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Abstract

This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images.

The proposed model assumes that the pixel reflectances result from a nonlinear function of the

abundance vectors associated with the pure spectral components. We assume that the spectral

signatures of the pure components and the nonlinear function are unknown. The first step of the

proposed method consists of the Bayesian estimation of the abundance vectors for all the image

pixels and the nonlinear function relating the abundance vectors to the observations. The endmembers

are subsequently estimated using Gaussian process regression. The performance of the unmixing

strategy is evaluated with simulations conducted on synthetic and real data.

Index Terms

Hyperspectral images, nonlinear spectral unmixing, unsupervised unmixing, Gaussian process

regression, Bayesian estimation.

I. INTRODUCTION

Spectral unmixing (SU) is a major issue when analyzing hyperspectral images. It consists

of identifying the macroscopic materials present in an hyperspectral image and quantifying

the proportions of these materials in the image pixels. Many SU strategies assume that

pixel reflectances are linear combinations of pure component spectra [1]. The resulting linear

mixing model (LMM) has been widely adopted in the literature and has provided some

interesting results. However, as discussed in [1], the LMM can be inappropriate for some
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hyperspectral images, such as those containing sand, trees or vegetation areas. Nonlinear

mixing models provide an interesting alternative to overcome the inherent limitations of the

LMM. Nonlinear mixing models recently proposed in the literature include the bidirectional

reflectance-based model of [2] for hyperspectral images including intimate mixtures, i.e.,

when the photons are intereacting with all the materials simultaneously. Such mixtures may

occur for instance in sand or mineral areas. Another class of nonlinear model referred to as

bilinear models have been studied in [3]–[6] for modeling scattering effects (mainly observed

in vegetation areas). Other more flexible unmixing techniques have been also proposed to

handle wider classes of nonlinearity, including radial basis function networks [7], [8] post-

nonlinear mixing models [9] and kernel-based models [10]–[13].

Most existing unmixing strategies can be decomposed into two steps referred to as end-

member extraction and abundance estimation. Endmember identification is usually achieved

before estimating the abundances for all the image pixels. In the last decade, many endmember

extraction algorithms (EEAs) have been developed to identify the pure spectral components

contained in a hyperspectral image (see [1] for a recent review of these methods). Most EEAs

rely on the LMM, which, as discussed, is inappropriate for the case of nonlinear mixtures

of the endmembers. More recently, an EEA was proposed in [14] to extract endmembers

from a set of nonlinearly mixed pixels. This paper proposes first to estimate the abundance

vectors and to estimate the endmembers during a second step, using the prediction capacity

of Gaussian processes (GPs). This approach breaks from the usual paradigm of spectral

unmixing. More precisely, this paper considers a kernel-based approach for nonlinear SU

based on a nonlinear dimensionality reduction using a Gaussian process latent variable model

(GPLVM). The main advantage of GPLVMs is their capacity to accurately model many

different nonlinearities. In this paper, we propose to use a particular form of kernel based

on existing bilinear models, which allows the proposed unmixing strategy to be accurate

when the underlying mixing model is bilinear. Note that the LMM is a particular bilinear

model. The algorithm proposed herein is “unsupervised” in the sense that the endmembers

contained in the image and the mixing model are not known. Only the number of endmembers

is assumed to be known. As a consequence, the parameters to be estimated are the kernel

parameters, the endmember spectra and the abundances for all image pixels.

The paper is organized as follows. Section II presents the nonlinear mixing model consid-

ered in this paper for hyperspectral image unmixing. Section III introduces the GPLVM used

for latent variable estimation. The constrained GPLVM for abundance estimation is detailed
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in Section IV. Section V studies the endmember estimation procedure using GP regression.

Some simulation results conducted on synthetic data are shown and discussed in Section VI.

Finally, conclusions are drawn in Section VII.

II. NONLINEAR MIXING MODEL

Consider a hyperspectral image of N pixels, composed of R endmembers and observed in

L spectral bands. For convenience, the data are assumed to have been previously centered. The

L-spectrum y(n) = [y1(n), . . . , yL(n)]T of the nth mixed pixel (n = 1, . . . , N ) is defined as a

transformation of its corresponding abundance vector a(n) = [a1(n), . . . , aR(n)]T as follows

y(n) = g [a(n)] + e(n), n = 1, . . . , N (1)

where g : RR → RL is a linear or nonlinear unknown function. The noise vector e(n) is

an independent, identically distributed (i.i.d.) white Gaussian noise sequence with variance

σ2, i.e., e(n) ∼ N (e(n)|0L, σ2IL) , n = 1, . . . , N . Without loss generality, the nonlinear

mapping (1) from the abundance space to the observation space can be rewritten

y(n) = W 0ψ [a(n)] + e(n), n = 1, . . . , N (2)

where ψ : RR → RD, W 0 is an L×D matrix and the dimension D is the dimension of the

subspace spanned by the transformed abundance vectors ψ [a(n)] , n = 1, . . . , N . Of course,

the performance of the unmixing strategy relies on the choice of the nonlinear function ψ.

In this paper, we will use the following nonlinearity

ψ : RR → RD

a 7→ ψ [a] = [a1, . . . , aR, a1a2 . . . , aR−1aR]T , (3)

with D = R(R + 1)/2. The primary motivation for considering this particular kind of

nonlinearity is the fact that the resulting mixing model is a bilinear model with respect to

each abundance ar, r = 1, . . . , R. More precisely, this mixing model extends the generalized

bilinear model proposed in [6] and thus the LMM. It is important to note from (2) and (3)

that W 0 contains the R spectra of the pure components present in the image and R(R−1)/2

interaction spectra between these components. Note also that the analysis presented in this

paper could be applied to any other nonlinearity ψ.

Due to physical constraints, the abundance vector a(n) = [a1(n), . . . , aR(n)]T satisfies the

following positivity and sum-to-one constraints
R∑
r=1

ar(n) = 1, ar(n) ≥ 0,∀r ∈ {1, . . . , R} . (4)
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Since the nonlinearity ψ is fixed, the problem of unsupervised spectral unmixing is to deter-

mine the L×D spectrum matrix W 0, the N ×R abundance matrix A = [a(1), . . . ,a(N)]T

satisfying (2) under the constraints (4) and the noise variance σ2. Unfortunately, it can be

shown that the solution of this constrained problem is not unique. In the noise-free linear

case, it is well known that the data are contained in a simplex whose vertices are the

endmembers. When estimating the endmembers in the linear case, a simplex of minimum

volume embedding the data is expected. Equivalently, the estimated abundance vectors are

expected to occupy the largest volume in the simplex defined by (4). In a similar fashion

to the linear case, the estimated abundance matrix resulting from an unsupervised nonlinear

SU strategy may not occupy the largest volume in the simplex defined by (4). To tackle this

problem, we first propose to relax the positivity constraints for the elements of the matrix

A and to consider only the sum-to-one constraint. For ease of understanding, we introduce

R× 1 vectors satisfying the sum-to-one constraint
R∑
r=1

xr(n) = 1, n = 1, . . . , N (5)

referred to as latent variables and denoted as x(n) = [x1(n), . . . , xR(n)]T , n = 1, . . . , N .

The positivity constraint will be handled subsequently by a scaling procedure discussed in

Section IV. The next section presents the Bayesian model for latent variable estimation using

GPLVMs.

III. BAYESIAN MODEL

GPLVMs [15] are powerful tools for probabilistic nonlinear dimensionality reduction that

rewrite the nonlinear model (1) as a nonlinear mapping from a latent space to the observation

space as follows

y(n) = Wψ [x(n)] + e(n), n = 1, . . . , N (6)

where ψ is defined in (3),W = [w1, . . . ,wL]T is an L×D matrix withw` = [w`,1, . . . , w`,D]T ,

and D = R(R+1)/2. Note that from (2) and (6) the columns ofW span the same subspace as

the columns of W 0. Consequently, the columns of W are linear combinations of the spectra

of interest, i.e., the columns of W 0. Note also that when W is full rank, it can be shown that

the latent variables are necessarily linear combinations of the abundance vectors of interest.

Figs. 1 and 2 illustrate the mapping from the abundance vectors to the observations that will

be used in this paper. Note that the linear mapping between the abundances and the latent
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variables will be explained in detail in Section IV. For brevity, the D × 1 vectors ψ [x(n)]

will be denoted as ψx(n) in the sequel. Assuming independence between the observations,

the statistical properties of the noise lead to the following likelihood of the N×L observation

matrix Y = [y(1), . . . ,y(N)]T

Y|W ,X, σ2 ∼
N∏
n=1

N
(
y(n)|Wψx(n), σ2IL

)
(7)

where X = [x(1), . . . ,x(N)]T is the N ×R latent variable matrix. Note that the likelihood

can be rewritten as a product of Gaussian distributions over the spectral bands as follows

Y|W ,X, σ2 ∼
L∏
`=1

N
(
y`|Ψxw`, σ

2IL
)

(8)

where Y = [y1, . . . ,yL] and Ψx = [ψx(1), . . . ,ψx(N)]T is an N ×D matrix. The idea of

GPLVMs is to consider W as a nuisance parameter, to assign a Gaussian prior to W and

to marginalize the joint likelihood (7) over W , i.e.,

f(Y|X, σ2) =

∫
f(Y|W ,X, σ2)f(W )dW (9)

where f(W ) is the prior distribution of W . The estimation of X and σ2 can then be

achieved by maximizing (9) following the maximum likelihood estimator (MLE) principle.

An alternative consists of using an appropriate prior distribution f(X, σ2), assuming prior

independence between W and (X, σ2), and maximizing the joint posterior distribution

f(X, σ2|Y) ∝
∫
f(Y|W ,X, σ2)f(W )f(X, σ2)dW

∝ f(X, σ2)

∫
f(Y|W ,X, σ2)f(W )dW

∝ f(Y|X, σ2)f(X, σ2) (10)

with respect to (w.r.t.) (X, σ2), yielding the maximum a posteriori (MAP) estimator of

(X, σ2). The next paragraph discusses different possibilities for marginalizing the joint

likelihood (8) w.r.t. W .

A. Marginalizing W

It can be seen from (9) that the marginalized likelihood and thus the associated latent

variables depend on the choice of the prior f(W ). More precisely, assigning a given prior for

W favors particular representations of the data, i.e., particular solutions for the latent variable

matrix X maximizing the posterior (10). When using GPLVMs for dimensionality reduction,
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Fig. 1. Nonlinear mapping from the abundances vectors to the observed mixed pixels.

Fig. 2. Example of mapping decomposition from the abundance vectors to the observed nonlinearly mixed pixels through

the latent variables (R = 3).

a classical choice [15] consists of assigning independent Gaussian priors for w1, . . . ,wL,

leading to

f(W ) =

(
1

2π

)DL
2

L∏
`=1

exp

[
−1

2
‖w`‖2

]
. (11)

However, this choice can be inappropriate for SU. First, Eq. (11) can be incompatible with the

admissible latent space, constrained by (5). Second, the prior (11) assumes the columns of W

(linear combinations of the spectra of interest) are a priori Gaussian, which is not relevant

for real spectra in most applications. A more sophisticated choice consists of considering

a priori correlation between the columns (inter-spectra correlation) and rows (inter-bands

correlation) of W using a structured covariance matrix to be fixed or estimated. In particular,

introducing correlation between close spectral bands is of particular interest in hyperspectral

imagery. Structured covariance matrices have already been considered in the GP literature for
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vector-valued kernels [16] (see [17] for a recent review). However, computing the resulting

marginalized likelihood usually requires the estimation of the structured covariance matrix and

the inversion of an NL×NL covariance matrix1, which is prohibitive for SU of hyperspectral

images since several hundreds of spectral bands are usually considered when analyzing real

data. Sparse approximation techniques might be used to reduce this computational complexity

(see [19] for a recent review). However, to our knowledge, these techniques rely on the

inversion of matrices bigger than N × N matrices. The next section presents an alternative

that only requires the inversion of an D ×D covariance matrix without any approximation.

B. Subspace identification

It can be seen from (6) that in the noise-free case, the data belong to a D-dimensional

subspace that is spanned by the columns of W . To reduce the computational complexity

induced by the marginalization of the matrix W while considering correlations between

spectral bands, we propose to marginalize a basis of the subspace spanned by W instead of

W itself. More precisely, W can be decomposed as follows

W = PUT (12)

where P = [p1, . . . ,pL]T is an L × D matrix (p` is D × 1 vector) whose columns are

arbitrary basis vectors of the D-dimensional subspace that contains the subspace spanned by

the columns of W and U = [u1, . . . ,uD]T is a D×D matrix that scales the columns of P .

Note that the subspaces spanned by P and W are the same when W is full rank, resulting

in a full rank matrix U . The joint likelihood (8) can be rewritten as

Y|P ,U ,X, σ2 ∼
L∏
`=1

N
(
y`|Cp`, σ2IL

)
(13)

where C = ΨxU is an N ×D matrix. The proposed subspace estimation procedure consists

of assigning an appropriate prior distribution to P (denoted as f(P )) and to marginalize P

from the joint posterior of interest. It is easier to choose an informative prior distribution

f(P ) that accounts for correlation between spectral bands than choosing an informative

f(W ) since P is an arbitrary basis of the subspace spanned by W , which can be easily

estimated (as will be shown in the next section).

1See technical report [18] for further details.
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C. Parameter priors

GPLVMs construct a smooth mapping from the latent space to the observation space that

preserves dissimilarities [20]. In the SU context, it means that pixels that are spectrally

different have different latent variables and thus different abundance vectors. However, pre-

serving local distances is also interesting: spectrally close pixels are expected to have similar

abundance vectors and thus similar latent variables. Several approaches have been proposed

to preserve similarities, including back-constraints [20], dynamical models [21] and locally

linear embedding (LLE) [22]. In this paper, we use LLE to assign an appropriate prior to

X . First, the K nearest neighbors {y(j)}j∈νi of each observation vector y(i) are computed

using the Euclidian distance (νi is the set of integers j such that y(j) is a neighbor of y(i)).

The weight matrix ΛLLE = [λi,j] of size N × N providing the best reconstruction of y(i)

from its neighbors is then estimated as

ΛLLE = arg min
Λ

N∑
i=1

∥∥∥∥∥y(i)−
∑
j∈νi

λi,jy(j)

∥∥∥∥∥
2

. (14)

Note that the solution of (14) is easy to obtain in closed form since the criterion to optimize

is a quadratic function of Λ. Note also that the matrix Λ is sparse since each pixel is only

described by its K nearest neighbors. The locally linear patches obtained by the LLE can

then be used to set the following prior for the latent variable matrix

f(X|ΛLLE, γ) ∝ exp

−γ
2

N∑
i=1

∥∥∥∥∥x(i)−
∑
j∈νi

λi,jx(j)

∥∥∥∥∥
2


×
N∏
n=1

1D [x(n)] (15)

where γ is a fixed hyperparameter to be adjusted and 1D(·) is the indicator function over the

set D defined by the constraints (5).

In this paper, we propose to assign a prior to P using the standard principal component

analysis (PCA) (note again that the data have been centered). Assuming prior independence

between p1, . . . ,pL, the following prior is considered for the matrix P

f
(
P |P , s2

)
=

(
1

2πs2

)NL
2

L∏
`=1

exp

[
− 1

2s2
‖p` − p̄`‖

2

]
(16)

where P = [p̄1, . . . , p̄L]T is an L×D projection matrix containing the first D eigenvectors

of the sample covariance matrix of the observations (provided by PCA) and s2 is a dispersion
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parameter that controls the dispersion of the prior. Note that the correlation between spectral

bands is implicitly introduced through P .

Non-informative priors are assigned to the noise variance σ2 and the matrix U , i.e,

f(σ2) ∝ 1(0,δσ2 )
(σ2)

f(ui,j) ∝ 1(−δU ,δU )(ui,j)
(17)

where the intervals (0, δσ2) and (−δU , δU ) cover the possible values of the parameters σ2

and U . Similarly, the following non-informative prior is assigned to the hyperparameter s2

f(s2) ∝ 1(0,δs2 )
(s2) (18)

where the interval (0, δs2) covers the possible values of the hyperparameter s2. The resulting

directed acyclic graph (DAG) is depicted in Fig. 3.

Fig. 3. DAG for the parameter priors and hyperpriors (the fixed parameters appear in dashed boxes).

D. Marginalized posterior distribution

Assuming prior independence between P , X , U , s2 and σ2, the marginalized posterior

distribution of θ = (X,U , s2, σ2) can be expressed as

f
(
θ|Y,ΛLLE,P , γ

)
∝ f(θ|ΛLLE, γ)

∫
f(Y|P ,θ)f

(
P |P , s2

)
dP

∝ f(Y|θ,P )f(θ|ΛLLE, γ) (19)
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where f(θ|ΛLLE, γ) = f(X|ΛLLE, γ)f(U )f(s2)f(σ2). Straightforward computations leads

to

f(Y|θ,P ) =

∫
f(Y|P ,θ)f

(
P |P , s2

)
dP

∝
L∏
`=1

1

|Σ| 12
exp

[
−1

2
ȳT` Σ−1ȳ`

]
∝ |Σ|−

L
2 exp

[
−1

2
tr(Σ−1ȲȲT )

]
(20)

where Σ = s2CCT +σ2IN , ȳ` = y`−Cp̄` is an N×1 vector, Ȳ = [ȳ1, . . . , ȳL] = Y−CP T

is an N × L matrix and tr(·) denotes the matrix trace.

Mainly due to the nonlinearity introduced through the nonlinear mapping, a closed form

expression for the parameters maximizing the joint posterior distribution (19) is impossible

to obtain. We propose to use a scaled conjugate gradient (SCG) method to maximize the

marginalized log-posterior. To ensure the sum-to-one constraint for X , the following arbitrary

reparametrization

xR(n) = 1−
R−1∑
r=1

xr(n), n = 1, . . . , N

is used and the marginalized posterior distribution is optimized w.r.t. the first (R−1) columns

of X denoted X\R. The partial derivatives of the log-posterior w.r.t. X\R,U , s2 and σ2 are

obtained using partial derivatives w.r.t. Σ and Ȳ and the classical chain rules (see technical

report [18] for further details). The resulting latent variable estimation procedure is referred

to as locally linear GPLVM (LL-GPLVM).

Note that the marginalized likelihood reduces to the product of L independent Gaussian

probability density functions since

y`|p̄`,U ,X, σ2, s2 ∼ N
(
Cp̄`, s

2CCT + σ2IN
)

(21)

and ` = 1, . . . , L. Note also that the covariance matrix Σ = s2CCT + σ2IN is related to

the covariance matrix of the 2nd order polynomial kernel [23, p. 89]. More precisely, the

proposed nonlinear mapping corresponds to a particular polynomial kernel whose metric is

induced by the matrix U . Finally, note that the evaluation of the marginalized likelihood (20)

only requires the inversion of the N × N covariance matrix Σ. It can been seen from the

following Woodbury matrix identity [24]

Σ−1 = σ−2
[
IN −C

(
σ2s−2ID +CTC

)−1
CT
]

(22)
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that the computation of Σ−1 mainly relies on the inversion of a D×D matrix. Similarly, the

computation of |Σ| = 1/|Σ−1| mainly consists of computing the determinant of a D × D

matrix, which reduces the computational cost when compared to the structured covariance

matrix based approach presented in Section III-A.

E. Estimation of P

Let us denote as θ̂ = (X̂, Û , ŝ2, σ̂2) the maximum a posteriori (MAP) estimator of θ =

(X,U , s2, σ2) obtained by maximizing (19). Using the likelihood (13), the prior distribution

(16) and Bayes’ rule, we obtain the posterior distribution of P conditioned upon θ, i.e.,

P |Y,θ,P ∼
L∏
`=1

N (p`|p̂` S) (23)

where S−1 = σ−2CTC + s−2ID and p̂` = S(CTy` − p̄`). Since the conditional posterior

distribution of P is the product of L independent Gaussian distributions, the MAP estimator

of P conditioned upon θ̂ is given by

P̂ =
(
YT Ĉ − P

)
Ŝ (24)

where Ŝ
−1

= σ̂−2Ĉ
T
Ĉ + ŝ−2ID, Ĉ = Ψ̂xÛ , Ψ̂x = [ψx̂(1), . . . ,ψx̂(N)]T and X̂ =

[x̂(1), . . . , x̂(N)]T . The next section studies a scaling procedure that estimates the abundance

matrix using the estimated latent variables resulting from the maximization of (19).

IV. SCALING PROCEDURE

The optimization procedure presented in Section III-D provides a set of latent variables

that represent the data but can differ from the abundance vectors of interest. Consider X̂ =

[X̂\R,1N−X̂\R1R−1] obtained after maximization of the posterior (19). The purpose of this

section is to estimate an N ×R abundance matrix A = [a(1), . . . ,a(N)]T such that

X̂\R = AV T
R−1 +E (25)

where a(1), . . . ,a(N) occupy the maximal volume in the simplex defined by (4), V R−1 =

[v1, . . . ,vR] is an (R − 1) × R matrix and E is an N × (R − 1) standard i.i.d Gaussian

noise matrix which models the scaling errors. Since X̂ satisfy the sum-to-one constraint (5),

estimating the relation between X̂\R and A is equivalent to estimate the relation between

X̂ and A. However, when considering the mapping between X̂ and A, non-isotropic noise

has to be considered since the rows of X̂ and A satisfy the sum-to-one constraint, i.e., they

belong to the same (R− 1)-dimensional subspace.
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Eq. (25) corresponds to a LMM whose noisy observations are the rows of X̂\R. Since A

is assumed to occupy the largest volume in the simplex defined by (4), the columns of V R−1

are the vertices of the simplex of minimum volume that contains X̂\R. As a consequence, it

seems reasonable to use a linear unmixing strategy for the set of vectors x̂\R(1), . . . , x̂\R(N)

to estimate A and V R−1. In this paper, we propose to estimate jointly A and V R−1 using the

Bayesian algorithm presented in [25] for unsupervised SU assuming the LMM. Note that the

algorithm in [25] assumed positivity constraints for the estimated endmembers. Since these

constraints for V R−1 are unjustified, the original algorithm has slightly been modified by

removing the truncations in the projected endmember priors (see [25] for details). Once the

estimator (Â, V̂ R−1) of (A,V R−1) has been obtained by the proposed scaling procedure, the

resulting constrained latent variables denoted as X̂
(c)

= [x̂(c)(1), . . . , x̂(c)(N)]T are defined

as follows

X̂
(c)

=
[
X̂

(c)

\R, 1N − X̂
(c)

\R1R−1

]
(26)

with X̂
(c)

\R = ÂV̂
T

R−1. Using the sum-to-one constraint Â1R = 1N , we obtain

X̂
(c)

=
[
ÂV̂

T

R−1, Â1R − ÂV̂
T

R−11
T
R−1

]
= Â

[
V̂

T

R−1, 1R − V̂
T

R−11R−1

]
(27)

= ÂV̂
T

R

where V̂ R = [V̂
T

R−1, 1R− V̂
T

R−11R−1]
T is an R×R matrix. The final abundance estimation

procedure, including the LL-GPLVM presented in Section III and the scaling procedure

investigated in this section is referred to as fully constrained LL-GPVLM (FCLL-GPLVM)

(a detailed algorithm is available in [18]). Once the final abundance matrix Â and the matrix

V̂ R have been estimated, we propose an endmember extraction procedure based on GP

regression. This method is discussed in the next section.

V. GAUSSIAN PROCESS REGRESSION

Endmember estimation is one of the main issues in SU. Most of the existing EEAs intend to

estimate the endmembers from the data, i.e., selecting the most pure pixels in the observed

image [26]–[28]. However, these approaches can be inefficient when the image does not

contain enough pure pixels. Some other EEAs based on the minimization of the volume

containing the data (such as the minimum volume simplex analysis [29]) can mitigate the

absence of pure pixels in the image. This section studies a new endmember estimation strategy
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based on GP regression for nonlinear mixtures. This strategy can be used even when the scene

does not contain pure pixels. It assumes that all the image abundances have been estimated

using the algorithm described in Section IV. Consider the set of pixels {y(n)}n=1,...,N and

corresponding estimated abundance vectors {â(n)}n=1,...,N . GP regression first allows the

nonlinear mapping g(·) in (1) (from the abundance space to the observation space) to be

estimated. The estimated mapping is denoted as ĝ(·). Then, it is possible to use the prediction

capacity of GPs to predict the spectrum ĝ(α) corresponding to any new abundance vector

α. In particular, the predicted spectra associated with pure pixels, i.e., the endmembers,

correspond to abundance vectors that are the vertices of the simplex defined by (4). This

section provides more details about GP prediction for endmember estimation.

It can be seen from the marginalized likelihood (20) that f(Y|X,P ,U , s2, σ2) is the

product of L independent GPs associated with each spectral band of the data space (21).

Looking carefully at the covariance matrix of y` (i.e., to Σ = s2CCT +σ2IN ), we can write

y` = z` + ε` (28)

where ε` is the N × 1 white Gaussian noise vector associated with the `th spectral band

(having covariance matrix σ2IN ) and2

z` ∼ N (z`|ΨxUp̄`,K) (29)

with K = s2ΨxUU
TΨT

x the N×N covariance matrix of z`. The N×1 vector z` is referred

to as hidden vector associated with the observation y`. Consider now an L× 1 test data with

hidden vector z∗ = [z∗1 , ..., z
∗
L]T , abundance vector α∗ = [α∗1, ..., α

∗
R]T and ψ∗x = ψ [V Rα

∗].

We assume that the test data share the same statistical properties as the training data y1, ...,yL

in the sense that [zT` , z
∗
` ] is a Gaussian vector such thatz`

z∗`

 ∼ N
z`

z∗`

 ∣∣∣∣
ΨxUp̄`

ψ∗Tx Up̄`

 ,
 K κ(α∗)

κ(α∗)T σ2
α∗

 (30)

where σ2
α∗ = s2ψ∗Tx UU

Tψ∗x is the variance of z∗` and κ(α∗) contains the covariances

between the training inputs and the test inputs, i.e.,

κ(α∗) = s2ψ∗Tx UU
TΨx. (31)

Straightforward computations leads to

z∗` |y` ∼ N
(
z∗` |µ`, s2l

)
(32)

2Note that all known conditional parameters have been omitted for brevity.

July 24, 2012 DRAFT



14

with

µ` = ψ∗Tx Up̄` + κ(α∗)T (K + σ2IN)−1(y` −ΨxUp̂`)

s2l = σ2
α∗ − κ(α∗)T (K + σ2IN)−1κ(α∗).

Since the posterior distribution (32) is Gaussian, the MAP and MMSE estimators of z∗ equal

the posterior mean µ = (µ1, ..., µL)T .

In order to estimate the endmembers, we propose to replace the parametersX,U , s2 and σ2

by their estimates X̂
(c)
, Û , ŝ2 and σ̂2 and to compute the estimated hidden vectors associated

with the abundance vectors α∗ = [0Tr−1, 1,0
T
R−r]

T for r = 1, ..., R. For each value of r, the

rth estimated hidden vector will be the rth estimated endmember3. Indeed, for the LMM

and the bilinear models considered in this paper, the endmembers are obtained by setting

α∗ = [0Tr−1, 1,0
T
R−r]

T in the model (2) relating the observations to the abundances. Note that

the proposed endmember estimation procedure provides the posterior distribution of each

endmember via (32) which can be used to derive confidence intervals for the estimates. The

next section presents some simulation results obtained for synthetic and real data.

VI. SIMULATIONS

A. Synthetic data

The performance of the proposed GPLVM for dimensionality reduction is first evaluated

on three synthetic images of N = 2500 pixels. The R = 3 endmembers contained in these

images have been extracted from the spectral libraries provided with the ENVI software [30]

(i.e., green grass, olive green paint and galvanized steel metal). The first image I1 has been

generated according to the linear mixing model (LMM). The second image I2 is distributed

according to the bilinear mixing model introduced in [5], referred to as the “Fan model”

(FM). The third image I3 has been generated according to the generalized bilinear model

(GBM) studied in [6] with the following nonlinearity parameters

γ1,2 = 0.9, γ1,3 = 0.5, γ2,3 = 0.3.

The abundance vectors an, n = 1, . . . , N have been randomly generated according to a

uniform distribution on the admissible set defined by the positivity and sum-to-one constraints

(4). The noise variance has been fixed to σ2 = 10−4, which corresponds to a signal-to-noise

3Note that the estimated endmembers are centered since the data have previously been centered. The actual endmembers

can be obtained by adding the empirical mean to the estimated endmembers.
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ratio SNR ≈ 30dB which corresponds to the worst case for current spectrometers. The

hyperparameter γ of the latent variable prior (15) has been fixed to γ = 103 and the number

of neighbors for the LLE is K = R for all the results presented in this paper. The quality

of dimensionality reduction of the GPLVM can be measured by the average reconstruction

error (ARE) defined as

ARE =

√√√√ 1

LN

N∑
n=1

‖ŷn − yn‖2 (33)

where yn is the nth observed pixel and ŷn its estimate. For the LL-GPLVM, the nth estimated

pixel is given by ŷn = P̂ Û
T
ψ [x̂(n)] where P̂ is estimated using (24). Table I compares the

AREs obtained by the proposed LL-GPLVM and the projection onto the first (R−1) principal

vectors provided by the principal component analysis (PCA). The proposed LL-GPLVM

slightly outperforms PCA for nonlinear mixtures in term of ARE. More precisely, the AREs

of the LL-GPLVM mainly consist of the noise errors (σ2 = 10−4), whereas model errors

are added when applying PCA to nonlinear mixtures. Fig. 4 compares the latent variables

obtained after maximization of (20) for the three images I1 to I3 with the projections obtained

by projecting the data onto the R−1 principal vectors provided by PCA. Note that only R−1

dimensions are needed to represent the latent variables (because of the sum-to-one constraint).

From this figure, it can be seen that the latent variables of the LL-GPLVM describe a noisy

simplex for the three images. It is not the case when using PCA for the nonlinear images.

Fig. 5 shows the manifolds estimated by the LL-GPLVM for the three images I1 to I3. This

figure shows that the proposed LL-GPLVM can model the manifolds associated with the

image pixels with good accuracy. The quality of unmixing procedures can also be measured

TABLE I

ARES: SYNTHETIC IMAGES.

ARE (×10−2)

I1 I2 I3 I∗1 I∗2 I∗3

PCA 0.99 1.08 1.04 1.00 1.06 1.03

LL-GPLVM 0.99 0.99 1.00 1.00 1.00 0.99

SU 1.00 1.13 1.06 1.14 1.57 1.12

FCLL-GPLVM 0.99 0.99 1.00 1.00 1.00 0.99

by comparing the estimated and actual abundances using the root normalized mean square
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Fig. 4. Top: Representation of the N = 2500 pixels (dots) using the first two principal components provided by the

standard PCA for the three synthetic images I1 to I3. Bottom: Representation using the latent variables estimated by the

LL-GPLVM for the three synthetic images I1 to I3.

error (RNMSE) defined by

RNMSE =

√√√√ 1

NR

N∑
n=1

‖ân − an‖2 (34)

where an is the nth actual abundance vector and ân its estimate. Table II compares the

RNMSEs obtained with different unmixing strategies. The endmembers have been estimated

by the VCA algorithm in all simulations. The algorithms used for abundance estimation are

the FCLS algorithm proposed in [31] for I1, the LS method proposed in [5] for I2 and the

gradient-based method proposed in [6] for I3. These procedures are referred to as “SU” in

the table. These strategies are compared with the proposed FCLL-GPLVM. As mentioned

above, the Bayesian algorithm for joint estimation of A and V under positivity and sum-to-

one constraints for A (introduced in [25]) is used in this paper for the scaling step. It can
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(a) I1 (LMM)

(b) I2 (FM) (c) I3 (GBM)

Fig. 5. Visualization of the N = 2500 pixels (black dots) of I1, I2 and I3 using the 3 axis provided by the PCA procedure.

The colored surface is the manifold identified by the LL-GPLVM.

be seen that the proposed FCLL-GPLVM is general enough to accurately approximate the

considered mixing models since it provides the best results in term of abundance estimation.

TABLE II

RNMSES: SYNTHETIC IMAGES.

RNMSE (×10−3)

I1 I2 I3 I∗1 I∗2 I∗3

SU 5.7 7.4 22.7 49.3 86.6 47.8

FCLL-GPLVM 3.9 4.2 5.4 4.8 7.2 7.5

The quality of reconstruction of the unmixing procedure is also evaluated by the ARE. For

the FCLL-GPLVM, the nth reconstructed pixel ŷn is given by ŷn = P̂ Û
T
ψ
[
x̂(c)(n)

]
. Table
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I also shows the AREs corresponding to the different unmixing strategies. The proposed

FCLL-GPLVM outperforms the other strategies in term of ARE for these images.

Finally, the performance of the FCLL-GPLVM for endmember estimation is evaluated by

comparing the estimated endmembers with the actual spectra. The quality of endmember

estimation is evaluated by the spectral angle mapper (SAM) defined as

SAM = arccos
(
〈m̂r,mr〉
‖m̂r‖ ‖mr‖

)
(35)

where mr is the rth actual endmember and m̂r its estimate. Table III compares the SAMs

obtained for each endmember using the VCA algorithm, the nonlinear EEA presented in

[14] (referred to as “Heylen”) and the FCLL-GPLVM for the three images I1 to I3. These

results show that the FCLL-GPLVM provides accurate endmember estimates for both linear

and nonlinear mixtures.

TABLE III

SAMS (×10−2): SYNTHETIC IMAGES.

VCA Heylen FCLL-GPLVM

I1

m1 0.43 1.94 0.52

m2 0.22 0.66 0.86

m3 0.22 0.78 0.15

I2

m1 1.62 0.75 0.33

m2 2.08 1.69 0.53

m3 1.15 0.42 0.34

I3

m1 1.91 1.80 0.44

m2 1.36 0.86 0.58

m3 0.88 1.38 0.30

Finally, the performance of the proposed unmixing algorithm is tested in scenarios where

pure pixels are not present in the observed scene. More precisely, the simulation parameters

remain the same for the three images I1 to I3 except for the N = 2500 abundance vectors,

that are drawn from a uniform distribution in the following set{
a
∣∣ R∑
r=1

ar = 1, 0.9 ≥ ar(n) ≥ 0,∀r ∈ {1, . . . , R}

}
. (36)

The three resulting images are denoted as I∗1 , I∗2 and I∗3 . Table I shows that the absence

of pure pixels does not change the AREs significantly when they are compared with those

July 24, 2012 DRAFT



19

obtained with the images I1 to I3. Moreover, FCLL-GPLVM is more robust to the absence of

pure pixels than the different SU methods. The good performance of FCLL-GPVLM is due

in part to the scaling procedure. Table II shows that the performance of the FCLL-GPLVM

in term of RNMSE is not degraded significantly when there is no pure pixel in the image

(note that the situation is different when the endmembers are estimated using VCA). Table

IV shows the performance of the FCLL-GPLVM for endmember estimation when there are

no pure pixels in the image. The results of the FCLL-GPLVM do not change significantly

when they are compared with those obtained with images I1 to I3, which is not the case

for the two other EEAs. The accuracy of the endmember estimation is illustrated in Fig. 6

which compares the endmembers estimated by the FCLL-GPLVM (blue lines) to the actual

endmember (red dots) and the VCA estimates (black line) for the image I∗2 .

Fig. 6. Actual endmembers (red dots) and endmembers estimated by the FCLL-GPLVM (blue lines) and VCA (black line)

for the image I∗2 .

The next section presents simulation results obtained for real data.

B. Real data

The real image considered in this section was acquired in 2010 by the Hyspex hyperspectral

scanner over Villelongue, France. L = 160 spectral bands were recorded from the visible

to near infrared with a spatial resolution of 0.5m. This dataset has already been studied in

[32] and is mainly composed of different vegetation species. The sub-image of size 50× 50

pixels chosen here to evaluate the proposed unmixing procedure is depicted in Fig. 7. This
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TABLE IV

SAMS (×10−2): SYNTHETIC IMAGES.

VCA Heylen FCLL-GPLVM

I∗1

m1 2.87 6.38 0.38

m2 2.15 11.11 1.30

m3 2.10 2.62 0.24

I∗2

m1 5.22 7.53 0.67

m2 8.02 9.59 1.46

m3 7.10 2.48 0.53

I∗3

m1 6.89 6.59 0.61

m2 6.03 5.95 1.75

m3 3.73 2.36 0.48

Fig. 7. Real hyperspectral data: Madonna data acquired by the Hyspex hyperspectral scanner over Villelongue, France

(left) and the region of interest shown in true colors (right).

image is mainly composed of three components since the data belong to a two-dimensional

manifold (see black dots of Fig. 8 (a)). Consequently, we assume that the scene is composed

of R = 3 endmembers. Using the ground truth used in [32], we can determine some tree

species present in the scene of interest. More precisely, Fig. 8 (a) shows the ground truth

clusters corresponding to oak trees (red dots) and chestnut trees (blue dots) projected in a
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3-dimensional subspace (defined by the first three principal components of a PCA applied to

the image of Fig. 7). These two clusters are close to vertices of the data cloud. Consequently,

oak and chestnut trees are identified as endmembers present in the image. Moreover, the third

endmember is not a tree species according to the ground truth provided in [32]. In the sequel,

this endmember will be referred to as Endmember ]3.

The simulation parameters have been fixed to γ = 103 and K = R. The latent variables

(a)

(b) (c)

Fig. 8. (a): Representation of the N = 2500 pixels (black dots) of the Madonna image and the ground truth clusters

corresponding to oak trees (red dots) and chestnut trees (blue dots) using the first three principal components provided by

the standard PCA. (b): Representation of the N = 2500 pixels (dots) of the Madonna data and manifold identified by the

LL-GPLVM (colored surface). (c):Representation of the N = 2500 pixels (dots) of the Madonna data and boundaries of

the estimated transformed simplex (blue lines).

obtained by maximizing the marginalized posterior distribution (10) are depicted in Fig. 9

(blue dots). It can be seen from this figure that the latent variables seem to describe a noisy

simplex. Fig. 8 (b) shows the manifold estimated by the proposed LL-GPLVM. This figure
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Fig. 9. Representation of the N = 2500 latent variables (dots) estimated by the LL-GPLVM and the simplex identified

by the scaling step (red lines) for the Madonna data.

illustrates the capacity of the LL-GPLVM for modeling the nonlinear manifold. Table V (left)

compares the AREs obtained by the proposed LL-GPLVM and the projection onto the first

R−1 = 2 principal vectors provided by PCA. The proposed LL-GPLVM slightly outperforms

PCA for the real data of interest, which shows that the proposed nonlinear dimensionality

reduction method is more accurate than PCA (linear dimensionality reduction) in representing

the data. The scaling step presented in Section IV is then applied to the estimated latent

variables. The estimated simplex defined by the latent variables is depicted in Fig. 9 (red

lines). Fig. 8 (c) compares the boundaries of the estimated transformed simplex with the

image pixels. The abundance maps obtained after the scaling step are shown in Fig. 10 (top).

The results of the unmixing procedure using the FCLL-GPLVM are compared to an unmixing

strategy assuming the LMM. More precisely, we use VCA to extract the endmembers from

the data and use the FLCS algorithm for abundance estimation. The estimated abundance
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maps are depicted in Fig. 10 (bottom). The abundance maps obtained by the two methods

are similar which shows the accuracy of the proposed unmixing strategy when considering

the LMM as a first order approximation of the mixing model.

TABLE V

ARES: REAL IMAGE (×10−2).

PCA LL-GPLVM VCA+FCLS FCLL-GPLVM

0.84 0.79 1.30 1.11

Moreover, Fig. 11 shows the classification map obtained in [32] for the region of interest.

The unclassified pixels correspond to areas where the classification method of [32] has not

been performed. Even if lots of pixels are not classified, the classified pixels can be compared

with the estimated abundance maps. First, we can note the presence of the same tree species in

the classification and abundance maps, i.e., oak and chestnut. We can also see that the pixels

composed of chestnut trees and Endmember ]3 are mainly located in the unclassified regions,

which explains why they do not appear clearly in the classification map. Only one pixel is

classified as being composed of ash trees in the region of interest. If unclassified pixels also

contain ash trees, they are either too few or too mixed to be considered as mixtures of an

additional endmember in the image. Finally, it can be seen from Figs. 10 and 11 that oak

trees are located within similar regions (left corners and top right corner) for the abundance

and classification maps.

Evaluating the performance of endmember estimation on real data is an interesting problem.

However, comparison of the estimated endmembers with the ground truth is difficult here.

First, since the nature of Endmember ]3 is unknown, no ground truth is available for this

endmember. Second, because of the variability of the ground truth spectra associated with

each tree species, it is difficult to show whether VCA or the proposed FCLL-GPLVM provides

the best endmember estimates. However, the AREs obtained for both methods (Table V, right)

show that the FCLL-GPLVM fits the data better than the linear SU strategy, which confirms

the importance of the proposed algorithm for nonlinear spectral unmixing.

VII. CONCLUSIONS

We proposed a new algorithm for nonlinear spectral unmixing based on a Gaussian process

latent variable model. The unmixing procedure assumed a nonlinear mapping from the

abundance space to the observed pixels. It also considered the physical constraints for the

July 24, 2012 DRAFT



24

Fig. 10. Top: Abundance maps estimated using the FCLL-GPLVM for the Madonna image. Bottom: Abundance maps

estimated using the VCA algorithm for endmember extraction and the FCLS algorithm for abundance estimation.

abundance vectors. The abundance estimation was decomposed into two steps. Dimensionality

reduction was first achieved using latent variables. A scaling procedure was then proposed

to estimate the abundances. After estimating the abundance vectors of the image, a new

endmember estimator based on Gaussian process regression was investigated. Simulations

conducted on synthetic and real images illustrated the flexibility of the proposed model for

linear and nonlinear spectral unmixing and provided promising results for abundance and

endmember estimations in spite of the absence of pure pixels in the image. The choice of the

nonlinear mapping used for the GP model is an important issue to ensure that the LL-GPLVM

is general enough to handle different nonlinearities. In particular, different mappings could

be used for intimate mixtures. Moreover, including the GPLVM in a Bayesian framework

could also be an interesting prospect to consider spatial correlation through Markov random

fields or GPs.
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Fig. 11. Classification map obtained in [32] for the region of interest of the Madonna image.
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