
ar
X

iv
:1

30
1.

46
25

v1
  [

cs
.IT

]  
20

 J
an

 2
01

3
ACCEPTED BY IEEE TRANSACTIONS ON SIGNAL PROCESSING, JAN. 2013 1

Two-Way Training for Discriminatory Channel
Estimation in Wireless MIMO Systems

Chao-Wei Huang, Tsung-Hui Chang, Xiangyun Zhou, and Y.-W. Peter Hong

Abstract—This work examines the use of two-way training
to efficiently discriminate the channel estimation performances
at a legitimate receiver (LR) and an unauthorized receiver
(UR) in a multiple-input multiple-output (MIMO) wireless
system. This work improves upon the original discriminatory
channel estimation (DCE) scheme proposed by Changet al
where multiple stages of feedback and retraining were used.
While most studies on physical layer secrecy are under the
information-theoretic framework and focus directly on the data
transmission phase, studies on DCE focus on the training phase
and aim to provide a practical signal processing technique to
discriminate between the channel estimation performances(and,
thus, the effective received signal qualities) at LR and UR.A
key feature of DCE designs is the insertion of artificial noise
(AN) in the training signal to degrade the channel estimation
performance at UR. To do so, AN must be placed in a carefully
chosen subspace based on the transmitter’s knowledge of LR’s
channel in order to minimize its effect on LR. In this paper,
we adopt the idea of two-way training that allows both the
transmitter and LR to send training signals to facilitate channel
estimation at both ends. Both reciprocal and non-reciprocal
channels are considered and a two-way DCE scheme is proposed
for each scenario. For mathematical tractability, we assume
that all terminals employ the linear minimum mean square
error criterion for channel estimation. Based on the mean
square error (MSE) of the channel estimates at all terminals,
we formulate and solve an optimization problem where the
optimal power allocation between the training signal and AN
is found by minimizing the MSE of LR’s channel estimate
subject to a constraint on the MSE achievable at UR. Numerical
results show that the proposed DCE schemes can effectively
discriminate between the channel estimation and hence the data
detection performances at LR and UR.

Index terms− Two-way training, Channel estimation, Physical
layer secrecy, MIMO
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I. I NTRODUCTION

Due to the broadcast nature of the wireless medium, com-
munication between wireless terminals is often susceptible to
potential eavesdropping by unauthorized receivers. Therefore,
as wireless technology becomes more prevalent, the need for
discriminating between the signal reception performance at a
legitimate receiver (LR) and that at an unauthorized receiver
(UR) has increased. Motivated by this demand, the concept
of physical layer secrecy have been studied extensively in
recent years and methods that utilize properties of the wireless
channels to achieve the desired performance discrimination
have been proposed. From an information-theoretic viewpoint,
the difference in the channel condition at different receivers
can be exploited to ensure a non-zero communication rate
between the transmitter and LR under the perfect secrecy
constraint [1]–[4], where the notion of perfect secrecy means
that no UR is able to infer any information from the received
signal broadcasted by the transmitter. From a signal process-
ing perspective, artificial-noise-aided multiuser beamforming
schemes [5]–[7] and space-time coding schemes [8] can be
adopted to enhance signal reception at LR while limiting the
received signal quality at UR.

A. Motivation and Related Work

Most studies in the literature on physical layer secrecy,e.g.,
[1]–[8], focus on the design of the data transmission phase
while often assuming the availability of perfect channel state
information. In practice, channel knowledge is typically ob-
tained through training and channel estimation, and its quality
can have a significant impact on the receiver performance
[9], [10]. Intuitively, if UR has a poorer channel estimation
performance than LR, then UR would have a higher detec-
tion error probability when overhearing the transmission of
secret messages. Motivated by this observation, the authors in
[11] proposed a novel training scheme, calleddiscriminatory
channel estimation(DCE), that can provide a better channel
estimation performance for LR compared to that for UR.
Different from the information-theoretic works [1]–[3], the
DCE scheme in [11] takes a more practical viewpoint and
is a signal processing technique for discriminating between
the channel conditions of LR and UR.

The key feature of the DCE scheme [11] is the insertion of
artificial noise (AN) in the training signal. The AN is carefully
placed in a subspace so that it jams UR while the interference
caused to LR is minimized. To this end, the transmitter re-
quires knowledge of LR’s channel. In the original DCE scheme
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proposed in [11], this was achieved by using a preliminary
training stage followed by multiple stages of feedback-and-
retraining. Specifically, in the preliminary training stage, a
pure pilot signal is first sent by the transmitter to allow for
a rough channel estimate at LR. Then, LR feeds back this
channel estimate to the transmitter, who then sends a new pilot
signal inserted with AN to disrupt the channel estimation at
UR. The pilot signal power used in the preliminary training
stage must be relatively small since, otherwise, UR is also
able to obtain a good channel estimate. In addition, the AN
signal used in the retraining stage must be placed in the null-
space of LR’s estimated channel to minimize its effect on LR.
Through each stage of feedback and retraining, knowledge of
LR’s channel at the transmitter is gradually refined, allowing
AN to be placed more precisely in the desired signal subspace
and the pilot signal power to be increased without benefiting
the channel estimation at UR. The main drawback of this
multi-stage feedback-and-retraining scheme [11] is the large
training overhead and the high design complexity required.
The cost and the quality of the feedback link may also limit
its application in practice, but was not considered in [11].

B. Our Approach and Contribution

The main contribution of this work is to propose new
and efficient DCE schemes based on the two-way training
methodology. The idea of two-way training, which has been
studied for non-secrecy applications,e.g., in [19]–[24], allows
both the transmitter and the receiver to send pilot signals in a
collaborative manner so that channel estimation is enabledat
both ends. This is particularly useful in achieving DCE since
the reverse training signal sent by LR in a two-way training
scheme will not benefit UR in obtaining any information about
the channel between itself and the transmitter1. This advantage
is not enjoyed by conventional one-way training schemes since
any pilot signal sent by the transmitter will help UR improve
its estimate of the channel between itself and the transmitter.
In this work, two-way DCE schemes are designed for both
reciprocal and non-reciprocal channel models. The former is
a reasonable model for time-division duplex (TDD) systems
whereas the latter is often used to model frequency-division
duplex (FDD) systems. For reciprocal channels, the proposed
two-way DCE scheme requires only two stages of training, that
is, a reverse training stage and a forward training stage. For
non-reciprocal channels, only an additional round-trip training
stage is needed, in which the transmitter first broadcasts a
random signal only known to itself and LR echoes the signal
back using an amplify-and-forward strategy. In both cases,AN
is inserted into the pilot signal in the (final) forward training
stage to achieve the desired DCE performance. Compared
to the multi-stage feedback-and-retraining scheme proposed
in [11], the newly proposed two-way training schemes drasti-
cally reduce the overall training overhead.

The proposed two-way DCE schemes can conceptually be
derived under any channel estimation criterion at the three

1However, the revere training signal enables UR to estimate the channel
between itself and LR. This may not be desirable if LR also hassecret
messages to transmit; see more discussions in Remark 5.

terminals. For tractability and for gaining useful insights, in
this paper, we assume that all terminals employ the linear
minimum mean square error (LMMSE) channel estimator, and
derive the resulting mean square error (MSE) of the channel
estimates obtained at both LR and UR. These analysis results
are then used to compute the optimal power allocation between
the pilot signals and AN across different training stages. This is
obtained by solving an optimization problem that aims to min-
imize the MSE of LR’s channel estimate subject to a constraint
on the MSE of UR’s channel estimate and individual training
energy constraints at the transmitter and LR. For reciprocal
channels, we show that the optimal transmit powers of reverse
training, forward training, and AN have simple close-form
expressions. For non-reciprocal channels, the power allocation
problem cannot be easily solved, but an approximate solution
can be obtained by employing the monomial approximation
and the condensation method [25], [26] often used in the
field of geometric programming (GP). Numerical results are
provided to demonstrate the effectiveness of the proposed
schemes.

The remainder of this paper is organized as follows. In
Section II, the system model and the proposed two-way DCE
scheme for reciprocal channels are presented. In Section III,
the two-way DCE scheme is extended to non-reciprocal chan-
nels. Numerical results are provided in Section IV and, finally,
the conclusion is given in Section V.

Notations: Upper-case and lower-case boldfaced letters are
used for matrices,e.g., X, and vectors,e.g., x, respectively.
Moreover,XT , X∗ andXH denote the transpose, the complex
conjugate and the Hermitian of the matrixX, respectively.
Let 0M×N be theM -by-N zero matrix and letIM be the
M -by-M identity matrix. Tr(·) denotes the trace of a square
matrix, ‖ · ‖ denotes the Frobenius norm, and vec(·) is the
operator which stacks the columns of a matrix into a vector.
The symbol⊗ denotes the Kronecker matrix product,E{·}
denotes the expectation operator anddiag(a1, . . . , aN) is the
N ×N diagonal matrix with diagonal elementsa1, . . . , aN .

II. T WO-WAY DCE DESIGN FORRECIPROCAL CHANNELS

A. System Model

Consider a wireless MIMO system that consists of a
transmitter, a legitimate receiver (LR), and an unauthorized
receiver (UR)2, which are equipped withNt, NL and NU

antennas, respectively, as shown in Fig. 1. We assume that
Nt > NL. Moreover, the channel fading coefficients are
assumed to remain constant during each transmission block,
which consists of a training phase and a data transmission
phase. In this work, we focus on the training phase and aim
to discriminate the channel estimation performances at LR and
UR. Let the downlink channel matrix from the transmitter
to LR be denoted byHd ∈ C

Nt×NL . The entries ofHd

are assumed to be independent and identically distributed
(i.i.d.) complex Gaussian random variables with zero mean and

2For ease of presentation, we will focus on the scenario with one LR and
one UR throughout the paper. The presented methods, nevertheless, can be
easily extended to the scenario with multiple LRs and URs, following the
same spirit as in [11].
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Fig. 1. A wireless MIMO system consisting of a transmitter, alegitimate
receiver (LR) and an unauthorized receiver (UR).

varianceσ2
hd

(i.e., CN (0, σ2
hd
)). Similarly, the uplink channel

from LR to the transmitter is denoted byHu ∈ CNL×Nt ,
whose entries arei.i.d. with distribution CN (0, σ2

hu
). The

forward channel from the transmitter to UR is denoted by
G ∈ CNt×NU with entries beingi.i.d. CN (0, σ2

g); while the
channel from LR to UR is denoted byF ∈ CNL×NU . In the
rest of the paper, we assume that the transmitter, LR and UR
are separated enough so thatHd (Hu), G andF are distinct
and statistically independent of each other.

In the case of reciprocal channels, the uplink and downlink
channel matrices can be specified by a single channel matrix
H such thatH , Hd = HT

u ∈ CNt×NL . The variance of
each entry can be denoted byσ2

h, whereσ2
h = σ2

hd
= σ2

hu
.

With such channel reciprocity, the transmitter can obtain an
estimate of the downlink channel by taking the transpose of
the estimated channel matrix obtained through reverse training,
i.e., training based on the pilot signals sent from LR to
the transmitter. In the following subsections, we show the
detailed steps of the proposed two-way DCE scheme and
the associated LMMSE channel estimation performance in
reciprocal channels.

B. Training Scheme and Channel Estimation Performance

Step I (Channel Acquisition at Transmitter via Reverse
Training) : The first step of the two-way DCE scheme is to
allow the transmitter to obtain a reliable estimate of its down-
link channel to LR without benefiting the channel estimation
process at UR. Different from [11], where the availability of a
noiseless feedback link was considered, our proposed two-way
DCE scheme requires the transmitter to estimate the downlink
channel by itself through the exchange of training signals
between the transmitter and LR. In the reciprocal channel case,
this can be simply achieved by having LR send a reverse
training signal to the transmitter. Specifically, in the reverse
training stage, LR first sends a training signal

XL =

√
PRτR
NL

CL (1)

to the transmitter, whereCL ∈ CτR×NL is the pilot matrix
that satisfiesCH

LCL = INL
, PR is the transmission power for

reverse training, andτR is the reverse training length. Note
that the choice of using an orthonormal pilot matrix (i.e.,
CH

LCL = INL
) is due to its optimality in minimizing the

channel estimation error in point-to-point channels, as shown
in [10]. In the remainder of this paper, we shall sometimes
denote the reverse training energy byER while keeping in
mind that

ER , PRτR.

The signal received at the transmitter is given by

Yt = XLH
T + W̃, (2)

whereW̃ ∈ CτR×Nt is the AWGN matrix with elements being
i.i.d. CN (0, σ2

w̃).
The reverse training signal sent by LR allows the transmitter

to obtain an estimate of the downlink channel by taking the
transpose of its uplink channel estimate. By employing the
LMMSE estimator [27], the estimate ofH at the transmitter
can be written as

Ĥ =
(
σ2
hX

H
L (σ2

hXLX
H
L + σ2

w̃IτR)
−1Yt

)T
, H+∆H (3)

where∆H ∈ CNt×NL is the estimation error matrix with

E{∆H(∆H)H} = NL

(
1

σ2
h

+
ER

NLσ2
w̃

)−1

INt
, (4)

andσ2
w̃ is the noise power at the transmitter.

Step II (Forward Training with AN) : After obtaining the
downlink channel estimate,i.e., Ĥ, in Step I, the transmitter
then sends a forward training signal to enable channel esti-
mation at LR in Step II. To degrade the channel estimation
performance of UR while not jamming LR, the transmitter
carefully inserts AN in the training signal. The forward
training signal is given by

Xt =

√
PF τF
Nt

Ct +AKH
Ĥ
, (5)

whereCt ∈ CτF×Nt is the pilot matrix with Tr(CH
t Ct) = Nt,

PF is the pilot signal power in this stage, andτF is the training
length. For ease of notation, we define

EF , PF τF

as the forward pilot signal energy. HereA ∈ CτF×(Nt−NL)

is AN matrix whose entries arei.i.d. CN (0, σ2
a) and are

statistically independent of the channels and noises at all
terminals;K

Ĥ
∈ C

Nt×(Nt−NL) is a matrix whose column
vectors form an orthonormal basis for the left null space of
Ĥ, that is,KH

Ĥ
Ĥ = 0(Nt−NL)×NL

andKH
Ĥ
K

Ĥ
= INt−NL

.
Notice from (5) that AN is superimposed on the training
signal and placed in the left null space of̂H to minimize
its interference on LR. The received signals at LR and UR are
respectively given by

YL =

√
EF
Nt

CtH+AKH
Ĥ
H+W, (6)

YU =

√
EF
Nt

CtG+AKH
Ĥ
G+V, (7)

where W ∈ CτF×NL and V ∈ CτF×NU are the additive
white Gaussian noise (AWGN) matrices at LR and UR, re-
spectively, with entries beingi.i.d. CN (0, σ2

w) andCN (0, σ2
v),
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respectively. Note that, sincêH = H+∆H andKH
Ĥ
Ĥ = 0,

equation (6) can be rewritten as

YL =

√
EF
Nt

CtH−AKH
Ĥ
∆H+W , C̄H+ W̄, (8)

whereC̄ ,

√
EF

Nt
Ct andW̄ , −AKH

Ĥ
∆H+W. Also note

that, due to the presence ofA, W̄ is statistically uncorrelated
with H, i.e.,E{W̄HH} = 0.

By assuming the LMMSE estimator, the channel estimate
at LR can be expressed as

ĤL = RHC̄H(C̄RHC̄H +RW̄)−1YL, (9)

where RH = E{HHH} = NLσ
2
hINt

and RW̄ =
E{W̄W̄H}. The normalized mean squared error (NMSE) of
ĤL is defined as

NMSEL ,
Tr
(
E{(H− ĤL)(H− ĤL)

H}
)

NtNL

=
Tr
((

R−1
H + C̄HR−1

W̄
C̄
)−1
)

NtNL
. (10)

By the fact thatĤ and∆H are uncorrelated due to the or-
thogonality principle [27], and by (4) andKH

Ĥ
K

Ĥ
= INt−NL

,
the covariance ofW̄ can be written as

RW̄ =
(
E{‖KH

Ĥ
∆H‖2}σ2

a +NLσ
2
w

)
IτF

= NL

[
(Nt −NL) ·

(
1

σ2
H

+
ER

NLσ2
w̃

)−1

σ2
a + σ2

w

]
IτF .

(11)

Then, by substituting (11) into (10), we have

NMSEL =
1

Nt
Tr

((
1

σ2
h

INt
+

EF
Nt

CH
t Ct

(Nt −NL)

(
1
σ2
h

+ ER

NLσ2
w̃

)−1

σ2
a + σ2

w

)−1)
. (12)

Similarly, the NMSE of the estimate ofG at UR can be
computed as

NMSEU =

1

Nt
Tr

((
1

σ2
g

INt
+

EF
Nt

CH
t Ct

(Nt −NL)σ2
aσ

2
g + σ2

v

)−1
)
. (13)

Notice, from (12) and (13), that increasing the AN power (i.e.,
σ2
a) increases the NMSE at both receivers, but the effect can

be reduced at LR by increasing the reverse training energy
ER. Hence, under a total energy constraint, the training and
AN powers must be carefully chosen to ensure sufficient
discrimination between the channel estimation performances
at the two receivers.

Remark 1. In view of the fact that the proposed forward
training signal in (5) contains AN, an important question to
ask is that whether UR can ignore the AN-aided training signal
and directly employ some blind data detection or channel

estimation methods in the data transmission phase. For exam-
ple, if the transmitter uses space-time coding schemes in the
data transmission phase, UR may employ the blind detection
methods in [12]–[14] or the blind channel estimation methods
in [15], [16]. However, these blind methods cannot work
properly without cooperation of the transmitter. Specifically, if
the transmitter uses space-time codes that are notidentifiable
[16], [17], UR would suffer from nontrivial code and channel
rotation ambiguities. It has been shown in [18] that the rotation
ambiguities can make UR have a detection error probability
equal to one, provided that the information symbols satisfya
constant modulus property3. As a result, UR may still need
to exploit the training signal for channel estimation, even
though it is jammed by the AN signal. Further quantitative
analysis evaluating the performance of other data transmission
schemes and blind detection/channel estimation methods under
the proposed DCE scheme will be an interesting direction for
future research.

C. Optimal Power Allocation between Pilot Signal and AN

The closed-form NMSE expressions obtained in the previ-
ous subsection show explicitly the effect of the reverse training
power (or energy), the forward training power (or energy)
and the AN power on the channel estimation performances
at LR and UR. From a designer’s point of view, it is desirable
to utilize the available power (or energy) in an efficient
way whilst achieving a satisfactory DCE performance. In the
following, we consider the problem of allocating the pilot
signal and AN powers in the reverse and forward training
stages with the goal of minimizing the channel estimation error
at the LR whilst keeping the estimation error at UR above a
certain threshold. The proposed optimization problem is given
as follows:

min
ER,EF ,σ2

a≥0
NMSEL (14a)

subject to (s.t.) NMSEU ≥ γ, (14b)

ER ≤ ĒL, (14c)

EF + (Nt −NL)σ
2
aτF ≤ Ēt. (14d)

The optimization problem is constrained by a required lower
limit on UR’s NMSE in (14b), and individual energy con-
straints at LR and the transmitter in (14c) and (14d), respec-
tively.

It should be noted that UR’s NMSE constraint,i.e., γ, [11]
should be chosen such that

(
1

σ2
g

+
Ēt

Ntσ2
v

)−1

≤ γ ≤ σ2
g , (15)

where the term on the left hand side is the minimum achievable
NMSE at UR (when the transmitter does not use any AN,i.e.,
σ2
a = 0) and the term on the right hand side stands for the

worst NMSE performance at UR (which is achieved when the

3In addition, the transmitter may employ the AN-aided OSTBC scheme in
[8] or the AN-aided beamforming schemes [5]–[7]. Since the data signals of
these schemes also contain AN, it would be even more difficultfor UR to use
the blind methods to extract the information symbols or estimate the unknown
channel.
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mean ofG, i.e., zero, is taken as the channel estimate). For
ease of use later, let us define

γ̃ ,

(
1

γ
−

1

σ2
g

)
Ntσ

2
v ≥ 0 (16)

so that the condition in (15) can be reduced to

0 ≤ γ̃ ≤ Ēt. (17)

The power allocation problem in (14) is a non-convex
optimization problem involving three variables (ER, EF , σ

2
a).

Interestingly, we show in the following proposition that, for the
case of orthogonal forward pilot matrices (i.e., the case where
CH

t Ct = INt
), problem (14) actually has simple closed-form

solutions.

Proposition 1. Consider problem(14) with γ chosen accord-
ing to (15). If

µ , NL

(
σ2
vσ

2
w̃

σ2
gσ

2
w

−
σ2
w̃

σ2
h

)
> ĒL, (18)

the optimal(ER, EF , σ2
a) is given byE⋆

R = 0, E⋆
F = γ̃ and

(σ2
a)

⋆ = 0 (i.e., no need of reverse training and AN). On the
other hand, ifµ ≤ ĒL, the transmitter and LR use all the
available energy so thatE⋆

R = ĒL,

E⋆
F = Ēt −

(Ēt − γ̃)τF
τF + γ̃σ2

g/σ
2
v

,

and

(σ2
a)

⋆ =
Ēt − γ̃(

τF + γ̃σ2
g/σ

2
v

)
(Nt −NL)

.

Proposition 1 implies that, if UR has a relatively poor
channel condition (i.e., sufficiently smallσ2

g/σ
2
v), then both

AN and reverse training are not needed; otherwise, LR should
use all its energy for reverse training and the transmitter needs
to employ AN in order to constrain UR’s MSE above the
required threshold valueγ. The proof of Proposition 1 is given
in Appendix A. Appendix A actually provides the proof for a
more general formulation which, compared to problem (14),
has an additional total energy constraint

ER + EF + (Nt −NL)σ
2
aτF ≤ Ētot,

whereĒtot represents the total energy budget. This total energy
constraint limits the total amount of energy consumed by the
transmitter and LR in the training phase. We are interested
in such general formulation because it may be useful in the
system design stage for understanding the power tradeoff
between the transmitter and LR and that between the training
phase and data transmission phase.

Two remarks regarding the proposed DCE scheme are in
order.

Remark 2. It is interesting to note that Proposition 1 gives
the solution to the optimization problem for the orthogonal
forward training matrix with full rank,i.e., CH

t Ct = INt
.

However, the rank ofCt does not need to beNt in gen-
eral. Given that the rank ofCt is equal toK(< Nt), it
is shown in Appendix B that the optimalCt must satisfy
CH

t Ct = UcDUH
c , whereD = diag(d1, . . . , dK , 0, . . . , 0)

with d1 = · · · = dK = Nt

K andUc is an Nt × Nt unitary
matrix. If a rank deficient pilot matrix is considered instead,
i.e., K < Nt, one can choose an arbitraryNt × Nt unitary
matrix forUc and obtain the optimal(ER, EF , σ2

a) for a given
K value by following the same derivations as in the proof of
Proposition 1. The rank of the forward training matrix can be
further optimized to minimize the NMSE at LR.

Remark 3. The training lengths in the reverse and forward
training stages,i.e., τR and τF , can also be optimized. Note
that training on the reverse link is not affected by the presence
of UR and, thus, can be viewed as training on a point-to-point
link. Therefore, by [10], the optimal reverse training length
τR is equal to the number of antennas at LR (i.e., NL) since
it minimizes the training overhead without compromising the
channel estimation performance. One can also show that the
optimal forward training lengthτF is given by the number of
antennas of the transmitter, i.e.,Nt. To show this, observe that
the optimal(E⋆

R, E
⋆
F , σ

2
a
⋆
) of (14) for someτF = τF2 satisfies

the constraints of (14) even whenτF reduces to a smaller value
τF1 < τF2 , i.e., (E⋆

R, E⋆
F , σ2

a
⋆
) is also feasible to (14) with

τF = τF1 . This implies that a smallerτF corresponds to a
larger feasible set for(ER, EF , σ2

a) in (14), and thus a smaller
value of optimalNMSEL can be obtained. Consequently,
the minimumNMSEL is achieved whenτF is equal to its
minimum possible value,i.e., the number of antennas at the
transmitterNt.

III. T WO-WAY DCE DESIGN FORNON-RECIPROCAL

CHANNELS

In this section, we consider the case of non-reciprocal
channels. Without channel reciprocity, the downlink channel
gain cannot be directly inferred from the uplink channel
gain. In this case, the knowledge of the downlink channel
at the transmitter can be obtained via reverse training plus
an additional round-trip training stage that utilizes an echoed
signal (from the transmitter to LR and back to the transmit-
ter) to obtain the combined downlink-uplink channel at the
transmitter. The proposed two-way DCE training scheme is
detailed below.

A. Training Scheme and Channel Estimation Performance

Step I (Channel Acquisition at the Transmitter with
Round-Trip and Reverse Training): In the round-trip train-
ing stage, the transmitter first broadcasts a random signal,only
known to itself, which is then echoed back to the transmitterby
LR. The effective channel seen at the transmitter is equal tothe
composition of the uplink and downlink channels. Specifically,
let Ct0 ∈ Cτt0×Nt be the pilot matrix that is randomly
generated with normalized power,i.e., Tr(CH

t0Ct0) = Nt. The
signal sent by the transmitter is given by

Xt0 =

√
Pt0τt0
Nt

Ct0, (19)

wherePt0 is the pilot signal power andτt0 is the training
length in this stage. Note thatCt0 is known only to the
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transmitter (but not to LR or UR4) since it is randomly
generated before each transmission. For ease of notation, we
define the round-trip training energy asEt0 , Pt0τt0. The
received signal at LR is given by

YL0 = Xt0Hd +W0, (20)

whereW0 ∈ Cτt0×NL is the AWGN matrix with entries that
are i.i.d. with distribution CN (0, σ2

w). Upon receivingYL0,
LR amplifies and forwards it back to the transmitter. The
echoed signal at the transmitter is given by

Yt1 = αYL0Hu + W̃1

= αXt0HdHu + αW0Hu + W̃1, (21)

whereW̃1 ∈ Cτt0×Nt is the AWGN matrix at the transmitter
with entries beingi.i.d. with distribution CN (0, σ2

w̃). The
amplifying gain at LR is given by

α =

√
PL1τt0

Pt0τt0NLσ2
hd

+ τt0NLσ2
w

=

√
EL1

Et0NLσ2
hd

+ τt0NLσ2
w

, (22)

wherePL1 is LR’s transmission power andEL1 , PL1τt0 is
the energy spent on echoing the signal. With the knowledge
of Xt0, the transmitter can obtain an estimate of the combined
downlink and uplink channels,i.e.,HdHu. However, to obtain
an estimate of the downlink channelHd, the transmitter must
first obtain an estimate of the uplink channelHu. This can
be achieved through reverse training, which is the same as the
one described in the reciprocal channel case.

In the reverse training stage, LR sends a training signal

XL2 =
√

EL2

NL
CL2 ∈ CτL2×NL to enable uplink channel

estimation at the transmitter. Here,CL2 is the pilot matrix
satisfyingCH

L2CL2 = INL
, EL2 is the reverse training energy,

and τL2 is the training length. The received signal at the
transmitter is given by

Yt2 = XL2Hu + W̃2 =

√
EL2

NL
CL2Hu + W̃2, (23)

whereW̃2 is the AWGN matrix with entries beingi.i.d. with
distribution CN (0, σ2

w̃). The transmitter can then obtain the
LMMSE estimate of the uplink channel as

Ĥu = σ2
hu
XH

L2(σ
2
hu
XL2X

H
L2 + σ2

w̃IτL2)
−1Yt2. (24)

Similar to that in (3) and (4), we can write

Ĥu , Hu +∆Hu, (25)

4UR may attempt to exploit the AN-free signalCt0 to obtain some useful
information about its channelG. For example, ifNU > Nt or the distribution
of Ct0 is known, UR can estimate the subspace ofG from the received
signal. However, like the blind methods discussed Remark 1,this subspace
information still suffers from a nontrivial rotation ambiguity about the true
channelG. Besides, the subspace estimation quality could be very poor due
to the short length ofCt0 and the presence of additive noise.

where∆Hu is the estimation error matrix which is complex
Gaussian distributed with zero mean and correlation matrix

E{∆HH
u (∆Hu)} = NL

(
1

σ2
hu

+
EL2

NLσ2
w̃

)−1

INt
. (26)

Note that∆Hu andĤu are statistically independent since they
are both Gaussian and are uncorrelated with each other due
to the orthogonality principle [27]. The transmitter can then
utilize the uplink channel estimatêHu to compute an estimate
of the downlink channelHd.

Specifically, givenĤu at the transmitter, we can rewrite the
echoed signal in (21) as

Yt1 = αXt0Hd(Ĥu −∆Hu) + αW0(Ĥu −∆Hu) + W̃1

= αXt0HdĤu + (αW0Ĥu − αXt0Hd∆Hu

− αW0∆Hu + W̃1). (27)

For ease of analysis, let us defineyt1 = vec(Yt1), hd =

vec(Hd), w0 = vec(W0), and w̃1 = vec(W̃1) as the
respective vector counterparts ofYt1, Hd, W0 and W̃1

obtained by stacking the column vectors of each corresponding
matrix. By the Kronecker product property that vec(ABC) =
(CT ⊗A)vec(B), one can express (27) as

yt1 = α(ĤT
u ⊗Xt0)hd + α(ĤT

u ⊗ INt
)w0

− α(∆HT
u ⊗Xt0)hd − α(∆HT

u ⊗ INt
)w0 + w̃1. (28)

Let Ct0 be a unitary matrix such thatCt0C
H
t0 = CH

t0Ct0 =
INt

5. By the fact that the equivalent noise termα(ĤT
u ⊗

INt
)w0−α(∆HT

u ⊗Xt0)hd−α(∆HT
u ⊗INt

)w0+w̃1 in (28)
is statistically uncorrelated withhd, the LMMSE estimate of
the downlink channelhd at the transmitter (denoted bŷhd,t)
can be computed as

ĥd,t =
1

ασ2
w

(
1

σ2
hd

+
Et0

Ntσ2
w

)−1

×

(
Ĥ∗

u

(
(ĤT

u Ĥ
∗
u) + βINt

)−1

⊗XH
t0

)
yt1

, hd +∆hd,t, (29)

where

β = NL

(
1

σ2
hu

+
EL2

NLσ2
w̃

)−1

+
σ2
w̃

α2σ2
hd
σ2
w

(
1

σ2
hd

+
Et0

Ntσ2
w

)−1

.

(30)
and∆hd,t ∈ CNtNL×1 is the estimation error vector at the
transmitter. The corresponding matrix form ofĥd,t is given

5Note that the pilot matrixCt0 need not be a unitary matrix in general.
However, the NMSE performance obtained with a generic round-trip pilot
matrix cannot be expressed in a closed form and, thus, the optimal pilot
structure is difficult to obtain. In this work, we aim to provide a design
that can be efficiently implemented and whose performance can be easily
characterized. With the choice of unitary pilot matrices, we are able to derive
an accurate closed-form approximation of the NMSE performance and further
utilize it to efficiently optimize the power (energy) allocation among the pilot
signals and AN in different stages.
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by

Ĥd,t =
1

ασ2
w

(
1

σ2
hd

+
Et0

Ntσ2
w

)−1

×XH
t0Yt1

(
(ĤH

u Ĥu) + βINt

)−1

ĤH
u

, Hd +∆Hd,t, (31)

whereHd and∆Hd,t is the matrix form ofhd and∆hd,t,
respectively. The covariance matrix of∆hd,t conditioned on
Ĥu is given by

E{∆hd,t(∆hd,t)
H |Ĥu} =

[
σ2
hd
INL

− σ2
hd

σ2
hd
Et0

σ2
hd
Et0 +Ntσ2

w

×

((
1

β
Ĥ∗

uĤ
T
u

)−1

+INL

)−1]
⊗ INt

. (32)

Step II (Forward Training with AN) : In the forward
training stage, the transmitter sends AN along with the training
signal to discriminate the channel estimation performances
between LR and UR. The detailed description has been
presented earlier in Section II-B. For notational consistency
in this section, we modify the subscripts of the symbols in the
expressions of the received signals at LR and UR as

YL3 =

√
Et3
Nt

Ct3Hd +AKH
Ĥd,t

Hd +W3, (33)

YU3 =

√
Et3
Nt

Ct3G+AKH
Ĥd,t

G+V3, (34)

and the forward training length is denoted asτt3 instead of
τF .

Comparing with the design for reciprocal channels de-
scribed in Section II, the DCE in the case of non-reciprocal
channels requires more time to complete since an additional
round-trip training stage is used. To keep the training overhead
low, we consider a design with the minimum training lengths,
i.e., τt0 = Nt, τL2 = NL, τt3 = Nt, and chooseCt0 to be a
unitary matrix such thatCH

t0Ct0 = Ct0C
H
t0 = INt

. Note that
the choices ofτL2 = NL and τt3 = Nt are indeed optimal
under a total and/or individual energy constraints as discussed
in Remark 3 of Section II.

Unlike the reciprocal channel case in Section II-B, it is
difficult to obtain a close-form expression for the NMSE at LR
from (33). In Appendix C, we instead derive an approximate
NMSE at LR by assuming that: 1) given̂Hu, the LMMSE
estimate ofHd in (31), i.e.,Ĥd,t, is statistically independent
of the associated error matrix∆Hd,t; 2) the transmitter and LR
have sufficiently large numbers of antennas, i.e,Nt, NU ≫ 1.
The obtained approximation of the NMSE at LR is given by
(35) which is at the top of the next page, where

σ2 ,
σ4
hu
EL2

σ2
hu
EL2 +NLσ2

w̃

, (36)

andβ, as recalled from (30), is a function of the energy values
Et0 andEL2. While the two assumptions are in general not true
(in generalĤd,t and∆Hd,t are only statistically uncorrelated,
and Nt and NU are finite), our numerical results show that
the approximate NMSEL presented above is actually quite

accurate under practical settings, as will be shown in the
numerical result section.

The NMSE performance at UR can be computed in a similar
fashion as in the reciprocal case, which is given by

NMSEU =

1

Nt
Tr

((
1

σ2
g

INt
+

Et3
Nt

CH
t3Ct3

(Nt −NL)σ2
aσ

2
g + σ2

v

)−1
)
. (37)

B. Optimal Power Allocation between Training and AN Sig-
nals

The effect of power allocation on the NMSE performance is
much more complex in the non-reciprocal case. Nonetheless,
we can formulate an optimization problem, similar to that in
the reciprocal case, where we aim to minimize the channel
estimation error at LR whilst keeping the estimation error at
UR above a threshold. The optimization problem is given as
follows:

min
Et0,EL1,

EL2,Et3,σ
2
a≥0

NMSEL (38a)

s.t. NMSEU ≥ γ (38b)

Et0 + Et3 + (Nt −NL)σ
2
aNt ≤ Ēt (38c)

EL1 + EL2 ≤ ĒL. (38d)

Here, Ēt and ĒL are the individual energy constraints at the
transmitter and LR, respectively. Since this problem is not
easily solvable, we resort to the monomial approximation and
the condensation method often adopted in the field of GP [25],
[26] to obtain an efficient solution. Detailed description of the
numerical algorithm can be found in [28] and are omitted in
this paper since these approaches are standard in the field of
GP.

Remark 4. Similar to the discussion in Remark 2 of Sec-
tion II, one can also show that the optimal structure ofCt3 is
given byCH

t3Ct3 = Ut3DUH
t3, whereD = diag(d1, . . . , dK ,

0, . . . , 0) with d1 = · · · = dK = Nt

K andUt3 is the matrix
whose columns consist of eigenvectors ofCH

t3Ct3. For any
choice of K(≤ Nt), the optimal power allocation can be
obtained by performing the same monomial approximation
and condensation method described in [28]. The optimalK
can then be found by comparing the solutions for all possible
values ofK.

Remark 5. As the final remark, it would be interesting to
qualitatively compare the proposed two-way DCE scheme and
the original feedback-and-retraining DCE scheme in [11]. In
terms of training overhead, it is easy to see that the proposed
two-way DCE scheme is more efficient than the feedback-
and-retraining DCE scheme, since the two-way DCE scheme
requires at most three transmissions by the transmitter and/or
LR (e.g., for the non-reciprocal channels, we require one
round-trip transmission, one reverse training and one forward
training with AN) while the feedback-and-retraining DCE
scheme, even under the assumption of ideal feedback, usually
requires around five stages of feedback and retraining (equiva-
lent to 10 transmissions by the transmitter and LR) in order to
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NMSEL ≈
1

Nt
Tr




1

σ2
hd

INt
+

Et3
Nt

CH
t3Ct3

(Nt −NL)σ2
a

(
σ2
hd

− σ2
hd

σ2
hd

Et0

σ2
hd

Et0+Ntσ2
w

Ntσ2

β+Ntσ2

)
+ σ2

w




−1

(35)

achieve a comparable performance [11]. We should mention
that, if the goal is solely to prevent UR from obtaining a good
estimate of its channel from the transmitter, the feedback-and-
retraining scheme actually provides no advantages over the
two-way DCE scheme, even though it requires more complex
operations. However, the two-way DCE scheme cannot be
applied if the channel between LR and UR is also of interest
at UR, e.g., when LR also has a secret message to transmit.
In this scenario, the feedback-and-retraining scheme in [11]
would be the preferred method. In summary, the two DCE
schemes actually have their own values and limitations and
should be deployed depending on the applications.

IV. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results to demonstrate
the effectiveness of the proposed DCE schemes. We consider a
MIMO wireless system as described in Section II-A withNt =
4, NL = 2 andNU = 2. The elements of the channel matrices,
H, Hu, Hd and G, are i.i.d. complex Gaussian distributed
with zero mean and unit variance,i.e., σ2

h = σ2
hu

= σ2
hd

=

σ2
g = 1. The entries of the receiver noise matrices,i.e.,W̃, W

andV, are also assumed to bei.i.d. complex Gaussian with
zero mean and unit variance,i.e., σ2

w̃ = σ2
w = σ2

v = 1. The
orthogonal forward pilot matrix is employed,i.e., CH

t Ct =
CH

t3Ct3 = INt
. Moreover, the training lengths are set to its

minimum, that is,τR = NL = 2 and τF = Nt = 4 for
the reciprocal case, andτt0 = τt3 = Nt = 4 and τL2 =
NL = 2 for the non-reciprocal case. Let us denote the total
training length spent by the transmitter asτt and that by LR
as τL. For the reciprocal case,τt = 4 (= τF ), τL = 2 (=
τR), and for the non-reciprocal case,τt = 8 (= τt0 + τt3),
τL = 6 (= τt0 + τL2). Note that the overall training time
would be longer than the sum of all training lengths due to
the processing time at the transmitter and LR. In order to
investigate the energy tradeoff between the transmitter and LR,
we consider the general formulation as in (40) which has the
additional total energy constraint in contrast to (14) and (38).
We define the average transmit power asPave , Ētot

τt+τL
so

that a total energy budget can be alternatively expressed in
terms of an average power budget. For all simulation results,
the individual power constraints at the transmitter and LR are
respectively given bȳPt ,

Ēt

τt
= 30 dB andP̄L , ĒL

τL
= 20 dB

(relative to its noise variance). We incorporate an NMSE lower
bound for comparison. The lower bounds for the reciprocal and
the non-reciprocal cases are both given by

NMSELB =

(
1

σ2
H(d)

+
min{Ēt, Ētot}

Ntσ2
w

)−1

. (39)

This is the minimum achievable NMSE at LR whenσ2
a = 0,

i.e., no AN is used.
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Fig. 2. Power allocation between the pilot signal and AN powers of the
proposed DCE schemes for the reciprocal and the non-reciprocal cases.

In Fig. 2, we show the results of the optimal power
allocation among pilot and AN signals in different stages ofthe
training process for both the reciprocal and the non-reciprocal
cases. The results are shown for two different lower limits
on UR’s NMSE, i.e., γ = 0.1 (indicated by solid lines) and
γ = 0.03 (indicated by dashed lines). In the reciprocal case,
the reverse training power, forward training power, and the
AN power are defined asER/τR, EF /τF and (Nt − NL)σ

2
a,

respectively. We can see from Fig. 2(a) that, as the average
power budgetPave increases, all the training powers and
the AN power increase at roughly the same rate over the
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range ofPave from 18 dB to 26 dB. This suggests that the
optimal percentages of total energy allocated to the reverse
training, forward training, and AN do not change much over
a wide range of energy budget. However, whenPave becomes
sufficiently high, the curves in Fig. 2(a) start flattening out
due to the individual power constraints at the transmitter and
LR. Moreover, by comparing the optimal power allocation of
the case withγ = 0.03 and that withγ = 0.1, we can see
that it is desirable to allocate more power to AN and less
power to the forward pilot signal asγ increases (i.e., when
a stricter constraint is imposed on UR’s performance). This
is due to the fact that the forward pilot signal benefits both
LR and UR while AN primarily degrades UR’s estimation.
However, an increase in the AN power may also degrade the
estimation performance at LR if it is not placed accurately
in the null space of the channel to LR. To reduce this effect,
the reverse training power should be increased in order to
obtain a more accurate knowledge of the downlink channel.
This explains why the reverse training power increases with
γ in Fig. 2(a). Note that, whenPave falls below 10 dB, the
value ofγ = 0.03 falls out of the feasible range given in (15)
(because the value ofγ is not achievable by UR even without
AN) and, therefore, is not shown in the figure. Similar trends
also hold in the non-reciprocal case as shown in Fig. 2(b),
whereEt0/τt0 andEL1/τt0 are the round-trip training powers,
EL2/τL2 is the reverse training power,Et3/τt3 is the forward
pilot signal power, and(Nt−NL)σ

2
a is the AN power. Notice

that, since the round-trip and the reverse training work together
in this case to provide the transmitter with knowledge of the
downlink channel, both powers should be increased to reduce
AN’s interference on LR.

In Fig. 3, we show the channel estimation performance
at LR and UR for different values of average power budget
Pave. The reciprocal case is shown in Fig. 3(a) while the non-
reciprocal case is in Fig. 3(b). Two different lower limits on
the UR’s NMSE are considered in the figures,i.e.,γ = 0.1 and
γ = 0.03. We see that our proposed DCE schemes can indeed
constrain the UR’s NMSE aboveγ in both cases. In the case of
non-reciprocal channels, we also compare the approximation
of LR’s NMSE obtained in (35) with the exact value obtained
from Monte-Carlo simulations in Fig. 3(b). We can see that
the analytical approximation of the NMSE is very close to that
obtained from Monte-Carlo simulations.

Finally, in Fig. 4, we show the symbol error rate (SER)
performance at LR and UR in the data transmission phase. We
consider the scenario where the transmitter sends a4×4 com-
plex orthogonal space-time block code (OSTBC). The code
length is equal to four and each code block contains three 64-
QAM source symbols [29]. The data transmission power is set
equal to the average transmit power budgetPave. Note that this
4×4 OSTBC is not identifiable [15], [16], which, as discussed
in Remark 1, implies that UR would suffer from non-trivial
rotation ambiguities when either blindly estimating the channel
or detecting the codeword. Therefore, it is assumed here that
both LR and UR exploit their channel estimates obtained under
the proposed DCE scheme, and detect the data symbols by
using the coherent maximum-likelihood detector (assuming
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(b) Non-reciprocal case

Fig. 3. NMSE performance of the proposed DCE schemes for the reciprocal
and the non-reciprocal cases.

that the obtained channel estimates are perfect6) [29]. In this
Monte-Carlo simulation, the SER is computed by averaging
over 500, 000 channel realizations and OSTBCs.

Fig. 4(a) presents the SER for 64-QAM OSTBC in the
reciprocal case. We see that the SER at LR gradually improves
as the average power budget increases, while the SER at UR
remains larger than0.1 due to the poor channel estimation.
Similar trends are also observed in the non-reciprocal case
in Fig. 4(b). Both figures illustrate that, with the proposed
DCE scheme, discrimination of the data detection perfor-
mances between LR and UR can be effectively achieved. It is
worthwhile to mention that the feedback-and-retraining DCE
scheme proposed in [11] assumed a perfect feedback channel
with no power consumption and, thus, it is difficult to have
a fair performance comparison between the proposed scheme
and that in [11].

6LR and UR can also employ the CSI-error-aware detector in [30, Eqn.
(20)], despite that the associated complexity is much higher especially for
higher-order QAM. It is anticipated that both LR and UR wouldhave
improved symbol error performance.
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Fig. 4. SER performance of LR and UR in an OSTBC system with channel
state information (CSI) obtained by the proposed DCE schemes.

V. CONCLUSIONS

In this paper, we have proposed new DCE schemes based on
the two-way training methodology for both reciprocal and non-
reciprocal channels. The proposed design drastically decreases
the overall training overhead compared to the original DCE
scheme in [11]. We obtained analytical results on the MSE
of the channel estimation and utilized it to derive the optimal
power allocation among pilot signals and AN. The optimal
power values in both cases were obtained by minimizing
the MSE at LR whilst confining the MSE at UR above
some prescribed value. The presented numerical results have
demonstrated the effectiveness of the proposed DCE schemes.

In the current paper, we have derived the DCE scheme
based on the LMMSE channel estimator. Since UR may not
be restricted to the use of the LMMSE channel estimator, it
would be interesting to extend the DCE scheme to other more
complex channel estimators or even using Cramér-Rao lower
bound (CRLB) as the performance measure. Furthermore, by
intuition, the channel condition difference caused by DCE
should improve the achievable secrecy rate defined in the
context of information-theoretic security [1]–[3]. Analytically

proving this intuition, though challenging, is an interesting
future research direction. Interested readers may refer to[35]–
[42] for some endeavors which aim to characterize the impact
of channel estimation errors at terminals on the achievable
secrecy rate.
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APPENDIX A
PROOF OFPROPOSITION1

In this appendix, we present the solutions for the following
problem

min
ER,EF ,σ2

a≥0
NMSEL (40a)

subject to (s.t.) NMSEU ≥ γ, (40b)

ER + EF + (Nt −NL)σ
2
aτF ≤ Ētot, (40c)

ER ≤ ĒL, (40d)

EF + (Nt −NL)σ
2
aτF ≤ Ēt, (40e)

where (40c) is a total energy constraint andĒtot denotes the
total energy budget. Note that, when̄Etot > ĒL + Ēt, the total
energy constraint (40c) is redundant, and thus (40) reduces
to (14). The solutions of (40) are given in the following
proposition.

Proposition 2. The solutions to(40) with γ chosen according
to (15) are given by considering the following three scenarios
separately.
Scenario 1 (̄Etot > ĒL + Ēt): For this scenario, problem(40)
reduces to problem(14). The corresponding solution is given
in Proposition 1.
Scenario 2 (max{ĒL, Ēt} ≤ Ētot ≤ ĒL + Ēt): If

µ > min{ĒL, Ētot − γ̃},

the optimal (ER, EF , σ2
a) is given by E⋆

R = 0, E⋆
F = γ̃

and (σ2
a)

⋆ = 0 (i.e., no need of reverse training and no
need of AN in the forward training). On the other hand, if
µ ≤ min{ĒL, Ētot − γ̃}, the optimalER can be obtained by
solving the following one-dimensional optimization problem:

E⋆
R = argmax

ER

(NLσ
2
w̃ + σ2

HER) · EF (ER)

NLσ2
w̃ + σ2

H · ER +NLσ2
H

σ2
w̃

σ2
w
· ζ(ER)

(41)

s.t. max{0, µ, Ētot − Ēt} ≤ ER

≤ min{ĒL, Ētot − γ̃},

where

ζ(ER) =
Ētot − γ̃ − ER
τF + σ2

g γ̃/σ
2
v

(42)

and

EF (ER) = γ̃

(
σ2
g

σ2
v

· ζ(ER) + 1

)
. (43)
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The optimalEF and σ2
a are given byE⋆

F = EF (E⋆
R) and

(σ2
a)

⋆ =
ζ(E⋆

R)
(Nt−NL) .

Scenario 3 (̄Etot < ĒL and/or Ētot < Ēt): This scenario refers
to the case where one or both individual energy constraint(s)
are redundant. Here, the solution is given as in Scenario2 with
the redundant individual energy constraint(s) set to infinity.

We first prove the most general scenario, i.e., Scenario
2, where both the individual and total power constraints are
effective. Scenario 1 and scenario 3 are degenerated cases of
Scenario 2; their corresponding solutions are presented inthe
second subsection.

A. Proof of Scenario 2

For notational simplicity, let us defineζ = (Nt − NL)σ
2
a.

In this case, Problem (14) can be rewritten as

max
EF ,ER,ζ≥0

1

σ2
h

+
1

Ntσ2
w

·
(NLσ

2
w̃ + σ2

hER)EF

NLσ2
w̃ + σ2

hER +NLσ2
h
σ2
w̃

σ2
w
ζ

(44a)

s.t.
σ2
vEF

σ2
gζ + σ2

v

≤ γ̃, (44b)

ER + EF + ζ · τF ≤ Ētot, (44c)

ER ≤ ĒL (44d)

EF + ζ · τF ≤ Ēt. (44e)

We will analyze the solutions of (44) via the following two
steps: (i) for any givenER, find the optimal values ofEF and
ζ as functions ofER; and (ii) find the optimal value ofER.
Step (i): Given ER, where 0 ≤ ER ≤ min{ĒL, Ētot}, the
optimal values ofEF and ζ can be found equivalently by
solving the following optimization problem:

max
EF ,ζ≥0

(NLσ
2
w̃ + σ2

hER)EF

NLσ2
w̃ + σ2

hER +NLσ2
h
σ2
w̃

σ2
w
· ζ

(45a)

s.t.
σ2
vEF

σ2
gζ + σ2

v

≤ γ̃, (45b)

EF + ζ · τF ≤ Ētot − ER, (45c)

EF + ζ · τF ≤ Ēt. (45d)

Let the solutions toEF andζ in the above problem be denoted
by E⋆

F (ER) and ζ⋆(ER), respectively. To analyze (45), we
consider the following two cases:
Case 1 (̄Etot − γ̃ < ER ≤ min{ĒL, Ētot}): Note that the ob-
jective function in (45) is monotonically increasing inEF but
decreasing inζ. Sinceγ̃ satisfies (17) andER > Ētot − γ̃, it
follows that ζ⋆(ER) = 0 andE⋆

F (ER) = Ētot − ER. It can be
easily verified thatζ⋆(ER) andE⋆

F (ER) are feasible to (45). In
particular, (45d) is satisfied due toE⋆

F (ER) = Ētot − ER and
γ̃ ≤ Ēt by (17). In this case, the maximum objective value of
(45a) is equal toĒtot − ER, which is less thañγ due to the
premise of this case.
Case 2 (ER ≤ min{ĒL, Ētot − γ̃}): In this case, we first show
that the constraint in (45b) must hold with equality when
the optimum value is achieved. Suppose that the constraint in
(45b) is inactive at the optimum. In this case, we can always
decreaseζ to obtain a larger objective value until the constraint
(45b) holds with equality. If the condition (45b) is still inactive

even whenζ = 0, we can instead liftEF to achieve a larger
objective value sinceER ≤ min{ĒL, Ētot − γ̃} and γ̃ must
satisfy (17). Hence, we conclude that the constraint in (45b)
must hold with equality and, thus,

E⋆
F (ER) = γ̃

(
σ2
g

σ2
v

· ζ⋆(ER) + 1

)
. (46)

By substituting (46) into (45), the optimization problem can
be reduced to

max
ζ≥0

(σ2
g/σ

2
v · ζ + 1)(NLσ

2
w̃ + σ2

hER)γ̃

NLσ2
h
σ2
w̃

σ2
w
ζ +NLσ2

w̃ + σ2
hER

(47a)

s.t.

(
τF +

σ2
g γ̃

σ2
v

)
ζ ≤ Ētot − ER − γ̃, (47b)

(
τF +

σ2
g γ̃

σ2
v

)
ζ ≤ Ēt − γ̃. (47c)

We further consider the following two subranges ofER in
order to find the optimalζ. Let us iterate the definition ofµ
in (18)

µ , NL

(
σ2
vσ

2
w̃

σ2
gσ

2
w

−
σ2
w̃

σ2
h

)
> min{ĒL, Ētot − γ̃}.

(a) ER < µ: It can be shown that the objective function in
(47a) is monotonically decreasing inζ wheneverER <
µ. Therefore, forER < µ, the optimalζ of (47) is zero
and the corresponding optimal objective value is given
by γ̃.

(b) µ ≤ ER: On the other hand, whenµ ≤ ER, the objective
function in (47a) is monotonically non-decreasing inζ.
Hence, if ER ≤ Ētot − Ēt, one can increaseζ until
constraint (47c) is met with equality. In this case, we
have

ζ⋆(ER) =
Ēt − γ̃

τF + σ2
g γ̃/σ

2
v

. (48)

Conversely, ifER ≥ max{µ, Ētot−Ēt}, constraint (47b)
must hold with equality at the optimum and, thus,

ζ⋆(ER) =
Ētot − ER − γ̃

τF + σ2
g γ̃/σ

2
v

. (49)

Moreover, sinceER ≥ µ implies that σ2
g/σ

2
v ≥

NLσ2
hσ

2
w̃/σ2

w

NLσ2
w̃
+σ2

h
ER

, the optimal objective value of (47a),i.e.,

σ2
g/σ

2
vζ

⋆ + 1
NLσ2

h
σ2
w̃
/σ2

w

NLσ2
w̃
+σ2

h
ER

ζ⋆ + 1
· γ̃ (50)

is no less thañγ.

Notice that the maximum objective value obtained in Case 2
is no less thañγ and, thus, is always greater than that obtained
in Case 1.
Step (ii) : Since the maximum objective value in Case 2 is
always greater than that in Case 1, the optimal value ofER
must satisfyER ≤ min{ĒL, Ētot − γ̃}.

If µ > min{ĒL, Ētot − γ̃}, then it follows thatER < µ
since ER ≤ min{ĒL, Ētot − γ̃}. Therefore, by the results
of Case 2(a), we haveζ⋆ = 0 and, thus,E⋆

F = γ̃ by (46).
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Since AN is not needed, there is also no need for reverse
training and, thus, we can setE⋆

R = 0. Alternatively, if
µ ≤ min{ĒL, Ētot − γ̃}, ER can be chosen to be either
greater or smaller thanµ. However, by the results of Case
2, we know that a larger objective can be achieved when
ER ≥ µ. Therefore, the optimalER must lie in the range
max{0, µ} ≤ ER ≤ min{ĒL, Ētot − γ̃}.

Let us first consider the subrangemax{0, µ} ≤ ER ≤ Ētot−
Ēt (≤ ĒL), if it exists. In this case, the optimal values of
EF and ζ are given by (46) and (48), which actually do not
depend onER. By replacingEF andζ with their optimal values
ER(EF ) and ζ(EF ), the original problem (44) can be written
as

max
ER≥0

(NLσ
2
w̃ + σ2

hER)E
⋆
F (ER)

NLσ2
w̃ + σ2

hER +NLσ2
h
σ2
w̃

σ2
w
ζ⋆(ER)

(51)

s.t. max{0, µ} ≤ ER ≤ Ētot − Ēt.

Notice that, sinceE⋆
F (ER) andζ⋆(ER) in (46) and (48) do not

depend onER, the objective function (51) is monotonically
non-decreasing with respect toER and, thus, the optimal value
is achieved withER = Ētot − Ēt. Therefore, it is sufficient to
considerER in the subrangemax{0, µ, Ētot − Ēt} ≤ ER ≤
min{ĒL, Ētot− γ̃} since it includes the valueER = Ētot−Ēt.
It then follows from (49) and (46) that the optimalER can be
obtained by solving (41), which requires only a simple line
search over the finite interval.

B. Proof of Scenario 1 and Scenario 3

In Scenario 1, wherēEtot > ĒL + Ēt, the total energy
constraint in (44c) is redundant and, thus,Ētot can be set as
infinity. In particular, if µ > ĒL (and thusµ > ER), we have
ζ⋆ = 0, E⋆

F = γ̃ and E⋆
R = 0 according to Case 2(a). On

the other hand, ifµ ≤ ĒL, it follows from Case 2(b) that the
original problem can be expressed as

max
ER≥0

(NLσ
2
w + σ2

hER)E
⋆
F (ER)

NLσ2
w + σ2

h · ER +NLσ2
h
σ2
w̃

σ2
w
· ζ⋆(ER)

(52)

s.t max{0, µ} ≤ ER ≤ ĒL,

whereE⋆
F (ER) andζ⋆(ER) are given by (46) and (48). Since

E⋆
F (ER) and ζ⋆(ER) do not depend onER in this case, the

objective in (52) increases monotonically withER and, thus,
the optimal value ofER is given byE⋆

R = ĒL. This implies that
both LR and transmitter should transmit with their maximum
energies in Scenario 3.

In Scenario3, whereĒtot < ĒL and/or Ētot < Ēt, at least
one of the individual energy constraints are redundant and,
thus, can be set as infinity. Therefore, the optimal solution
can be obtained similarly by solving (41) with the redundant
constraint(s) (i.e., ĒL and/orĒt) set as infinity.

APPENDIX B
PROOF OF THEOPTIMAL PILOT MATRIX Ct

Consider the optimization ofCt for problem (14). Notice,
from (12) and (13), that the NMSE at both receivers depend
only on the value ofCH

t Ct. Let

CH
t Ct = UcDUH

c (53)

be the eigenvalue decomposition ofCH
t Ct, where Uc ∈

CNt×Nt is a unitary matrix andD = diag(d1, . . . , dNt
) is

a diagonal matrix withd1, . . . , dNt
being the eigenvalues of

CHC. By substituting (53) into (12) and (13), we have

NMSEL =
1

Nt

Nt∑

i=1

(
1

σ2
h

+ a · di

)−1

and

NMSEU =
1

Nt

Nt∑

i=1

(
1

σ2
g

+ b · di

)−1

,

where

a =
EF /Nt

(Nt −NL)
(

1
σ2
h

+ ER

NLσ2
w̃

)−1

σ2
a + σ2

w

and

b =
EF /Nt

(Nt −NL)σ2
gσ

2
a + σ2

v

.

Therefore, givenER, EF , andσ2
a, the optimalCt can be found

by solving the following optimization problem

min
d1,...,dNt

≥0

1

Nt

Nt∑

i=1

(
1

σ2
h

+ a · di

)−1

(54a)

s.t.
1

Nt

Nt∑

i=1

(
1

σ2
g

+ b · di

)−1

≥ γ (54b)

Nt∑

i=1

di = Nt, di ≥ 0 for i = 1, . . . , Nt (54c)

where (54c) is due to the constraint thatTr(CH
t Ct) = Nt.

By the Karush-Kuhn-Tucker (KKT) conditions, the optimal
di must satisfy the following conditions

−
a

Nt

(
1

σ2
h

+ adi

)−1

+
κb

Nt

(
1

σ2
g

+ bdi

)−1

+ ν − ηi = 0, i = 1, . . . , Nt (55)
Nt∑

i=1

di = Nt, κ ≥ 0, ν ≥ 0, (56)

ηidi = 0, ηi ≥ 0, di ≥ 0, i = 1, . . . , Nt, (57)

whereκ, ν andηi are the corresponding dual variables of the
constraints in (54b) and (54c). It follows from (57) thatηi = 0
if di > 0, and therefore, by (55), we can observe that all the
nonzerodi must have the same value. Hence, if there areK
nonzerodi’s, then, owing to (56), we haved1 = · · · = dK =
Nt/K.

APPENDIX C
DERIVATION OF LR’ S NMSE IN NON-RECIPROCAL CASE

Here we derive the downlink channel estimation perfor-
mance at the LR. By expressingHd = Ĥd − ∆Hd and the
fact thatKH

Ĥd,t

Ĥd,t = 0, the received signal at LR in (33)
can be written as

YL3 = C̄t3Hd −AKH
Ĥd,t

∆Hd,t +W3. (58)
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whereC̄t3 ,

√
Et3

Nt
Ct3. Its vector representation is given by

yL3 =
(
INL

⊗ C̄t3

)
hd− (INL

⊗AKH
Ĥd,t

)∆hd,t +w3 (59)

whereyL3 = vec(YL3) andw3 = vec(W3). The LMMSE
estimate ofhd is given by

ĥd = RhdyL3R
−1
yL3yL3

yL3 (60)

where

RhdyL3 = E{hdy
H
L3} = σ2

hd

(
INL

⊗ C̄t3

)
(61)

and

RyL3yL3 = E{yL3y
H
L3} = σ2

hd

(
INL

⊗ C̄t3C̄
H
t3

)

+ E{(INL
⊗AKH

Ĥd,t
)∆hd,t∆hH

d,t(INL
⊗AKH

Ĥd,t
)H}

+ σ2
w(INL

⊗ INt
). (62)

Note that the expectation in (62) is taken over all the random
variables includingA, ∆hd,t and Ĥd,t, where the last two
variables actually depend on the value ofĤu. Using the law of
iterated expectations,i.e., E{X} = E{E{X |Y }}, the second
term of (62) can be written as

E
Ĥu

{E
A,Ĥd,t

{(INL
⊗AKH

Ĥd,t
)

× E{∆hd,t∆hH
d,t|Ĥd,t, Ĥu}(INL

⊗AKH
Ĥd,t

)H |Ĥu}} (63)

where we have used the fact that the random matrixA is inde-
pendent of∆hd,t. Since∆hd,t andĤd,t are not necessarily in-
dependent, it is difficult to evaluateE{∆hd,t∆hH

d,t|Ĥd,t, Ĥu}.
To obtain a tractable form, we consider an approximation
where∆hd,t and Ĥd,t are assumed to be independent,i.e.,
E{∆hd,t∆hH

d,t|Ĥd,t, Ĥu} ≈ E{∆hd,t∆hH
d,t|Ĥu}. By (32)

and the fact thatKH
Ĥd,t

K
Ĥd,t

= INt−NL
, equation (63) can

be computed as

(Nt −NL)σ
2
a

[
σ2
hd
INL

− σ2
hd

σ2
hd
Et0

σ2
hd
Et0 +Ntσ2

w

× E
Ĥu

{((
1

β
Ĥ∗

uĤ
T
u

)−1

+ INL

)−1
}]

⊗ INt
, (64)

whereβ is defined in (30). To further evaluate (64), let us take
the eigenvalue decomposition of̂HuĤ

H
u as UΛUH , where

U ∈ CNL×NL is a unitary matrix andΛ = diag(λ1, . . . , λNL
)

is a diagonal matrix containing the unordered eigenvalues of
ĤuĤ

H
u as the diagonal elements. It is not difficult to show that

the coefficients ofĤu are i.i.d. Gaussian distributed because
both the uplink channelHu and the noise matrix̃W2 are

i.i.d. Gaussian distributed and that the pilot matrix
√

EL2

NL
CL2

in the reverse training stage (see Section III-A) is semi-unitary.
It then follows from results in random matrix theory [31] that
ĤuĤ

H
u has a Wishart distribution withNt degrees of freedom

and its mean is given by

E{ĤuĤ
H
u } = Nt

σ4
Hu

EL2

σ2
hu
EL2 +NLσ2

w̃

INL
, Ntσ

2INL

whereσ2 is as defined in (36). SinceΛ andU are statistically
independent [32], (64) can be further evaluated as

(Nt −NL)σ
2
a

[
σ2
hd
INL

− σ2
hd

σ2
hd
Et0

σ2
hd
Et0 +Ntσ2

w

× EU

{
U · EΛ

{(
βΛ−1 + INL

)−1}
UH

}]
⊗ INt

= (Nt −NL)σ
2
a

[
σ2
hd

− σ2
hd

σ2
hd
Et0

σ2
hd
Et0 +Ntσ2

w

× Eλ1

{(
1

β/λ1 + 1

)}]
INL

⊗ INt
(65)

where the equality follows from the fact that the eigenval-
ues of the Wishart distributed matrix̂HuĤ

H
u are identically

distributed [33]. Substituting (65) into (62), we have an
approximation of the covariance matrix ofyL3 as

RyL3yL3 ≈

INL
⊗

{
σ2
hd
C̄t3C̄

H
t3 +

[
(Nt −NL)σ

2
a

(
σ2
hd

− σ2
hd

×
σ2
hd
Et0

σ2
hd
Et0 +Ntσ2

w

Eλ1

{(
1

β/λ1 + 1

)})
+ σ2

w

]
INt

}
(66)

Since the NMSE of̂Hd is

NMSEL =
Tr(E{∆hd∆hH

d })

NtNL

=
Tr
(
σ2
hd
INLNt

−RhdyL3R
−1
yL3yL3

RH
hdyL3

)

NtNL
, (67)

by substituting (61) and (66) into (67), we obtain an approx-
imation of NMSEL as shown in (68) (top of the next page).
To further obtain an approximation for the expectation termin
(68), we note that, whenNt ≫ 1, the distribution of the eigen-
values ofĤuĤ

H
u can be asymptotically approximated by a

Gaussian random variable [34], that isλ1
a.
∼ N (Ntσ

2, Ntσ
4).

Moreover, whenNL is also sufficiently large,σ2 in (36)
is close to zero (i.e.,λ1 is approximately a constant equal

to its mean), and thus the termEλ1

{(
1

β/λ1+1

)}
can be

approximated by 1
β/Eλ1

{λ1}+1 by the Jensen’s inequality. As
a result, we obtain (35) as an approximation of (68).
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