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Abstract

In this paper, we develop a framework to design sensing oeatfor compressive sensing applications
that lead to good mean squared error (MSE) performancedubjsensing cost constraints. By capital-
izing on the MSE of the oracle estimator, whose performaraselieen shown to act as a benchmark to
the performance of standard sparse recovery algorithmsiser¢he fact that a Parseval tight frame is the
closest design - in the Frobenius norm sense - to the solofi@nconvex relaxation of the optimization
problem that relates to the minimization of the MSE of thectwastimator with respect to the equivalent
sensing matrix, subject to sensing energy constraintedas this result, we then propose two sensing
matrix designs that exhibit two key properties: i) the dasigre closed form rather than iterative; ii)
the designs exhibit superior performance in relation teotlesigns in the literature, which is revealed
by our numerical investigation in various scenarios witfiedent sparse recovery algorithms including

basis pursuit de-noise (BPDN), the Dantzig selector anldogdnal matching pursuit (OMP).

. INTRODUCTION

The presence of redundancy in most signals in nature off@smeans to transform the original
signals into a compressed version convenient for storagdransportation. Compressive sensing (CS) is

a new sampling paradigm that, instead of conforming to théitional two-stage process involving signal
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sampling followed by signal compression, directly acoslisecompressed version of the original signal
instead, by leveraging signal sparsity (a form of redunglpas well as random sensing or measurement.
In fact, it has been shown that if andimensional signal admits asrsparse representation then one
can reconstruct exactly the original signal with= O(slog(n/s)) measurements|[1], [2]; Also, if the
original signal admits only a nearly sparse representgtiod/or the measurements are corrupted by some
noise) then one can still reconstruct the original signajestt to a tolerable distortion [1],]2]. Therefore,
CS offers the prospect of a more efficient signal acquisitiorelation to traditional Shannon-Nyquist
sampling, especially in applications where the samplirag@ss is expensive such as magnetic resonance
imaging [3] and data acquisition in wireless sensor netad4j.

A recent growing trend relates to the use of more complexasigrodels that go beyond the simple
sparsity model to further enhance the performance of CSe¥ample, Baraniuk et al.[5] have introduced
model-based compressive sensing, where more realisti@lsigodels such as wavelet trees or block
sparsity are leveraged in order to reduce the number of memsmts required for reconstruction. In
particular, it has been shown that robust signal recovepossible withm = O(s) measurements in
model-based compressive sensirg [5]. Ji et al. [6] intredugayesian compressive sensing, where a signal
specific statistical model is exploited to reduce the nundfeneasurements needed for reconstruction.
In [[7], [8], reconstruction methods have been proposed famifold-based CS, where the signal is assumed
to belong to a manifold. Other works that consider variowwsiy models that go beyond simple sparsity
in order to improve the performance of traditional CS inelJé]—-[15].

The use of additional signal knowledge also enables onepiace the conventional random sensing
matrices by optimized ones in order to further enhance Cfpeance (e.g., see [16]=[20]). A number of
conditions have been put forth to study the impact of theisgmaatrices in various recovery algorithms.
The null space property represents a necessary and sufficiedition for sparse recovery![2]. However,
it is difficult to verify whether or not a certain sensing nvatiulfills this condition. Other more widely
used conditions include the restricted isometry propeRiP) [1], which is also difficult to evaluate,
and the mutual coherence [21], which is easier to evaluateveder, the fact that these conditions are
mainly used to address the worst-case rather than the edpease performance, renders their use as
the basis of sensing matrix designs as too conservativeuéts, €alderbank et al. [22] have put forth a
weaker version of the RIP, the statistical restricted ismyngroperty (StRIP), where a probability criterion
replaces the hard requirement demanded by RIP. StRIP hasatseused as the basis of various sensing
matrix designs presented in [22].

In this paper, we develop a general framework to design sgnsiatrices for compressive sensing



applications that lead to good (expected-case) mean stjeara (MSE) performance subject to sensing
energy constraints, where the expectation is with respebbth the statistical distribution of the signal
and the noise. We also leverage additional signal knowletgeconsidering a general random signal
model where the distinct support patterns of the same spaesiel occur with equal probability in the
sparse representation of the original signal, and the autelation matrix of the sparse representation
is equal to an identity matrix. Our approach is based on ttadyais of the oracle estimator MSE [23],
whose performance has been shown to act as a benchmark terftbenpance of various common sparse
recovery algorithms. By showing that good equivalent sensiatrices (that correspond to the product of
the sensing matrix and the sparsifying dictionary) oughidcalose to a Parseval tight frame, we are then
able to put forth two new sensing matrix designs that conftarspecific sensing energy constraints. Our
experiments reveal that the proposed designs improve Isgypeected-case reconstruction performance
in relation to random designs or other optimized designg{18]. Another notable advantage of our
proposed designs is that they are closed-form whereas gigndein [16]-[18] are iterative.

Our design approach, which is applicable to signals thatspegse in any dictionary, shares some
of the elements of the design approach [in] [24], which is orppliaable to signals that are sparse
in an orthonormal basis. In particular, this contributioas does[[24] - also capitalizes on the oracle
estimator MSE to put forth adequate sensing matrix desigogiever, this design approach also departs
significantly from that in[[24], in view of the fact that it isoh clear how to generalize the methodology
in [24] from orthonormal to overcomplete dictionaries (redyn Propositions 1 and 2 in_[24]).

Therefore, the current generalization is based on two tprssthat are answered in the article. We
first ask:

1) What is the equivalent sensing matrix that leads to theshwracle estimator MSE for a certain target
signal to noise ratio (SNR) at the input of the oracle estiriat

Further, in view of the fact that a Parseval tight frame i€ljkto provide a low oracle MSE subject to

a target SNR at the input of the oracle, we then ask:

2) What is the sensing matrix that offers the best comprométe/een “sensing cost” and “closeness”
of the equivalent sensing matrix to a Parseval tight frame?

It is this angle-of-attack - which departs from that in[[24fhat enables us to generalize the sensing
matrix designs for signals that are sparse in arbitraryanraplete dictionaries. Interestingly, the ensuing
designs are shown to reduce to the designs_in [24] when themtey is orthonormal rather than
overcomplete.

The generalization of the work from the orthonormal to owenplete dictionary case is relevant



not only theoretically but also practically. For examplépwing signals to be sparse in overcomplete
dictionaries adds a lot of flexibility and extends the ran§jemplicability for CS [25]-[27]. Of particular
relevance, this generalization also leads to further hisapout the behavior of random vs. optimized
projections: this is also crisply exposed in this contiidmoit

The rest of this paper is organized as follows. We begin byridag the CS model and assumptions
in Section Il. Section Il provides the rationale for the sy matrix designs, by highlighting the role
of Parseval tight frames in compressive sensing applicati8ection IV puts forth our proposed sensing
matrix designs, which capitalize on the intuition unveiladSection Ill. Section V presents a range of
numerical results that highlight the merits of our proposlegdigns in relation to other designs in the
literature. Section VI discusses the MSE performance gitldoth by random and optimized projections
designs. The main contributions of the article are finallpngwarized in Section VII.

Throughout this paper, signals are treated as real-valeetbrs. Lower-case letters denote scalars,
boldface upper-case letters denote matrices, bold facerioase letters denote column vectors, and
calligraphic upper-case letters denote support €etnd 1 denote a vector with all zeros and all ones,
respectively, and®,,,, denotes amn x n matrix with all zeros. The superscripts” and(-)~' denote
matrix transpose and matrix inverse, respectively. fheorm, the/; norm, and the/s norm of vectors,
are denoted by - ||o, || - ||, @and]| - ||2, respectively. The Frobenius norm and spectral norm of aixnat
are denoted byfA || and| A

Tr (-), respectively. The diagonal matrix with diagonal elemegiten by either vectoa or the diagonal

, respectively. The rank and trace of a matrix are denotedank (-) and

elements of matri>A is denoted by Diag) or Diag(A), respectively. The element corresponding to the
ith row andjth column of the matrixA is denoted by, ;, anda; denotes théth column of the matrix
A. I, denotes ther x n identity matrix, andJ,, denotes the: x n anti-diagonal matrix (an identity
matrix with a reversed order of the columns (or rowd); denotes the matrix that results from the
identity matrix by deleting the set of columns out of the suppy. E(-) denotes the expectatioBy(-)
andE_(-) denote expectation with respect to the distribution of #wedom vectorx, and the random
support.7, respectively.(;fb) denotes the number of: combinations from a given set of elements.
Pr(-) denotes the probability. Finally\'(u, X) denotes the multivariate normal distribution with mean

vector u and covariance matrix.

II. COMPRESSIVESENSING MODEL

We consider the standard measurement model given by:

y = ®f +n, 1)



wherey € R™ is the measurement signal vectbk R" is the original signal vecton ~ N(0,0%1,,) €
R™ is a zero-mean white Gaussian noise vector, @#nd R"*" (with m < n) is the sensing matrix.

We assume that the original signal is sparse in some bassis, i.
f = Ux, )

where & € R™" (5 > n) is a matrix that represents the sparsifying basis, e.goréronormal or
overcomplete dictionary, and € R” is a sparse representationfot R”, i.e., ||x||o < s < 7. Then we

can rewrite the measurement model as
y=®¥x+n=Ax+n, 3)

where A = ®W¥ ¢ R™*" represents the equivalent sensing matrix. For modelingsfiagse sources,
we assume i) the distinct support patterns of the same gp#sel occur with equal probability in the
sparse representation of the original signal, i.e(P1) = P., whereJ! c {1,...,a} (t=1,..., ("),
c=1,...,s) denotes a signal support with cardinaliyand >->_, (") P. = 1; i) Ex(xx”) = I;. Note
that these assumptions can be satisfied by a signal modelt@kive widely used Bernoulli-Gaussian
model [28]-[34]. In particular, one constrains the cartiipaof the support patterns to be less than
rather than?; one also constrains the probability of the support pastéonobey) ">, (i‘)Pc =1 rather
than a binomial distribution as in the Bernoulli-Gaussiaodel.

To recover the sparse signal representatiofiom the measurement vectgr, one can resort to the

optimization problem:

min IIx||1
* (4)
st JAx—yll2 <e,

where e is an estimate of the noise level. This program is also knowrtha basis pursuit de-noise

(BPDN) [35].

It has been established in |36] that the now well-known RIRiclv has been introduced by Candes and
Tao [37], provides a sufficient condition for exact or neaaaxecovery of a sparse signal representation
x from the measurement vectgrvia the ¢; minimization in [4).

Definition 1: A matrix A € R™*" satisfies the RIP of ordes with a restricted isometry constant

(RIC) 65 € (0,1) being the smallest number such that
(1= 35)lIx[I3 < |Ax]3 < (1 +8,)]x13 ()

holds for allx with [|x[[o < s.



Theorem 1:The solutionx* of (@) obeys

|x* — x|z < e1s7V2|x — x4][1 + 26, (6)
wherec, = 2X&V2=2%. . _4VIEh. s an approximation of with all but thes-largest entries

T1=(V241)6 T 7T 1=(V241)62s
set to zero, and,y, is the RIC of order2s of matrix A.

This theorem claims that the reconstructed signal reptasen x* is a good approximation to the
original signal representatior. In addition, for the noiseless case, any sparse repragenta with
support size no larger thancan be exactly recovered 5y minimization if the RIC satisfie§,; < v/2—1.
Therefore, it follows that the RIP acts as a proxy to the qualf a sensing matrix. Note that the RIP
is a sufficient condition for successful reconstruction ibuhay be too strict. It has been observed that
signals with sparse representations can be reconstruetgdwell even though the sensing matrices have
not been proven to satisfy the RIP_[22].

Another way to evaluate a sensing matrix, which is not as egatjpnally intractable as the RIP, is

via the mutual coherence of the mati, given by [21]:

T
= max |a; aj|. 7
1<i,j<ﬁ,z’;ﬁj‘ i 4l @

Donoho, Elad and TemlyakoV [21] demonstrated that the eofothe solution to [(#) is bounded if
n< ﬁ. Therefore, mutual coherence can also be used to measugeadlity of a sensing matrix. For
example, various sensing matrix design approaches intdratlire, such as Elad’s methdd][16], Duarte-
Carvajalino and Sapiro’s method [17], and Xu et al.'s metfi@] are inherently mutual coherence based

approaches.

[11. DESIGN RATIONALE

We now provide a rationale for the proposed novel sensingixndésigns. The ultimate goal of the

sensing matrix designs relates to the minimization of theEMi$ estimatingx from y, given by

VBE(®) = Exn (| F(@¥x +n) —x|3), (8)



where F(-) denotes an estimator, subject to appropriate constrargs, Sensing energy C(ﬂt)

The derivation of such a sensing matrix design is very diffituough, because the average MSE in
(8) depends upon the actual estimator. Consequently, id #ve analysis of a single or several practical
sparse recovery algorithms such as the BPDN, the Dantzegctee] or the OMP, we capitalize - as
in [24] - on the well-known oracle estimator that performeatlileast squares (LS) estimation based on
prior knowledge of the sparse vector suppgrtc {1,...,n} [23]. The rationale of this approach is
supported by the fact that the MSE of this oracle LS estimabimcides with the unbiased Cramér-Rao
bound (CBD) for exactlys-sparse deterministic vectorls [41], so that it represemshiest achievable
performance for any unbiased estimator. Equally impoytdn$ approach is also supported by the fact
that the oracle estimator MSE performance acts as a perfaenaenchmark for the key sparse recovery
algorithms. For example, Ben-Haim, Eldar and Elad [42] dest@te both theoretically and numerically
that the BPDN, the Dantzig selector, the OMP and threshgldigorithms all achieve performances that
are proportional to the oracle estimator MSE.

The oracle estimator MSE incurred in the estimation of aspdeterministic vectat in the presence

: . : . o i
of a standard Gaussian noise veatgraccording to the model ifl(1), is given HI[S]

MBEX YA, x) =E,, (|| FO?“(Ax + n) — x||3) o
9
—oTr ((E5ATAE,) ).

1We would also like to add that one could argue that it is pedfer to consider the MSE associated with the estimatidh(tife
actual signal) frony rather than the MSE associated with the estimatior (@ihe signal sparse representation) from\We use the
more tractable MSE associated with the estimatior &fom y because: 1) it can be shown that the MSE performance asswciat
with the (oracle) estimation of from y upper bounds in general the MSE performance associatedheitforacle) estimation of
f fromy. In particular, for an orthogonal dictionary, whekeis an orthogonal matrix|f —f*||3 = || ¥x—¥x*||3 = ||x—x*||3,
wherex™ denotes the (oracle) estimateofand f* = ¥x* denotes the (oracle) estimate fyffor an overcomplete dictionary,
where ¥ is not an orthogonal matrix|f — £*||3 = ||[¥x — ¥x*||3 < A2 (¥)||x — x*||3, where Amax (¥) is the largest
singular value of®¥; 2) it is also often desirable to manipulate or process tlierimation content of signals in the sparse
representation domain rather than the original obsemvatmmain, such as in feature extraction, pattern classiitand blind
source separation [38]=[40]. Therefore, the MSE perfoireaassociated with the estimation ofwould be more appropriate
than the MSE performance associated with the estimatidhfof such applications.

2Note that various works have adopted the oracle minimum M8HES$E) estimator in lieu of the oracle LS one in order to
obtain a superior MMSE estimate [43]=[45]. The fact that wsume a signal model that does not specify the exact dittiibu
of the sparse signal conditioned on the support - in contoafgt3]—[45] that take the distribution of the sparse sigraiditioned
on the support to be multi-variate Gaussian - prevents um &gploiting this more powerful estimator. This approackvéeer

instils our projections design framework with more gerigral



Consequently, the average value of the oracle estimator M8&tred in the estimation of a sparse

random vectot in the presence of the Gaussian noise veatds given by:
MBEY(A) = o2, (Tr ((E@AT AEy) ‘1)) . (10)

We define the coherence matrix of the equivalent sensingixmasrQ = ATA = ¥7d7®d¥. We

now pose the optimization problem:

min Eg (r((B5QEs) "))

st. Q>0, 1)
Tr(Q) =m,
rank(Q) < m.

It is relevant to reflect further on the rationale of this ap#ation problem. This optimization problem
defines the coherence matrix of the equivalent sensing xnatup to a rotation - that minimizes the
average value of the oracle MSE subject to appropriate @nt: these include the obvious positive
semi-definite and rank constraints on the coherence matdx at the heart of the novelty of the approach
- a trace constraint on the coherence matrix that acts asxy poathe sensed energy.

In the noiseless cask [16]-[18], it is not common to place rstaint on the sensed energy because
recovery is immune to the scaling of the sensing matrix;eiagdf it is only common to seek sensing
matrices that exhibit adequate structure (e/g.] [16] usageraged mutual coherence, [[17] uses an
equivalent sensing matrix whose Gram matrix is similar tad@mtity matrix, and[[1B] uses an equivalent
sensing matrix which is close to an equiangular tight fratneseek for sensing matrices with adequate
structure).

In contrast, in the noisy case it is important to place a gaigton the sensed energy because recovery
is affected both by the sensing matrix structure and immyuieitnoise. Therefore, the main features of
our formulation include:

1) The optimization problem defines equivalent sensing icegtrwith good structure and immunity

to noise.

2) The formulation is such that the sensed energy is dirguthportional to the number of measure-

ments. In fact, the sensed energy is given by:

Ex (Tr (2¥xx" T ®7)) = Tr (BYE, (xx) TT &T)
(12)
=Tr (20" ®") = m,



where we have used the fact thBf (xx?) = I,. Note that a modification of the constant of
proportionality, which is equal to 1 here, scales only thieitsen to the optimization problenfi.(11).
3) The formulation is also such that the sensed SNR
Ex (Tr (2Txx’wT®T)) 1

E, (Tr (nn7)) T o2 (13)

does not depend om, n or 7.

We will see that in the presence of noise some of the “noisékesnsing matrix designs in the literature
can yield very poor recovery performance (see Section V)s Tdue to the fact that upon the nor-
malization of the sensing matrix so that it conforms to a #j@esensing cost constraint, the structural
properties of the designs are offset by the poor noise imtywfithe designs. The optimization problem
formulation in [I1) aims thus to attain a compromise betwt#en structural and the noise immunity
properties of the sensing matiix
The optimization problen{(11) is non-convex owing to thekraonstraint, and so is very difficult to

solve. Therefore, we adopt an approach akin to that in [94kd first consider a convex relaxation of
(11) by ignoring the rank constraint; and ii) we then consithe feasible solution that is closest to the
solution to the relaxed problem. This procedure producesbaoptimal equivalent sensing matrix, but
extensive simulation results demonstrate that this desigperforms various other designs.

Proposition 1: The solution of the optimization problem:
. T -1
min Eg (Tr((%QE,) "))
st. Q= 0, (14)

T (Q) =m,
which represents a convex relaxation of the original oation problem in[(11), is thé x 7 matrix
21;.

Proof: See Appendix A. |

3Note that this optimization problem places a cost on thevadgnt sensing matriA = &, which translates into a constraint
on the energy given to the estimator rather than a cost oretligrg matrix®, which translates into a constraint on the sensing
energy. We recognize that a sensing energy cost is often appepriate, but this is difficult to analyze in general. fdfere,
our approach when the signal is sparse in a general overetengictionary departs from that when the signal is sparsmin
orthonormal dictionary[[24]. In particular, we only incamate the effect of sensing energy constraints into thegdesamework

in Section IV.
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It is evident that the solution to the convex relaxation of thriginal optimization problem is not
feasible, becauseank(%lﬁ) = n > m. Therefore, we now propose to determine thex 7 matrix A
whosen x 7 coherence matrixQ = AT A is closest to they x 7 matrix =1

Proposition 2: The solution of the optimization problem:
2

min HATA — 217}

st. Tr(ATA) =m,
is them x n Parseval tight frame.
Proof: See Appendix B. |
A frame in a finite-dimensional real space can be seen as amfate R™*" such that for any vector
z € R™,

allz|3 < |[AT2l|3 < bz, (16)

wherea > 0 andb > 0 are known as the frame bounds. Tight frames are a class oe&amth equal
frame bounds, i.eq = b. A tight frame whose columns have urit norm is called a unit norm tight
frame. A tight frame whose frame bound is equal to 1, is cadlddarseval tight frame. Note that any
tight frame can be scaled by multiplying b\% so that the frame bound becomes equal to 1.

Therefore, the value of the constraint bf](15) leads to a é&amith a frame bound being equal to 1,
and thus results in a Parseval tight frame. By scaling theevaf Tr(ATA) in the constraint, which in
fact alters the target sensing SNR [n](13), it is clear thatgblution of the optimization problerh (|15)
is still a tight frame. Therefore, we can deduce that thettithme represents a good equivalent sensing
matrix design, in the sense that, among all equivalent sgmaitrices that conform to the target sensing
SNR, a tight frame is likely to produce a good MSE performarggpendix C explores another facet of
tight frames, including the relationship of a unit-normhtigrame to StRIP.

Note that an alternative way to prove Propositidn 2, whick haen motivated by the optimization
problem put forth by Duarte-Carvajalino and Saplrol [17]aiso provided in[[19]. The current problem
differs from the problems in[[17],[[19] since our optimizati approach is based on a metric with
operational significance, the MSE, whereas the optiminagipproach in[[17],[[19] is based on mutual

coherence.

IV. NOVEL SENSING MATRIX DESIGN APPROACHES

We now build upon the previous analysis, which suggests tat ¥ ought to be close to a

Parseval tight frame, to propose two sensing matrix dedignthe compressive sensing model[ih (3). In
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particular, in view of the fact that it is usual to place a domist on the sensing energy cdgb||% = n,

the design approaches strike a balance between two olgscij\guaranteeing that the equivalent sensing
matrix A = ®W is as close as possible to a Parseval tight frame; and ii)agiteeing that the sensing
cost |®]% is as small as possible. For example, for two different sensnatrices®’ and ®” such
that ' ¢ = ®"W¥ is equal or close (e.g., in Frobenius norm sense) to some\Rdrgght frame and
|®'||% < ||@"||%, it may be preferable to us®’ instead of®” in the compressive sensing model fih (3).

In fact, the normalization

/
¥ = o @)
and .,
¥ = T 8)
then ensures that
12" ®(|F > [|2" 7 (19)
and - via the previous analysis - eventually
MBE”2%(&' W) < MBE”*Y(&" W), (20)

We note that this design approach, which is applicable tntiisy setting, is fundamentally different
from the approaches in [16]-[18], which in contrast applyHhe noiseless case. In particular, our design
considers the sensing energy cost whereas the desighs]i#{l@pdo not. We will reveal the effect
of taking into account the sensing energy constraint whemeagormalize the designs in_[16]=[18], by

showing the radically different performances in the preseof noise.

A. Design Approach 1

We now consider the first sensing matrix design approaclgiwxplicitly performs a balance between
the objective of guaranteeing that the equivalent sensiagixns as close as possible to a Parseval tight
frame against the objective of guaranteeing that the sgnsinergy cost is as small as possible. In
particular, we pose the design problem:

2

. @y

~ 2 .
min H@\I:—BH tald
FY F

whereB € R™*" is a specific target Parseval tight frame and 0 is a specific scalar. The solution to

the design problem is:

& =B (ww’ 1a1,) . (22)
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In turn, the sensing matrix design, which is consistent Wl sensing cost constraifi||%. = n, is:

Ve /aBYT (¥ 1 al,)
1®]r  [BET (WT +al,) " |5
We note that the scalar controls the weight for the energy penalty of the sensingirdf the penalty

VBT (TPT)"!
[BRT(TET)" | r

a very high penalty, i.e.x — +oo, we have the desig® = %. In both cases, i.eq = 0 or

a — +o0, the sensing matrix turns out to be a unit norm tight frame if the badrsis an orthonormal

(23)

is not considered, i.eq = 0, we have the sensing matrix design= . In contrast, for

matrix and the design targ® is a tight frame with equal column norm, i.e., a scaled unitmaight
frame. We also note that, as will be shown later, the perfaceaain is greatly affected by the parameter
a. In particular, one needs to use some empirical knowledgeder to set a suitable value far. We

next propose a sensing matrix design approach, that doesontin any adjustable parameters.

B. Design Approach 2

We now consider the second sensing matrix design approdwrewhe objective is to determine the
matrix design with the lowest sensing energy cost that issistent with the fact that the equivalent
sensing matrix ought to be a Parseval tight frame. It will beven that the ensuing design is instilled

with operational significance, akin to the designlin![20]. Yese the design problem:

)12
P

min
P

" (24)
st. d00TeT =1,

The following Proposition defines the solution to this optation problem. We use the singular
value decomposition (SVD) of the dictionady = Uy Ag VL, whereUy € R**" and Vg € R are
orthonormal matrices, anly € R™*" is a matrix whose main diagonal entrieg’(> \y > ... \Y > 0)
are the singular values oF and the other entries are zeros. We also use the SVD of thenganatrix
P = UéAévg, whereU; € R™*™ and V; € R™*" are orthonormal matrices, antly € R™*" is a
matrix whose main diagonal entries‘li’( > )\g’ > > )\‘?;L > 0) are the singular values @b and the
other entries are zeros.

Proposition 3: A sensing matrix that solves the optimization problem[in) (&4given by

® =UzA;J, UL, (25)

whereUy is an arbitrary orthonormal matrix amtly = [Diag (Alg e %) Omx(n_m)}.
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Proof: Consider the SVD of the dictional = Uy Ay VY, and the sensing matri® = UéAévg.

Then the equivalent sensing matrix can be expressed as:
SV = UyA; VIUGAG VY, (26)
and so the Parseval tight frame constraintin (24) can alsexpeessed as:
AgVIUsAuAG UG VAL =1, (27)

To satisfy the Parseval tight frame condition[inl(27), itlisar thatm columns ofV 4 have to correspond
to m columns ofUy. Since the remaining — m columns of V4 do not affect the Parseval tight frame
condition at all, then we take without any loss of generaTi;lE)f> = UyglIl, whereIl ¢ R™*" is a

permutation matrix. Therefore, we can now rewrite the ofation problem as follows:

min [|Ag]]7

st AgIT"AgAGTIAL =1, (28)

IT is a permutation matrix

The solution to this optimization problem is trivially giveby:
m=17,, (29)

and

Ag = |Diag (AF, A%, X%) O]

30)
(1 1 1 (
p— [Dlag <ﬁ7 m7 ceey E) Omx(n_m)] .

[
Propositio B uncovers the key operations performed bysissing matrix design. In particular, this
sensing matrix design i) exposes the modes (singular Vabidbe dictionary; ii) passes through the
strongest modes and filters out the- m weakest modes; and iii) weighs the strongest modes. This is
accomplished by taking the matrix of right singular vectofg¢he sensing matrix to correspond to the
matrix of left singular vectors of the dictionary and takitige strongest modes of the dictionary.
Propositior B leads immediately to the sensing matrix desidnich is consistent with the sensing cost

constraint||®||% = n, as follows:

Jnd  /nAy3,UY

_vn® _ (31)
®|lF [AgllF
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Note that the design approach 1 balances the requiremegtsaodnteeing that the equivalent sensing
matrix is as close as possible to a Parseval tight frame sigéia requirements of guaranteeing that the
cost is as small as possible; in the design approach 2, we thee equivalent sensing matrix to be a
Parseval tight frame and minimize the sensing energy. Niste that the proposed designs are closed-
form whereas other designs in the literature, such as Efadthod [16], Duarte-Carvajalino and Sapiro’s
method [17], and Xu et al.'s method [18], are iterative.

Finally, it is also interesting to note that design 1 and gied reduce to the design in]24], i.e., to a

tight frame, when we take the dictionary to be orthonorm#leathan overcomplete.

V. PERFORMANCERESULTS

We now compare the performance of the proposed sensingxntisigns to other designs in the CS

setting.

A. Distribution of the off-diagonal entries of the coherematrix

We first investigate the histogram of the absolute valuesefdff-diagonal entries of the coherence
matrix ¥7®7®W. In this investigation, we use a random dictionabyc R4*80 with entries drawn
from i.i.d. zero mean and unit variance Gaussian distiimsgtiand then normalized ¥ ||%. = 80. We
also generate three sensing matrides R*°*% using the proposed approach 1 with= 1 anda = 0.1,
and using the proposed approach 2. We compare the perfoenoditice proposed designs with a random
Gaussian matrix design and with three iterative designsmeha Elad’s design[[16], Xu’'s design [18]
and Sapiro’s design [17].

It has been observed that coherence matrices with smadliaffenal entries result in good reconstruc-
tion performance in accordance with the mutual coherencenstruction condition[[16]=[18]. Fid.1
shows that the distributions of the off-diagonal entriedbath designs based on approach 1 are better
than that for the Gaussian matrix design. In particularerbat the design withk = 0.1 has off-diagonal
entries with smaller absolute value than does the designawit 1. However,||®¥||% = 41.2639 for the
a = 0.1 design is lower thafj®®||% = 89.1929 for the « = 1 design - owing to the lower penalty used
in the optimization problem if{21) - and also lower thg@W¥ |2 = 84.5554 for the Gaussian design.
This observation - via the analysis in Section Ill - ought éad to poorer MSE performance of the
design witha = 0.1 in relation to the design withk = 1 and also in relation to the Gaussian design. The
distribution of the off-diagonal entries in the design lthee approach 2 is also better than the Gaussian

matrix. In addition, the sensing energy of the equivalenssey matrix||®¥||% = 89.1929 is not reduced
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Fig. 1. Histogram of the absolute value of the off-diagornaties of the coherence matrix.

compared to the Gaussian matrix design. Elad’s and Xu'sgdssiexhibit good mutual coherence but
poor sensing energy. The attributes of Sapiro’s design quévaent to those of the design based on
approach 2. Yet, our design is non-iterative whereas Sapiesign follows an iterative procedure.

The reconstruction performance of the proposed designstiselr investigated in the following subsec-

tions, both in terms of the MSE of the ideal oracle estimatwell as the MSE of practical estimators.

B. The MSE performance using the oracle estimator

In this investigation, we evaluate the MSE performance afous designs using the ideal oracle
estimator, which has played a key role in the definition of@esigns. The MSE is evaluated by averaging
over 1000 trials, where in each trial we generate randomlgaase vector withs randomly placedt1
spikeg. The random dictionary® € R%4*80 js generated randomly by drawing its elements from i.i.d.
zero mean and unit variance Gaussian distributions andrtbemalized to||¥||% = 80. The parameter
« is set to be equal to 1 for the design based on approach 1.

Fig.[2 illustrates that the performance of our designs campary well with that of the best iterative

designs. A particularly relevant aspect relates to theisgn®atrix normalization of iterative designs.

“We have also performed this experiment and the followingegirpent with sparse vectors where the randomly placed non-
zero elements follow a zero-mean unit-variance Gaussiamitdlition. Such experiments, which are not reported iwvid

space limitations, also demonstrate that our designs datpe other designs in the literature.
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Fig. 2. MSE performance of different sensing matrices far thacle estimatorn¢ = 40, n = 64 72 = 80 ando? = 107%).

(a) Elad's, Xu's and Sapiro’s designs are not normalizel;Hllad’s, Xu's and Sapiro’s designs are normalized.

Sapiro’s design works very well with normalization but Etadnd Xu'’s designs do not. In fact, the MSE
performance of Elad’s and Xu’'s design is worse than that efrtindom Gaussian design, due to the
lower sensing energy (see Hig. 1). The proposed approach 2 better MSE performance than approach

1, as the parameter of approach 1, which is set empirically, affects the perfance.

C. The MSE performance using practical estimators

In this investigation, we evaluate the MSE performance abues sensing matrix designs using practical
estimators, which include the BPDN, the Dantzig selectal ttue OMP. As in the previous investigation,
the MSE is evaluated by averaging over 1000 trials, whereaghédrial we generate randomly a sparse
vector withs randomly placed:1 spikes. The random dictionay € R%4*80 is also generated randomly

by drawing its elements from i.i.d. zero mean and unit var@ga@aussian distributions and then normalized
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to || ®||% = 80. The parametew is also set to be equal to 1 for the design based on approach 1.
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Fig. 3. MSE performance of different sensing matrices fortife BPDN, (b) the Dantzig selector, and (c) the OMR £ 40,
n==64 7 =80ando? =10"%).

We first evaluate the MSE performance of various sensingixndésigns for various sparsity levels
and for a fixed number of measurements,= 40. Fig.[3 shows that the proposed design approach 1
outperforms the Gaussian matrix design for all the threiena@sors. In turn, the proposed design approach
2 outperforms all the other designs. In fact, this designesy\attractive, due to the low computation

cost associated with the generation of the sensing matrix.

3 T T T 3 T : : 12 : : .
—— Gaussian matrix design —— Gaussian matrix design —— Gaussian matrix design
—— Proposed approach 1 —— Proposed approach 1 \ —— Proposed approach 1
2. - |——Proposed approach 2 H 2.53) - —+—Proposed approach 2 A 10§ ~| —— Proposed approach 2
"\ |~ Elad’s design with normalization -<-Elad's design with normalization *\ ---Elad's design with normalization
‘\‘\\ -~ Xu's design with normalization -~ Xu's design with normalization %, | === Xu's design with normalization
2 “,‘ -+~ Sapiro's design with normalizatior 21 \\\ -*- Sapiro's design with normalization 8P\~ -~ Sapiro's design with normalizatior|
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Fig. 4. MSE performance of different sensing matrices fortli@ BPDN, (b) the Dantzig selector, and (c) the OMP10,
n =064 7=80ando? =10"").

We now evaluate the MSE performance of various sensing xndesigns for various numbers of
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measurements and for a fixed sparsity levet 10. Fig.[4 shows once again that the proposed designs
outperform the Gaussian matrix design. We note that thegsegb designs improve the reconstruction
performance for all the three estimators, compared to thes§an matrix design. The iterative Elad’s
design, Sapiro’s design, and Xu’s design, slightly outpenf the proposed designs in some cases, but
the computation complexity associated with the generatibthese designs is much higher than that

associated with the generation of our design.

D. The reconstruction performance for learned dictionarie CS imaging

We now assess the performance of the proposed designs bidedng other practical issues. In
particular, we consider real rather than synthetic signéigse representations are typically nearly sparse
instead of sparse in some dictionary. We also consider delagictionaries rather than random (E;es

In the experiment, we use the cameraman image of Zigex 256 pixels, which is partitioned into
1024 nonoverlapping patches of sigex 8 pixels, i.e.,n = 64. We train a dictionary of sizé4 x 81
for sparsely representing these nonoverlapping patchassimg the K-SVD method [46]. The number
of measurements for each patch is set to be equal to 40 andaghsunements are corrupted by additive
zero-mean Gaussian noise with variande= 10~3. We seta = 1 for the proposed approach 1. We
also use the OMP to reconstruct the image from its noisy nreagnts owing to its fast execution. We
evaluate performance using the reconstructed signal ®emaitio (RSNR):

IE]]>

RSNR= — 12
£ —f£]2

(32)

wheref represents the original image afidepresents the reconstructed image.

Fig. 3 demonstrates the higher reconstruction quality aB®R of our sensing matrix designs in
relation to the random Gaussian matrix design. The propapedoach 2 exhibits the best performance.
Sapiro’s iterative design also exhibits a very good perforoe but Elad’s and Xu’s iterative designs with
normalized sensing energy exhibit very poor performandechwin fact is worse than that for Gaussian
matrix design. Interestingly we recall that the performeant the proposed two designs compare well to

that of Gaussian matrix design for random basis and exaptysg signals as shown in Fig. 3 did 4.

SWe note that the dictionary learning process yields spapeesentations that do not necessarily fit the statistigglas
model that has been used as a basis of the sensing matrixdesicedure. However, the value of the sensing matrix design

is also justified by the fact that it also yields observablag@n this scenario.
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(a) Gaussian matrix design (b) Proposed approach 1 (c) Proposed approach 2
RSNR =8.5197 RSNR =9.5386 RSNR = 15.4729

(d) Elad’s design with normalization (e) Xu’s design with normalization (f) Sapiro’s design with normalization
RSNR = 7.3595 RSNR =7.0452 RSNR = 15.4537

Fig. 5. Reconstructed images using a learned basis.

VI. DISCcUSSION RANDOM VS. OPTIMIZED PROJECTIONS

Recent results [47]=[49] have established that - at legshptotically with the signal ambient dimen-
sion - no sensing or reconstruction strategy leads to daflgridetter performance than random sensing
and standard; based reconstruction. In contrast, our results indicaa¢ ahtight-frame based sensing
matrix design can clearly outperform a random sensing rmdesign for low signal ambient dimensions.

It is thus interesting to ask whether our optimized desigars &lso outperform the random ones with
an increase of the signal ambient dimension. This quessicaso justified by the fact that the recent
contributions in the literature concentrate on signalg dre sparse in the canonical basis rather than
signals that are sparse in an overcomplete dictionaryrdstieagly, the numerical analysis reveals that
the trends applicable to overcomplete dictionaries canistindt from those applicable to the canonical
dictionary (and also orthonormal ones).

The experiments also consider randomly generated spacseryavith s randomly placedt1 spikes.

We consider both a random Gaussian sensing matrix desigaraagtimized sensing matrix design based
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Fig. 6. Histogram of the singular values of a random overdetepdictionary © = 1000, 7 = 1200 and ||¥||3 = 7) and a

w
specialized overcomplete dictionary & 1000, 7 = 1200, || ¥||% = 7 and % = 0.995).

on approach 2 due to its low computational cost. The sensiagixndesigns are normalized such that
|®]|% = n. We also consider three distinct dictionaries: i) the cacalrbasis; i) a random overcomplete
dictionary; and iii) a specified overcomplete dictionarfieTrandom overcomplete dictionary is generated
by drawing its elements randomly in accordance with i.iefozmean unit-variance Gaussian distributions.
The specified overcomplete dictionary is generated viaitguar value decomposition by taking two
randomly generated orthonormal matrices and by takingasstipe singular valuesY > ... > AY such
that \Y = 1 and Ai“
such that||®||2 = 7.

=0.995 (i = 1,...,n — 1). Both overcomplete dictionaries are also normalized

The rationale for considering two different overcompleigtidnaries is because it is not entirely clear
how to change the dictionary as the signal ambient dimerisimarie@. Therefore, two overcomplete
dictionaries that exhibit a very different singular valuefile as shown in Fig.16, are chosen that will
allow us to articulate different trends in the experiments.

The MSE performance associated with the various sensingxnusigns is also averaged over 1000
trials. We unveil the performance trends by showing how #t@rof the average MSE associated with
the optimized sensing matrix design to the average MSE &gedownith a random sensing matrix design
behaves as a function of the signal ambient dimension faowsrcombinations ofrf, s), both for the
Dantzig selector and the oracle estimator. The signal démens restricted ta: = 1000 due to the long

execution time of the simulations.

®Note that this issue is not relevant when the signal dimensidixed as in the previous experiments (or for the canonical

basis).
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Fig. 7. Ratio of the average MSE associated with an optimsegtsing matrix design to that associated with a random @awuss

sensing matrix design for signals that are sparse in theniealcbasis ¢ = 107).
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Fig. 8. Ratio of the average MSE associated with an optiméegtsing matrix design to that associated with a random @auss

sensing matrix design for signals that are sparse in a raiydgemerated overcomplete dictionarie £ 1.2n ando? = 10™%).

A. Case I: Signals that are sparse on the canonical basis

Fig.[4 examines how the ratio of the average MSE associatiudtine optimized sensing matrix design
to the average MSE associated with a random Gaussian semsitnx design - which is a tight frame
- behaves as a function of the signal dimension. One obsénma¢she average MSE ratio tends to one
with the increase of the signal dimension both for the oraslémator and the Dantzig selector. This is
due to the fact that a random Gaussian matrix tends to a tightef with the increase of for a fixed

It turns out that this result is consistent with the resulfdid], where random sensing matrix designs

are demonstrated to be near-optimal (asymptotically) iignads that are sparse in the canonical basis.
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Fig. 9. Ratio of the average MSE associated with an optimsegtsing matrix design to that associated with a random @awuss
sensing matrix design for signals that are sparse in a speafiercomplete dictionaryi(= 1.2n ando? = 1074).

B. Case II: Signals that are sparse on an overcomplete diatip

Figs.[8 and® examine how the average MSE ratio behaves astofunf the signal dimension for
the random and specified overcomplete dictionaries, réispgc One now observes that - and in sharp
contrast to the canonical basis scenario - the average M&Eteads to increase with the increase of
the signal dimension. This trend is exhibited by the oraskaretor for the pairsip = 100, s = 5) and
(m = 80, s = 10). The trend is also exhibited by the Dantzig selector for=€ 100, s = 5) but not for
(m = 80, s = 10): this exception seems to be due to severe reconstructiorsen view of the fact that
one may not be satisfying the requirement= O(slog(n/s)) [, [2].

It is relevant though to point out a major difference in théadaor of the trends for the random and
specified overcomplete dictionaries. For the random dietip, the average MSE ratio appears to saturate
with the increase of the signal dimension: this fact can Istifjad by noting that not only does the
optimized design tends to a tight frame with the increase débr a fixed m - because then largest
singular values of a random dictionary tend to be similahwfite increase of. for a fixedm (see also
Fig.[8) - but also the random Gaussian matrix design alsostémdh tight frame with the increase of
n for a fixedm as discussed previously. In contrast, for the specifiedotiaty the average MSE ratio
does not appear to saturate with the increase of the sigmadrdiion.

It turns out that such trends can also be partly reconciled thie arguments of the previous sections.
In particular, Figs[[10 anfi 11 depict how the average sensedye (i.e., the energy present at the
input to the estimator) behaves as a function of the sigmakdsion for the random and the specified
overcomplete dictionaries, respectively. Note that therage sensed enerdy (Tr (2¥xx’ ¥7 7))

corresponds to the equivalent sensing matrix enéfy ||% in view of the fact thafiy (xx’) = I,. We
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Fig. 11. Average sensed ener®@ ¥ ||3. for a specialized overcomplete dictionary € 1.2n, || ®||% = 7 and% = 0.995).

would like to emphasize that for both Figs.] 10 11 the sensiatrix designs have been normalized
such that|®||%. = n.

One observes clearly that the optimized designs have thebdayp to “sense” higher energy than the
random ones in the presence of overcomplete dictionarah (he random and the specified overcomplete
dictionary) and - via the analysis in Section Il - potertiahave the capability to offer a lower MSE
(as confirmed in Figd.18 arid 9). Figs.] 10 11 also confirmfdrahe random dictionary the sensed
energy tends to saturate with the increase of the signalrdiioe but for the specified dictionary it does
not.

We recognize that this analysis is mainly heuristic: a projpelerstanding of the advantages of designed
projections over random ones in the presence of signalsatirait sparse representations in overcomplete
dictionaries is beyond the scope of this article. Howeueg, practical relevance of the overall results -

independently of whether or not it can be crisply shown thattnoized projections clearly outperform
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random ones for high ambient dimensions - is also associthdhe fact that in some applications it is
typical to deal with small dimensions. For example, in dartaaging applications it is standard practice
to divide an image into various (possibly overlapping) pat of typically small dimensions [46]. The
results then show that there is indeed significant value iimngugptimized projections in lieu of random

ones.

VIlI. CONCLUSIONS

In this paper, we have considered the design of sensingaaatfor CS applications. By showing that
one ought to set the equivalent sensing matrix to be equatighaframe in order to derive a good MSE
performance subject to sensing energy constraints, we rayp®sed two sensing matrix designs that are
instilled with operational significance. Our designs algbikit various advantages in relation to other
designs in the literature. In particular, the proposedgtesiexhibit MSE performance gains in relation
to the conventional random sensing matrix designs as wedltlasr optimized designs. The proposed
designs are also closed-form, and as a result easy to genefa¢reas other optimized designs in the

literature are typically iterative.
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APPENDIX A

PROOF OF THEPROPOSITIONI]

This proof follows the ideas of the proof of Proposition 1[H]. Let$ < s be a positive integer. Let

alsoJ! c {1,2,...,n} (t =1,...,T;) denote a support set with cardinalitywhereT; = (Z) = g,(g{@!.

We letD g = E%QEﬁ. We also Iet/\;ﬁ >...> )\17; be the eigenvalues dD ;.. Let Pr(|| 7], = 3)
denote the probability that the support size ofis s.

We now note that

T T
ZTr (D) =Tr ((Z EJQE%) Q)
t=1 t=1

—Tr <ST IﬁQ> (33)

n

n
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By the arithmetic mean - harmonic mean inequality, it fokothat:

T, 3
- 1 5T;)? 5T;)? nsTs

>Y e o e =2, @
=1am1i AT Ds1 Doam1 Dl Tr (DT) m

where one achieves the lower bound wmf =2 (h = 1,...,8 t = 1,...,Ts). This implies

immediately that the matriQ = 215, which is consistent with the constraints, minimizes:

Eg, (Tr (D)) = Ti ;; é (35)
and hence also minimizes:
Es (Tr(Dn)7™)) = ilprwno = $)Ez, (Tr(Ds) ")) (36)
S APPENDIX B

PROOF OF THEPROPOSITIONZ

This proof follows the ideas of the proof of Proposition 2[Zd]. By using the SVDA = UaAa V4,
whereUpx € R™™ and Va4 € R™ " are orthonormal matrices, amily € R™*" is a matrix whose
main diagonal entriesxg4 > >\‘24 > ...Af,}L > 0) are the singular values df, and the off-diagonal entries
are zeros, we pose the convex optimization problem:

- 2 m\?2
N YD (GO

=1 (37)

2
which, in view of the fact thaf AT A — =1, |2 = S| (()\{‘)2 — %) andTr (ATA) =3, (A4,
leads to the solution of (15). Since the solution[ofl (37\fs= 1 (i = 1,2,...,m), it follows that any
Parseval tight frame is the solution 6f{15).

APPENDIXC

TIGHT FRAMES AND STRIP

Another benefit of tight frames - more precisely, unit-noight frames - is its relation to the weaker
version of the RIP, namely the StRIP. The StRIP, which has Ipeeposed by Calderbank et al. [22], can
be used to evaluate the expected-case performance of C&asghihe RIP is a worst-case performance
indicator, as is the mutual coherence. The StRIP guarargeesessful reconstruction of all but an
exponentially small fraction ot sparse signals. The definition of StRIP uses a probabiliteran

to replace the hard requirement demanded in the definiticheoRIP.
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Definition 2: A matrix A € R™*" is said to be aiis, 6, 7)-StRIP matrix if fors sparse vectorgs € R”
the inequalities
(1 —8)lx]3 < | Ax]3 < (1 +8)lIx]3 (38)

hold with probability exceeding — n with respect to a uniform distribution of the vectatsamong all
s sparse vectors iiR" having the same fixed magnitudes.

Calderbank et al[[22] demonstrate that deterministicisgmsatrices are StRIP matrices if they satisfy
all of the following criteria:

1) The rows ofA are orthogonal and all the row sums are zero, E?tl a; =0;

2) The columns ofA form a group under point-wise multiplication;

3) There is one column oA equal to1, which can be assumed as the first column. For: &l

{2,...,7}, [|a;]|3 <m* ¥, where0 < 5 < 1.

A large class of matrices, including discrete chirp sensiradrices, Bose, Chaudhuri, and Hocquenghem
(BCH) sensing matrices, Kerdock, Delsarte-Goethals awodrse order Reed Muller sensing matrices,

satisfy these criteria, and thus are StRIP matrices._Ih, [@#y prove that the RIP of these matrices is

s

satisfied with a probability exceeding- O (exp (—52mﬁ)). However, a unit norm tight frame does not
necessarily satisfy these criteria. For example, an odfmal matrix, which is also a unit norm tight
frame withm = 7, does not necessarily satisfy”_, a; = 0.
The following Proposition demonstrates that a unit-norghttiframe is also a StRIP matrix
Proposition 4: Let A € R™*" pe a unit norm tight frame with mutual coherence equak.téor any

s sparse vectors € R”, the RIP holds with probability:

(0.38945— 2)?

P (|llAxi3 — Ix13] < 6 1xI3) > 1 - (s/2) mrwnctorm, (39)

where \/237.42p2slog, (1 + s/2) + 2275 < § < 1.
Proof: Let A7, € R™*® be ans-column submatrix ofA < Rmx7 (s < m < n), whereJ; C
T T
{1,...,n} denotes a support set with cardinality Let Af’sAJs > ... > )\;A‘”SAJS > 0 be the

eigenvalues of the positive semi-definite mamb:FnAjs. We have that the maximum eigenvaml%JSAJ‘*

T
and minimum eigenvaluefjsAjs of A?SAJS are given by
AT A A7 z|)?
)\1 Tt Ts — max ” .732”2’ (40)
220 ||z|5
and
T A 2
/\SAJSAJS — mln H jSZ||2 (41)

20 |zll3
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wherez € R*. Therefore, we have

AR5 < Az z]3 < AR 3, (42)
or
AR _1)]12)3 < Az 2l3 - ll2ll3 < AP — 123, (43)
for any z € R®. By definingd;, = max q AATAS 1‘ AL AL ) it follows that

A2 — [l2ll3] < 67,1213 (44)

We can immediately derive that the RIC satisfles= max ;. 7, by comparing[(44) with[{5).
The following theorem, which has been proved by Tropg in [SiHfines a probability bound fax;. .
Theorem 2:Theorem LetA € R™" (m < n) be a matrix whose columns have unit norm, i.e.,
l|laillo =1 foralli € {1,...,7}, Ay, € R™**® (s < m) be a randons-column submatrix ofA with a

supportJs C {1,...,n} of cardinality s, andx be the mutual coherence &. Suppose that

2
V14425 log, (1 + 5/2)p + || A|? < =025, (45)
n

wherep > 1 and0 < 6 < 1. Then
Pr(oz. >6) < (s/2)". (46)

We now use the fact that is a unit norm tight frame with frame bound equaln%o so that||A||?2 = %
We then rewrite[(45) to be

(0259 2)°
4p2slog.(1+ s/2)’
where/144e%5 25 log, (1 + 5/2) + % < 6 < 1. Since the inequality_(46) holds for apysatisfying

(45), we have that for a random s&t, the inequality [[44) leads to the probability bound

1<p<4; (47)

P(|I|Az.z

53— llzl3] < dllz]13) =P (67, <)
(0.38045— = )? (48)
>1 — (3/2)_m7

when /237.42p2slog, (1 + 5/2) + 2278 < § < 1. n
Remark 1 The mutual coherence plays as an important role in this probability bound. The ualt
coherence of various unit norm tight frames could be differand its distribution is unknown. However,
the mutual coherence is fixed for some specific unit norm tiglithes. For example, the Fourier-Dirac

tight frame has mutual coherenge= # [51], and the equiangular tight frame has mutual coherence

p= /iy B2
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Remark 2 In [22], the authors conclude that the RIP is satisfied witprabability exceedingl —

s

@) (eXp (—M» (0 < p <1) for a large class of matrices, including discrete chirpsgem matrices,
Bose, Chaudhuri, and Hocquenghem (BCH) sensing matricesjogk, Delsarte-Goethals and second
order Reed Muller sensing matrices. According to Propmsdi, we can conclude that the RIP holds with
a probability that exceeds— O (exp (—‘VT"L)) for Fourier-Dirac tight frames and the equiangular tight
frame, so that these tight frames exhibit better qualityeinmis of the StRIP in relation to the sensing
matrices in[[22].

Remark 3 Propositio # requires unit norm tight frames with frammm%. It turns out that, one

mA

can scale a unit norm tight frame via = I\\/A_W' which leads to a Parseval tight frame with an equal

column norm, in order to achieve the frame bound equal to #l irs¢he paper. In fact, scaling the unit

norm tight frames does not change the matrix structure, tirdysensing energy.
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