=1 pu,κ(t)pv,κ(t). For the scenario
depicted in Figure 1, the vertex processes {Xv(t)}v∈VA

are stationary until time t∗ − 1 and then undergo a change
point, while the processes {Xv(t)}v∈V \VA

remain stationary
throughout all time.

Our latent process model produces a dependent time se-
ries of attributed graphs G(t), each of which is itself a latent
position model with conditionally independent edges given
{Xv(τ)}v∈V,τ≤t. The model allows two simplifying approx-
imations; a second-order (central limit theorem) approxima-
tion with temporally independent attributed random graphs
each of which is itself a random dot product ([2],[3], and
[4] Section 16.4) latent position model ([5], and [6] Section
3), and a first-order (law of large numbers) approximation
with temporally independent attributed random graphs each
of which is itself an independent edge random graph model
[7].
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The simplicity of the first-order approximation, depicted
in Figure 2 for the special case of the kidney-egg stochas-
tic blockmodel structure considered herein for the anomaly,
provides a useful framework for description. If the vertex
processes {Xv(t)}v∈V are independent and identical, with
stationary probability vector π0 = [π0,0, π0,1, · · · , π0,K ]�,
then the first-order approximation produces a temporally
independent series of homogeneous independent edge at-
tributed random graphs with P [ϕ(uv, t) > 0] = �π0,π0�
and P [ϕ(uv, t) = k|ϕ(uv, t) > 0] = π2

0,k/�π0,π0�, where
π0 = [π0,1, · · · , π0,K ]�. The vertex processes {Xv(t)}v∈VA

change at time t∗ − 1, taking on stationary probability vector
πA, so that G(t∗) is a kidney-egg independent edge random
graph with attribute probabilities defined using π0 and π0 for
u, v ∈ V \ VA, π0 and πA for u ∈ V \ VA, v ∈ VA, and πA

and πA for u, v ∈ VA.

π 0,
π 0

πA, πA

π0, πA

1

Fig. 2. An illustration of the kidney-egg stochastic block-
model structure for G(t∗). Edge probabilities (and their at-
tributes) depend on the underlying vertex processes. For the
first-order approximation, edges are governed by the station-
ary probability vectors.

One Monte Carlo replicate of this model yields, at time
t∗, the latent position vectors presented in Figure 3.
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Fig. 3. Example of the vectors {Xv}v∈V in the simplex at
time t∗ for our latent process model using parameters pre-
sented in Section 3 with r = 1024.

2. INVARIANTS

In [8] the scan statistic graph invariants are introduced and
applied to the problem of detecting chatter anomalies in time
series of Enron graphs. In [9] various graph invariants (size,
maximum degree, scan statistic, etc.) are considered for their
power as test statistics and it is demonstrated via Monte Carlo
that no single invariant is uniformly most powerful, while in
[10] it is demonstrated that asymptotics can provide mislead-
ing comparative power analysis for size vs. maximum degree
except for astronomically large graphs; see also [11] for a
summary. In [12] fusion of various invariants is considered,
and fusion of graph features and content is considered via the-
ory and application in [13] and [14], respectively.

In this paper, we consider the problem of detecting chatter
anomalies in time series of graphs using attributed invariants.
Specifically, we consider linear attribute fusion with parame-
ter λ ∈ RK via

sizeλ(G(t)) =
K�

k=1

λk

�

uv

I{ϕ(uv, t) = k},

maxdλ(G(t)) = max
v

K�

k=1

λk

�

u∈N [v]

I{ϕ(uv, t) = k},

and

scanλ(G(t)) = max
v

K�

k=1

λk

�

u,w∈N [v]

I{ϕ(uw, t) = k},

where N [v] = {u : uv ∈ E(t)}∪ {v} is the closed neighbor-
hood of vertex v in graph G(t).

As described in [8] and [12], the invariants are standard-
ized based on the recent past (see Figure 4).
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Fig. 4. Temporal standardization: when testing for change at
time t, the recent past (graphs G(t−�), · · · , G(t−1)) is used
to standardize the invariants.

We present experimental results for anomaly detection
on time series of simulated data from the model in [1], and
demonstrate that optimal attribute fusion depends on invari-
ant.
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3. EXAMPLE

We present here a simple yet illustrative Monte Carlo experi-
ment using the following parameters:

K = 2, n = 100, m = 9, � = 10,

with stationary probability vectors

π0 = [0.60, 0.10, 0.30]�, πA = [0.35, 0.25, 0.40]�,

and transition matrices

Q0/r =




−2/3 1/6 1/2

1 −1 0
1 0 −1



 ,

QA/r =




−13/7 5/7 8/7

1 −1 0
1 0 −1



 .

(See [1] for a discussion of the vertex process rate parameter
r. In summary, as r →∞ the second approximation (large r)
and the first approximation (limiting r) obtain.)

Power estimates for our three attribute fusion statistics for
this example are presented in Figures 5 and 6. We consider
first approximation, second approximation, and exact model
power estimates obtained via Monte Carlo simulation. Figure
5 shows power as a function of the vertex process rate param-
eter r. Figure 6 shows power as a function of angle θ, where
λ = (cos(θ), sin(θ)).

4. CONCLUSIONS

One notable implication of this work, inferred from Fig-
ure 5, is that inferential performance in the mathematically
tractable first- and second-order approximation models does
indeed provide guidance for methodological choices applica-
ble to the exact (realistic but intractable) model; furthermore,
to the extent that the exact model is realistic, we may tenta-
tively conclude that approximation model investigations have
some bearing on real data applications.

Our main result regarding linear attribute fusion is that the
optimal linear fusion parameter depends on the invariant con-
sidered. In particular, the results depicted in Figure 6 yield
�θ∗size = 0.22 (compared to the theoretical θ∗size ≈ 0.24),
�θ∗maxd = 0.31, and �θ∗scan = 0.15. These optimal fusion
parameter differences are statistically significant; combining
this result with the “no uniformly most powerful invariant”
result, we conclude that optimal linear attribute fusion theory
requires significant additional development. Toward this end,
the approximation models from [1] promise to be of assis-
tance.

In addition to the social network analysis scenario consid-
ered herein for illustration (wherein vertices represent indi-
vidual actors or organizations), hypothesis testing on time se-
ries of attributed graphs has application in areas as diverse as

●

●

●

●

●

●

●

●
●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

β

1 2 4 8 16 32 64 128 256 512 1024

o
x

1st approx
2nd approx
exact

(a) sizeλ

●

●

●

●

●

●

●

●

●

●
●
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

r

β

1 2 4 8 16 32 64 128 256 512 1024

o
x

1st approx
2nd approx
exact

(b) maxdλ

●

●

●
●

●

●

●

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

β

1 2 4 8 16 32 64 128 256 512 1024

o
x

1st approx
2nd approx
exact

(c) scanλ

Fig. 5. Power β(θ∗r , r) at θ∗r = arg maxθ β(θ, r) as a func-
tion of r for the three invariants at test size α = 0.05. (10000
Monte Carlo replicates yields σbβ ≤ 0.005.) The horizon-
tal line represents first-order approximation ± three standard
deviations, and the two curves represent the second approx-
imation and exact model. The second approximation results
match well with the exact model results, and both match well
for large r with the first-order approximation results.

connectome inference (wherein vertices are neurons or brain
regions) and text processing (wherein vertices represent au-
thors or documents). These applications, and others, may
benefit from generalization to directed, hyper, multi, loopy,
weighted graphs, as well as the consideration of inference
with errorful attributes through an attribute confusion matrix.

5. REFERENCES

[1] N. H. Lee and C. E. Priebe, “A Latent Process Model for
Time Series of Attributed Random Graphs,” Statistical
Inference for Stochastic Processes, forthcoming.

[2] E. R. Scheinerman and K. Tucker, “Modeling Graphs

515



Using Dot Product Representations,” Computational
Statistics, vol. 25, pp. 1–16, January 2010.

[3] S. J. Young and E. R. Scheinerman, “Random Dot
Product Graph Models for Social Networks,” Proc. 5th
ICAM, pp. 138–149, 2007.

[4] B. Bollobás, S. Janson, and O. Riordan, “The Phase
Transition in Inhomogeneous Random Graphs,” Ran-
dom Structures and Algorithm, vol. 31, pp. 3–122, 2007.

[5] P. Hoff, A. E. Raftery, and M. S. Handcock, “Latent
Space Approaches to Social Network Analysis,” Jour-
nal of the American Statistical Association, vol. 97, pp.
1090–1098, 2002.

[6] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M.
Airoldi, “A survey of statistical network models,” Foun-
dations and Trends in Machine Learning, vol. 2, no. 2,
pp. 129–233, 2009.

[7] B. Bollobás, Random Graphs, Cambridge University
Press, 2nd edition, 2001.

[8] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park,
“Scan Statistics on Enron Graphs,” Computational and
Mathematical Organization Theory, vol. 11, pp. 229–
247, October 2005.

[9] H. Pao, G. A. Coppersmith, and C. E. Priebe, “Statis-
tical Inference on Random Graphs: Comparative Power
Analyses via Monte Carlo,” Journal of Computational
and Graphical Statistics, forthcoming.

[10] A. Rukhin and C. E. Priebe, “A comparative power anal-
ysis of the maximum degree and size invariants for ran-
dom graph inference,” Journal of Statistical Planning
and Inference, forthcoming.

[11] C. E. Priebe, G. A. Coppersmith, and A. Rukhin, “You
Say Graph Invariant, I Say Test Statistic,” ASA Sections
on Statistical Computing Statistical Graphics SCGN
Newsletter, vol. 21, no. 2, December 2010.

[12] Y. Park, C.E. Priebe, and A. Youssef, “Anomaly detec-
tion in time series of graphs using fusion of invariants,”
submitted for publication.

[13] J. Grothendieck, C. E. Priebe, and A. L. Gorin, “Statis-
tical Inference on Attributed Random Graphs: Fusion of
Graph Features and Content,” Computational Statistics
and Data Analysis, vol. 54, pp. 1777–1790, 2010.

[14] C. E. Priebe, Y. Park, D. J. Marchette, J. M. Conroy,
J. Grothendieck, and A.L. Gorin, “Statistical Infer-
ence on Attributed Random Graphs: Fusion of Graph
Features and Content: An Experiment on Time Series
of Enron Graphs,” Computational Statistics and Data
Analysis, vol. 54, pp. 1766–1776, 2010.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

β

asymptotic
1st approx
2nd approx (r)
exact (r)

(a) sizeλ

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ

β

1st approx
2nd approx (r)
exact (r)

(b) maxdλ

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θ
β

1st approx
2nd approx (r)
exact (r)

(c) scanλ

Fig. 6. Power β as a function of angle θ for λ =
(cos(θ), sin(θ)). The plot shows analytic asymptotic result
(black, available for size only), and first approximation (red),
second approximation (green), and exact model (blue) esti-
mates for the various invariants via Monte Carlo. (10000
Monte Carlo replicates yields σbβ ≤ 0.005.) (Horizontal
line is α = 0.05.) The four vertical lines correspond to
θ ∈ {0, π/2, π/4, θ∗size ≈ 0.24}, which correspond to at-
tribute weighting schemes of: consider only attribute 1, con-
sider only attribute 2, consider both attributes equally, and the
attribute weight ratio of approximately 3.7:1. (The asymp-
totic first-order approximation power analysis for sizeλ in
[1] yields the analytic maximizer θ∗size ≈ 0.24; this corre-
sponds to an attribute weight ratio for optimal power of ap-
proximately 3.7:1.) The second approximation results match
well with the exact model results, and both match well for
large r with the first-order approximation results. The opit-
mal θ is apparently different for the three different invariants.
(Because we are considering a one-sided test, rejecting for
large values of our statistics, and because πA,k > π0,k for
both k = 1, 2, the power is maximized in the first quadrant.)
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