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Abstract

Motivated by non-linear, non-Gaussian, distributed multi-sensor/agent navigation and tracking appli-

cations, we propose a multi-rate consensus/fusion based framework for distributed implementation of the

particle filter (CF/DPF). The CF/DPF framework is based on running localized particle filters to estimate

the overall state vector at each observation node. Separatefusion filters are designed to consistently

assimilate the local filtering distributions into the global posterior by compensating for the common past

information between neighbouring nodes. The CF/DPF offerstwo distinct advantages over its counter-

parts. First, the CF/DPF framework is suitable for scenarios where network connectivity is intermittent

and consensus can not be reached between two consecutive observations. Second, the CF/DPF is not

limited to the Gaussian approximation for the global posterior density. A third contribution of the paper

is the derivation of the exact expression for computing the posterior Cramér-Rao lower bound (PCRLB)

for the distributed architecture based on a recursive procedure involving the local Fisher information

matrices (FIM) of the distributed estimators. The performance of the CF/DPF algorithm closely follows

the centralized particle filter approaching the PCRLB at thesignal to noise ratios that we tested.

IEEEkeywords: Consensus algorithms, Data fusion, Distributed estimation, Multi-sensor tracking, Non-

linear systems, and Particle filters.

I. INTRODUCTION

The paper focuses on distributed estimation and tracking algorithms for non-linear, non-Gaussian,

data fusion problems in networked systems. Distributed state estimation has been the center of attention

recently both for linear [5]–[10] and non-linear systems [11]–[32] with widespread applications such

as autonomous navigation of unmanned aerial vehicles (UAV)[13], localization in robotics [15], track-

ing/localization in underwater sensor networks [16], distributed state estimation for power distribution
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networks [14], and bearings-only target tracking [17]. A major problem in distributed estimation networks

is unreliable communication (especially in large and multi-hop networks), which results in communication

delays and information loss. Referred to as intermittent network connectivity [33], [34], this issue has been

investigated broadly in the context of the Kalman filter [33], [34]. Such methods are, however, limited

to linear systems and have not yet been extended to non-linear systems. The paper addresses this gap.

Distributed Estimation: Traditionally, state estimation algorithms have been largely centralized with

participating nodes communicating their raw observations(either directly or indirectly via a multi-hop

relay) to the fusion centre: a central processing unit responsible for computing the overall estimate.

Although optimal, such centralized approaches are unscalable and susceptible to failure in case the

fusion centre breaks down. The alternative is to apply distributed estimation algorithms, where: (i) There

is no fusion center; (ii) The sensor nodes do not require global knowledge of the network topology, and;

(iii) Each node exchanges data only within its immediate neighbourhood limited to a few local nodes.

The distributed estimation approaches fall under two main categories: Message passing schemes [18],

[19], where information flows in a sequential,pre-definedmanner from a node to one of its neighboring

nodes via a cyclic path till the entire network is traversed,and; Diffusive schemes [14]–[17], [20]–[29],

where each node communicates its local information by interacting with its immediate neighbors. In

dynamical environments with intermittent connectivity, where frequent changes in the underlying network

topology due to mobility, node failure, and link failure area common practice, diffusive approaches

significantly improve the robustness at the cost of an increased communications overhead. In diffusive

schemes, the type of information communicated across the network varies from local observations,

their likelihoods, or some other function of local observations [18], [21], [24], [28], [29], [31], to state

posterior/filtering estimates evaluated at individual nodes [19], [20], [22], [23], [26], [27]. Communicating

state posteriors is advantageous over sharing likelihoodsin applications with intermittent connectivity.

In theory, any loss of information in error prone networks iscontained in the following posteriors

and is, therefore, automatically compensated for as the distributed algorithms iterate. A drawback of

communicating the local state estimates stems from their correlated nature [1]. Channel filters [1] and

their non-linear extensions [20] (proposed to ensure consistency of the fused estimates by removing

this redundant past information) associate an additional filter to each communication link and track

the redundant information between a pair of neighbouring nodes’ local estimates. However, channel

filters are limited to tree-connected topologies and can notbe generalized to random/mobile networks.

Alternatively, consensus-based approaches have been recently introduced to extend distributed estimation

to arbitrary network topologies with the added advantage that the algorithm is somewhat immune to node
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and/or communication failures [9], [10]. The consensus-based1 distributed Kalman filter [5]–[10] have

been widely explored for estimation/tracking problems in linear systems with intermittent connectivity

but there is still a need for developing distributed estimation approaches for non-linear systems. In

addition, the current non-linear consensus-based distributed approaches suffer from three drawbacks.

First, the common practice [21]–[23][26] of limiting the global posterior to Gaussian distribution is

sub-optimal. Second, common past information between neighbouring nodes gets incorporated multiple

times [22]. Finally, these approaches [21]–[29], require the consensus algorithm to converge between

two successive observations (thus ignoring the intermittent communication connectivity issue in the

observation framework). The performance of the distributed approaches degrade substantially if consensus

is not reached within two consecutive observations.

Motivated by distributed navigation and tracking applications within large networked systems, we pro-

pose a multi-rate framework for distributed implementation of the particle filter. The proposed framework

is suitable for scenarios where the network connectivity isintermittent and consensus can not be reached

between two observations. Below, we summarize the key contributions of the paper.

1. Fusion filter: The paper proposes a consensus/fusion based distributed implementation of the particle

filter (CF/DPF) for non-linear systems with non-Gaussian excitation. In addition to the localized particle

filters, referred to as the local filters, the CF/DPF introduces separate consensus-based filters, referred to

as the fusion filters (one per sensor node), to derive the global posterior distribution by consistently fusing

local filtering densities in a distributed fashion. The localized implementation of the particle filter and the

fusion filter used to achieve consensus are run in parallel, possibly at different rates. Achieving consensus

between two successive iterations of the local filters is, therefore, no longer a requirement. The CF/DPF

compensates for the common past information between local estimates based on an optimal non-linear

Bayesian fusion rule [35]. The fusion concept used in the CF/DPF is similar to [1] and [20], where separate

channel filters (one for each communication link) are deployed to consistently fuse local estimates. Fig. 1

compares the proposed CF/DPF framework with channel filter framework and the centralized Architecture.

In the channel filter framework (Fig. 1(c)), the number of channel filters implemented at each node equals

the number of connections it has with its neighbouring nodesand, therefore, varies from one node to

another. These filters are in addition to the localized filters run at nodes. In the CF/DPF (Fig. 1(a))

each node only implements one additional filter irrespective of the neighbouring connections. Finally, the

1Consensus in distributed filtering is the process of establishing a consistent value for some statistics of the state vector across

the network by interchanging relevant information betweenthe connected neighboring nodes.
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Fig. 1. (a) The proposed CF/DPF implementation where sensornodes connect through their fusion filters (one fusion filterper

node). (b) Centralized implementation where all nodes communicate their local estimates to the fusion center. (c) Distributed

implementation using channel filters where a separate filteris required for each communication link. In terms of the number of

extra filters, the CF/DPF falls between the Centralized and channel filters.

tree-connect network shown in Fig. 1(c) can not be extended to any arbitrary network, for example the

one shown in Fig. 1(a). The CF/DPF is applicable to any network configuration.

2. Modified Fusion filters: In the CF/DPF, the fusion filters can run at a rate different form that of

the local filters. We further investigate this multi-rate nature of the proposed framework, recognize three

different scenarios, and describe how the CF/DPF handles each of them. For the worse-case scenario

with the fusion filters lagging the local filters exponentially, we derive a modified-fusion filter algorithm

that limits the lag to an affordable delay.

3. Computing Posterior Cramér-Rao Lower Bound: In order to evaluate the performance of the

proposeddistributed, non-linear framework, we derive the posterior Cramér-Rao lower bound(PCRLB),

(also referred in literature as the Bayesian CRLB) for the distributed architecture. The current PCRLB

approaches [2], [36], [37] assume a centralized architecture or a hierarchical architecture [3]. The exact

expression for computing the PCRLB for the distributed architecture is not yet available and only an ap-

proximate expression [4] has recently been derived. The paper derives the exact expression for computing

the PCRLB for the distributed architecture. Following Tichavsky et al. [2], we provide a Riccati-type

recursion that sequentially determines the exact FIM from localized FIMs of the distributed estimator.

The rest of paper is organized as follows. Section II introduces notation and reviews the centralized

particle filter as well as the average consensus approaches.The proposed CF/DPF algorithm and the

fusion filter are described in Section III. The modified fusion filter is presented in Section IV. Section V
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derives an expression for computing the PCRLB for a distributed architecture. Section VI illustrates

the effectiveness of the proposed framework in tracking applications through Monte Carlo simulations.

Finally, in Section VII, we conclude the paper.

II. BACKGROUND

We consider a sensor network comprising ofN nodes observing a set ofnx state variablesx =

[X1,X2, . . . ,Xnx
]T . For (1 ≤ l ≤ N ), node l makes a measurementz(l)(k) at discrete time instants

k, (1 ≤ k). The global observation vector is given byz = [z(1)T , . . . ,z(N)T ]T , where T denotes

transposition. The overall state-space representation ofthe dynamical system is given by

State Model: x(k) = f(x(k − 1)) + ξ(k) (1)

Observation Model:








z(1)(k)
...

z(N)(k)








︸ ︷︷ ︸

z(k)

=








g(1)(x(k))
...

g(N)(x(k))








︸ ︷︷ ︸

g(x(k))

+








ζ(1)(k)
...

ζ(N)(k)







,

︸ ︷︷ ︸

ζ(k)

(2)

whereξ(·) and ζ(·) are, respectively, the global uncertainties in the processand observation models.

Unlike the Kalman filter, the state and observation functions f(·) and g(·) can possibly be nonlinear,

and vectorsξ(·) andζ(·) are not necessarily restricted to white Gaussian noise.

The optimal Bayesian filtering recursion for iterationk is given by

P (x(k)|z(1:k−1)) =

∫

P (x(k−1)|z(1:k−1))f(x(k)|x(k−1))dx(k−1) (3)

andP (x(k)|z(1:k)) =
P (z(k)|x(k))P (x(k)|z(1:k−1))

P (z(k)|z(1:k−1))
. (4)

The particle filter is based on the principle of sequential importance sampling [38], [39], a suboptimal

technique for implementing recursive Bayesian estimation(Eqs. (3) and (4)) through Monte Carlo sim-

ulations. The basic idea behind the particle filters is that the posterior distributionP (x(0 :k)|z(1:k)) is

represented by a collection of weighted random particles{Xi(k)}
Ns

i=1 derived from a proposal distribution

q(x(0:k)|z(1:k)) with normalized weightsWi(k) =
P (Xi(k)|z(1:k))
q(Xi(0:k)|z(1:k))

, for (1 ≤ i ≤ Ns), associated with

the vector particles. The particle filter implements the filtering recursions approximately by propagating

the weighted particles, (1 ≤ i ≤ Ns), using the following recursions at iterationk.

Time Update: Xi(k) ∼ q
(

Xi(k)|Xi(0:k−1),z(1:k)
)

(5)

Observation Update: Wi(k) ∝ Wi(k − 1)
P
(

z(k)|Xi(k)
)

P
(

Xi(k)|Xi(k−1)
)

q
(

Xi(k)|Xi(0:k−1),z(1:k)
) , (6)
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where∝ stands for the proportional sign and the proposal distribution satisfies the following factorization

q
(

x(0:k)|z(1:k)
)

= q
(

x(0:k−1)|z(1:k−1)
)

q
(

x(k)|x(0:k−1),z(1:k)
)

. (7)

The accuracy of this importance sampling approximation depends on how close the proposal distribution

is to the true posterior distribution. The optimal choice [43] for the proposal distribution that minimizes

the variance of importance weights is the filtering density conditioned uponx(0 : k − 1) andz(k), i.e.,

q
(

x(k)|x(0:k−1),z(1:k)
)

= P
(

x(k)|x(0:k−1),z(k)
)

. (8)

Because of the difficulty in sampling Eq. (8), a common choice[43] for the proposal distribution is

the transition density,P (x(k)|x(k − 1)), referred to as the sampling importance resampling (SIR) filter,

where the weights are pointwise evaluation of the likelihood function at the particle values, i.e.,Wi(k) ∝

Wi(k−1)P (z(k)|Xi(k)).

B. Average Consensus Algorithms

The average consensus algorithm [9], [10] considered in themanuscript is represented by

X(l)
c (t+ 1) = Ull(t)X

(l)
c (t) +

∑

j∈ℵ(l)

Ulj(t)X
(j)
c (t), (9)

whereX(l)
c (t) is the consensus state variable(s) at nodel, for (1 ≤ l ≤ N ), t is the consensus time index

that is different from the filtering time indexk, andℵ(l) represents the set of neighbouring nodes for

nodel. The convergence properties of the average consensus algorithms are reviewed in [40]. Please refer

to [9], [10] for further details on consensus algorithms.

III. T HE CF/DPF IMPLEMENTATION

The CF/DPF implementation runs two localized particle filters at each sensor node as shown in Fig. 1.

The first filter, referred to as the local filter, comes from thedistributed implementation of the particle filter

described in Section III-A and is based only on the local observationsz(l)(1:k). The CF/DPF introduces

a second particle filter at each node, referred to as the fusion filter, which estimates the global posterior

distributionP (x(0:k)|z(1:k)) from local distributionsP (x(k)|z(l)(1:k)) andP (x(k)|z(l)(1:k−1)).

A. Distributed Configuration and Local Filters

Our distributed implementation is based on the following model

x(k) = f(x(k − 1)) + ξ(k) (10)

z(l)(k) = g(l)(x(k)) + ζ(l)(k), (11)
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for sensor nodes(1 ≤ l ≤ N). In other words, the entire state vectorx(k) is estimated by running

one localized particle filter at each node. These filters, referred to as the local filters, come from the

distributed implementation of the particle filter and are based only on local observationsz(l)(1 : k). In

addition to updating the particles and their associated weights, the local filter at nodel provides estimates

of the local prediction distributionP (x(k)|z(l)(1:k−1)) from the particles as explained below.

Computation and Sampling of the Prediction Distribution: From the Chapman-Kolmogorov equation

(Eq. (3)), a sample based approximation of the prediction density P (x(k)|z(l)(1:k−1)) is expressed as

P
(

x(k)|z(l)(1:k−1)
)

=

Ns∑

i=1

W
(l)
i (k−1)P

(

x(k)|X
(l)
i (k−1)

)

, (12)

which is a continuous mixture. To generate random particlesfrom such a mixture density, a new sample

X
(l)
i (k|k−1) is generated from its corresponding mixtureP (x(k)|X

(l)
i (k−1)) in Eq. (12). Its weight

W
(l)
i (k−1) is the same as the corresponding weight forX

(l)
i (k−1). The prediction density is given by

P
(

x(k)|z(l)(1:k−1)
)

=

Ns∑

i=1

W
(l)
i (k−1)δ

(

x(k)−X
(l)
i (k|k−1)

)

.

Once the random samples are generated, the minimum mean square error estimates (MMSE) of the

parameters can be computed.

B. Fusion Filter

The CF/DPF introduces a second particle filter at each node, referred to as the fusion filter, which

computes an estimate of the global posterior distributionP (x(0:k)|z(1:k)). Being a particle filter itself,

implementation of the fusion filter requires the proposal distribution and the weight update equation.

Theorem 1 [35] expresses the global posterior distributionin terms of the local filtering densities, which

is used for updating the weights of the fusion filter. The selection of the proposal distribution is explained

later in Section III-E. In the following discussion, the fusion filter’s particles and their associated weights

at nodel are denoted by{X(l,FF)
i (k),W

(l,FF)
i (k)}NFF

i=1.

Theorem 1. Assuming that the observations conditioned on the state variables and made at nodel are

independent of those made at nodej, (j 6= l), the global posterior distribution for aN–sensor network is

P
(

x(0:k)|z(1:k)
)

∝

∏N
l=1 P

(

x(k)|z(l)(1:k)
)

∏N
l=1 P

(

x(k)|z(l)(1:k−1)
)×P

(

x(0:k)|z(1:k−1)
)

, (13)

where the last term can be factorized as follows

P
(

x(0:k)|z(1:k−1)
)

= P
(

x(k)|x(k−1)
)

P
(

x(0:k−1)|z(1:k−1)
)

. (14)
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The proof of Theorem 1 is included in Appendix A. Note that theoptimal distributed protocol defined

in Eq. (13) consists of three terms: (i) Product of the local filtering distribution
∏N

i=1 P (x(k)|z(l)(1:k))

which depends on local observations; (ii) Product of local prediction densities
∏N

i=1 P (x(k)|z(l)(1:k−1)),

which is again only based on the local observations and represent the common information between

neighboring nodes, and; (iii) Global prediction densityP (x(0:k)|z(1:k−1)) based on Eq. (14). The

fusion rule, therefore, requires consensus algorithms to be run for terms (i) and (ii). The proposed

CF/DPF computes the two terms separately (as described later) by running two consensus algorithms at

each iteration of the fusion filter. An alternative is to compute the ratio (i.e., proportional to the local

likelihood) at each node and run one consensus algorithm forcomputing the ratio term. In the CF/DPF,

we propose to estimate the numerator and denominator of Eq. (13) separately because maintaining the

local filtering and prediction distributions is advantageous in networks with intermittent connectivity as

it allows the CF/DPF to recover from loss of information due to delays in convergence. Maintaining the

likelihood prevents the recovery of the CF/DPF in such cases.

C. Weight Update Equation

Assume that the local filters have reached steady state at iterationk, i.e., the local filter’s computation is

completed up to and including time iterationk where a particle filter based estimate of the local filtering

distribution is available. The weight update equation for the fusion filter is given by

W
(l,FF)
i (k) =

P
(

X
(l,FF)
i (k)|z(1:k)

)

q
(

X
(l,FF)
i (k)|z(1:k)

) . (15)

The CF/DPF is derived based on the global posteriorP (x(0:k)|z(1:k)) which is the standard approach

in the particle filter literature [38]. Further, we are only interested in a filtered estimate of the state

variablesP (x(k)|z(1 : k)) at each iteration. Following [38] we, therefore, approximate q(x(k)|x(1 :

k−1),z(1:k)) = q(x(k)|x(k−1),z(k)). The proposal density is then dependent only onx(k) andz(k).

In such a scenario, one can discard the history of the particlesX(l,FF)
i (0:k−2) at previous iterations [38].

Substituting Eq. (14) in Eq. (13) and using the result together with Eq. (7) in Eq. (15), the weight update

equation is given by

W
(l,FF)
i (k) ∝ W

(l,FF)
i (k−1)

∏N
l=1 P

(

X
(l,FF)
i (k)|z(l)(1:k)

)

∏N
l=1 P

(

X
(l,FF)
i (k)|z(l)(1:k−1)

)

P
(

X
(l,FF)
i (k)|X

(l,FF)
i (k−1)

)

q
(

X
(l,FF)
i (k)|X

(l,FF)
i (k−1),z(k)

) , (16)

where W
(l,FF)
i (k−1) =

P
(

X
(l,FF)
i (k−1)|z(1:k−1)

)

q
(

X
(l,FF)
i (k − 1)|z(1:k−1)

) . (17)
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Observe that only the first fraction in Eq. (16) requires all nodes to participate. Given the weights

W
(l,FF)
i (k−1) from the previous iteration, Eq. (16) requires the following distributions

N∏

l=1

P
(

X
(l,FF)
i (k)|z(l)(1:k)

)

and
N∏

l=1

P
(

X
(l,FF)
i (k)|z(l)(1:k−1)

)

. (18)

The numerator of the second fraction in Eq. (16) requires thetransitional distributionP (x(k)|x(k− 1)),

which is known from the state model. Its denominator requires the proposal distributionq(x(k)|x(k−

1),z(k)). Below, we show how the three terms (Eq. (18) and the proposaldistribution) are determined.

D. Distributed Computation of Product Densities

Distributions in Eq. (18) are not determined by transferring the whole particle vectors and their

associated weights between the neighboring nodes due to an impractically large number of information

transfers. Further, the localized posteriors are represented as a Dirac mixture in the particle filter. Two

separate Dirac mixtures may not have the same support and their multiplication could possibly be zero. If

not, the product may not represent the true product density accurately. In order to tackle these problems, a

transformation is required on the Dirac function particle representations by converting them to continuous

distributions prior to communication and fusion. Gaussiandistributions [13], [15], [16], [22], [23],

[26], grid-based techniques [12], Gaussian Mixture Model (GMM) [19] and Parzen representations [20]

are different parametric continuous distributions used inthe context of the distributed particle filter

implementations. The channel filter framework [20] fuses only two local distributions, therefore, the

local pdfs can be modeled [20] with such complex distributions. Incorporating these distributions in the

CF/DPF framework is, however, not a trivial task because theCF/DPF computes the product ofN local

distributions. The use of a complex distribution like GMM is, therefore, computationally prohibitive.

In order to tackle this problem, we approximate the product terms in Eq. (16) with Gaussian distribution

which results in local filtering and prediction densities tobe normally distributed as follows

P
(

x(k)|z(l)(1:k)
)

∝ N
(

µ(l)(k),P (l)(k)
)

andP
(

x(k)|z(l)(1:k − 1)
)

∝ N
(

ν(l)(k),R(l)(k)
)

, (19)

whereµ(l)(k) andP (l)(k) are, respectively, the mean and covariance of local particles at nodel during

the filtering step of iterationk. Similarly, ν(l)(k) andR(l)(k) are, respectively, the mean and covariance

of local particles at nodel during the prediction step. It should be noted that we only approximate the

product density for updating the weights with a Gaussian distribution and the global posterior distribution

is not restricted to be Gaussian. The local statistics at node l are computed as

µ(l)(k)=

Ns∑

i=1

W
(l)
i (k)X

(l)
i (k) and P (l)(k)=

Ns∑

i=1

W
(l)
i (k)

(

X
(l)
i (k)−µ(l)(k)

) (

X
(l)
i (k)−µ(l)(k)

)T

. (20)
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Reference [41] shows that the product ofN multivariate normal distributions is also normal, i.e.,
N∏

l=1

P
(

x(k)|z(l)(1:k)
)

,

N∏

l=1

N
(

µ(l)(k),P (l)(k)
)

=
1

C
×N (µ(k),P (k)), (21)

whereC is a normalization term (Reference [41] includes the proof). Parametersµ(k) andP (k) are

P (k) =
(

N∑

l=1

(

P (l)(k)
)−1

︸ ︷︷ ︸

X
(l)
c1 (0)

)−1
and µ(k) = P (k)×

N∑

l=1

(

P (l)(k)
)−1

µ(l)(k).
︸ ︷︷ ︸

x
(l)
c2 (0)

(22)

Similarly, the product of local prediction densities (Term(18)) is modeled with a Gaussian density

N (x(k);υ(k),R(k)), where the parametersυ(k) andR(k) are computed as follows

R(k) =
(

N∑

l=1

(

R(l)(k)
)−1

︸ ︷︷ ︸

X
(l)
c3 (0)

)−1
and υ(k) = R(k) ×

N∑

l=1

(

R(l)(k)
)−1

υ(l)(k).
︸ ︷︷ ︸

x
(l)
c4 (0)

(23)

The parameters of the product distributions only involves average quantities and can be provided using

average consensus algorithms as follows:

(i) For (1 ≤ l ≤ N ), node l initializes its consensus states toX(l)
c1 (0) = (P (l)(k))−1, x

(l)
c2 (0) =

(P (l)(k))−1µ(l)(k), X
(l)
c3 (0) = (R(l)(k))−1, andx

(l)
c4 (0) = (R(l)(k))−1υ(l)(k), and then Eq. (9)

is used to reach consensus withX(l)
c1 (t) used instead ofX(l)

c (t) in Eq. (9) for the first consensus

run. Similarly,x(l)
c2 (t) is used instead ofX(l)

c (t) for the second run and so on.

(ii) Once consensus is reached, parametersµ(l)(k) andP (l)(k) are computed as follows

P (k) = 1/N × lim
t→∞

{(

X
(l)
c1 (t)

)−1
}

and µ(k)= lim
t→∞

{(

X
(l)
c1 (t)

)−1
× x

(l)
c2 (t)

}

(24)

R(k) = 1/N × lim
t→∞

{(

X
(l)
c3 (t)

)−1
}

and υ(k)= lim
t→∞

{(

X
(l)
c3 (t)

)−1
× x

(l)
c4 (t)

}

. (25)

Based on aforementioned approximation, the weight update equation of the fusion filter (Eq. (16)) is

W
(l,FF)
i (k)∝W

(l,FF)
i (k−1)

N
(
X
(l,FF)
i (k);µ(k),P (k)

)
P
(
X
(l,FF)
i (k)|X

(l,FF)
i (k−1)

)

N
(
X
(l,FF)
i (k);υ(k),R(k)

)
q
(
X
(l,FF)
i (k)|X

(l,FF)
i (k−1),z(k)

) . (26)

Eq. (26) requires the proposal distributionq(x(k)|x(k−1),z(k)), which is discussed next.

E. Proposal Distribution

In this section, we describe three different proposal distributions in CF/DPF.

1. SIR Fusion Filter: The most common strategy is to sample from the probabilisticmodel of the state

evolution, i.e., to use transitional densityP (x(k)|x(k+1)) as proposal distribution. The simplified weight

update equation for the SIR fusion filter is obtained from Eq.(26) as follows

W
(l,FF)
i (k)∝W

(l,FF)
i (k−1)

N
(
X
(l,FF)
i (k);µ(k),P (k)

)

N
(
X
(l,FF)
i (k);υ(k),R(k)

) . (27)
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This SIR fusion filter fails if a new measurement appears in the tail of the transitional distribution or

when the likelihood is too peaked in comparison with the transitional density.

2. Product Density as Proposal Distribution: We are free to choose any proposal distribution that

appropriately considers the effect of new observations andis close to the global posterior distribution.

The product of local filtering densities is a reasonable approximation of the global posterior density as

such a good candidate for the proposal distribution, i.e.,

q(x(k)|x(k−1),z(1:k)) ,

N∏

l=1

P
(

x(k)|z(l)(1:k)
)

, (28)

which means that we generate particles{X
(l,FF)
i (k)}Ns

i=1 are generated fromN (µ(k),P (k)). In such a

scenario, the weight update equation (Eq. (26)) simplifies to

W
(l,FF)
i (k)∝W

(l,FF)
i (k−1)

P (X
(l,FF)
i (k)|X

(l,FF)
i (k−1))

N (X
(l,FF)
i (k);υ(k),R(k))

. (29)

Next we justify that the product term is a good choice and a near-optimal approximation of the optimal

proposal distribution (Eq. (8)). Assume at iterationk, nodel, for (1 ≤ l ≤ N ) computes an unbiased

local estimatex̂(l)(k) of the state variablesx(k) from its particle-based representation of the filtering

distribution with the corresponding error and error covariance denoted by∆(l)
x (k) = x(k)− x̂(l)(k) and

P̂ (l)(k). When the estimation error∆(i)
x (k) and∆(j)

x (k), for (1 ≤ i, j ≤ N ) and i 6= j are uncorrelated,

the optimal fusion ofN unbiased local estimateŝx(l)(k) in linear minimum variance scene is shown [42]

to be given by

P̂ (k) =
(

N∑

l=1

(

P̂ (l)(k)
)−1 )−1

and x̂(k) =
(

N∑

l=1

(

P̂ (l)(k)
)−1 )−1

×
N∑

l=1

(

P̂ (l)(k)
)−1

x̂(l)(k). (30)

wherex̂(k) is the overall estimate obtained fromP (x(k)|z(1:k)) with error covariancêP (k). Eq. (30) is

the same as Eq. (22), which describes the statistics of the product ofN normally distributed densities. The

optimal proposal distribution is also a filtering density [38], therefore, the proposal distribution defined

in Eq. (28) is a good choice that simplifies the update equation of the fusion filter. Further, Eq. (28)

is a reasonable approximation of the optimal proposal distribution. From the framework of unscented

Kalman filter and unscented particle filter, it is well known [43] that approximating distributions will

be advantageous over approximating non-linear functions.The drawback with this proposal density is

the impractical assumption that the local estimates are uncorrelated. We improve the performance of the

fusion filter using a better approximation of the optimal proposal distribution, which is described next.

3. Gaussian Approximation of The Optimal Proposal Distribution: We consider the optimal solution

to the fusion protocol (Eq. (13)) when local filtering densities are normally distributed. In such a case,
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P (x(0:k)|z(1:k − 1)) is also normally distributed [35] with meanx(l,FF)(k) and covarianceP (l,FF)(k)

P̂ (l,FF)−1

(k) =
(

R(l)(k)
)−1

+

N∑

j=1

P (j)−1

(k)

︸ ︷︷ ︸

x
(l)
c1 (∞)

−
N∑

j=1

R(j)−1

(k)

︸ ︷︷ ︸

x
(l)
c3 (∞)

(31)

x̂(l,FF)(k) = P (l,FF)−1

(k)
[ (

R(l)(k)
)−1

υ(l)(k)+

N∑

j=1

P (j)−1

(k)µ(j)(k)

︸ ︷︷ ︸

x
(l)
c2 (∞)

−
N∑

j=1

(

R(j)(k)
)−1

υ(j)(k)

︸ ︷︷ ︸

x
(l)
c4 (∞)

]
.(32)

The four termsx(l)
c1 (∞), x(l)

c2 (∞), x(l)
c3 (∞), andx

(l)
c4 (∞) are already computed and available at local

nodes as part of computing the product terms. Fusion rules inEqs. (31) and (32) are obtained based

on the track fusion without feedback [35]. In such a scenario, particlesX(l,FF)
i (k) are drawn from

N (x(l,FF)(k),P (l,FF)(k)) and the weight update equation (Eq. (29)) is given by

W
(l,FF)
i (k)∝W

(l,FF)
i (k−1)

N
(
X
(l,FF)
i (k);µ(k),P (k)

)
P
(
X
(l,FF)
i (k)|X

(l,FF)
i (k−1)

)

N
(
X
(l,FF)
i (k);υ(k),R(k)

)
N
(
X
(l,FF)
i (k);x

(l,FF)
(k)

,P
(l,FF)
(k)

) . (33)

The various steps of the fusion filter are outlined in Algorithm 1. The filtering step of the CD/DPF is

based on running the localized filters at each node followed by the fusion filter, which computes the

global posterior density by running consensus algorithm across the network. At the completion of the

consensus step, all nodes have the same global posterior available. As a side note to our discussion, we

note that the CF/DPF does not incorporate any feedback from the fusion filters to the localized filters to

provide sufficient time for the fusion filter to converge. Themain advantage of the feedback is to reduce

the error of the local filters which will be considered as future work. Finally, a possible future extension

of the CF/DPF is to use non-parametric models, e.g., supportvector machines (SVM) [11], [32], instead,

for approximating the product terms. An important task in CF/DPF is to assure that the localized and

fusion filters do not lose synchronization. This issue is addressed in Section IV.

F. Computational complexity

In this section, we provide a rough comparison of the computational complexity of the CF/DPF

versus that of the centralized implementation. Because of the non-linear dynamics of the particle filter,

it is somewhat difficult to derive a generalized expression for its computational complexity. There

are steps that can not be easily evaluated in the complexity computation of the particle filter such

as the cost of evaluating a non-linear function (as is the case for the state and observation mod-

els) [44]. In order to provide a rough comparison, we consider below a simplified linear state model

with Gaussian excitation and uncorrelated Gaussian observations. Following the approach proposed
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Algorithm 1 FUSION FILTER({X(l,FF)
i (k − 1),W

(l,FF)
i (k − 1)}NFF

i=1)

Input: {X
(l,FF)
i (k − 1),W

(l,FF)
i (k − 1)}

Nl,FF

i=1 - Fusion filter’s particles and associated weights.

Output: {X
(l,FF)
i (k),W

(l,FF)
i (k)}Ns

i=1 Fusion filter’s updated particles and associated weights.

1: for l = 1 : N, do
(
µ(l)(k),P (l)(k),υ(l)(k),R(l)(k)

)
= LocalFilter

(

{X
(l)
i (k − 1),W

(l)
i (k − 1)}Ns

i=1,z
(l)(k)

)

2: end for

3: DoFusion
(
{µ(l)(k),P (l)(k)}Nl=1

)
computes{µ(l,FF)(k),P (l,FF)(k)} for numerator of Eq. (13).

4: DoFusion
(
{υ(l)(k),R(l)(k)}Nl=1

)
computes{υ(l,FF)(k),R(l,FF)(k)} for denominator of (13).

5: for i = 1 : N, do

• Generate particles
{

X
(l,FF)
i (k)

}Nl,FF

i=1
by sampling proposal distribution defined in Section III-E.

• Compute weightsW (l,FF)(k) using Eq. (29).

6: end for

7: If degeneracy observed
(

{X
(l,FF)
i (k),W

(l,FF)
i (k)}NFF

i=1

)

= Resample
(

{X
(l,FF)
i (k),W

(l,FF)
i (k)}NFF

i=1

)

.

in [44], the computational complexity of two implementations of the particle filter is expressed in terms

of flops, where a flop is defined as addition, subtraction, multiplication or division of two floating

point numbers. The computational complexity of the centralized particle filter forN–node network

with Ns particles is of O
(
(n2

x +N)Ns

)
. The CF/DPF runs the local filter at each observation node

which is similar in complexity to the centralized particle filter except that the observation (target’s

bearing at each node) is a scalar. SettingN = 1, the computational complexity of the local filter is

of O
(
n2
xNLF

)
per node, whereNLF is the number of particles used by the local filter. There are two

additional components in the CF/DPF: (i) The fusion filter which has a complexity of O(n2
xNFF) per

node whereNFF is the number of particles used by the fusion filter, and; (ii)The CF/DPF introduces

an additional consensus step which has a computational complexity of O(n2
x∆GNc(U)). The associated

convergence timeNc(U) = 1/ log(1/rasym(U)) provides the asymptotic number of consensus iterations

required for the error to decrease by the factor of1/e and is expressed in terms of the asymptotic

convergence raterasym(U). Based on [40],Nc(U) = −1/max2≤i≤N log(|λi(U)|), where λi(U) is

the eigenvalue of the consensus matrixU . The overall computational complexity of the CF/DPF is,

therefore, given bymax
{

O(Nn2
x(NLF +NFF)),O(n2

x∆GNc(U))
}

compared to the computational com-

plexity O
(
(n2

x +N)Ns

)
of the centralized implementation. Since the computational complexity of the

two implementations involve different variables, it is difficult to compare them subjectively. In our
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simulations (explained in Section VI), the value of the variables are:nx = 4, N = 20, Ns = 10, 000,

NLF = NFF = 500, andNc(U) = 8 for the network in Fig. 3(a) which results in the following rough

computational counts for the two implementations: Centralized implementation:3.6× 105, and CF/DPF:

3.4 × 105. This means that the two implementations have roughly the same computational complexity

for the BOT simulation of interest to us. We also note that thecomputational burden is distributed

evenly across the nodes in the CF/DPF, while the fusion center performs most of the computations in the

centralized particle filter. This places an additional power energy constraint on the fusion center causing

the system to fail if the power in the fusion center drains out.

IV. M ODIFIED FUSION FILTER

In the CF/DPF, the local filters and the fusion filters can run out of synchronization due to intermittent

network connectivity. The local filters are confined to theirsensor node and unaffected by loss of

connectivity. The fusion filters, on the other hand, run consensus algorithms. The convergence of these

consensus algorithms is delayed if the communication bandwidth reduced. In this section we develop

ways of dealing with such intermittent connectivity issues. First, let us introduce the notation. We assume

that the observations arrive at constant time intervals of∆T . Each iteration of the local filters is performed

within this interval, which we will refer to as the local filter’s estimation interval. The duration (the fusion

filters’s estimation interval) of the update cycle of the fusion filter is denoted byTc. Fig. 2 illustrates three

scenarios dealing with different fusion filter’s estimation intervals. Fig. 2(a) is the ideal scenario where

Tc ≤ ∆T and the fusion filter’s consensus step converges before the new iteration of the local filter.

In such a scenario, the local and fusion filters stay synchronized. Fig. 2(b) shows the second scenario

when the convergence rate of the fusion filter varies according to the network connectivity. Under regular

connectivityTc < ∆T and limited connectivity loesses, the fusion filters will manage to catch up with the

localized filters in due time. Fig. 2(c) considers a more problematic scenario whenTc > ∆T . Even with

ideal connectivity, the fusion filter will continue to lag the localized filters with no hope of its catching

up. The bottom two timing diagrams in Fig. 2(c) refer to this scenario withTc = 2∆T . As illustrated, the

lag between the fusion filter and the localized filters grows exponentially with time in this scenario. An

improvement to the fusion filter is suggested in the top timing diagram of Fig. 2(c), where the fusion filter

uses the most recent local filtering density of the localizedfilters. This allows the fusion filter to catch

up with the localized filter even for casesTc > ∆T . Such a modified fusion implementation requires an

updated fusion rule for the global posterior density, whichis considered next.

At iteration k +m, we assume that nodel, for (1 ≤ l ≤ N ), has a particle-based approximation of
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Fig. 2. Multi-rate implementation of the local and fusion filters. (a) The ideal scenario where the fusion filter’s consensus

step converges before the new iteration of the local filter. (b) The convergence rate of the fusion filter varies accordingto the

network connectivity. (c) The lag between the fusion filter and the local filter grows exponentially.

the local filtering distributionsP (x(k+m)|z(l)(1 : k+m)), while its fusion filter has a particle-based

approximation of the global posterior distributionP (x(0:k)|z(1:k)) for iterationk. In other words, the

fusion filters are lagging the localized filters bym iterations. In the conventional fusion filter the statistics

of P (x(k+1)|z(l)(1:k+1)), for (1 ≤ l ≤ N ) are used in the next consensus step of the fusion filter which

then computes the global posteriorP (x(0:k+1)|z(1:k+1)) based on Theorem 1. The modified fusion

filter uses the most recent local filtering distributionsP (x(k+m)|z(l)(1:k+m)) according to Theorem 2.

Theorem 2. Conditioned on the state variables, assume that the observations made at nodel are

independent of the observations made at nodej, (j 6= l). The global posterior distribution for aN–sensor

network at iterationk+m is then given by

P (x(0:k+m)|z(1:k+m)) ∝

N∏

l=1

∏k+m
k′=k+1 P

(
x(k′)|z(l)(1:k′)

)

∏k+m
k′=k+1 P

(
x(k′)|z(l)(1:k′−1)

)

k+m∏

k′=k+1

P
(
x(k′)|x(k′−1)

)
× P (x(0:k)|z(1:k)) . (34)

The proof of Theorem 2 is included in Appendix B. In the consensus step of the modified fusion

filter, two average consensus algorithms are used to compute
∏N

l=1

∏k+m
k′=k+1 P (x(k′)|z(l)(1 : k′)) and
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∏N
l=1

∏k+m
k′=k+1 P (x(k′)|z(l)(1:k′−1)), i.e.,

N∏

l=1

k+m∏

k′=k+1

P
(

x(k′)|z(l)(1:k′)
)

∝
N∏

l=1

N
(
µ(l)(k+1:k+m),P (l)(k+1:k+m)

)
(35)

and
N∏

l=1

k+m∏

k′=k+1

P
(

x(k′)|z(l)(1:k′−1)
)

∝
N∏

l=1

N
(
υ(l)(k+1:k+m),R(l)(k+1:k+m)

)
, (36)

instead of computing
∏N

l=1 P (x(k)|z(l)(1 :k)) and
∏N

l=1 P (x(k)|z(l)(1 :k−1)) as was the case for the

conventional fusion filter. The modified fusion filter startswith a set of particlesX(MFF,l)
i (k),W

(MFF,l)
i (k)

approximatingP (x(0 :k)|z(1 :k)) and generates updated particlesX
(MFF,l)
i (k+m),W

(MFF,l)
i (k+m) for

P (x(0:k+m)|z(1:k+m)) using the following weight update equation

W
(l,MFF)
i (k+m)∝W

(l,MFF)
i (k)×

∏k+m
k′=k+1 P

(

X
(l,MFF)
i (k′)|X

(l,MFF)
i (k′−1)

)

N
(
X
(l,MFF)
i (k+m);υ(k+1:k+m),R(k+1:k+m)

) , (37)

which is obtained directly from Eq. (34). Note that the normal approximation in Eqs. (35)–(37) are similar

to the ones used in the conventional fusion filter. Furthermore, we note that the modification requires

prediction of the particles from iterationk all the way tok+m in order to evaluate the second term on

the right hand side of Eq. (37). Algorithm 2 outlines this step and summarizes the modified fusion filter.

V. THE POSTERIORCRAMÉR-RAO LOWER BOUND

Considering the non-linear filtering problem modeled in Eqs. (1) and (2) and the posterior distribution

(Eq. (13)) used in developing the CF/DPF, the section computes the Posterior Cramér-Rao lower bound

(PCRLB) for the distributed architecture. We note that the PCRLB is independent of the estimation mech-

anism and the bound should be the same for both centralized and distributed architectures. The question is

whether the centralized expressions for computing the PCRLB are applicable to compute the PCRLB for

other topologies, i.e., the hierarchical and distributed (decentralized) architectures. Reference [3] considers

a hierarchical architecture with a central fusion center and shows that the centralized expressions can be

used directly for the hierarchical case. The same authors argue in [4] that the centralized expressions are

no longer applicable for distributed/decentralized architectures. The exact expression for computing the

PCRLB for the distributed architecture is not yet availableand only an approximate expression [4] has

recently been derived. In this section, we derive the exact expression for computing the PCRLB for the

distributed topology. We note that our result is not restricted to the particle filter or the CF/DPF but is

also applicable to any other distributed estimation approach.
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Algorithm 2 MODIFIED FUSION FILTER

Input: {X
(l,MFF)
i (k),W

(l,MFF)
i (k)}

Nl,MFF

i=1 - Fusion filter’s particles and associated weights.

Output: {X
(l,MFF)
i (k+m),W

(l,MFF)
i (k+m)}Ns

i=1 updated particles and associated weights.

1: for k′ = k+1 : k +m, do

N
(
µ(l)(k′),P (l)(k′)

)
= SaveGaussian

(

{X
(l)
i (k′),W

(l)
i (k′)}Ns

i=1

)

N
(
υ(l)(k′),R(l)(k′)

)
= SaveGaussian

(

{X
(l)
i (k′+1|k′),W

(l)
i (k′)}Ns

i=1

)

2: end for

3: N
(
µ(l)(k+1:k+m),P (l)(k+1:k+m)

)
= SaveGaussian

(
∏k+m

k′=k+1 N
(
µ(l)(k′),P (l)(k′)

))

.

4: N
(
υ(l)(k+1:k+m),R(l)(k+1:k+m)

)
= SaveGaussian

(
∏k+m

k′=k+1 N
(
υ(l)(k′),R(l)(k′)

))

.

5: {µ(l,MFF)(k+1:k+m),P (l,MFF)(k+1:k+m)}=DoFusion
(
{µ(l)(k+1:k+m),P (l)(k+1:k+m)}Nl=1

)
.

6: {υ(l,MFF)(k+1:k+m),R(l,MFF)(k+1:k+m)}=DoFusion
(
{υ(l)(k+1:k+m),R(l)(k+1:k+m)}Nl=1

)
.

7: for i = 1 : NFF, do

8: for k′ = k+1 : k+m−1, do

X
(l,MFF)
i (k′) ∼ P

(
x(k′)|X

(l,MFF)
i (k′−1)

)
.

9: end for

X
(l,MFF)
i (k+m) ∼ N

(
µ(l,MFF)(k+1:k+m),P (l,MFF)(k+1:k+m)

)
.

Compute weightsW (l,MFF)
i (k+m) using Eq. (37).

10: end for

The PCRLB inequality [2] states that the mean square error (MSE) of the estimatêx(0:k) of the state

variablesx(0:k) is lower bounded by

E{(x̂(0:k)−x(0:k))(x̂(0:k)−x(0:k))T }≥[J(x(0:k))]−1 , (38)

whereE is the expectation operator. MatrixJ(x(0 : k)) is referred to as the FIM [2] derived from the

joint probability density function (PDF)P (x(0:k),z(1:k)). Let ∇ and∆, respectively, be operators of

the first and second order partial derivatives given by∇x(k) =
[

∂
∂X1(k)

, . . . , ∂
∂Xnx(k)

]T
and∆

x(k)
x(k−1) =

∇x(k−1)∇
T
x(k). One form of the Fisher information matrixJ(x(0:k)) is defined as [2]

J
(
x(0:k)

)
= E

{
−∆

x(0:k)
x(0:k) logP (x(0:k),z(1:k))

}
. (39)

An alternative expression for the FIM can be derived from thefactorizationP (x(0 : k),z(1 : k)) =

P (x(0:k)|z(1:k)) × P (z(1:k)). SinceP (z(1:k)) is independent of the state variables, we have

J
(
x(0:k)

)
= E

{
−∆

x(0:k)
x(0:k) log P (x(0:k)|z(1:k))

}
. (40)
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We now describe the centralized sequential formulation of the FIM.

A. Centralized computation of the PCRLB

Decomposingx(0:k) asx(0:k) = [xT (0:k−1),xT (k)]T in J
(
x(0:k)

)
, Eq. (40) simplifies to

J
(
x(0:k)

)
,




A11(k) A12(k)

A21(k) A22(k)



 = E

{

− 1×




∆

x(0:k−1)
x(0:k−1) ∆

x(k)
x(0:k−1)

∆
x(0:k−1)
x(k) ∆

x(k)
x(k)



 log P
(
x(0:k)|z(1:k)

)

}

,

provided that the expectations and derivatives exist. The information submatrixJ(x(k)) for estimating

x(k) is given by the inverse of the (nx × nx) right-lower block of
[
J
(
x(0 : k)

)]−1
. The information

submatrix is computed using the matrix inversion lemma [2] and given by

J(x(k)) = A22(k)−A21(k)
(
A11(k)

)−1
A12(k). (41)

Proposition 1 [2] derivesJ(x(k)) recursively without manipulating the large (knx×knx) matrixA11(k).

The initial condition is given byJ
(
x(0)

)
= E{−∆

x(0)
x(0)

logP (x(0))}.

Proposition 1. The sequence{J
(
x(k)

)
} of local posterior information sub-matrices for estimating state

vectorsx(k) at nodel, for (1 ≤ l ≤ N ), obeys the following recursion

J
(
x(k + 1)

)
= D22(k) −D21(k)

(

J
(
x(k)

)
+D11(k)

)−1
D12(k) (42)

whereD11(k) = E
{
−∆

x(k)
x(k) log P

(
x(k + 1)|x(k)

)}
(43)

D12(k) =
[
D21(k)

]T
= E

{
−∆

x(k+1)
x(k) logP

(
x(k + 1)|x(k)

)}
(44)

D22(k) = E
{
−∆

x(k+1)
x(k+1) logP

(
x(k + 1)|x(k)

)}
+ E

{
−∆

x(k+1)
x(k+1) log P

(
z(k+1)|x(k+1)

)

︸ ︷︷ ︸

J(z(k+1))

}
, (45)

The proof of Proposition 1 is given in [2]. Conditioned on thestate variables, the observations made

at different nodes are independent ,therefore,J(z(k + 1)) [36] in Eq. (45) is simplifies to

J(z(k + 1)) =

N∑

l=1

J(z(l)(k + 1)) =

N∑

l=1

E
{
−∆

x(k+1)
x(k+1) logP

(
z(l)(k+1)|x(k+1)

)
}.

In other words, the expression forJ(x(k + 1)) (Eq. (42)) requires distributed information (sensor

measurement) only for computingJ(z(k + 1)). Other terms in Eq. (42) can be computed locally. In

the next section, we derive the distributed PCRLB.

B. Distributed computation of the PCRLB

In the sequel,J (l)
(
x(0:k)

)
, for (1 ≤ l ≤ N ), denotes the local FIM corresponding to the local estimate

of x(0 :k) derived from the local posterior densityP (x(0 :k)|z(l)(1 :k)). Similarly, J (l)
(
x(0 :k+1|k)

)
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denotes the local FIM corresponding to the local predictionestimate ofx(0:k+1) derived from the local

prediction densityP (x(0 :k+1),z(l)(1 :k)). The expressions forJ (l)
(
x(0 :k)

)
andJ (l)

(
x(0 :k+1|k)

)

are similar in nature to Eq. (41) except that the posterior density P (x(0 : k)|z(1 : k)) is replaced by

their corresponding local posteriors. The local FIMJ (l)
(
x(k)

)
is given by the inverse of the (nx × nx)

right-lower block of
[
J (l)

(
x(0 : k)

)]−1
. Similarly, the prediction FIMJ (l)

(
x(k+1|k)

)
is given by the

inverse of the (nx × nx) right-lower block of
[
J (l)

(
x(0:k+1|k)

)]−1
.

The problem we wish to solve is to compute the global information sub-matrix, denoted byJ
(
x(k+1)

)
,

as a function of the local FIMsJ (l)
(
x(k+1)

)
and local prediction FIMsJ (l)

(
x(k+1|k)

)
, for (1 ≤ l ≤ N ).

Note thatJ (l)
(
x(k)

)
can be updated sequentially using Eqs. (42)-(45) whereJ(z(l)(k + 1)) replaces

J(z(k + 1)) in Eq. (45). Proposition 2 derives a recursive formula for computingJ (l)
(
x(k+1|k)

)
, i.e.,

the FIM for the local prediction distribution.

Proposition 2. The sequence{J (l)
(
x(k+1|k)

)
} of the local prediction information sub-matrices for

predicting state vectorsx(k) at nodel, for (1 ≤ l ≤ N ), follows the recursion

J (l)
(
x(k+1|k)

)
= B22(k)−D21(k)

(
J (l)

(
x(k)

)
+D11(k)

)−1
D12(k) (46)

whereJ (l)
(
x(k)

)
is given by Eq. (42),D11(k), D12(k), andD21(k) are given by Eqs. (43)-(45) and

B22(k) = E
{
−∆

x(k+1)
x(k+1) logP

(
x(k + 1)|x(k)

)}
, (47)

The proof of Proposition 2 is included in Appendix D. Theorem3 is our main result. It provides the

exact recursive formula for computing the distributed FIM corresponding to the global estimation from

the local FIMsJ (l)(x(k)) and local prediction FIMsJ (l)(x(k+1)).

Theorem 3. The sequence{J
(
x(k)

)
} of information sub-matrices corresponding to global estimates

follows the recursion

J
(
x(k+1)

)
= C22(k)−D21(k)

(
J
(
x(k)

)
+D11(k)

)−1
D12(k) (48)

whereD11(k), D21(k), andD12(k) are given by Eqs. (43)-(45) and

C22(k)=

N∑

l=1

J (l)(x(k+1)) −
N∑

l=1

J (l)(x(k+1|k)) + E
{
−∆

x(k+1)
x(k+1) logP

(
x(k + 1)|x(k)

)}
, (49)

whereJ (l)(x(k+1)) andJ (l)(x(k+1|k)) are defined in Prepositions 1 and 2, respectively.

The proof of Theorem 3 is included in Appendix C. In [4], an approximate updating equation based on

the information filter (an alternative form of the Kalman filter) is proposed for computingJ(x(k+1))
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at nodel which is represented in our notation as follows

Ĵ(x(k+1))=J (l)(x(k+1)) +
∑

j 6=l

(

J (j)(x(k+1))−J (j)(x(k+1|k))

)

. (50)

TermJ (l)(x(k+1)) is given by

J (l)
(
x(k + 1)

)
= D22(k)−D21(k)

(

J (l)
(
x(k)

)
+D11(k)

)−1
D12(k). (51)

Subtracting Eq. (46) from the above equation and rearranging, we get

D22(k) =

(

J (l)(x(k+1))−J (l)(x(k+1|k))

)

+B22(k). (52)

SubstitutingB22(k) from Eq. (47) in Eq. (52) and then substituting the resultingexpression ofD22(k)

in Eq. (51), we get

J (l)
(
x(k+1)

)
=

(

J (l)(x(k+1))−J (l)(x(k+1|k))

)

+E
{
−∆

x(k+1)
x(k+1) log P

(
x(k + 1)|x(k)

)}

−D21(k)
(
J (l)

(
x(k)

)
+D11(k)

)−1
D12(k). (53)

Substituting Eq (53) in Eq. (50) results in the following approximated fused FIM at nodel

Ĵ
(
x(k+1)

)
= C22(k)−D21(k)

(
J (l)

(
x(k)

)
+D11(k)

)−1
D12(k). (54)

Note the differences between Eqs. (54) and (48). The second term in the right hand side of Eq. (54) is based

on the previous local FIMJ (l)(x(k)) at nodel thus making it node-dependent, while the corresponding

term in Eq. (48) is based on the overall FIM from the previous iteration. When the PCRLB is computed

in a distributed manner, Eq. (54) differs from one node to another and is, therefore, not conducive for

deriving the overall PCRLB through consensus. To make Eq. (50) node independent, our simulations also

compare the proposed exact PCRLB with another approximate expression, which only includes the first

two terms ofC22(k) in Eq. (49) i.e.,

Ĵ(x(k+1)) ∼= C22(k) ∼=

N∑

l=1

(

J (l)(x(k+1))−J (l)(x(k+1|k))

)

. (55)

The expectation terms in Eqs. (43)-(45), (47), and (49) can be further simplified for additive Gaussian

noise, i.e., whenξ(·) andζ(l)(·) are normally distributed with zero mean and covariance matricesQ(k)

andR(l)(k), respectively. In this case, we have

D11(k)=E
{[

∇x(k)f
T (k)

]
Q−1(k)[∇x(k)f

T (k)
]T}

(56)

D12(k)=−E
{[

∇x(k)f
T (k)

]
Q−1(k) =

[
D21(k)

]T
(57)

D22(k)=Q−1(k) + E
{[

∇x(k+1)g
(l)T (k+1)

]
R(l)−1

(k+1)[∇x(k+1)g
(l)T (k+1)

]T}
(58)

B22(k)=Q−1(k), (59)
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and C22(k) =

N∑

l=1

J (l)(x(k+1))−
N∑

l=1

J (l)(x(k+1|k)) +Q−1(k). (60)

Note that Theorem 3 (Eqs. (48)-(49)) provides a recursive framework for computing the distributed

PCRLB. Further, the proposed distributed PCRLB can be implemented in a distributed fashion because

Eq. (49) has only two summation terms involving local parameters. These terms can be computed in

a distributed manner using the average consensus algorithms [26]. Other terms in Eqs. (48)-(49) are

dependent only on the process model and can be derived locally. In cases (non-linear/non-Gaussian

dynamic systems) where direct computation ofD11(k), D12(k), D21(k), D22(k), B22(k), andC22(k)

involves high-dimensional integrations, particle filterscan alternatively be used to compute these terms.

VI. SIMULATIONS : BEARING ONLY TARGET TRACKING

A distributed bearing-only tracking (BOT) application [39] is simulated to test the proposed CF/DPF.

The BOT problem arises in a variety of nonlinear signal processing applications including radar surveil-

lance, underwater submarine tracking in sonar, and robotics [39]. The objective is to design a practical

filter capable of estimating the state kinematicsx(k) = [X(k), Y (k), Ẋ(k), Ẏ (k)] (position [X,Y ] and

velocity [Ẋ, Ẏ ]) of the target from the bearing angle measurements and priorknowledge of the target’s

motion. The BOT is inherently a nonlinear application with nonlinearity incorporated either in the state

dynamics or in the measurement model depending on the choiceof the coordinate system used to

formulate the problem. In this paper, we consider non-linear target kinematics with a non-Gaussian

observation model. A clockwise coordinated turn kinematicmotion model [39] given by

f(x(k)) =











1 0 sin(Ω(k)∆T )
Ω(k) −1−cos(Ω(k)∆T )

Ω(k

0 1 1−cos(Ω(k)∆T )
Ω(k)

sin(Ω(k)∆T )
Ω(k)

0 0 cos(Ω(k)∆T ) − sin(Ω(k)∆T )

0 0 sin(Ω(k)∆T ) cos(Ω(k)∆T )











, with Ω(k) =
Am

√

(Ẋ(k))2 + (Ẏ (k))2
, (61)

is considered with the manoeuvre acceleration parameterAm set to1.08 × 10−5units/s2 [39]. A sensor

network ofN = 20 nodes with random geometric graph model in a square region ofdimension (16×16)

units is considered. Each sensor communicates only with itsneighboring nodes within a connectivity

radius of
√

2 log(N)/N units. In addition, the network is assumed to be connected with each node

linked to at least one other node in the network. Measurements are the target’s bearings with respect to

the platform of each node (referenced clockwise positive tothe y-axis), i.e.,

Z(l)(k) = atan

(
X(k) −X(l)

Y (k) − Y (l)

)

+ ζ(l)(k), (62)
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where(X(l), Y (l)) are the coordinates of nodel. The observations are assumed to be corrupted by the

non-Gaussiantarget glint noise[45] modeled as a mixture model of two zero-mean Gaussians [45], one

with a high probability of occurrence and small variance andthe other with relatively a small probability

of occurrence and high variance. The likelihood model at node l, for (1 ≤ l ≤ N ), is described as

P (z(l)|x(k)) = (1− ǫ)×N (x; 0, σ2
ζ(l)(k)) + ǫ×N (x; 0, 104σ2

ζ(l)(k)), (63)

whereǫ = 0.09 in the simulations. Furthermore, the observation noise is assumed to be state dependent

such that the bearing noise varianceσ2
ζ(l)(k) at nodel depends on the distancer(l)(k) between the

observer and target. Based on [46], the variance of the observation noise at nodel is, therefore, given by

σ2
ζ(l)(k) = 0.08r(l)

2

(k) + 0.1150r(l)(k) + 0.7405. (64)

Due to state-dependent noise variance, we note that the signal to noise ratio (SNR) is time-varying and

differs (within a range of−10dB to 20dB) from one sensor node to the other depending on the location

of the target. Averaged across all nodes and time, the mean SNR is 5.5dB. In our simulations, we

chose to incorporate observations made at all nodes in the estimation, however, sensor selection based

on the proposed distributed PCRLB can be used, instead, which will be considered as future work. Both

centralized and distributed filters are initialized based on the procedure described in [39].

Simulation Results: The target starts from coordinates(3, 6) units The position of target the target

([X,Y ]) in first three iterations are(2.6904, 5.6209), (2.3932, 5.2321), and(2.1098, 4.8318). The initial

course is set at−140◦ with the standard deviation of the process noiseσv = 1.6×10−3 unit. The number

Ns of vector particles for centralized implementation isNs = 10, 000. The numberNLF andNFF of vector

particles used in each local filter and fusion filter is500. The number of particles for the CF/DPF are

selected to keep its computational complexity the same as that of the centralized implementation. To

quantify the tracking performance of the proposed methods two scenarios are considered as follows.

Scenario 1:accomplishes three goals. First, we compare the performance of the proposed CF/DPF versus

the centralized implementation. The fusion filters used in the CF/DPF are allowed to converge between

two consecutive iterations of the localized particle filters (i.e., we follow the timing subplot (a) of Fig. 2).

Second, we compare the impact of the three proposal distributions listed in Section III-E on the CF/DPF.

The performance of the CF/DPF is computed for each of these proposal distributions using Monte Carlo

simulations. Third, we plot the proposed PCRLB computed from the distributed configuration and compare

it with its counterpart obtained from the centralized architecture that includes a fusion center.

Fig. 3(a) plots one realization of the target track and the estimated tracks obtained from: (i) The CF/DPF;

(ii) the centralized implementation, and; (iii) a single node estimation (stand alone case ). In the CF/DPF,
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Fig. 3. Scenario 1: (a) Actual target’s track obtained from the centralized, CF/DPF and stand-alone algorithms. Here, the

consensus algorithm is allowed to converge. (b) CDFs for theX-coordinate of the target estimated using the centralizedand

CF/DPF fork = 5, 22.

we used the Gaussian approximation of the optimal proposal distribution as the proposal distribution

(Case3 in Section III-E). The two estimates from the CF/DPF and the centralized implementation are

fairly close to the true trajectory of the target so much so asthat they overlap. The stand alone scenario

based on running a particle filter at a single node (shown as the red circle in Fig. 3(a)) fails to track

the target. Fig. 3(b) plots the cumulative distribution function (CDF) for the X-coordinate of the target

estimated using the centralized and CF/DPF implementations for iterationsk = 5 and22. We note that

the two CDFs are close to each other. Fig. 3 illustrates the near-optimal nature of the CF/DPF.

Fig. 4 compares the root mean square (RMS) error curves for the target’s position. Based on a Monte-

Carlo simulation of100 runs, Fig. 4(a) plots the RMS error curves for the estimated target’s position

via three CF/DPF implementations obtained using differentproposals distributions. We observe that the

SIR fusion filter performs the worst in this highly non-linear environment with non-Gaussian observation

noise, while the outputs of the centralized and the other twodistributed implementations are fairly close

to each other and approach the PCRLB. Since the product fusion filter requires less computations, the

simulations in Scenario2 are based on the CF/DPF implementation using the product fusion filter.

Second, in Fig. 4(b), we compare the PCRLB obtained from the distributed and centralized architectures.

The Jacobian terms∇x(k)f
T (k) and∇x(k+1)g

(l)T (k+1), needed for the PCRLB, are computed using

the procedure outlined in [39]. It is observed that the boundobtained from the proposed distributed
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Fig. 4. Scenario 1: (a) Comparison of the RMS errors resulting from the centralized versus distributed implementations. (b)

Comparison of the proposed exact PCRLB, its approximated value based on [4] (Eq. (54)) computed at node12 and 17, and

approximation of Eq. (55). The PCRLBs computed using the centralized and distributed (proposed) expressions overlap so that

they are virtually indistinguishable.

computation of the PCRLB is more accurate and closer to the PCRLB computed from the centralized

expressions. As expected, the proposed decentralized PCRLB overlaps with its centralized counterpart.

Scenario 2:The second scenario models the timing subplot (c) of Fig. 2. The convergence of the fusion

filter takes up to two iterations of the localized filters. Theoriginal fusion filter (Algorithm 1) is unable

to converge within two consecutive iterations of the localized particle filters. Therefore, the lag between

the fusion filters and the localized filters in the CF/DPF continues to increase exponentially. The modified

fusion filter described in Algorithm 2 is implemented to limit the lag to two localized filter iterations. The

target’s track are shown in Fig. 5(a) for the centralized implementation, original and modified fusion filter.

Fig. 5(b) shows the RMS error curves for the target’s position including the RMS error resulting from

Algorithm 1. Since consensus is not reached in Algorithm 1, therefore, the fusion estimate is different

from one node to another. For Algorithm1, Fig. 5(b) includes the RM error associated with a randomly

selected node. In Fig. 5(b), Algorithm1 performs poorly due to consensus not reached, while the modified

fusion filter performs reasonably well. The performance of the modified fusion filter remains close to its

centralized counterpart, therefore, it is capable of handling intermittent consensus steps.

Scenario 3: In the third scenario, we consider a distributed mobile robot localization problem [15], [48]

based on angle-only measurements. This is a good benchmark since the underlying dynamics is non-linear

with non-additive forcing terms resulting in a non-Gaussian transitional state model. The state vector of
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Fig. 5. Scenario 2: (a) Actual target’s track alongside estimated tracks obtained from the centralized and modified fusion filter.

Here, the consensus algorithm converges after each2 iterations of the local particle filters. (b) Comparison of the RMS errors

resulting from the centralized, original fusion filter and modified fusion filter.

the unicycle robot is defined byx = [X,Y, θ]T , where (X,Y ) is the 2D coordinate of the robot andθ

is its orientation. The velocity and angular velocity are denoted byṼ (k) and W̃ (k), respectively. The

following discrete-time non-linear unicycle model [48] represents the state dynamics of the robot

X(k+1) = X(k) +
Ṽ (k)

W̃ (k)

(

sin
(

θ(k) + W̃ (k)∆T
)

− sin
(
θ(k)

))

, (65)

Y (k+1) = Y (k) +
Ṽ (k)

W̃ (k)

(

cos
(

θ(k) + W̃ (k)∆T
)

− cos
(
θ(k)

))

, (66)

andθ(k+1) = θ(k) + W̃ (k)∆T + ξθ∆T, (67)

where∆T is the sampling time andξθ is the orientation noise term. The design parameters are:∆T = 1,

a mean velocity of30 cm/s with a standard deviation of5 cm/s, and a mean angular velocity of0.08

rad/s with a standard deviation of0.01 rad. Because of the presence of sine and cosine functions, the

overall state dynamics in Eq. (65)-(66) are in effect perturbed by non-Gaussian terms. The observation

model is similar to the one described for Scenario1 with non-Gaussian and state-dependent observation

noise. The robot starts at coordinates(3, 5). Fig. 6 (a) shows one realization of the sensor placement

along with the estimated robot’s trajectories obtained from the proposed CF/DPF, centralized particle filter

and distributed unscented Kalman filter (UKF) [15] implementations. We observe that both centralized

particle filter and CF/DPF clearly follow the robot trajectory, while the distributed UKF deviates after

a few initial iterations. Fig. 6 (b) plots the RMS errors obtained form a Monte-Carlo simulation of100

runs, which corroborate our earlier observation that the CF/DPF and the centralized particle filter provide
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Fig. 6. (a) Robot trajectories estimated from the CF/DPF, centralized, and distributed UKF implementations. (b) RMS error

plots for the three implementations.

better estimates that are close to each other. The UKF produces a different result with the highest error.

VII. C ONCLUSION

In this paper, we propose a multi-rate framework referred toas the CF/DPF for distributed imple-

mentation of the particle filter. In the proposed framework,two particle filters run at each sensor node.

The first filter, referred to as the local filter, recursively runs the particle filter based only on the local

observations. We introduce a second particle filter at each node, referred to as the fusion filter, which

consistently assimilate local estimates into a global estimate by extracting new information. Our CF/DPF

implementation allows the fusion filter to run at a rate different from that of the local filters. Achieving

consensus between two successive iterations of the localized particle filter is no longer a requirement. The

fusion filter and its consensus-step are now separated from the local filters, which enables the consensus

step to converge without any time limitations. Another contribution of the paper is the derivation of the

optimal posterior Cramér-Rao lower bound (PCRLB) for the distributed architecture based on a recursive

procedure involving the local Fisher information matrices(FIM) of the distributed estimators. Numerical

simulations verify the near-optimal performance of the CF/DPF. The CF/DPF estimates follows the

centralized particle filter closely approaching the PCRLB at the signal to noise ratios that we tested.

APPENDIX A

Proof of Theorem 1 [35]: Theorem 1 is obtained using: (i) The Markovian property of the state

variables; (ii) Assuming that the local observations made at two sensor nodes conditioned on the state
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variables are independent of each other, and; (iii) Using the Bayes’ rule. Applying the Bayes’ rule to

Eq. (13), the posterior distribution can be represented as follows

P
(
x(0:k)|z(1:k)

)
∝P

(
z(k)|x(k)

)
P
(
x(0:k)|z(1:k−1)

)
. (68)

Now, using the Markovian property of the state variables, Eq. (68) becomes

P
(
x(0:k)|z(1:k)

)
∝P

(
z(k)|x(k)

)
× P

(
x(k)|x(k−1)

)
P
(
x(0:k−1)|z(1:k−1)

)
. (69)

Assuming that the local observations made at two sensor nodes conditioned on the state variables are

independent of each other Eq. (69) becomes

P
(
x(0:k)|z(1:k)

)
∝

(
N∏

l=1

P
(
z(l)(k)|x(k)

)

)

× P
(
x(k)|x(k−1)

)
P
(
x(0:k−1)|z(1:k−1)

)
. (70)

Using the Bays’ rule, the local likelihood functionP
(
z(l)(k)|x(k)

)
at nodel, for (1 ≤ l ≤ N ) is

P
(

z(l)(k)|x(k)
)

=
P
(
x(k)|z(l)(1:k)

)

P
(
x(k)|z(l)(1:k−1)

)P
(

z(l)(k)|z(l)(1:k−1)
)

. (71)

Finally, the result (Eq. (13)) is provided by substituting Eq. (71) in Eq. (70).

APPENDIX B

Proof of Theorem 2: Following the approach in the proof of Theorem 1 (Appendix A), we first

write the posterior density at iterationk+m as

P (x(0:k+m)|z(1:k+m)) ∝

∏N
l=1 P

(
x(k+m)|z(l)(1:k+m)

)

∏N
l=1 P

(
x(k+m)|z(l)(1:k+m−1)

)P (x(0:k+m)|z(1:k+m−1)). (72)

Then the last term is factorized as follows

P (x(0:k+m)|z(1:k+m−1)) = P (x(k+m)|x(k+m−1))P (x(0:k+m−1)|z(1:k+m−1)) . (73)

As in Eq. (72), we continue to expandP (x(0:k+m−1)|z(1:k+m−1)) (i.e., the posterior distribution

at iterationk+m−1) all the way back to iterationk+1 to prove Eq. (34).

APPENDIX C

Proof of Theorem 3:Based on Eq. (13), termlog(P (x(0:k+1)|z(1:k+1))) is given by

log P
(
x(0:k+1)|z(1:k+1)

)
=

N∑

l=1

log
(

P (x(k+1)|z(l)(1:k+1))
)

−
N∑

l=1

log
(

P (x(k+1)|z(l)(1:k))
)

+ log
(
P (x(k+1)|x(k))

)
+ log

(
P (x(0:k)|z(1:k))

)
.
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Expanding Eq. (41) forJ(x(0:k+1)), we get

J
(
x(0:k+1)

)
= E

{

− 1×








∆
x(0:k−1)
x(0:k−1) ∆

x(k)
x(0:k−1) ∆

x(k+1)
x(0:k−1)

∆
x(0:k−1)
x(k) ∆

x(k)
x(k) ∆

x(k+1)
x(k)

∆
x(0:k−1)
x(k+1) ∆

x(k)
x(k+1) ∆

x(k+1)
x(k+1)







logP

(
x(0:k+1)|z(1:k+1)

)

}

(74)

Substituting Eq. (74) in Eq. (74), it can be shown that

J
(
x(0:k+1)

)
=








A11(k) A12(k) 0

A21(k) A22(k) +D11(k) D12(k)

0 D21(k) C22(k)







, (75)

whereA11(k), A12(k), A21(k) andA22(k) are the same as for Eq. (41);D11(k), D12(k) andD21(k)

are the same as in Eqs. (43)-(45), and;C22(k) is defined in Eq. (49). Block0 stands for a block of all

zeros with the appropriate dimension. The information sub-matrix J
(
x(k+1)

)
can be calculated as the

inverse of the right lower (nx × nx) sub-matrix of
[
J
(
x(0:k+1)

)]−1
as follows

J
(
x(k+1)

)
= C22(k)−

[
0 D21(k)

]
×




A11(k) A12(k)

A21(k) A22(k) +C11(k)





−1 


0

D12(k)



 (76)

= C22(k)−D21(k)
(
J
(
x(k)

)
+D11(k)

)−1
D12(k),

obtained from the definition ofJ
(
x(k)

)
based on Eq. (41).

APPENDIX D

Proof of Proposition 2: The proof of Proposition 2 is similar to that of Theorem 3 using the

Markovian property of the state variables and based on the factorization of the joint prediction distribution

P
(
x(0:k+1)|z(1:k)

)
= P

(
x(k+1)|x(k)

)
P
(
x(0:k)|z(1:k)

)
.
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