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Abstract

Motivated by non-linear, non-Gaussian, distributed rsdtinsor/agent navigation and tracking appli-
cations, we propose a multi-rate consensus/fusion baaeatkfwork for distributed implementation of the
particle filter (CF/DPF). The CF/DPF framework is based aming localized patrticle filters to estimate
the overall state vector at each observation node. Sepfrsiten filters are designed to consistently
assimilate the local filtering distributions into the glbpasterior by compensating for the common past
information between neighbouring nodes. The CF/DPF offers distinct advantages over its counter-
parts. First, the CF/DPF framework is suitable for scersavithere network connectivity is intermittent
and consensus can not be reached between two consecuteevailtms. Second, the CF/DPF is not
limited to the Gaussian approximation for the global pastedensity. A third contribution of the paper
is the derivation of the exact expression for computing tbstgrior Cramér-Rao lower bound (PCRLB)
for the distributed architecture based on a recursive gphaeeinvolving the local Fisher information
matrices (FIM) of the distributed estimators. The perfonggof the CF/DPF algorithm closely follows

the centralized particle filter approaching the PCRLB atdigmal to noise ratios that we tested.
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. INTRODUCTION

The paper focuses on distributed estimation and trackiggrihms for non-linear, non-Gaussian,
data fusion problems in networked systems. Distributetk statimation has been the center of attention
recently both for linear[[5]+[10] and non-linear systemd4[H32] with widespread applications such
as autonomous navigation of unmanned aerial vehicles (U&8), localization in robotics[[15], track-

ing/localization in underwater sensor networks|[16], rilistted state estimation for power distribution
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networks[[14], and bearings-only target tracking [17]. Ajongroblem in distributed estimation networks
is unreliable communication (especially in large and rAudtp networks), which results in communication
delays and information loss. Referred to as intermittetwark connectivity [33],[[34], this issue has been
investigated broadly in the context of the Kalman filter|[3@4]. Such methods are, however, limited
to linear systems and have not yet been extended to non-lyséems. The paper addresses this gap.
Distributed Estimation: Traditionally, state estimation algorithms have beendbrgentralized with
participating nodes communicating their raw observati@ither directly or indirectly via a multi-hop
relay) to the fusion centre: a central processing unit resjite for computing the overall estimate.
Although optimal, such centralized approaches are unisiealand susceptible to failure in case the
fusion centre breaks down. The alternative is to apply ibisted estimation algorithms, where: (i) There
is no fusion center; (ii) The sensor nodes do not requireallebhowledge of the network topology, and;
(ii) Each node exchanges data only within its immediateghleourhood limited to a few local nodes.
The distributed estimation approaches fall under two maitegories: Message passing schemes [18],
[19], where information flows in a sequentigke-definednanner from a node to one of its neighboring
nodes via a cyclic path till the entire network is traversaagl; Diffusive schemes [14]-[17], [20]=[29],
where each node communicates its local information by @ctérg with its immediate neighbors. In
dynamical environments with intermittent connectivitjhave frequent changes in the underlying network
topology due to mobility, node failure, and link failure amecommon practice, diffusive approaches
significantly improve the robustness at the cost of an irsdacommunications overhead. In diffusive
schemes, the type of information communicated across tiwone varies from local observations,
their likelihoods, or some other function of local obseiwas [18], [21], [24], [28], [29], [31], to state
posterior/filtering estimates evaluated at individual e®fL9], [20], [22], [23], [26],[27]. Communicating
state posteriors is advantageous over sharing likeliha@odgpplications with intermittent connectivity.
In theory, any loss of information in error prone networkscisntained in the following posteriors
and is, therefore, automatically compensated for as theildised algorithms iterate. A drawback of
communicating the local state estimates stems from theneleded nature J1]. Channel filters|[1] and
their non-linear extensions [20] (proposed to ensure stersty of the fused estimates by removing
this redundant past information) associate an additiohi@lr fito each communication link and track
the redundant information between a pair of neighbourindeso local estimates. However, channel
filters are limited to tree-connected topologies and canbeogeneralized to random/mobile networks.
Alternatively, consensus-based approaches have beamtlieicéroduced to extend distributed estimation

to arbitrary network topologies with the added advantage ttie algorithm is somewhat immune to node
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and/or communication failure§][9],_[10]. The consensuse&distributed Kalman filter[[5]--[10] have
been widely explored for estimation/tracking problemsimeér systems with intermittent connectivity
but there is still a need for developing distributed estioratapproaches for non-linear systems. In
addition, the current non-linear consensus-based distiib approaches suffer from three drawbacks.
First, the common practice [21]-[2B][26] of limiting theajlal posterior to Gaussian distribution is
sub-optimal. Second, common past information betweenhbeigring nodes gets incorporated multiple
times [22]. Finally, these approaches|[21]4[29], requiie tonsensus algorithm to converge between
two successive observations (thus ignoring the interntittbmmunication connectivity issue in the
observation framework). The performance of the distridatpproaches degrade substantially if consensus
is not reached within two consecutive observations.

Motivated by distributed navigation and tracking appiicas within large networked systems, we pro-
pose a multi-rate framework for distributed implementatid the particle filter. The proposed framework
is suitable for scenarios where the network connectivifjptisrmittent and consensus can not be reached
between two observations. Below, we summarize the key ibomiins of the paper.

1. Fusion filter: The paper proposes a consensus/fusion based distribupdelhimntation of the particle
filter (CF/DPF) for non-linear systems with non-Gaussiaaditexion. In addition to the localized particle
filters, referred to as the local filters, the CF/DPF intragBiseparate consensus-based filters, referred to
as the fusion filters (one per sensor node), to derive theagjjwdsterior distribution by consistently fusing
local filtering densities in a distributed fashion. The limed implementation of the particle filter and the
fusion filter used to achieve consensus are run in paratskiply at different rates. Achieving consensus
between two successive iterations of the local filters isrefore, no longer a requirement. The CF/DPF
compensates for the common past information between |atahates based on an optimal non-linear
Bayesian fusion rule [35]. The fusion concept used in thed®¥ is similar to[[1] and [20], where separate
channel filters (one for each communication link) are deptbio consistently fuse local estimates. Fig. 1
compares the proposed CF/DPF framework with channel filtl@néwork and the centralized Architecture.
In the channel filter framework (Figl 1(c)), the number of whel filters implemented at each node equals
the number of connections it has with its neighbouring noaiesd, therefore, varies from one node to
another. These filters are in addition to the localized filtamn at nodes. In the CF/DPF (Fig. 1(a))

each node only implements one additional filter irrespeativthe neighbouring connections. Finally, the

1Consensus in distributed filtering is the process of esthinlg a consistent value for some statistics of the stat®vacross

the network by interchanging relevant information betwé®sn connected neighboring nodes.
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Fig. 1. (a) The proposed CF/DPF implementation where semstes connect through their fusion filters (one fusion fitter
node). (b) Centralized implementation where all nodes canicate their local estimates to the fusion center. (c) ribisted
implementation using channel filters where a separate fitezquired for each communication link. In terms of the hemabf
extra filters, the CF/DPF falls between the Centralized amhnoel filters.

tree-connect network shown in Fig. 1(c) can not be extendeahy arbitrary network, for example the
one shown in Figll1(a). The CF/DPF is applicable to any netwonfiguration.
2. Modified Fusion filters: In the CF/DPF, the fusion filters can run at a rate differemtnfahat of
the local filters. We further investigate this multi-rateture of the proposed framework, recognize three
different scenarios, and describe how the CF/DPF handlels eithem. For the worse-case scenario
with the fusion filters lagging the local filters exponeritialve derive a modified-fusion filter algorithm
that limits the lag to an affordable delay.
3. Computing Posterior Cramér-Rao Lower Bound: In order to evaluate the performance of the
proposedlistributed non-linearframework, we derive the posterior Cramér-Rao lower bo{RCRLB),
(also referred in literature as the Bayesian CRLB) for tharitiuted architecture. The current PCRLB
approaches [2]) [36]/ [37] assume a centralized architeatu a hierarchical architecturel [3]. The exact
expression for computing the PCRLB for the distributed aechure is not yet available and only an ap-
proximate expressionl[4] has recently been derived. Themdgrives the exact expression for computing
the PCRLB for the distributed architecture. Following Taekky et al. [2], we provide a Riccati-type
recursion that sequentially determines the exact FIM fronalized FIMs of the distributed estimator.
The rest of paper is organized as follows. Seclion Il inteetunotation and reviews the centralized
particle filter as well as the average consensus approachesproposed CF/DPF algorithm and the

fusion filter are described in Sectignllll. The modified fusfdter is presented in SectiénlV. Sectibn V
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derives an expression for computing the PCRLB for a disteiduarchitecture. Sectidn VI illustrates
the effectiveness of the proposed framework in trackingiegions through Monte Carlo simulations.

Finally, in Sectior_VIl, we conclude the paper.

II. BACKGROUND

We consider a sensor network comprising 8f nodes observing a set of, state variablesc =
[X1,Xs,...,X,.]7. For I <1 < N), nodel makes a measurement! (k) at discrete time instants
k, (1 < k). The global observation vector is given ky = [z(WT .. 2(NMT]T where T denotes

transposition. The overall state-space representatiadheotlynamical system is given by

State Model: x(k) = f(x(k—1))+&k) Q)
2z (k) g (z(k)) ¢W (k)
Observation Model: : = : + : , 2)
2N (k) g™@®) | | (M)
N——— ~ ~
z(k) g(x(k)) ¢(k)

where &(-) and {(-) are, respectively, the global uncertainties in the proeess observation models.
Unlike the Kalman filter, the state and observation fundigii-) and g(-) can possibly be nonlinear,
and vectorst(-) and{(-) are not necessarily restricted to white Gaussian noise.

The optimal Bayesian filtering recursion for iteratiéris given by

Pla(k)|z(1:k—1)) = /P(m(k:—l)|z(1:k—l))f(m(k)|m(k:—1))dac(k—1) 3)

P(z(k)|x (k) P(x(k)|z(1:k—1))
P(z(k)|z(1:k—1)) '
The particle filter is based on the principle of sequentigbamiance sampling [38]/ [39], a suboptimal

and P(z(k)|z(1:k))

(4)

technique for implementing recursive Bayesian estimategs. [3) and[(4)) through Monte Carlo sim-
ulations. The basic idea behind the particle filters is thatposterior distributiorP(x(0:k)|z(1:k)) is

represented by a collection of weighted random parti{:Pé,s{k)}ﬁ\ﬁ1 derived from a proposal distribution
g(@(0:k)|z(1:k)) with normalized weightsV (k) = S ECE,
the vector particles. The particle filter implements thesfilg recursions approximately by propagating

, for (1 <4 < Ny), associated with

the weighted particles,1(< 7 < Ny), using the following recursions at iteratidn
Time Update:  X;(k) ~ q(Xi(k:)|XZ-(O:k—l),z(l:k)) )

P(2(0)1Xi(k) ) P(Xi(R)Xi (k1))

Observation Update: W;(k) < W;(k—1)
q(Xi(k:)|XZ-(O:k—l),z(l:k))

: (6)
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wherex stands for the proportional sign and the proposal disidbusatisfies the following factorization

q(m(o:k)\z(1:k)) - q(a:(O:k—l)]z(l:k—l))q(m(k)\a:(O:k—l),z(l:k)). 7)
The accuracy of this importance sampling approximatioredep on how close the proposal distribution

is to the true posterior distribution. The optimal choic&][for the proposal distribution that minimizes

the variance of importance weights is the filtering densapditioned uponz(0 : k£ — 1) and z(k), i.e.,

q(a:(k)]:c(O:k—l),z(l:k)) - P(:c(k)\a:(O:k—l),z(k)). 8)
Because of the difficulty in sampling Ed.] (8), a common chdi€8] for the proposal distribution is
the transition densityP(x(k)|x(k — 1)), referred to as the sampling importance resampling (SIEYfil
where the weights are pointwise evaluation of the likelthéunction at the particle values, i.81;(k)
Wi(k—=1)P(z(k)[X;(k)).
B. Average Consensus Algorithms

The average consensus algorithm [9],1[10] considered imthruscript is represented by
XOt+1) =@ xP )+ Y U;t)xY ©)
FERW

whereX (t) is the consensus state variable(s) at nbder (1 <[ < N), t is the consensus time index
that is different from the filtering time indek, and X(l) represents the set of neighbouring nodes for
nodel. The convergence properties of the average consensuglahgeiare reviewed iri [£0]. Please refer

to [9], [10Q] for further details on consensus algorithms.

I1l. THE CF/DPF MPLEMENTATION

The CF/DPF implementation runs two localized particle ffiitat each sensor node as shown in Eig. 1.
The first filter, referred to as the local filter, comes from disributed implementation of the particle filter
described in Section 1A and is based only on the local okm@nsz ) (1:k). The CF/DPF introduces
a second particle filter at each node, referred to as therfudter, which estimates the global posterior

distribution P(z(0:k)|z(1:k)) from local distributionsP (z(k)|z") (1:k)) and P(x (k)| (1:k—1)).
A. Distributed Configuration and Local Filters
Our distributed implementation is based on the followingdeio
w(k) = flek—1))+&(k) (10)
20k) = gV(k) +¢Ok), (11)
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for sensor node$l < [ < N). In other words, the entire state vecto(k) is estimated by running
one localized particle filter at each node. These filtersrrel to as the local filters, come from the
distributed implementation of the particle filter and aresdzh only on local observations! (1: k). In
addition to updating the particles and their associategitej the local filter at nodeprovides estimates

of the local prediction distributiorP(z(k)|z()(1:k—1)) from the particles as explained below.

Computation and Sampling of the Prediction Distribution: From the Chapman-Kolmogorov equation

(Eq. @), a sample based approximation of the predictiarsitye P(x(k)|z") (1:k—1)) is expressed as

P(a:(k:)|z(l (1:k— 1) ZW (k-1) ( (k:)|X§”(k—1)>, (12)

which is a continuous mixture. To generate random partittas such a mixture density, a new sample
Xﬁl)(k\k—l) is generated from its corresponding mixtuEéx(k)]Xz(.l)(k—l)) in Eq. (12). Its weight
m(l)(k—l) is the same as the corresponding weightSﬁﬁlr) k—1). The prediction density is given by

P( (k)|20(1:k— 1) ZW (k—1) ((k)—xg”(km—n).

Once the random samples are generated, the minimum mearesguar estimates (MMSE) of the

parameters can be computed.

B. Fusion Filter

The CF/DPF introduces a second particle filter at each naferred to as the fusion filter, which
computes an estimate of the global posterior distribuffd®(0:k)|z(1:k)). Being a particle filter itself,
implementation of the fusion filter requires the proposatrithution and the weight update equation.
Theoren1L[[35] expresses the global posterior distribuitioterms of the local filtering densities, which
is used for updating the weights of the fusion filter. The ciid& of the proposal distribution is explained
later in Section IlI-E. In the following discussion, the iois filter's particles and their associated weights
at nodel are denoted by X" (k), W {-FF) ()} Vee,

Theorem 1. Assuming that the observations conditioned on the statebigs and made at nodeare

independent of those made at ngdé€; # 1), the global posterior distribution for & —sensor network is

[, P (k) =0 (1:k))

Plx(0:k)|z(1:k) ) o xPlx(0:k)|z(1:k—1) ), (13)
( ) Hlfilp(m(k)\z(l)(1;k—1)) ( )
where the last term can be factorized as follows
P(a:(O:k)\z(l:k—l)) - P(a:(k)]:c(k—l))P(a:(O:k—l)\z(l:k—l)). (14)
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The proof of Theorerhl1 is included in Appendix A. Note that tpimal distributed protocol defined
in Eg. (I3) consists of three terms: (i) Product of the lod&ring distribution]‘[f\i1 P(x(k)|z0(1:k))
which depends on local observations; (ii) Product of locabiction densitieﬂﬁ\i1 P(x(k)|zW (1:k-1)),
which is again only based on the local observations and septethe common information between
neighboring nodes, and; (iii) Global prediction densiyx(0:k)|z(1:k—1)) based on Eq.[(14). The
fusion rule, therefore, requires consensus algorithmsetiaum for terms (i) and (ii). The proposed
CF/DPF computes the two terms separately (as describadl lgteunning two consensus algorithms at
each iteration of the fusion filter. An alternative is to cargthe ratio (i.e., proportional to the local
likelihood) at each node and run one consensus algorithradomputing the ratio term. In the CF/DPF,
we propose to estimate the numerator and denominator ofllE3).separately because maintaining the
local filtering and prediction distributions is advantagean networks with intermittent connectivity as
it allows the CF/DPF to recover from loss of information doedelays in convergence. Maintaining the

likelihood prevents the recovery of the CF/DPF in such cases

C. Weight Update Equation
Assume that the local filters have reached steady stataatidtek, i.e., the local filter's computation is
completed up to and including time iterati@nwhere a particle filter based estimate of the local filtering

distribution is available. The weight update equation for fusion filter is given by
P (X" (k) 2(1:k) )
¢ (X (k)2(1:k))
The CF/DPF is derived based on the global posteF(e(0:k)|z(1:%)) which is the standard approach

W(l FF) (k)

(15)

in the particle filter literature[[38]. Further, we are onlytérested in a filtered estimate of the state
variables P(x(k)|z(1 : k)) at each iteration. Followindg [38] we, therefore, approxiena(x(k)|x(1
k—1),z(1:k)) = q(x(k)|x(k—1), z(k)). The proposal density is then dependent onlyxgh) andz (k).
In such a scenario, one can discard the history of the ;mﬁél”FF)(O:k—% at previous iterations [38].
Substituting Eq.[(14) in Eq[(13) and using the result togethith Eq. [T) in Eq.[(15), the weight update
equation is given by

1Y, P (X w)Iz00:0) P (X w0 (e-1)
I, P (XD 120 (1:k-1)) o (XD )% (00-1), 2(0))
P( XEFP (£ —1)|2 (1:k:—1)>
¢ (X0 k= Dlz(1:k-1))

W) (e o WP (1)

2

,(16)

where Wi(l’FF)(k:—l) =

17)
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Observe that only the first fraction in Ed._{16) requires ades to participate. Given the weights
W(l FF)(k 1) from the previous iteration, Eq._(IL6) requires the follogvidistributions

HP(Xgl’FF)(k)\zU)(Lk)) and HP( LFD ()20 (1: k- 1)) (18)
=1

The numerator of the second fraction in Eg.](16) requiredrmesitional distributionP(x(k)|z(k — 1)),
which is known from the state model. Its denominator requttee proposal distribution(x(k)|x(k—

1), z(k)). Below, we show how the three terms (EQ.1(18) and the promis&ibution) are determined.

D. Distributed Computation of Product Densities

Distributions in Eqg. [(IB) are not determined by transfeyrime whole particle vectors and their
associated weights between the neighboring nodes due tm@adtically large number of information
transfers. Further, the localized posteriors are reptedesms a Dirac mixture in the particle filter. Two
separate Dirac mixtures may not have the same support aindhrthiiplication could possibly be zero. If
not, the product may not represent the true product densityrately. In order to tackle these problems, a
transformation is required on the Dirac function parti@pnesentations by converting them to continuous
distributions prior to communication and fusion. Gausséistributions [13], [15], [[16], [22], [[28],
[26], grid-based techniques [12], Gaussian Mixture Mod&\iM) [L9] and Parzen representations|[20]
are different parametric continuous distributions usedhia context of the distributed particle filter
implementations. The channel filter framework [[20] fuse$ydmwo local distributions, therefore, the
local pdfs can be modeled [20] with such complex distritngiolncorporating these distributions in the
CF/DPF framework is, however, not a trivial task becauseGREDPF computes the product &f local
distributions. The use of a complex distribution like GMM ikerefore, computationally prohibitive.

In order to tackle this problem, we approximate the prodeichs in Eq.[(16) with Gaussian distribution

which results in local filtering and prediction densitiesbt® normally distributed as follows
P (k)20 (1:8)) o N (uD (), POR)) and P (w(k)|=(1:k — 1)) o N (w0 (k), RO (k) ) . (29)

wherep (k) and P (k) are, respectively, the mean and covariance of local pestiat nodd during

the filtering step of iteratiork. Similarly, v (k) and R") (k) are, respectively, the mean and covariance
of local particles at nodé during the prediction step. It should be noted that we onlgraximate the
product density for updating the weights with a Gaussiatridigion and the global posterior distribution

is not restricted to be Gaussian. The local statistics aen@ie computed as

ZW KXY (k) and PO ZW (X(l (k) — ,Al)(k)) (Xg”(k)—u(l)(k)).T(zm
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Referencel[41] shows that the product@fmultivariate normal distributions is also normal, i.e.,

HP( (B)=0(1:k)) HN( O(k)) = & % N (k). P(R)) (21)
whereC' is a normalization term (Reference [41] includes the proB§rameterg (k) and P (k) are
N N
P(k) = (Z(zs<l>(1<;))_l)‘1 and p(k) = P(k) x> (P(l)(k)>_1u(l)(k). (22)
=1 N———— =1
X7 (0) (3 (0)

Similarly, the product of local prediction densities (Teff)) is modeled with a Gaussian density

N (z(k);v(k), R(k)), where the parameteks(k) and R(k) are computed as follows

N N
- (X (R(l)(k))_l )" and w(k) = R(k) x Y (R(l)(k:))_l o0 (k). (23)
=1 %()/—/ =1
X0 () (0)

The parameters of the product distributions only involvesrage quantities and can be provided using

average consensus algorithms as follows:

() For (1 <1< N), node! initializes its consensus states % (0) = (PO (k))~L, )(0) =
(PO®E) " ul k), X (0) = (RO(K)™, and2((0) = (R (k))"'v)(k), and then Eq.[{9)
is used to reach consensus Wﬂflc(ll) (t) used instead oﬁ(él)(t) in Eq. (9) for the first consensus
run. Similarly, m((fz) (t) is used instead oXél)(t) for the second run and so on.

(i) Once consensus is reached, parametéty k) and P) (k) are computed as follows

P(k) = 1/N x lim {(Xg?(t))_l} and pu(k)= lim {(Xc(ll)(t)) xmfjg(t)} (24)

t—o0

R = /v i {(x50) '] and v=im {(x§0) a0} @)
Based on aforementioned approximation, the weight updgtat®n of the fusion filter (Eq[(16)) is
N (XD (k): ), P(R)) PR (k)X (k- 1))

N (X (ks w(k), R(K)) g (X7 () XD (k=1), 2 (k)

Eq. (26) requires the proposal distributigtw(k)|x(k—1), z(k)), which is discussed next.

W () o W (- 1)

3 K3

(26)

E. Proposal Distribution

In this section, we describe three different proposal itstions in CF/DPF.
1. SIR Fusion Filter: The most common strategy is to sample from the probabilieticlel of the state
evolution, i.e., to use transitional densi(x(k)|z(k+1)) as proposal distribution. The simplified weight
update equation for the SIR fusion filter is obtained from @&f) as follows
N (XD (%); k), P(k))

]

G k) o W BFP (1 — .
W o ) T o), R(E))

K3 3

(27)
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This SIR fusion filter fails if a new measurement appears i ttil of the transitional distribution or
when the likelihood is too peaked in comparison with the gittonal density.

2. Product Density as Proposal Distribution: We are free to choose any proposal distribution that
appropriately considers the effect of new observationsiandose to the global posterior distribution.
The product of local filtering densities is a reasonable axipration of the global posterior density as

such a good candidate for the proposal distribution, i.e.,
a(@(k)le(k—1), HP( =0 (1:k) | (28)

which means that we generate partlc{és(l FF( k)}X- are generated fromV'(u(k), P(k)). In such a
scenario, the weight update equation (Eql (26)) simplifies t

P (k) [X{ (k1))
NEP (k);v(k), R(k)
Next we justify that the product term is a good choice and a-nptimal approximation of the optimal

W k) oW (1)

(29)

proposal distribution (EqL18)). Assume at iteratibnnodel, for (1 < [ < N) computes an unbiased
local estimatez(V) (k) of the state variables:(k) from its particle-based representation of the filtering
distribution with the corresponding error and error coaace denoted beg)(k) = (k) — 2" (k) and
PO (k). When the estimation errdh&i)(k) and A(xj)(k:), for (1 <4i,7 < N) andi # j are uncorrelated,
the optimal fusion ofV unbiased local estimates® (k) in linear minimum variance scene is shown![42]
to be given by

N N N

= (X (PO ) )7 and a(k) = (30 (P(l)(k))_l DY (P(l)(k)>_1 20 (k). (30)

=1 =1 =1
whered (k) is the overall estimate obtained froR(x(k)|z(1: k)) with error covarianceP (k). Eq. [30) is
the same as Ed. (R2), which describes the statistics of thupt of N normally distributed densities. The
optimal proposal distribution is also a filtering density]3therefore, the proposal distribution defined
in Eq. (28) is a good choice that simplifies the update eqoabibthe fusion filter. Further, Eq[_(28)
is a reasonable approximation of the optimal proposalibigion. From the framework of unscented
Kalman filter and unscented patrticle filter, it is well know43] that approximating distributions will
be advantageous over approximating non-linear functidhg. drawback with this proposal density is
the impractical assumption that the local estimates aremelated. We improve the performance of the
fusion filter using a better approximation of the optimal gweal distribution, which is described next.
3. Gaussian Approximation of The Optimal Proposal Distribution: We consider the optimal solution

to the fusion protocol (EqL(13)) when local filtering derestare normally distributed. In such a case,
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P(x(0:k)|z(1:k — 1)) is also normally distributed [35] with mear(-FP (k) and covarianceP " P (k)

N N
PUFR™ (k) = (R(l)(k‘)) ! + Zp(j)*l(k) — ZR(J')”(;@) (31)
j=1 j=1

l l
(!} (c0) (3 (c0)

N
2050 (k) = PFI ™ (1) [ (R(l)(k))_l v (k)+> P (k)pV) (k) — Z(R(j)(k:)) o v (k)].(32)
st

J=1

N

(3 (c0) 2} (c0)

The four termegl)(oo), xglg(oo), xgg(oo), and xgif(oo) are already computed and available at local
nodes as part of computing the product terms. Fusion ruldsgm [31) and[(32) are obtained based
on the track fusion without feedback [35]. In such a scenaniarticlest.l’FF)(k) are drawn from
N (zFP(k), PGFR (k) and the weight update equation (EG.](29)) is given by
N (X0 (k): ), P(R)) P (R (k)0 (k- 1))

1, 1, 1, l,
N (XD (k); w(k), R(k))N (X0 (s 2,50, PUT)
The various steps of the fusion filter are outlined in Aldumt[1. The filtering step of the CD/DPF is

2

. (33)

based on running the localized filters at each node followedhle fusion filter, which computes the
global posterior density by running consensus algorithmosscthe network. At the completion of the
consensus step, all nodes have the same global posteritabdwaAs a side note to our discussion, we
note that the CF/DPF does not incorporate any feedback fnenfusion filters to the localized filters to
provide sufficient time for the fusion filter to converge. Tinain advantage of the feedback is to reduce
the error of the local filters which will be considered as fatwork. Finally, a possible future extension
of the CF/DPF is to use non-parametric models, e.g., sumgetor machines (SVM) [11][[32], instead,
for approximating the product terms. An important task i/ is to assure that the localized and

fusion filters do not lose synchronization. This issue isragsked in Sectiopn IV.

F. Computational complexity

In this section, we provide a rough comparison of the contmrtal complexity of the CF/DPF
versus that of the centralized implementation. Becauséeibn-linear dynamics of the particle filter,
it is somewhat difficult to derive a generalized expression ifs computational complexity. There
are steps that can not be easily evaluated in the compleriypatation of the particle filter such
as the cost of evaluating a non-linear function (as is thee das the state and observation mod-
els) [44]. In order to provide a rough comparison, we conslokdow a simplified linear state model

with Gaussian excitation and uncorrelated Gaussian oasens. Following the approach proposed
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Algorithm 1 FUSION FILTER({X“:F (k—1), W(l P (& - 1)}y

Input: {X (LFP) (k: - 1), WZ.(Z FF)(k: - 1)}Nl " - Fusion filter's particles and associated weights.

Output: {X (LFF) ( ), V[/i(l’FF)(/c)}f\ﬁ1 Fusion filter's updated particles and associated weights.
1. for{=1:N, do
(O (k), PO (), v (k), RO (k)) = Locaanter({xg”(k 1), W (k= 1)} z(l)(k:)>
2: end for
3: DoFusion({p! (k), PO (k)}Y,) computes{p-F) k), PLFP ()} for numerator of Eq.[(13).
4: DoFusior({v® (k), RV (k)}N ) computes{v:FP (k), RUFP (k)} for denominator of[(13).
5. fori=1:N, do
e Generate particle%Xgl’FF)(k)}]'\ffF by sampling proposal distribution defined in Section IlI-E.
o Compute weight$¥ :FP (k) using Eq. [(2D).
6: end for
7: If degeneracy observe(i{XlFF k:),Wi(l’FF)(k)}NFF) Resamplé{XzFF k), Wi(l’FF)(k)}ﬁf{).

in [44], the computational complexity of two implementaisoof the particle filter is expressed in terms
of flops, where a flop is defined as addition, subtraction, iplidation or division of two floating
point numbers. The computational complexity of the ceizteal particle filter for N—node network
with N, particles is of Q((n2 + N)N;). The CF/DPF runs the local filter at each observation node
which is similar in complexity to the centralized particldtefi except that the observation (target's
bearing at each node) is a scalar. Settifig= 1, the computational complexity of the local filter is
of O (n2N.e) per node, whereV e is the number of particles used by the local filter. There are t
additional components in the CF/DPF: (i) The fusion filterisbhhas a complexity of 2 Ngg) per
node whereNgg is the number of particles used by the fusion filter, and; Tile CF/DPF introduces
an additional consensus step which has a computationallegitypof O(n2AgN,.(U)). The associated
convergence timeV,(U) = 1/log(1/rasym(U)) provides the asymptotic number of consensus iterations
required for the error to decrease by the factorlgé and is expressed in terms of the asymptotic
convergence rate,sym(U). Based on[[40],N.(U) = —1/maxa<;<n log(|X;(U)|), where \;(U) is

the eigenvalue of the consensus matkix The overall computational complexity of the CF/DPF is,
therefore, given bynax {O(NnZ(Nie + Neg)), O(n2AgN.(U))} compared to the computational com-
plexity O ((n2 + N)N;) of the centralized implementation. Since the computaticoanplexity of the

two implementations involve different variables, it is faifilt to compare them subjectively. In our
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simulations (explained in Section VI), the value of the ahtes aren, = 4, N = 20, N; = 10,000,
Nir = Nege = 500, and N.(U) = 8 for the network in Fig[B(a) which results in the followingugh
computational counts for the two implementations: Ceixteal implementation3.6 x 10°, and CF/DPF:
3.4 x 10°. This means that the two implementations have roughly tineeseomputational complexity
for the BOT simulation of interest to us. We also note that toenputational burden is distributed
evenly across the nodes in the CF/DPF, while the fusion ceetidorms most of the computations in the
centralized patrticle filter. This places an additional poaeergy constraint on the fusion center causing

the system to fail if the power in the fusion center drains out

IV. MODIFIED FUSION FILTER

In the CF/DPF, the local filters and the fusion filters can ruhaf synchronization due to intermittent
network connectivity. The local filters are confined to theansor node and unaffected by loss of
connectivity. The fusion filters, on the other hand, run emssis algorithms. The convergence of these
consensus algorithms is delayed if the communication batidweduced. In this section we develop
ways of dealing with such intermittent connectivity issueisst, let us introduce the notation. We assume
that the observations arrive at constant time interval&Bf Each iteration of the local filters is performed
within this interval, which we will refer to as the local fitte estimation interval. The duration (the fusion
filters’s estimation interval) of the update cycle of theidusfilter is denoted byf.. Fig.[2 illustrates three
scenarios dealing with different fusion filter’s estimatimtervals. Fig[R(a) is the ideal scenario where
T. < AT and the fusion filter's consensus step converges before dheiteration of the local filter.

In such a scenario, the local and fusion filters stay synéheain Fig.[2(b) shows the second scenario
when the convergence rate of the fusion filter varies acngrtti the network connectivity. Under regular
connectivity7, < AT and limited connectivity loesses, the fusion filters willmage to catch up with the
localized filters in due time. Fid.] 2(c) considers a more feotatic scenario whefi, > AT. Even with
ideal connectivity, the fusion filter will continue to lagethocalized filters with no hope of its catching
up. The bottom two timing diagrams in FIg. 2(c) refer to thiemsario withT, = 2AT. As illustrated, the
lag between the fusion filter and the localized filters growgomentially with time in this scenario. An
improvement to the fusion filter is suggested in the top tgrdilmgram of Figl.2(c), where the fusion filter
uses the most recent local filtering density of the localiikers. This allows the fusion filter to catch
up with the localized filter even for cas&s > AT. Such a modified fusion implementation requires an
updated fusion rule for the global posterior density, whiltonsidered next.

At iteration £ + m, we assume that node for (1 < [ < N), has a particle-based approximation of
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Fig. 2. Multi-rate implementation of the local and fusiortdik. (a) The ideal scenario where the fusion filter's cossen
step converges before the new iteration of the local filtér.The convergence rate of the fusion filter varies accordinthe

network connectivity. (c) The lag between the fusion filtad ahe local filter grows exponentially.

the local filtering distributionsP (x(k+m)|z (1 : k+m)), while its fusion filter has a particle-based
approximation of the global posterior distributidh(«(0:k)|z(1:k)) for iterationk. In other words, the
fusion filters are lagging the localized filters byiterations. In the conventional fusion filter the statistic
of P(x(k+1)|z® (1:k+1)), for (1 <1 < N) are used in the next consensus step of the fusion filter which
then computes the global posteriBfx(0:k+1)|z(1:k+1)) based on Theoref 1. The modified fusion
filter uses the most recent local filtering distributiaRéx (k+m)|z) (1:k+m)) according to Theorei 2.

Theorem 2. Conditioned on the state variables, assume that the obSensamade at nodé are
independent of the observations made at nfidg # ). The global posterior distribution for & —sensor

network at iterationk+m is then given by

P(ac(O'k:—l—m)|z(1'k:—|—m)) x

k—l—m / 1) / k+m
P (2(K)|zO (1K) , ' .
H i*—’ZH G EIHP z(K)|z(k' —1)) x P(x(0:k)|2(1:k)) . (34)

The proof of Theoren]2 is included in AppendiX B. In the corssenstep of the modified fusion

filter, two average consensus algorithms are used to conﬁﬁi@ HH";HP(w(k’)]z(l)(l : k")) and

September 6, 2012 DRAFT



16

[ T Pla(k) 201k 1)), e,

N k+m N
I1 11 P( OICE k’)) [TV (O (k+1:k+m), PO(k+1:k+m)) (35)
I=1k'=k+1 =1
N k+m N

and [T ] P( (K| z¢ (1:k’—1)>o<HN(v(l)(k+1:k+m),R(l)(k:—l—lzk‘+m)), (36)
I=1k'=k+1 =1

instead of computing ;- , P(z(k)|z" (1:k)) and [, P(x(k)|z)(1:k—1)) as was the case for the
conventional fusion filter. The modified fusion filter stangh a set of particle§§§MFF’l)(k:), Wi(MFF’l)(k:)
approximatingP(xz(0: k)|z(1:k)) and generates updated particke FF’l)(ker),Wi(MFF’l)(ker) for
P(x(0:k+m)|z(1:k+m)) using the following weight update equation

k+m (LMFF) ) (o (LMFF) /4
mp (XM gy MFR) (1)
k' =k i ;
Wi(l,MFF)(k_i_m)O(‘/Vi(l,MFF)(k) " e +1 ( ) |
N(X7 (k+m);v(k+1:k+m), R(k+1:k+m))

which is obtained directly from Ed. (84). Note that the noraggproximation in Eqs[(35)E(87) are similar

(37)

to the ones used in the conventional fusion filter. Furtheenwe note that the modification requires
prediction of the particles from iteratioh all the way tok+m in order to evaluate the second term on

the right hand side of EqL_(B7). Algorithim 2 outlines thispsesnd summarizes the modified fusion filter.

V. THE POSTERIORCRAMER-RAO LOWER BOUND

Considering the non-linear filtering problem modeled in Hd$ and [(2) and the posterior distribution
(Eq. (13)) used in developing the CF/DPF, the section coawptiie Posterior Cramér-Rao lower bound
(PCRLB) for the distributed architecture. We note that tiiRPB is independent of the estimation mech-
anism and the bound should be the same for both centralizbdistnibuted architectures. The question is
whether the centralized expressions for computing the FEC&1ke applicable to compute the PCRLB for
other topologies, i.e., the hierarchical and distributdeténtralized) architectures. Reference [3] considers
a hierarchical architecture with a central fusion centet simows that the centralized expressions can be
used directly for the hierarchical case. The same authgisedn [4] that the centralized expressions are
no longer applicable for distributed/decentralized assdtures. The exact expression for computing the
PCRLB for the distributed architecture is not yet availadhe only an approximate expression [4] has
recently been derived. In this section, we derive the exggtession for computing the PCRLB for the
distributed topology. We note that our result is not resdcto the particle filter or the CF/DPF but is

also applicable to any other distributed estimation apgroa
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Algorithm 2 MoDIFIED FUSION FILTER
Input: {XEZ’MFF)(k), W.(Z’MFF)(k)}fV:“lMFF - Fusion filter's particles and associated weights.

2

Output: {XEI’MFF)(k:+m),Wi(l’MFF)(k:er)}fﬁl updated particles and associated weights.
1: for ¥ = k+1:k+m, do

N (pO k'), PO(K)) = SaveGaussia(r{xg”(k'), w k') Nzl)

N (0O (K, RO(K)) = Saveeaussia(r{xg”(k'+1|k;'), Wi(l)(k:’)}f.\’;l)
2: end for
3 N(pOk+1:k+m), PO(k+1:k+m)) = SaveGaussia(ﬂ’,j,*:”,;HN(u<l>(kf),P<l>(kf))).
4 N (0O (k+1:k+m), RO (k+1:k+m)) = SaveGaussia(rﬂi,JZZHN('u(l)(k’),R(l)(k:’))).
5: {pEMFP) (k+1: k+m), POMFR) (k+1: k+m)} = DoFusion({ ) (k+1: k+m), PO (k+ L k+m)}Y, ).
6: {vEMFF) (k1 k+m), ROMFF) (k+-1: k+m) } = DoFusior({v® (k+1: k+m), RO (k+ L k+m)}Y, ).
7: for i =1 : Ngf, do
8: for ¥ = k+1:k+m—1, do

XEMPE (k) ~ P (o (k)X MFP (1 < 1),

9 end for

MR (k) ~ N (MR (k1 k4-m), POMFR) (k10 k4-m)).

Compute WeightWi(l’MFF)(ker) using Eq. [(3F7).

10: end for

The PCRLB inequality[[2] states that the mean square err@EMof the estimate:(0: k) of the state

variablesz(0: k) is lower bounded by
E{(&(0:k)—x(0:k))(&(0:k)—x(0:k) T }>[J(x(0:k))] L, (38)

whereE is the expectation operator. Matrik(x(0: k)) is referred to as the FIM_[2] derived from the
joint probability density function (PDFP(x(0:k),z(1:k)). Let V and A, respectively, be operators of

d 9 17T z(k)
TXL R 8Xw(k)] andA ") =
vw(k_l)vg(k). One form of the Fisher information matriX(x(0:%)) is defined as [2]

the first and second order partial derivatives given\by;) = [

J(2(0:k)) = B{ — A2 log P(x(0:k), 2(1:k)) }. (39)

An alternative expression for the FIM can be derived from fhetorization P(x(0 : k), z(1 : k)) =

P(x(0:k)|z(1:k)) x P(2(1:k)). SinceP(z(1:k)) is independent of the state variables, we have

J(2(0:k)) = B{ — AZ( log P(x(0:k)|2(1:k)) }. (40)
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We now describe the centralized sequential formulatiorhefEIM.

A. Centralized computation of the PCRLB

Decomposinge(0:k) asz(0:k) = [T (0:k—1),x” (k)] in J(x(0:k)), Eq. [40) simplifies to

11 12 x(0:k—1) x(k)
J(z(0:k)) £ AT k) AR =B —1x | 20y Aw(g:’f Y| log P(2(0:k)|2(1:k)) ¢,
A%(K) A2(k) AT Az

provided that the expectations and derivatives exist. Tifiemation submatrixJ(x(k)) for estimating
x(k) is given by the inverse of then{ x n,) right-lower block of [J ((0 : k:))]_l. The information

submatrix is computed using the matrix inversion lemhia &} given by
J(@(k)) = AZ (k) — A% (k) (A" (k) " A (k). (41)

Propositior 1L[[2] derived (x(k)) recursively without manipulating the larger(, x kn,) matrix A (k).

The initial condition is given by (x(0)) = E{— Aigg log P(x(0))}.

Proposition 1. The sequencéJ (z(k))} of local posterior information sub-matrices for estimatistate

vectorsx (k) at nodel, for (1 <! < N), obeys the following recursion

J(@(k+1)) = D2(k) — D (k) (J ((k)) + D“(k:))_lDlz(k) (42)

where D' (k) = E{ — A%} log P(x(k + 1)[a(k)) } (43)

DlZ(k;):[Dﬂ ()= B{= AZ0 log P(w(k + 1)[2(k)} (44)

CB

D2(k) = B{ — AT log P(2(k + V|o(k) } + E{ — AZ( " Dlog P(2(k+1)|x(k+1)) },  (45)

J(=(k+1))
The proof of Propositionl1 is given inl[2]. Conditioned on ttate variables, the observations made

at different nodes are independent therefdf&(k + 1)) [36] in Eq. (45) is simplifies to
z(k+1)) ZJ )(k+1)) ZE{ AZO D log P(20 (k+1)]a(k+1)) }.

In other words, the expression fof(xz(k + )) (Eq. (42)) requires distributed information (sensor
measurement) only for computing(z(k + 1)). Other terms in Eq.[(42) can be computed locally. In

the next section, we derive the distributed PCRLB.

B. Distributed computation of the PCRLB
In the sequeIJ(l) (m(O:k)), for (1 <1 < N), denotes the local FIM corresponding to the local estimate
of (0: k) derived from the local posterior densify(x(0:k)|z") (1:k)). Similarly, J© (z(0:k+1|k))
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denotes the local FIM corresponding to the local predicgéstimate otc(0:k+1) derived from the local
prediction densityP(x(0:k+1), 2()(1:k)). The expressions fof ) (z(0:k)) and J (x(0: k+1|k))
are similar in nature to Eq[(#1) except that the posteriarside P(x(0: k)|z(1 : k)) is replaced by
their corresponding local posteriors. The local FIN) (a:(k:)) is given by the inverse of thexwf x n;)
right-lower block of [J® (z(0:k))] ~". Similarly, the prediction FIMJ®) (z(k+1|k)) is given by the
inverse of the i, x n) right-lower block of [J® (z(0:k+1[k))] .

The problem we wish to solve is to compute the global inforamasub-matrix, denoted bJ(w(kJrl)),
as a function of the local FIMJ() (z(k+1)) and local prediction FIMF ! (z(k+1|k)), for (1 <1 < N).
Note thatJ " (z(k)) can be updated sequentially using Eds] (#2)-(45) wike! (k + 1)) replaces
J(z(k +1)) in Eq. (45). Propositiofil2 derives a recursive formula fompating J© (z(k+1|k)), i.e.,

the FIM for the local prediction distribution.

Proposition 2. The sequencg.J®) (x(k+1[k))} of the local prediction information sub-matrices for

predicting state vectors: (k) at nodel, for (1 <[ < N), follows the recursion
T (@ (k+1]k)) = B (k) — D*' (k) (T (x(k)) + D" (k) "' D™(k) (46)
where JO (z(k)) is given by Eq.[{42)D!(k), D'?(k), and D?!(k) are given by Eqs[{43)-(45) and

B2 (k) = E{ — AL log P(a(k + 1)z (k) }, (47)

The proof of Propositionl2 is included in Appendix D. Theor@ns our main result. It provides the
exact recursive formula for computing the distributed FIbtresponding to the global estimation from
the local FIMsJ® (x(k)) and local prediction FIMST®) (x(k+1)).

Theorem 3. The sequencéJ (xz(k))} of information sub-matrices corresponding to global esties

follows the recursion
J(z(k+1)) = C?(k) — D*(k)(J (x(k)) + D™ (k)) "' D(k) (48)

where D' (k), D?'(k), and D'2(k) are given by Eqs[(43)-(#5) and
N N
C2(k)=Y" IO (@(k+1)) = Y JO(@(k+1[k)) + E{—Aig’,jﬁ; log P(z(k + 1)|z(k))},  (49)
=1 I=1

where J® (x(k+1)) and JO (z(k+1|k)) are defined in Prepositiorid 1 ahd 2, respectively.

The proof of Theorerml3 is included in Appendik C. In [4], an appmate updating equation based on

the information filter (an alternative form of the Kalmandil} is proposed for computind (x(k+1))
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at nodel which is represented in our notation as follows
J(@(k+1)=JD(@(k+1)) + ) <J(j)(w(k+1))—J(j)(w(k+1\k))>. (50)
J#l
Term JO (z(k+1)) is given by
-1
JO (z(k + 1)) = D2(k) — D* (k) (J(l) (z(k)) + D“(k)) D2(k). (51)
Subtracting Eq. (46) from the above equation and rearrgngie get
D% (k) = <J<l>(m(k+1))_J<l>(m(k;+1|k))> + B%(k). (52)
SubstitutingB??(k) from Eq. (47) in Eq.[(5R) and then substituting the resul@xgression ofD?? (k)
in Eq. (51), we get
x(k
J0 (w<k+1>>:(ﬂ><w<k+1>>—J<l> <w<k+1\k>>)+E{ — Mg log P (k + 1)|2(k)) }
—D? (k) (IO (x(k)) + D (k)) " D(k). (53)
Substituting Eq[(53) in Eq[(50) results in the following ampgmated fused FIM at node
J(x(k+1)) = C?2(k) — D*' (k) (JO (z(k)) + D™ (k)) "' D2 (k). (54)
Note the differences between Eds.l(54) and (48). The seeomdn the right hand side of Eq. (54) is based
on the previous local FIMF() (z(k)) at nodel thus making it node-dependent, while the corresponding
term in Eq. [(48) is based on the overall FIM from the previdesation. When the PCRLB is computed
in a distributed manner, Ed._(b4) differs from one node totla@oand is, therefore, not conducive for
deriving the overall PCRLB through consensus. To make[Hd). §6de independent, our simulations also

compare the proposed exact PCRLB with another approximateession, which only includes the first

two terms ofC?2(k) in Eq. (49) i.e.,
N
J(@(k+1)) = CP(k) =) <J(l)(m(k:+1))—J(l)(m(k:—l—1|l<:))>. (55)
=1
The expectation terms in Eq$. (48)-(45),1(47), dnd (49) carubther simplified for additive Gaussian
noise, i.e., wherg(-) and¢(®(-) are normally distributed with zero mean and covariance inestQ (k)

and RY (k), respectively. In this case, we have

D (k) =E{ [V 7 (k)] Q () [V £7 ()] } (56)
D2 (k) =—E{ [Vou £ (1] Q" (k) = [D* (k)] (57)
D®2(k)=Q ' (k) + E{ [Vaus19® (k+ )] RO (k+1)[Vapesng®" (k+1)] 7} (58)
B2(k)=Q " (k), (59)
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2

and C%(k ZJU (k+1) =Y JD(@(k+1]k) + Q" (k). (60)
=1

Note that Theoreni]3 (EqsI:(]4$Ed49)) provides a recursiaenéwork for computing the distributed

PCRLB. Further, the proposed distributed PCRLB can be implged in a distributed fashion because
Eqg. (49) has only two summation terms involving local partare These terms can be computed in
a distributed manner using the average consensus algerifBéj. Other terms in Eqs[_(#8)-(49) are

dependent only on the process model and can be derivedyogalcases (non-linear/non-Gaussian
dynamic systems) where direct computationiaf! (), D'2(k), D*'(k), D*(k), B*(k), andC** (k)

involves high-dimensional integrations, particle filtean alternatively be used to compute these terms.

VI. SIMULATIONS: BEARING ONLY TARGET TRACKING

A distributed bearing-only tracking (BOT) application |38 simulated to test the proposed CF/DPF.
The BOT problem arises in a variety of nonlinear signal pssagg applications including radar surveil-
lance, underwater submarine tracking in sonar, and rab@3@]. The objective is to design a practical
filter capable of estimating the state kinematigg:) = [X (k),Y (k), X (k),Y (k)] (position [X,Y] and
velocity [X,Y]) of the target from the bearing angle measurements and miowledge of the target's
motion. The BOT is inherently a nonlinear application withntinearity incorporated either in the state
dynamics or in the measurement model depending on the clofitbe coordinate system used to
formulate the problem. In this paper, we consider non-liniaaget kinematics with a non-Gaussian

observation model. A clockwise coordinated turn kinematimtion model[[39] given by

sin(Q(k)AT) 1—cos(Q(K)AT) |

10 Qk) - Ok
0 1 1—cos(Q(k)AT) sin(Q(k)AT) A
Fla(h) = o o) . with Q(k) = = . (61)
0 0 cos(Qk)AT) —sin(Q(k)AT) \/(X(k:))2 + (Y (k)2
| 0 0 sin(Q(k)AT)  cos(Q(k)AT)

is considered with the manoeuvre acceleration paraméteset t01.08 x 10~2units/¢ [39]. A sensor
network of N = 20 nodes with random geometric graph model in a square regioinansion {6 x 16)
units is considered. Each sensor communicates only witlhd@tghboring nodes within a connectivity
radius of /2log(N)/N units. In addition, the network is assumed to be connectdli ®ach node
linked to at least one other node in the network. Measuresnant the target’'s bearings with respect to

the platform of each node (referenced clockwise positivth&y-axis), i.e.,

Z0(k) = atan(%)JrCm(k% (62)
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where (X® Yy (1) are the coordinates of node The observations are assumed to be corrupted by the
non-Gaussiatarget glint noise[45] modeled as a mixture model of two zero-mean Gaussidis ¢he
with a high probability of occurrence and small variance #redother with relatively a small probability

of occurrence and high variance. The likelihood model ateripdor (1 <1 < N), is described as
P(z0lz(k)) = (1 - €) x N (;0,0%0 (k) + e x N (230,10 0% (k)), (63)

wheree = 0.09 in the simulations. Furthermore, the observation noisessumed to be state dependent
such that the bearing noise varian@g)(kz) at nodel depends on the distaneé” (k) between the

observer and target. Based onl[46], the variance of the whisen noise at nodéis, therefore, given by
ol (k) = 0.08r"" (k) + 0.1150r " (k) + 0.7405. (64)

Due to state-dependent noise variance, we note that thalgigmoise ratio (SNR) is time-varying and
differs (within a range of-10dB to 20dB) from one sensor node to the other depending on the locatio
of the target. Averaged across all nhodes and time, the medR iSN.5dB. In our simulations, we
chose to incorporate observations made at all nodes in tiraat®n, however, sensor selection based
on the proposed distributed PCRLB can be used, insteadhwhiltbe considered as future work. Both
centralized and distributed filters are initialized basadite procedure described in [39].
Simulation Results: The target starts from coordinaté3, 6) units The position of target the target
([X,Y]) in first three iterations aré2.6904, 5.6209), (2.3932,5.2321), and(2.1098,4.8318). The initial
course is set at-140° with the standard deviation of the process neigse= 1.6 x 10~3 unit. The number
N, of vector particles for centralized implementatiomNis = 10, 000. The humbetV ¢ and Ngg of vector
particles used in each local filter and fusion filter5i%. The number of particles for the CF/DPF are
selected to keep its computational complexity the same asahthe centralized implementation. To
qguantify the tracking performance of the proposed methadsscenarios are considered as follows.
Scenario 1:accomplishes three goals. First, we compare the perforenainihe proposed CF/DPF versus
the centralized implementation. The fusion filters usedhm €F/DPF are allowed to converge between
two consecutive iterations of the localized particle fgtére., we follow the timing subplot (a) of Figl 2).
Second, we compare the impact of the three proposal distiizulisted in Section IlI-E on the CF/DPF.
The performance of the CF/DPF is computed for each of thegeogal distributions using Monte Carlo
simulations. Third, we plot the proposed PCRLB computethftbe distributed configuration and compare
it with its counterpart obtained from the centralized atetture that includes a fusion center.

Fig.[3(a) plots one realization of the target track and thieneged tracks obtained from: (i) The CF/DPF;

(i) the centralized implementation, and; (iii) a singledecestimation (stand alone case ). In the CF/DPF,
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Fig. 3.
consensus algorithm is allowed to converge. (b) CDFs forXfmoordinate of the target estimated using the centralied
CF/DPF fork = 5,22.

Scenario 1: (a) Actual target’s track obtained frdm tentralized, CF/DPF and stand-alone algorithms. Héee, t

we used the Gaussian approximation of the optimal propasé#iidition as the proposal distribution
(Case3 in Section IlI-E). The two estimates from the CF/DPF and tkat@lized implementation are
fairly close to the true trajectory of the target so much sohas they overlap. The stand alone scenario
based on running a particle filter at a single node (shown agdt circle in Fig[B(a)) fails to track
the target. Figl13(b) plots the cumulative distribution dtian (CDF) for the X-coordinate of the target
estimated using the centralized and CF/DPF implementfioniterationsk = 5 and 22. We note that
the two CDFs are close to each other. Fig. 3 illustrates tle-optimal nature of the CF/DPF.

Fig.[4 compares the root mean square (RMS) error curves éotatiget’s position. Based on a Monte-
Carlo simulation of100 runs, Fig.[4(a) plots the RMS error curves for the estimasedet’s position
via three CF/DPF implementations obtained using diffemoposals distributions. We observe that the
SIR fusion filter performs the worst in this highly non-limeanvironment with non-Gaussian observation
noise, while the outputs of the centralized and the otherdistributed implementations are fairly close
to each other and approach the PCRLB. Since the productrfd#ier requires less computations, the
simulations in Scenari@ are based on the CF/DPF implementation using the produariudter.
Second, in Fig. 4(b), we compare the PCRLB obtained from ibieillited and centralized architectures.
The Jacobian termvw(k)fT(k:) and Vw(Hl)g(l)T(kJrl), needed for the PCRLB, are computed using

the procedure outlined ir_[39]. It is observed that the boobthined from the proposed distributed
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Fig. 4. Scenario 1: (a) Comparison of the RMS errors reguifiom the centralized versus distributed implementatigh$
Comparison of the proposed exact PCRLB, its approximatéaeviaased on[[4] (Eq[(%4)) computed at nadeand 17, and
approximation of Eq.[(85). The PCRLBs computed using therabred and distributed (proposed) expressions overtahat

they are virtually indistinguishable.

computation of the PCRLB is more accurate and closer to theLBBCcomputed from the centralized
expressions. As expected, the proposed decentralized B@Rérlaps with its centralized counterpart.
Scenario 2:The second scenario models the timing subplot (c) of [Big.h& donvergence of the fusion
filter takes up to two iterations of the localized filters. Térgginal fusion filter (Algorithm 1) is unable
to converge within two consecutive iterations of the laoadi particle filters. Therefore, the lag between
the fusion filters and the localized filters in the CF/DPF ours to increase exponentially. The modified
fusion filter described in Algorithri] 2 is implemented to lirttie lag to two localized filter iterations. The
target’s track are shown in Figl 5(a) for the centralizedlanmgentation, original and modified fusion filter.
Fig.[H(b) shows the RMS error curves for the target’s pasititcluding the RMS error resulting from
Algorithm 1. Since consensus is not reached in Algorithm 1, thereftue fusion estimate is different
from one node to another. For Algorithin Fig.[3(b) includes the RM error associated with a randomly
selected node. In Figl 5(b), Algorithinperforms poorly due to consensus not reached, while thefreddi
fusion filter performs reasonably well. The performancehaf inodified fusion filter remains close to its
centralized counterpart, therefore, it is capable of hagdhtermittent consensus steps.

Scenario 3:1n the third scenario, we consider a distributed mobile tdbcalization problem[[15], [48]
based on angle-only measurements. This is a good benchmeektse underlying dynamics is non-linear

with non-additive forcing terms resulting in a hon-Gausdiansitional state model. The state vector of
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Fig. 5. Scenario 2: (a) Actual target's track alongsidenested tracks obtained from the centralized and modifiedbfusiter.
Here, the consensus algorithm converges after @aitérations of the local particle filters. (b) Comparison bétRMS errors

resulting from the centralized, original fusion filter andadified fusion filter.

the unicycle robot is defined by = [X,Y,6]”, where (X,Y) is the 2D coordinate of the robot anél
is its orientation. The velocity and angular velocity areaked byV (k) and W (k), respectively. The

following discrete-time non-linear unicycle model [48presents the state dynamics of the robot

B V(k) /. . .
X(k+1) = X(k)+m<sm (9(k)+W(k)AT>—s1n(9(l<:))), (65)
V(k) =
Y+ = YR+ o (cos (8(k) + W (R)AT) — cos (6()) ) (66)
andf(k+1) = 0(k)+W(k)AT + &AT, (67)

where AT is the sampling time ang} is the orientation noise term. The design parameters/sfe= 1,

a mean velocity oBO cm/s with a standard deviation 6fcm/s, and a mean angular velocity @D8
rad/s with a standard deviation 6f01 rad. Because of the presence of sine and cosine functioas, th
overall state dynamics in Ed._(6%)-(66) are in effect pdrdar by non-Gaussian terms. The observation
model is similar to the one described for Scendriwith non-Gaussian and state-dependent observation
noise. The robot starts at coordinat@s5). Fig.[@ (a) shows one realization of the sensor placement
along with the estimated robot’s trajectories obtainediftbe proposed CF/DPF, centralized particle filter
and distributed unscented Kalman filter (UKE)[[15] implenaions. We observe that both centralized
particle filter and CF/DPF clearly follow the robot trajegtowhile the distributed UKF deviates after

a few initial iterations. Figl]6 (b) plots the RMS errors db&d form a Monte-Carlo simulation afo0

runs, which corroborate our earlier observation that thEO®F and the centralized particle filter provide
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Fig. 6. (a) Robot trajectories estimated from the CF/DPHRtred¢ized, and distributed UKF implementations. (b) RM&oer
plots for the three implementations.

better estimates that are close to each other. The UKF pesdadifferent result with the highest error.

VIlI. CONCLUSION

In this paper, we propose a multi-rate framework referredsathe CF/DPF for distributed imple-
mentation of the particle filter. In the proposed framewdvkp particle filters run at each sensor node.
The first filter, referred to as the local filter, recursivebins the particle filter based only on the local
observations. We introduce a second particle filter at eacte nreferred to as the fusion filter, which
consistently assimilate local estimates into a globahes by extracting new information. Our CF/DPF
implementation allows the fusion filter to run at a rate diéfe from that of the local filters. Achieving
consensus between two successive iterations of the ledgbarticle filter is no longer a requirement. The
fusion filter and its consensus-step are now separated fierfotal filters, which enables the consensus
step to converge without any time limitations. Another citnition of the paper is the derivation of the
optimal posterior Cramér-Rao lower bound (PCRLB) for thetributed architecture based on a recursive
procedure involving the local Fisher information matri¢efM) of the distributed estimators. Numerical
simulations verify the near-optimal performance of the @ The CF/DPF estimates follows the

centralized patrticle filter closely approaching the PCRItBh& signal to noise ratios that we tested.

APPENDIX A

Proof of Theorenmi]1/[35]: Theoren 1L is obtained using: (i) The Markovian property af #tate

variables; (i) Assuming that the local observations madeva sensor nodes conditioned on the state
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variables are independent of each other, and; (iii) UsirggBlayes’ rule. Applying the Bayes’ rule to

Eq. (I3), the posterior distribution can be representedkmnfs
P(z(0:k)|z(1:k)) o< P(2(k)|z(k)) P(2(0:k)|2(1:k—1)). (68)
Now, using the Markovian property of the state variables, ) becomes
P(x(0:k)|z(1:k)) < P(z(k)|z(k)) x P(x(k)|lz(k—1))P(x(0:k—1)|z(1:k—1)). (69)

Assuming that the local observations made at two sensorsnodeditioned on the state variables are

independent of each other EQ.69) becomes

P(z(0:k)|2(1:k)) (HP O ) x P(x(k)|lz(k—1)) P(x(0:k—1)[z(1:k—1)).  (70)
Using the Bays’ rule, the local likelihood functiaR () (k)|a(k)) at nodel, for (1 <1< N) is
P(z(l)(k)\a;(k)) - Pﬂf}fﬁ)j;z)l(}i)l)))p(z ()|zO(1:k— 1)) (71)
Finally, the result (Eq.[{13)) is provided by substituting. B71) in Eq. [7D). m
APPENDIX B

Proof of Theoren]2: Following the approach in the proof of Theorémn 1 (Apperidix A first
write the posterior density at iteratidty-m as
1Y, P (z(k+m)[z0(1:k+m))
[LY, P (x(k+m)|zO(1:k+m—1))
Then the last term is factorized as follows

P(x(0:k+m)|z(1:k+m)) x P(x(0:k+m)|z(1l:k+m—1)).(72)
P(x(0:k+m)|z(1:k+m—1)) = P (x(k+m)|x(k+m—1)) P (x(0:k+m—1)|z(1:k+m—1)). (73)

As in Eq. [72), we continue to expard®(x(0:k+m—1)|z(1:k+m—1)) (i.e., the posterior distribution
at iterationk+m—1) all the way back to iteratio+1 to prove Eq.[(3}). [ |

APPENDIXC

Proof of Theorem]3:Based on EqL(13), terfog(P(x(0:k+1)|z(1:k+1))) is given by

log P (2(0: k+1)| 2(1: k1)) Zlog( 2 (k+1)|z0 (L k+1) ) Zlog( 2(k+1)z0(1: k)))

o (P (k- 1)) ) + o (P (e(0:8)1:8))
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Aot Aion-1) Naohon
J(z(0:k+1)) = E{ —Lx [AZORD AT AT 10gP(ac(0:k:—|—1)|z(1:k—|—1))} (74)
AT AT Az
Substituting Eq.[(74) in Eq[(T4), it can be shown that
A (k) A2(k) 0
J(x(0:k+1))=| A2 (k) A2(k)+ DY(k) D2(k) |, (75)
0 D2 (k) C2(k)

where Al (k), A2(k), A%?'(k) and A??(k) are the same as for Eq_(41R'! (k), D'?(k) and D?'(k)
are the same as in Eq§.[4B)4(45), aatf?(k) is defined in Eq.[{49). Block stands for a block of all
zeros with the appropriate dimension. The information suarix J(m(k+1)) can be calculated as the

inverse of the right lowerr(, x n,) sub-matrix of [J (x(0:k+1))] ~! as follows
-1
AV (k) A2 (k) 0
J(z(k+1)) = C*(k)—[0 D?*(k 76
(k1) =1 (k)] > AN (k) AZ(k) + CY (k) D'2(k) 7o

C?%(k) — D*(k)(J (@(k)) + D' (k)) " D"(k),

obtained from the definition off (z(k)) based on Eq[{41). |

APPENDIXD

Proof of PropositionR: The proof of Propositio]2 is similar to that of Theorém 3 gsthe
Markovian property of the state variables and based on ttteriaation of the joint prediction distribution
P(x(0:k+1)|2(1:k)) = P(x(k+1)|x(k)) P(x(0:k)|z(1:k)). [

REFERENCES

[1] S. Grime and H. F. Durrant-Whyte, “Data fusion in decafired sensor networksCont. Eng. Prag.pp. 849-863, 1994.

[2] P. Tichavsky, C.H. Muravchik, and A. Nehorai, “Poster@ramér-Rao bounds for discrete-time nonlinear filtefingEE
Trans. Sig. Proc.yol. 46, no. 5, pp. 1386-1396, 1998.

[3] R. Tharmarasa, T. Kirubarajan, P. Jiming, and T. Langptifization-Based Dynamic Sensor Management for Disteiéu
Multitarget Tracking,” |[EEE Trans. Systems, Man, and Cybernetiad. 39, no. 5, pp. 534-546, 2009.

[4] R. Tharmarasa, T. Kirubarajan, A. Sinha, and T. Lang, ¢®dralized Sensor Selection for Large-Scale Multisensor
Multitarget Tracking,” |[EEE Trans. Aerospace and Electronic Systewas, 47, no. 2, pp. 1307-1324, 2011.

[5] R. Olfati-Saber, “Kalman-consensus filter: Optimalisgability, and performance,” id8th IEEE Conference on Decision
and Contro|] pp. 7036—7042, 2009.

September 6, 2012 DRAFT



(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

29

Soummya Kar, Jos M. F. Moura. “Gossip and Distributedrfaih Filtering: Weak Consensus Under Weak Detectability,”
IEEE Transactions on Sig. Prqocvol. 59, No. 4, 2011.

P. Alriksson and A. Rantzer, “Distributed kalman filtegiusing weighted averaging,” kvth IEEE International Symposium
on Mathematical Theory of Networs and Systepms,8179-8184, 2006.

R. Olfati-Saber and N.F. Sandell., “Distributed trawmfiin sensor networks with limited sensing range,1BEE American
Control Conferencep. 3157-3162, 2008.

R. Olfati-Saber, A. Fax, and R.M. Murry, “Consensus amdpration in networked multi-agent systems,” Rroceedings
of the IEEE 2007.

A.G. Dimakis, S. Kar, J.M.F. Moura, M.G. Rabbat, and Aaglione, “Gossip algorithms for distributed signal pregiag,”
Proceedings of the IEEBE/0l. 98, pp. 1847-1864, 2010.

S. Challa, M. Palaniswami and A. Shilton, “Distributddta fusion using support vector machines,’Fifth International
Conference on Information Fusion, (FUSIQNpI. 2, p. 881-885, 2002.

M. Rosencrantz, G. Gordon, and S. Thrun, “Decentrdlidata fusion with distributed particle filters,” i@onference on
Uncertainty in Al (UAI) 2003.

G.G. Rigatos, “Distributed particle filtering over sem networks for autonomous navigation of UAVS,” Robot
Manipulators SciYo Publications, Croatia, 2010.

A. Mohammadi and A. Asif, “Distributed particle filterg for large scale dynamical systems,” IBEE 13th Inter.
Multitopic Conferencepp.1-5, 2009.

A. Simonetto, T. Keviczky, R. Babuska, “Distributed iNtinear Estimation for Robot Localization using Weighted
Consensus ”, INEEE Inter. Con. on Robotics and Automatjgp.3026—-3031, 2010.

Y. Huang, W. Liang, H. Yu, and Y. Xiao, “Target trackingaded on a distributed particle filter in underwater sensor
networks ”, InWireless Communication and Mobile Computipg. 1023-1033, 2008.

M. Bolic, P.M. Djuric, and Sangjin Hong, “Resamplinggatithms and architectures for distributed particle fitérin
IEEE Transactions on Signal Processingl. 53, no. 7, pp. 2442-2450, 2005.

M. Coates, “Distributed particle filters for sensorwetks,” ISPN Sensor Networkgp. 99-107, 2004.

X. Sheng, Y. Hu, and P. Ramanathan, “GMM approximation multiple targets localization and tracking in wireless
sensor network,” irfFourth International Symposium on Information Processimgensor Networkspp. 181-188, 2005.
L.L. Ong, T. Bailey, B. Upcroft, and H. Durrant-Whyte D&centralised particle filtering for multiple target tréwdy in
wireless sensor networks,” ihlth Int. Conference on Information Fusio2008.

D. Gu, “Distributed particle filter for target trackifigin IEEE Con. on Rob. & Automatiompp. 3856-3861, 2007.

D. Gu, S. Junxi, H. Zhen and L. Hongzuo, “Consensus batsttibuted particle filter in sensor networks,” IBEE Int.
Con, on Information and Automatippp. 302-307, 2008.

M.J. Coates and B.N. Oreshkin, “Asynchronous disteluparticle filter via decentralized evaluation of gausgieoducts,”

in Proc. ISIF Int. Conf. Information FusigrEdinburgh Scotland, 2010.

D. Ustebay, M. Coates, and M. Rabbat, “Distributed hawy particle filters using selective gossip,” IEEE Inter. Conf.
on Acoustics, Speech and Signal Prqap. 3296-3299, 2011.

B. Balasingam, M. Bolic, P.M. Djuric, and J. Miguez “Efiént distributed resampling for particle filters,” IREE Int.
Con. on Acoustics, Speech and Sig. Prpp. 3772-3775, 2011.

A. Mohammadi and A. Asif, “Consensus-Based Distriloitenscented Particle Filter,” ifProc. of IEEE Workshop on
Statistical Signal Processing (SSMWice, France, pp. 237-240, 2011.

September 6, 2012 DRAFT



[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]
[44]

[45]

[46]

[47]

[48]

30

A. Mohammadi and A. Asif, “A Consensus/Fusion basedtiibsted Implementation of the Particle Filter” IfEEE
Workshop on Computational Advances in Multi-Sensor Adagfirocessing2011.

S. Farahmand, S. I. Roumeliotis, and G. B. Giannakigt-t8embership constrained particle filter: Distributeadgdtion
for sensor networkdEEE Trans. on Signal Processingol. 59, no. 9, pp. 4122-4138, Sept. 2011.

A. Mohammadi and A. Asif, “A Constraint Sufficient Ststiics based Distributed Particle Filter for Bearing Onladking”,
IEEE international conference on communications (IC2)12.

S. Lee and M. West, “Markov chain distributed particléefis (MCDPF),” inlEEE Conf. Decision and ControR009.

O. Hlinka, O. Sluciak, F. Hlawatsch, P.M. Djuric, M. Rup‘Likelihood consensus: Principles and application &tritbuted
particle filtering,” InIEEE Asilomar Conference on Signals, Systems and Compei349-353, 2010.

H.Q. Liu, H.C. So, F.K.W. Chan, and K.W.K. Lui, “Distnitbed particle filter for target tracking in sensor netwdrks,
Progress In Electromagnetics Research\@I. 11, Non. pp. 171-182, 2009.

B. Sinopoli, L. Schenato, M. Franceschetti, K. PooN&, I. Jordan, and S. S. Sastry, “Kalman filtering with intettemt
observations”,|EEE Trans. Automat. ConjrVol. 49, No. 9, pp. 1453-1464, 2004.

S. Kar, B. Sinopoli, and J. Moura, “Kalman Filtering witntermittent Observations: Weak Convergence to a Statjon
Distribution,” to appear ilEEE Transactions on Automatic Control

C.Y. Chong, S. Mori, and K.C. ChangdJlulti-target Multi-sensor Trackingchapter Distributed Multi-target Multi-sensor
Tracking, Artech House, pp. 248-295, 1990.

M.L. Hernandez, A.D. Marrs, N.J. Gordon, S.R. Maskelhd C.M. Reed, “Cramér-Rao bounds for non-linear filtering
with measurement origin uncertaintylihit. Conf. Inf. Fusionvol. 1, pp. 18-25, 2002.

L. Zuo, R. Niu, and P.K. Varshney, “Conditional PosterCramér-Rao Lower Bounds for Nonlinear Sequential Bayes
Estimation,” IEEE Trans. Sig. Proc.yol. 59, no. 1, 2011.

N. Gordon, M. Sanjeev, S. Maskell, and T. Clapp, “A tigbon particle filters for online non-linear/non-gausskaayesian
tracking,” IEEE Trans. on Signal Procvol. 50, pp. 174-187, 2002.

M.S. Arulampalam, B. Ristic, N. Gordon, and T. ManséRearings-only tracking of maneuvering targets using ipkat
filters,” Appl. Sig. Processvol. 15, pp. 2351-2365, 2004.

A. Olshevsky and J. N. Tsitsiklis, “Convergence speedistributed consensus and averaging,'SIAM J. Control Optim).
vol. 48, no. 1, pp. 33-56, 2009.

M. Gales and S. Airey, “Product of gaussians for speedwognition,”Comp. Speech & Langvol. 20, pp. 22—40, 2006.
S. L. Sun and Zi-Li Deng, “Multi-sensor optimal infortian fusion Kalman filters with applications Automatica vol.
40, no. 6, pp. 57-62, 2004.

R.V.D. Merwe, A. Doucet, N.D. Freitas and E. Wan, “Thesaanted patrticle filter,Tech. Rep.Cambridge University, 2000.
R. Karlsson, T. Schon ,and F. Gustafsson, “Complexitglgsis of the marginalized particle filterfEEE Trans. Signal
Processingvol. 53(11), pp. 4408-4411, 2005.

X. Rong Li and V.P. Jilkov, “Survey of maneuvering targeacking. Part V. Multiple-model methodsl|EEE Transactions
on Aerospace and Electronic Systemasl. 41, no. 4, pp. 1255-1321, 2005.

T.H. Chung, J.W. Burdick, and R.M. Murray, “Decentead motion control of mobile sensing agents in a netwolikEE
Conf. on Decision and ControR005.

Y. Zhu, Z. You, J. Zhao, K. Zhang, and X. Li, “The optimalifor the distributed Kalman filtering fusion with feedb&ck
Automatica vol. 37, no. 9, pp. 1489-1493, 2001.

S. Thrun, W. Burgard, and D. Fox, “Probabilistic Rolestf The MIT Press2005.

September 6, 2012 DRAFT



	I Introduction
	II BACKGROUND
	III The CF/DPF Implementation
	III-A Distributed Configuration and Local Filters

	IV Modified Fusion Filter 
	V The Posterior Cramér-Rao Lower Bound
	V-A Centralized computation of the PCRLB

	VI Simulations: Bearing Only Target Tracking
	VII Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

