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Abstract

In this paper, we develop a framework to design sensing matrices for compressive sensing applications

that lead to good mean squared error (MSE) performance subject to sensing cost constraints. By capital-

izing on the MSE of the oracle estimator, whose performance has been shown to act as a benchmark to

the performance of standard sparse recovery algorithms, weuse the fact that a Parseval tight frame is the

closest design - in the Frobenius norm sense - to the solutionof a convex relaxation of the optimization

problem that relates to the minimization of the MSE of the oracle estimator with respect to the equivalent

sensing matrix, subject to sensing energy constraints. Based on this result, we then propose two sensing

matrix designs that exhibit two key properties: i) the designs are closed form rather than iterative; ii)

the designs exhibit superior performance in relation to other designs in the literature, which is revealed

by our numerical investigation in various scenarios with different sparse recovery algorithms including

basis pursuit de-noise (BPDN), the Dantzig selector and orthogonal matching pursuit (OMP).

I. INTRODUCTION

The presence of redundancy in most signals in nature offers the means to transform the original

signals into a compressed version convenient for storage and transportation. Compressive sensing (CS) is

a new sampling paradigm that, instead of conforming to the traditional two-stage process involving signal
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sampling followed by signal compression, directly acquires a compressed version of the original signal

instead, by leveraging signal sparsity (a form of redundancy) as well as random sensing or measurement.

In fact, it has been shown that if ann-dimensional signal admits ans-sparse representation then one

can reconstruct exactly the original signal withm = O(s log(n/s)) measurements [1], [2]; Also, if the

original signal admits only a nearly sparse representation(and/or the measurements are corrupted by some

noise) then one can still reconstruct the original signal subject to a tolerable distortion [1], [2]. Therefore,

CS offers the prospect of a more efficient signal acquisitionin relation to traditional Shannon-Nyquist

sampling, especially in applications where the sampling process is expensive such as magnetic resonance

imaging [3] and data acquisition in wireless sensor networks [4].

A recent growing trend relates to the use of more complex signal models that go beyond the simple

sparsity model to further enhance the performance of CS. Forexample, Baraniuk et al. [5] have introduced

model-based compressive sensing, where more realistic signal models such as wavelet trees or block

sparsity are leveraged in order to reduce the number of measurements required for reconstruction. In

particular, it has been shown that robust signal recovery ispossible withm = O(s) measurements in

model-based compressive sensing [5]. Ji et al. [6] introduced Bayesian compressive sensing, where a signal

specific statistical model is exploited to reduce the numberof measurements needed for reconstruction.

In [7], [8], reconstruction methods have been proposed for manifold-based CS, where the signal is assumed

to belong to a manifold. Other works that consider various sparsity models that go beyond simple sparsity

in order to improve the performance of traditional CS include [9]–[15].

The use of additional signal knowledge also enables one to replace the conventional random sensing

matrices by optimized ones in order to further enhance CS performance (e.g., see [16]–[20]). A number of

conditions have been put forth to study the impact of the sensing matrices in various recovery algorithms.

The null space property represents a necessary and sufficient condition for sparse recovery [2]. However,

it is difficult to verify whether or not a certain sensing matrix fulfills this condition. Other more widely

used conditions include the restricted isometry property (RIP) [1], which is also difficult to evaluate,

and the mutual coherence [21], which is easier to evaluate. However, the fact that these conditions are

mainly used to address the worst-case rather than the expected-case performance, renders their use as

the basis of sensing matrix designs as too conservative. As such, Calderbank et al. [22] have put forth a

weaker version of the RIP, the statistical restricted isometry property (StRIP), where a probability criterion

replaces the hard requirement demanded by RIP. StRIP has been also used as the basis of various sensing

matrix designs presented in [22].

In this paper, we develop a general framework to design sensing matrices for compressive sensing
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applications that lead to good (expected-case) mean squared error (MSE) performance subject to sensing

energy constraints, where the expectation is with respect to both the statistical distribution of the signal

and the noise. We also leverage additional signal knowledge, by considering a general random signal

model where the distinct support patterns of the same sparsity level occur with equal probability in the

sparse representation of the original signal, and the autocorrelation matrix of the sparse representation

is equal to an identity matrix. Our approach is based on the analysis of the oracle estimator MSE [23],

whose performance has been shown to act as a benchmark to the performance of various common sparse

recovery algorithms. By showing that good equivalent sensing matrices (that correspond to the product of

the sensing matrix and the sparsifying dictionary) ought tobe close to a Parseval tight frame, we are then

able to put forth two new sensing matrix designs that conformto specific sensing energy constraints. Our

experiments reveal that the proposed designs improve signal expected-case reconstruction performance

in relation to random designs or other optimized designs [16]–[18]. Another notable advantage of our

proposed designs is that they are closed-form whereas the designs in [16]–[18] are iterative.

Our design approach, which is applicable to signals that aresparse in any dictionary, shares some

of the elements of the design approach in [24], which is only applicable to signals that are sparse

in an orthonormal basis. In particular, this contribution -as does [24] - also capitalizes on the oracle

estimator MSE to put forth adequate sensing matrix designs.However, this design approach also departs

significantly from that in [24], in view of the fact that it is not clear how to generalize the methodology

in [24] from orthonormal to overcomplete dictionaries (namely, Propositions 1 and 2 in [24]).

Therefore, the current generalization is based on two questions that are answered in the article. We

first ask:

1) What is the equivalent sensing matrix that leads to the lowest oracle estimator MSE for a certain target

signal to noise ratio (SNR) at the input of the oracle estimator?

Further, in view of the fact that a Parseval tight frame is likely to provide a low oracle MSE subject to

a target SNR at the input of the oracle, we then ask:

2) What is the sensing matrix that offers the best compromisebetween “sensing cost” and “closeness”

of the equivalent sensing matrix to a Parseval tight frame?

It is this angle-of-attack - which departs from that in [24] -that enables us to generalize the sensing

matrix designs for signals that are sparse in arbitrary overcomplete dictionaries. Interestingly, the ensuing

designs are shown to reduce to the designs in [24] when the dictionary is orthonormal rather than

overcomplete.

The generalization of the work from the orthonormal to overcomplete dictionary case is relevant



4

not only theoretically but also practically. For example, allowing signals to be sparse in overcomplete

dictionaries adds a lot of flexibility and extends the range of applicability for CS [25]–[27]. Of particular

relevance, this generalization also leads to further insight about the behavior of random vs. optimized

projections: this is also crisply exposed in this contribution.

The rest of this paper is organized as follows. We begin by describing the CS model and assumptions

in Section II. Section III provides the rationale for the sensing matrix designs, by highlighting the role

of Parseval tight frames in compressive sensing applications. Section IV puts forth our proposed sensing

matrix designs, which capitalize on the intuition unveiledin Section III. Section V presents a range of

numerical results that highlight the merits of our proposeddesigns in relation to other designs in the

literature. Section VI discusses the MSE performance yielded both by random and optimized projections

designs. The main contributions of the article are finally summarized in Section VII.

Throughout this paper, signals are treated as real-valued vectors. Lower-case letters denote scalars,

boldface upper-case letters denote matrices, bold face lower-case letters denote column vectors, and

calligraphic upper-case letters denote support sets.0 and1 denote a vector with all zeros and all ones,

respectively, andOm×n denotes anm× n matrix with all zeros. The superscripts(·)T and(·)−1 denote

matrix transpose and matrix inverse, respectively. Theℓ0 norm, theℓ1 norm, and theℓ2 norm of vectors,

are denoted by‖ ·‖0, ‖ ·‖1, and‖ ·‖2, respectively. The Frobenius norm and spectral norm of a matrix A

are denoted by‖A‖F and‖A‖, respectively. The rank and trace of a matrix are denoted byrank(·) and

Tr(·), respectively. The diagonal matrix with diagonal elementsgiven by either vectora or the diagonal

elements of matrixA is denoted by Diag(a) or Diag(A), respectively. The element corresponding to the

ith row andjth column of the matrixA is denoted byai,j, andai denotes theith column of the matrix

A. In denotes then × n identity matrix, andJn denotes then × n anti-diagonal matrix (an identity

matrix with a reversed order of the columns (or rows)).EJ denotes the matrix that results from the

identity matrix by deleting the set of columns out of the support J . E(·) denotes the expectation,Ex(·)
andEJ (·) denote expectation with respect to the distribution of the random vectorx, and the random

supportJ , respectively.
(n
m

)

denotes the number ofm combinations from a given set ofn elements.

Pr(·) denotes the probability. Finally,N (µ,Σ) denotes the multivariate normal distribution with mean

vectorµ and covariance matrixΣ.

II. COMPRESSIVESENSING MODEL

We consider the standard measurement model given by:

y = Φf + n, (1)
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wherey ∈ R
m is the measurement signal vector,f ∈ R

n is the original signal vector,n ∼ N (0, σ2Im) ∈
R
m is a zero-mean white Gaussian noise vector, andΦ ∈ R

m×n (with m ≤ n) is the sensing matrix.

We assume that the original signal is sparse in some basis, i.e.,

f = Ψx, (2)

whereΨ ∈ R
n×n̂ (n̂ ≥ n) is a matrix that represents the sparsifying basis, e.g., anorthonormal or

overcomplete dictionary, andx ∈ R
n̂ is a sparse representation off ∈ R

n, i.e., ‖x‖0 ≤ s ≪ n̂. Then we

can rewrite the measurement model as

y = ΦΨx+ n = Ax+ n, (3)

whereA = ΦΨ ∈ R
m×n̂ represents the equivalent sensing matrix. For modeling thesparse sources,

we assume i) the distinct support patterns of the same sparsity level occur with equal probability in the

sparse representation of the original signal, i.e., Pr
(

J t
c

)

= Pc, whereJ t
c ⊂ {1, . . . , n̂} (t = 1, . . . ,

(n̂
c

)

,

c = 1, . . . , s) denotes a signal support with cardinalityc and
∑s

c=1

(

n̂
c

)

Pc = 1; ii) Ex(xx
T ) = In̂. Note

that these assumptions can be satisfied by a signal model akinto the widely used Bernoulli-Gaussian

model [28]–[34]. In particular, one constrains the cardinality of the support patterns to be less thans,

rather than̂n; one also constrains the probability of the support patterns to obey
∑s

c=1

(

n̂
c

)

Pc = 1 rather

than a binomial distribution as in the Bernoulli-Gaussian model.

To recover the sparse signal representationx from the measurement vectory, one can resort to the

optimization problem:

min
x

‖x‖1

s.t. ‖Ax− y‖2 ≤ ǫ,

(4)

where ǫ is an estimate of the noise level. This program is also known as the basis pursuit de-noise

(BPDN) [35].

It has been established in [36] that the now well-known RIP, which has been introduced by Candès and

Tao [37], provides a sufficient condition for exact or near exact recovery of a sparse signal representation

x from the measurement vectory via the ℓ1 minimization in (4).

Definition 1: A matrix A ∈ R
m×n̂ satisfies the RIP of orders with a restricted isometry constant

(RIC) δs ∈ (0, 1) being the smallest number such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 (5)

holds for allx with ‖x‖0 ≤ s.
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Theorem 1:The solutionx∗ of (4) obeys

‖x∗ − x‖2 ≤ c1s
−1/2‖x− xs‖1 + c2ǫ, (6)

wherec1 =
2+(2

√
2−2)δ2s

1−(
√
2+1)δ2s

, c2 =
4
√
1+δ2s

1−(
√
2+1)δ2s

, xs is an approximation ofx with all but thes-largest entries

set to zero, andδ2s is the RIC of order2s of matrix A.

This theorem claims that the reconstructed signal representation x∗ is a good approximation to the

original signal representationx. In addition, for the noiseless case, any sparse representation x with

support size no larger thans, can be exactly recovered byℓ1 minimization if the RIC satisfiesδ2s <
√
2−1.

Therefore, it follows that the RIP acts as a proxy to the quality of a sensing matrix. Note that the RIP

is a sufficient condition for successful reconstruction butit may be too strict. It has been observed that

signals with sparse representations can be reconstructed very well even though the sensing matrices have

not been proven to satisfy the RIP [22].

Another way to evaluate a sensing matrix, which is not as computationally intractable as the RIP, is

via the mutual coherence of the matrixA, given by [21]:

µ = max
1≤i,j≤n̂,i 6=j

|aTi aj|. (7)

Donoho, Elad and Temlyakov [21] demonstrated that the errorof the solution to (4) is bounded if

µ < 1
4s−1 . Therefore, mutual coherence can also be used to measure thequality of a sensing matrix. For

example, various sensing matrix design approaches in the literature, such as Elad’s method [16], Duarte-

Carvajalino and Sapiro’s method [17], and Xu et al.’s method[18] are inherently mutual coherence based

approaches.

III. D ESIGN RATIONALE

We now provide a rationale for the proposed novel sensing matrix designs. The ultimate goal of the

sensing matrix designs relates to the minimization of the MSE in estimatingx from y, given by

MSE(Φ) = Ex,n

(

‖F(ΦΨx + n)− x‖22
)

, (8)
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whereF(·) denotes an estimator, subject to appropriate constraints (e.g., sensing energy cost)1.

The derivation of such a sensing matrix design is very difficult though, because the average MSE in

(8) depends upon the actual estimator. Consequently, to avoid the analysis of a single or several practical

sparse recovery algorithms such as the BPDN, the Dantzig selector, or the OMP, we capitalize - as

in [24] - on the well-known oracle estimator that performs ideal least squares (LS) estimation based on

prior knowledge of the sparse vector supportJ ⊂ {1, . . . , n̂} [23]. The rationale of this approach is

supported by the fact that the MSE of this oracle LS estimatorcoincides with the unbiased Cramér-Rao

bound (CBD) for exactlys-sparse deterministic vectors [41], so that it represents the best achievable

performance for any unbiased estimator. Equally important, this approach is also supported by the fact

that the oracle estimator MSE performance acts as a performance benchmark for the key sparse recovery

algorithms. For example, Ben-Haim, Eldar and Elad [42] demonstrate both theoretically and numerically

that the BPDN, the Dantzig selector, the OMP and thresholding algorithms all achieve performances that

are proportional to the oracle estimator MSE.

The oracle estimator MSE incurred in the estimation of a sparse deterministic vectorx in the presence

of a standard Gaussian noise vectorn, according to the model in (1), is given by [23]2:

MSEoracle
n (A,x) =En

(

‖Foracle(Ax+ n)− x‖22
)

=σ2Tr
(

(

ET
JA

TAEJ
)−1
)

.
(9)

1We would also like to add that one could argue that it is preferable to consider the MSE associated with the estimation off (the

actual signal) fromy rather than the MSE associated with the estimation ofx (the signal sparse representation) fromy. We use the

more tractable MSE associated with the estimation ofx from y because: 1) it can be shown that the MSE performance associated

with the (oracle) estimation ofx from y upper bounds in general the MSE performance associated withthe (oracle) estimation of

f from y. In particular, for an orthogonal dictionary, whereΨ is an orthogonal matrix,||f−f∗||22 = ||Ψx−Ψx∗||22 = ||x−x∗||22,

wherex∗ denotes the (oracle) estimate ofx and f∗ = Ψx∗ denotes the (oracle) estimate off ; for an overcomplete dictionary,

whereΨ is not an orthogonal matrix,||f − f∗||22 = ||Ψx − Ψx∗||22 ≤ λ
2

max(Ψ)||x − x∗||22, whereλmax(Ψ) is the largest

singular value ofΨ; 2) it is also often desirable to manipulate or process the information content of signals in the sparse

representation domain rather than the original observation domain, such as in feature extraction, pattern classification and blind

source separation [38]–[40]. Therefore, the MSE performance associated with the estimation ofx would be more appropriate

than the MSE performance associated with the estimation off for such applications.

2Note that various works have adopted the oracle minimum MSE (MMSE) estimator in lieu of the oracle LS one in order to

obtain a superior MMSE estimate [43]–[45]. The fact that we assume a signal model that does not specify the exact distribution

of the sparse signal conditioned on the support - in contrastto [43]–[45] that take the distribution of the sparse signalconditioned

on the support to be multi-variate Gaussian - prevents us from exploiting this more powerful estimator. This approach however

instils our projections design framework with more generality.
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Consequently, the average value of the oracle estimator MSEincurred in the estimation of a sparse

random vectorx in the presence of the Gaussian noise vectorn is given by:

MSEoracle(A) = σ2
EJ
(

Tr
(

(

ET
JA

TAEJ
)−1
))

. (10)

We define the coherence matrix of the equivalent sensing matrix as Q = ATA = ΨTΦTΦΨ. We

now pose the optimization problem:

min
Q

EJ
(

Tr
(

(

ET
JQEJ

)−1
))

s.t. Q � 0,

Tr (Q) = m,

rank(Q) ≤ m.

(11)

It is relevant to reflect further on the rationale of this optimization problem. This optimization problem

defines the coherence matrix of the equivalent sensing matrix - up to a rotation - that minimizes the

average value of the oracle MSE subject to appropriate constraints: these include the obvious positive

semi-definite and rank constraints on the coherence matrix and - at the heart of the novelty of the approach

- a trace constraint on the coherence matrix that acts as a proxy to the sensed energy.

In the noiseless case [16]–[18], it is not common to place a constraint on the sensed energy because

recovery is immune to the scaling of the sensing matrix; instead, it is only common to seek sensing

matrices that exhibit adequate structure (e.g., [16] usest-averaged mutual coherence, [17] uses an

equivalent sensing matrix whose Gram matrix is similar to anidentity matrix, and [18] uses an equivalent

sensing matrix which is close to an equiangular tight frame,to seek for sensing matrices with adequate

structure).

In contrast, in the noisy case it is important to place a constraint on the sensed energy because recovery

is affected both by the sensing matrix structure and immunity to noise. Therefore, the main features of

our formulation include:

1) The optimization problem defines equivalent sensing matrices with good structure and immunity

to noise.

2) The formulation is such that the sensed energy is directlyproportional to the number of measure-

ments. In fact, the sensed energy is given by:

Ex

(

Tr
(

ΦΨxxTΨTΦT
))

= Tr
(

ΦΨEx

(

xxT
)

ΨTΦT
)

= Tr
(

ΦΨΨTΦT
)

= m,

(12)
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where we have used the fact thatEx

(

xxT
)

= In̂. Note that a modification of the constant of

proportionality, which is equal to 1 here, scales only the solution to the optimization problem (11).

3) The formulation is also such that the sensed SNR

Ex

(

Tr
(

ΦΨxxTΨTΦT
))

En (Tr (nnT ))
=

1

σ2
, (13)

does not depend onm, n or n̂.

We will see that in the presence of noise some of the “noiseless” sensing matrix designs in the literature

can yield very poor recovery performance (see Section V). This is due to the fact that upon the nor-

malization of the sensing matrix so that it conforms to a specific sensing cost constraint, the structural

properties of the designs are offset by the poor noise immunity of the designs. The optimization problem

formulation in (11) aims thus to attain a compromise betweenthe structural and the noise immunity

properties of the sensing matrix3.

The optimization problem (11) is non-convex owing to the rank constraint, and so is very difficult to

solve. Therefore, we adopt an approach akin to that in [24]: i) we first consider a convex relaxation of

(11) by ignoring the rank constraint; and ii) we then consider the feasible solution that is closest to the

solution to the relaxed problem. This procedure produces a sub-optimal equivalent sensing matrix, but

extensive simulation results demonstrate that this designoutperforms various other designs.

Proposition 1: The solution of the optimization problem:

min
Q

EJ
(

Tr
(

(

ET
JQEJ

)−1
))

s.t. Q � 0,

Tr (Q) = m,

(14)

which represents a convex relaxation of the original optimization problem in (11), is thên × n̂ matrix

m
n̂ In̂.

Proof: See Appendix A.

3Note that this optimization problem places a cost on the equivalent sensing matrixA = ΦΨ, which translates into a constraint

on the energy given to the estimator rather than a cost on the sensing matrixΦ, which translates into a constraint on the sensing

energy. We recognize that a sensing energy cost is often moreappropriate, but this is difficult to analyze in general. Therefore,

our approach when the signal is sparse in a general overcomplete dictionary departs from that when the signal is sparse inan

orthonormal dictionary [24]. In particular, we only incorporate the effect of sensing energy constraints into the design framework

in Section IV.



10

It is evident that the solution to the convex relaxation of the original optimization problem is not

feasible, becauserank(mn̂ In̂) = n̂ ≥ m. Therefore, we now propose to determine them× n̂ matrix A

whosen̂× n̂ coherence matrixQ = ATA is closest to thên× n̂ matrix m
n̂ In̂.

Proposition 2: The solution of the optimization problem:

min
A

∥

∥

∥
ATA− m

n̂
In̂

∥

∥

∥

2

F

s.t. Tr
(

ATA
)

= m,

(15)

is them× n̂ Parseval tight frame.

Proof: See Appendix B.

A frame in a finite-dimensional real space can be seen as a matrix A ∈ R
m×n̂ such that for any vector

z ∈ R
m,

a‖z‖22 ≤ ‖AT z‖22 ≤ b‖z‖22, (16)

wherea > 0 and b > 0 are known as the frame bounds. Tight frames are a class of frames with equal

frame bounds, i.e.,a = b. A tight frame whose columns have unitℓ2 norm is called a unit norm tight

frame. A tight frame whose frame bound is equal to 1, is calleda Parseval tight frame. Note that any

tight frame can be scaled by multiplying by1√
a
, so that the frame bound becomes equal to 1.

Therefore, the value of the constraint of (15) leads to a frame with a frame bound being equal to 1,

and thus results in a Parseval tight frame. By scaling the value of Tr
(

ATA
)

in the constraint, which in

fact alters the target sensing SNR in (13), it is clear that the solution of the optimization problem (15)

is still a tight frame. Therefore, we can deduce that the tight frame represents a good equivalent sensing

matrix design, in the sense that, among all equivalent sensing matrices that conform to the target sensing

SNR, a tight frame is likely to produce a good MSE performance. Appendix C explores another facet of

tight frames, including the relationship of a unit-norm tight frame to StRIP.

Note that an alternative way to prove Proposition 2, which has been motivated by the optimization

problem put forth by Duarte-Carvajalino and Sapiro [17], isalso provided in [19]. The current problem

differs from the problems in [17], [19] since our optimization approach is based on a metric with

operational significance, the MSE, whereas the optimization approach in [17], [19] is based on mutual

coherence.

IV. N OVEL SENSING MATRIX DESIGN APPROACHES

We now build upon the previous analysis, which suggests thatA = ΦΨ ought to be close to a

Parseval tight frame, to propose two sensing matrix designsfor the compressive sensing model in (3). In



11

particular, in view of the fact that it is usual to place a constraint on the sensing energy cost‖Φ‖2F = n,

the design approaches strike a balance between two objectives: i) guaranteeing that the equivalent sensing

matrix A = ΦΨ is as close as possible to a Parseval tight frame; and ii) guaranteeing that the sensing

cost ‖Φ‖2F is as small as possible. For example, for two different sensing matricesΦ′ and Φ′′ such

that Φ′Ψ = Φ′′Ψ is equal or close (e.g., in Frobenius norm sense) to some Parseval tight frame and

‖Φ′‖2F < ‖Φ′′‖2F , it may be preferable to useΦ′ instead ofΦ′′ in the compressive sensing model in (3).

In fact, the normalization

Φ̃′ =

√
nΦ′

‖Φ′‖F
(17)

and

Φ̃′′ =

√
nΦ′′

‖Φ′′‖F
(18)

then ensures that

‖Φ̃′Ψ‖2F > ‖Φ̃′′Ψ‖2F (19)

and - via the previous analysis - eventually

MSEoracle(Φ̃′Ψ) < MSEoracle(Φ̃′′Ψ). (20)

We note that this design approach, which is applicable to thenoisy setting, is fundamentally different

from the approaches in [16]–[18], which in contrast apply tothe noiseless case. In particular, our design

considers the sensing energy cost whereas the designs in [16]–[18] do not. We will reveal the effect

of taking into account the sensing energy constraint when were-normalize the designs in [16]–[18], by

showing the radically different performances in the presence of noise.

A. Design Approach 1

We now consider the first sensing matrix design approach, which explicitly performs a balance between

the objective of guaranteeing that the equivalent sensing matrix is as close as possible to a Parseval tight

frame against the objective of guaranteeing that the sensing energy cost is as small as possible. In

particular, we pose the design problem:

min
Φ̂

∥

∥

∥
Φ̂Ψ−B

∥

∥

∥

2

F
+ α

∥

∥

∥
Φ̂

∥

∥

∥

2

F
, (21)

whereB ∈ R
m×n̂ is a specific target Parseval tight frame andα ≥ 0 is a specific scalar. The solution to

the design problem is:

Φ̂ = BΨT
(

ΨΨT + αIn
)−1

. (22)
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In turn, the sensing matrix design, which is consistent withthe sensing cost constraint‖Φ‖2F = n, is:

Φ =

√
nΦ̂

‖Φ̂‖F
=

√
nBΨT

(

ΨΨT + αIn
)−1

‖BΨT (ΨΨT + αIn)
−1 ‖F

. (23)

We note that the scalarα controls the weight for the energy penalty of the sensing matrix. If the penalty

is not considered, i.e.,α = 0, we have the sensing matrix designΦ =
√
nBΨT (ΨΨT )−1

‖BΨT (ΨΨT )−1‖F
. In contrast, for

a very high penalty, i.e.,α → +∞, we have the designΦ =
√
nBΨT

‖BΨT ‖F
. In both cases, i.e.,α = 0 or

α → +∞, the sensing matrixΦ turns out to be a unit norm tight frame if the basisΨ is an orthonormal

matrix and the design targetB is a tight frame with equal column norm, i.e., a scaled unit norm tight

frame. We also note that, as will be shown later, the performance gain is greatly affected by the parameter

α. In particular, one needs to use some empirical knowledge inorder to set a suitable value forα. We

next propose a sensing matrix design approach, that does notcontain any adjustable parameters.

B. Design Approach 2

We now consider the second sensing matrix design approach, where the objective is to determine the

matrix design with the lowest sensing energy cost that is consistent with the fact that the equivalent

sensing matrix ought to be a Parseval tight frame. It will be shown that the ensuing design is instilled

with operational significance, akin to the design in [20]. Wepose the design problem:

min
Φ̂

∥

∥

∥
Φ̂

∥

∥

∥

2

F

s.t. Φ̂ΨΨT Φ̂T = Im.

(24)

The following Proposition defines the solution to this optimization problem. We use the singular

value decomposition (SVD) of the dictionaryΨ = UΨΛΨV
T
Ψ, whereUΨ ∈ R

n×n andVΨ ∈ R
n̂×n̂ are

orthonormal matrices, andΛΨ ∈ R
n×n̂ is a matrix whose main diagonal entries (λΨ

1 ≥ λΨ
2 ≥ . . . λΨ

n ≥ 0)

are the singular values ofΨ and the other entries are zeros. We also use the SVD of the sensing matrix

Φ̂ = UΦ̂ΛΦ̂V
T
Φ̂

, whereUΦ̂ ∈ R
m×m andVΦ̂ ∈ R

n×n are orthonormal matrices, andΛΦ̂ ∈ R
m×n is a

matrix whose main diagonal entries (λΦ̂
1 ≥ λΦ̂

2 ≥ . . . ≥ λΦ̂
m ≥ 0) are the singular values of̂Φ and the

other entries are zeros.

Proposition 3: A sensing matrix that solves the optimization problem in (24) is given by

Φ̂ = UΦ̂ΛΦ̂JnU
T
Ψ, (25)

whereUΦ̂ is an arbitrary orthonormal matrix andΛΦ̂ =
[

Diag
(

1
λΨ
m
, . . . , 1

λΨ
1

)

Om×(n−m)

]

.
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Proof: Consider the SVD of the dictionaryΨ = UΨΛΨV
T
Ψ and the sensing matrix̂Φ = UΦ̂ΛΦ̂V

T
Φ̂

.

Then the equivalent sensing matrix can be expressed as:

Φ̂Ψ = UΦ̂ΛΦ̂V
T
Φ̂
UΨΛΨV

T
Ψ, (26)

and so the Parseval tight frame constraint in (24) can also beexpressed as:

ΛΦ̂V
T
Φ̂
UΨΛΨΛ

T
ΨU

T
ΨVΦ̂Λ

T
Φ̂
= Im. (27)

To satisfy the Parseval tight frame condition in (27), it is clear thatm columns ofVΦ̂ have to correspond

to m columns ofUΨ. Since the remainingn−m columns ofVΦ̂ do not affect the Parseval tight frame

condition at all, then we take without any loss of generalityVΦ̂ = UΨΠ, whereΠ ∈ R
n×n is a

permutation matrix. Therefore, we can now rewrite the optimization problem as follows:

min
ΛΦ̂,Π

∥

∥ΛΦ̂

∥

∥

2

F

s.t. ΛΦ̂Π
TΛΨΛ

T
ΨΠΛT

Φ̂
= Im,

Π is a permutation matrix.

(28)

The solution to this optimization problem is trivially given by:

Π = Jn, (29)

and

ΛΦ̂ =
[

Diag
(

λΦ̂
1 , λ

Φ̂
2 , . . . , λ

Φ̂
m

)

Om×(n−m)

]

=

[

Diag

(

1

λΨ
m

,
1

λΨ
m−1

, . . . ,
1

λΨ
1

)

Om×(n−m)

]

.
(30)

Proposition 3 uncovers the key operations performed by thissensing matrix design. In particular, this

sensing matrix design i) exposes the modes (singular values) of the dictionary; ii) passes through them

strongest modes and filters out then −m weakest modes; and iii) weighs the strongest modes. This is

accomplished by taking the matrix of right singular vectorsof the sensing matrix to correspond to the

matrix of left singular vectors of the dictionary and takingthe strongest modes of the dictionary.

Proposition 3 leads immediately to the sensing matrix design, which is consistent with the sensing cost

constraint‖Φ̂‖2F = n, as follows:

Φ =

√
nΦ̂

‖Φ̂‖F
=

√
nΛΦ̂JnU

T
Ψ

‖ΛΦ̂‖F
. (31)
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Note that the design approach 1 balances the requirements ofguaranteeing that the equivalent sensing

matrix is as close as possible to a Parseval tight frame against the requirements of guaranteeing that the

cost is as small as possible; in the design approach 2, we force the equivalent sensing matrix to be a

Parseval tight frame and minimize the sensing energy. Note also that the proposed designs are closed-

form whereas other designs in the literature, such as Elad’smethod [16], Duarte-Carvajalino and Sapiro’s

method [17], and Xu et al.’s method [18], are iterative.

Finally, it is also interesting to note that design 1 and design 2 reduce to the design in [24], i.e., to a

tight frame, when we take the dictionary to be orthonormal rather than overcomplete.

V. PERFORMANCERESULTS

We now compare the performance of the proposed sensing matrix designs to other designs in the CS

setting.

A. Distribution of the off-diagonal entries of the coherence matrix

We first investigate the histogram of the absolute values of the off-diagonal entries of the coherence

matrix ΨTΦTΦΨ. In this investigation, we use a random dictionaryΨ ∈ R
64×80 with entries drawn

from i.i.d. zero mean and unit variance Gaussian distributions and then normalized to‖Ψ‖2F = 80. We

also generate three sensing matricesΦ ∈ R
40×64 using the proposed approach 1 withα = 1 andα = 0.1,

and using the proposed approach 2. We compare the performance of the proposed designs with a random

Gaussian matrix design and with three iterative designs, namely, Elad’s design [16], Xu’s design [18]

and Sapiro’s design [17].

It has been observed that coherence matrices with small off-diagonal entries result in good reconstruc-

tion performance in accordance with the mutual coherence reconstruction condition [16]–[18]. Fig. 1

shows that the distributions of the off-diagonal entries inboth designs based on approach 1 are better

than that for the Gaussian matrix design. In particular, note that the design withα = 0.1 has off-diagonal

entries with smaller absolute value than does the design with α = 1. However,‖ΦΨ‖2F = 41.2639 for the

α = 0.1 design is lower than‖ΦΨ‖2F = 89.1929 for theα = 1 design - owing to the lower penalty used

in the optimization problem in (21) - and also lower than‖ΦΨ‖2F = 84.5554 for the Gaussian design.

This observation - via the analysis in Section III - ought to lead to poorer MSE performance of the

design withα = 0.1 in relation to the design withα = 1 and also in relation to the Gaussian design. The

distribution of the off-diagonal entries in the design based on approach 2 is also better than the Gaussian

matrix. In addition, the sensing energy of the equivalent sensing matrix‖ΦΨ‖2F = 89.1929 is not reduced
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Fig. 1. Histogram of the absolute value of the off-diagonal entries of the coherence matrix.

compared to the Gaussian matrix design. Elad’s and Xu’s designs, exhibit good mutual coherence but

poor sensing energy. The attributes of Sapiro’s design are equivalent to those of the design based on

approach 2. Yet, our design is non-iterative whereas Sapiro’s design follows an iterative procedure.

The reconstruction performance of the proposed designs is further investigated in the following subsec-

tions, both in terms of the MSE of the ideal oracle estimator as well as the MSE of practical estimators.

B. The MSE performance using the oracle estimator

In this investigation, we evaluate the MSE performance of various designs using the ideal oracle

estimator, which has played a key role in the definition of ourdesigns. The MSE is evaluated by averaging

over 1000 trials, where in each trial we generate randomly a sparse vector withs randomly placed±1

spikes4. The random dictionaryΨ ∈ R
64×80 is generated randomly by drawing its elements from i.i.d.

zero mean and unit variance Gaussian distributions and thennormalized to‖Ψ‖2F = 80. The parameter

α is set to be equal to 1 for the design based on approach 1.

Fig. 2 illustrates that the performance of our designs compare very well with that of the best iterative

designs. A particularly relevant aspect relates to the sensing matrix normalization of iterative designs.

4We have also performed this experiment and the following experiment with sparse vectors where the randomly placed non-

zero elements follow a zero-mean unit-variance Gaussian distribution. Such experiments, which are not reported in view of

space limitations, also demonstrate that our designs outperform other designs in the literature.
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Fig. 2. MSE performance of different sensing matrices for the oracle estimator (m = 40, n = 64 n̂ = 80 andσ
2 = 10−4).

(a) Elad’s, Xu’s and Sapiro’s designs are not normalized; (b) Elad’s, Xu’s and Sapiro’s designs are normalized.

Sapiro’s design works very well with normalization but Elad’s and Xu’s designs do not. In fact, the MSE

performance of Elad’s and Xu’s design is worse than that of the random Gaussian design, due to the

lower sensing energy (see Fig. 1). The proposed approach 2 has a better MSE performance than approach

1, as the parameterα of approach 1, which is set empirically, affects the performance.

C. The MSE performance using practical estimators

In this investigation, we evaluate the MSE performance of various sensing matrix designs using practical

estimators, which include the BPDN, the Dantzig selector and the OMP. As in the previous investigation,

the MSE is evaluated by averaging over 1000 trials, where in each trial we generate randomly a sparse

vector withs randomly placed±1 spikes. The random dictionaryΨ ∈ R
64×80 is also generated randomly

by drawing its elements from i.i.d. zero mean and unit variance Gaussian distributions and then normalized
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to ‖Ψ‖2F = 80. The parameterα is also set to be equal to 1 for the design based on approach 1.

(a) BPDN (b) Dantzig selector (c) OMP
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Fig. 3. MSE performance of different sensing matrices for (a) the BPDN, (b) the Dantzig selector, and (c) the OMP (m = 40,

n = 64 n̂ = 80 andσ2 = 10−4).

We first evaluate the MSE performance of various sensing matrix designs for various sparsity levels

and for a fixed number of measurements,m = 40. Fig. 3 shows that the proposed design approach 1

outperforms the Gaussian matrix design for all the three estimators. In turn, the proposed design approach

2 outperforms all the other designs. In fact, this design is very attractive, due to the low computation

cost associated with the generation of the sensing matrix.
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30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

m

M
S

E

 

 

Gaussian matrix design

Proposed approach 1

Proposed approach 2

Elad's design with normalization

Xu's design with normalization

Sapiro's design with normalization

30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

m

M
S

E

 

 

Gaussian matrix design

Proposed approach 1

Proposed approach 2

Elad's design with normalization

Xu's design with normalization

Sapiro's design with normalization

30 35 40 45 50
0

2

4

6

8

10

12

m

M
S

E

 

 

Gaussian matrix design

Proposed approach 1

Proposed approach 2

Elad's design with normalization

Xu's design with normalization

Sapiro's design with normalization

Fig. 4. MSE performance of different sensing matrices for (a) the BPDN, (b) the Dantzig selector, and (c) the OMP (s = 10,

n = 64 n̂ = 80 andσ2 = 10−4).

We now evaluate the MSE performance of various sensing matrix designs for various numbers of
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measurements and for a fixed sparsity levels = 10. Fig. 4 shows once again that the proposed designs

outperform the Gaussian matrix design. We note that the proposed designs improve the reconstruction

performance for all the three estimators, compared to the Gaussian matrix design. The iterative Elad’s

design, Sapiro’s design, and Xu’s design, slightly outperform the proposed designs in some cases, but

the computation complexity associated with the generationof these designs is much higher than that

associated with the generation of our design.

D. The reconstruction performance for learned dictionaries in CS imaging

We now assess the performance of the proposed designs by considering other practical issues. In

particular, we consider real rather than synthetic signalswhose representations are typically nearly sparse

instead of sparse in some dictionary. We also consider learned dictionaries rather than random ones5.

In the experiment, we use the cameraman image of size256 × 256 pixels, which is partitioned into

1024 nonoverlapping patches of size8 × 8 pixels, i.e.,n = 64. We train a dictionary of size64 × 81

for sparsely representing these nonoverlapping patches byusing the K-SVD method [46]. The number

of measurements for each patch is set to be equal to 40 and the measurements are corrupted by additive

zero-mean Gaussian noise with varianceσ2 = 10−3. We setα = 1 for the proposed approach 1. We

also use the OMP to reconstruct the image from its noisy measurements owing to its fast execution. We

evaluate performance using the reconstructed signal to noise ratio (RSNR):

RSNR=
‖f̃‖2

‖f − f̃‖2
, (32)

wheref represents the original image andf̃ represents the reconstructed image.

Fig. 5 demonstrates the higher reconstruction quality and RSNR of our sensing matrix designs in

relation to the random Gaussian matrix design. The proposedapproach 2 exhibits the best performance.

Sapiro’s iterative design also exhibits a very good performance but Elad’s and Xu’s iterative designs with

normalized sensing energy exhibit very poor performance, which in fact is worse than that for Gaussian

matrix design. Interestingly we recall that the performance of the proposed two designs compare well to

that of Gaussian matrix design for random basis and exactly sparse signals as shown in Fig. 3 and 4.

5We note that the dictionary learning process yields sparse representations that do not necessarily fit the statistical signal

model that has been used as a basis of the sensing matrix design procedure. However, the value of the sensing matrix designs

is also justified by the fact that it also yields observable gains in this scenario.
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(a) Gaussian matrix design

RSNR = 8.5197
(b) Proposed approach 1

RSNR = 9.5386

(c) Proposed approach 2

RSNR = 15.4729

(d) Elad’s design with normalization

RSNR = 7.3595
(e) Xu’s design with normalization

RSNR = 7.0452

(f) Sapiro’s design with normalization

RSNR = 15.4537

Fig. 5. Reconstructed images using a learned basis.

VI. D ISCUSSION: RANDOM VS. OPTIMIZED PROJECTIONS

Recent results [47]–[49] have established that - at least asymptotically with the signal ambient dimen-

sion - no sensing or reconstruction strategy leads to essentially better performance than random sensing

and standardℓ1 based reconstruction. In contrast, our results indicate that a tight-frame based sensing

matrix design can clearly outperform a random sensing matrix design for low signal ambient dimensions.

It is thus interesting to ask whether our optimized designs can also outperform the random ones with

an increase of the signal ambient dimension. This question is also justified by the fact that the recent

contributions in the literature concentrate on signals that are sparse in the canonical basis rather than

signals that are sparse in an overcomplete dictionary. Interestingly, the numerical analysis reveals that

the trends applicable to overcomplete dictionaries can be distinct from those applicable to the canonical

dictionary (and also orthonormal ones).

The experiments also consider randomly generated sparse vectors withs randomly placed±1 spikes.

We consider both a random Gaussian sensing matrix design andan optimized sensing matrix design based
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Fig. 6. Histogram of the singular values of a random overcomplete dictionary (n = 1000, n̂ = 1200 and‖Ψ‖2F = n̂) and a

specialized overcomplete dictionary (n = 1000, n̂ = 1200, ‖Ψ‖2F = n̂ and
λΨ
i+1

λΨ
i

= 0.995).

on approach 2 due to its low computational cost. The sensing matrix designs are normalized such that

‖Φ‖2F = n. We also consider three distinct dictionaries: i) the canonical basis; ii) a random overcomplete

dictionary; and iii) a specified overcomplete dictionary. The random overcomplete dictionary is generated

by drawing its elements randomly in accordance with i.i.d. zero-mean unit-variance Gaussian distributions.

The specified overcomplete dictionary is generated via its singular value decomposition by taking two

randomly generated orthonormal matrices and by taking its positive singular valuesλΨ
1 ≥ . . . ≥ λΨ

n such

that λΨ
1 = 1 and

λΨ
i+1

λΨ
i

= 0.995 (i = 1, . . . , n − 1). Both overcomplete dictionaries are also normalized

such that‖Ψ‖2F = n̂.

The rationale for considering two different overcomplete dictionaries is because it is not entirely clear

how to change the dictionary as the signal ambient dimensionis varied6. Therefore, two overcomplete

dictionaries that exhibit a very different singular value profile as shown in Fig. 6, are chosen that will

allow us to articulate different trends in the experiments.

The MSE performance associated with the various sensing matrix designs is also averaged over 1000

trials. We unveil the performance trends by showing how the ratio of the average MSE associated with

the optimized sensing matrix design to the average MSE associated with a random sensing matrix design

behaves as a function of the signal ambient dimension for various combinations of (m, s), both for the

Dantzig selector and the oracle estimator. The signal dimension is restricted ton = 1000 due to the long

execution time of the simulations.

6Note that this issue is not relevant when the signal dimension is fixed as in the previous experiments (or for the canonical

basis).
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Fig. 7. Ratio of the average MSE associated with an optimizedsensing matrix design to that associated with a random Gaussian

sensing matrix design for signals that are sparse in the canonical basis (σ2 = 10−4).
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Fig. 8. Ratio of the average MSE associated with an optimizedsensing matrix design to that associated with a random Gaussian

sensing matrix design for signals that are sparse in a randomly generated overcomplete dictionarie (n̂ = 1.2n andσ2 = 10−4).

A. Case I: Signals that are sparse on the canonical basis

Fig. 7 examines how the ratio of the average MSE associated with the optimized sensing matrix design

to the average MSE associated with a random Gaussian sensingmatrix design - which is a tight frame

- behaves as a function of the signal dimension. One observesthat the average MSE ratio tends to one

with the increase of the signal dimension both for the oracleestimator and the Dantzig selector. This is

due to the fact that a random Gaussian matrix tends to a tight frame with the increase ofn for a fixed

m [50].

It turns out that this result is consistent with the result in[47], where random sensing matrix designs

are demonstrated to be near-optimal (asymptotically) for signals that are sparse in the canonical basis.
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Fig. 9. Ratio of the average MSE associated with an optimizedsensing matrix design to that associated with a random Gaussian

sensing matrix design for signals that are sparse in a specified overcomplete dictionary (n̂ = 1.2n andσ2 = 10−4).

B. Case II: Signals that are sparse on an overcomplete dictionary

Figs. 8 and 9 examine how the average MSE ratio behaves as a function of the signal dimension for

the random and specified overcomplete dictionaries, respectively. One now observes that - and in sharp

contrast to the canonical basis scenario - the average MSE ratio tends to increase with the increase of

the signal dimension. This trend is exhibited by the oracle estimator for the pairs (m = 100, s = 5) and

(m = 80, s = 10). The trend is also exhibited by the Dantzig selector for (m = 100, s = 5) but not for

(m = 80, s = 10): this exception seems to be due to severe reconstruction errors in view of the fact that

one may not be satisfying the requirementm = O(s log(n/s)) [1], [2].

It is relevant though to point out a major difference in the behavior of the trends for the random and

specified overcomplete dictionaries. For the random dictionary, the average MSE ratio appears to saturate

with the increase of the signal dimension: this fact can be justified by noting that not only does the

optimized design tends to a tight frame with the increase ofn for a fixedm - because them largest

singular values of a random dictionary tend to be similar with the increase ofn for a fixedm (see also

Fig. 6) - but also the random Gaussian matrix design also tends to a tight frame with the increase of

n for a fixedm as discussed previously. In contrast, for the specified dictionary the average MSE ratio

does not appear to saturate with the increase of the signal dimension.

It turns out that such trends can also be partly reconciled with the arguments of the previous sections.

In particular, Figs. 10 and 11 depict how the average sensed energy (i.e., the energy present at the

input to the estimator) behaves as a function of the signal dimension for the random and the specified

overcomplete dictionaries, respectively. Note that the average sensed energyEx

(

Tr
(

ΦΨxxTΨTΦT
))

corresponds to the equivalent sensing matrix energy‖ΦΨ‖2F in view of the fact thatEx(xx
T ) = In̂. We
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Fig. 10. Average sensed energy‖ΦΨ‖2F for a random overcomplete dictionary (n̂ = 1.2n).
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would like to emphasize that for both Figs. 10 and 11 the sensing matrix designs have been normalized

such that‖Φ‖2F = n.

One observes clearly that the optimized designs have the capability to “sense” higher energy than the

random ones in the presence of overcomplete dictionaries (both the random and the specified overcomplete

dictionary) and - via the analysis in Section III - potentially have the capability to offer a lower MSE

(as confirmed in Figs. 8 and 9). Figs. 10 and 11 also confirm thatfor the random dictionary the sensed

energy tends to saturate with the increase of the signal dimension but for the specified dictionary it does

not.

We recognize that this analysis is mainly heuristic: a proper understanding of the advantages of designed

projections over random ones in the presence of signals thatadmit sparse representations in overcomplete

dictionaries is beyond the scope of this article. However, the practical relevance of the overall results -

independently of whether or not it can be crisply shown that optimized projections clearly outperform
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random ones for high ambient dimensions - is also associatedwith the fact that in some applications it is

typical to deal with small dimensions. For example, in certain imaging applications it is standard practice

to divide an image into various (possibly overlapping) patches of typically small dimensions [46]. The

results then show that there is indeed significant value in using optimized projections in lieu of random

ones.

VII. C ONCLUSIONS

In this paper, we have considered the design of sensing matrices for CS applications. By showing that

one ought to set the equivalent sensing matrix to be equal to atight frame in order to derive a good MSE

performance subject to sensing energy constraints, we haveproposed two sensing matrix designs that are

instilled with operational significance. Our designs also exhibit various advantages in relation to other

designs in the literature. In particular, the proposed designs exhibit MSE performance gains in relation

to the conventional random sensing matrix designs as well asother optimized designs. The proposed

designs are also closed-form, and as a result easy to generate, whereas other optimized designs in the

literature are typically iterative.
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APPENDIX A

PROOF OF THEPROPOSITION1

This proof follows the ideas of the proof of Proposition 1 in [24]. Let ŝ ≤ s be a positive integer. Let

alsoJ t
ŝ ⊂ {1, 2, . . . , n̂} (t = 1, . . . ,Tŝ) denote a support set with cardinalityŝ, whereTŝ =

(

n̂
ŝ

)

= n̂!
ŝ!(n̂−ŝ)! .

We letDJ t
ŝ
= ET

J t
ŝ
QEJ t

ŝ
. We also letλJ t

ŝ

ŝ ≥ . . . ≥ λ
J t

ŝ

1 be the eigenvalues ofDJ t
ŝ
. Let Pr(‖J ‖0 = ŝ)

denote the probability that the support size ofJ is ŝ.

We now note that
Tŝ
∑

t=1

Tr
(

DJ t
ŝ

)

= Tr

((

Tŝ
∑

t=1

EJ t
ŝ
ET

J t
ŝ

)

Q

)

= Tr

(

ŝTŝ

n̂
In̂Q

)

=
mŝTŝ

n̂
.

(33)
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By the arithmetic mean - harmonic mean inequality, it follows that:

Tŝ
∑

t=1

ŝ
∑

n̂=1

1

λ
J t

ŝ

n̂

≥ (ŝTŝ)
2

∑Tŝ

t=1

∑ŝ
n̂=1 λ

J t
ŝ

n̂

=
(ŝTŝ)

2

∑Tŝ

t=1 Tr
(

DJ t
ŝ

) =
n̂ŝTŝ

m
, (34)

where one achieves the lower bound withλJ t
ŝ

n̂ = m
n̂ (n̂ = 1, . . . , ŝ; t = 1, . . . ,Tŝ). This implies

immediately that the matrixQ = m
n̂ In̂, which is consistent with the constraints, minimizes:

EJŝ

(

Tr
(

(DJŝ
)−1
))

=
1

Tŝ

Tŝ
∑

t=1

ŝ
∑

n̂=1

1

λ
J t

ŝ

n̂

, (35)

and hence also minimizes:

EJ
(

Tr
(

(DJ )
−1
))

=

s
∑

ŝ=1

Pr(‖J ‖0 = ŝ)EJŝ

(

Tr
(

(DJŝ
)−1
))

. (36)

APPENDIX B

PROOF OF THEPROPOSITION2

This proof follows the ideas of the proof of Proposition 2 in [24]. By using the SVDA = UAΛAVT
A,

whereUA ∈ R
m×m andVA ∈ R

n̂×n̂ are orthonormal matrices, andΛA ∈ R
m×n̂ is a matrix whose

main diagonal entries (λA
1 ≥ λA

2 ≥ . . . λA
m ≥ 0) are the singular values ofA, and the off-diagonal entries

are zeros, we pose the convex optimization problem:

min
λA
1 ,...,λA

m

m
∑

i=1

(

(

λA
i

)2 − m

n̂

)2

s.t.
m
∑

i=1

(

λA
i

)2
= m, λA

i ≥ 0 (i = 1, 2, . . . ,m).

(37)

which, in view of the fact that
∥

∥ATA− m
n̂ In̂

∥

∥

2

F
=
∑m

i=1

(

(

λA
i

)2 − m
n̂

)2
andTr

(

ATA
)

=
∑m

i=1

(

λA
i

)2
,

leads to the solution of (15). Since the solution of (37) isλA
i = 1 (i = 1, 2, . . . ,m), it follows that any

Parseval tight frame is the solution of (15).

APPENDIX C

TIGHT FRAMES AND STRIP

Another benefit of tight frames - more precisely, unit-norm tight frames - is its relation to the weaker

version of the RIP, namely the StRIP. The StRIP, which has been proposed by Calderbank et al. [22], can

be used to evaluate the expected-case performance of CS, whereas the RIP is a worst-case performance

indicator, as is the mutual coherence. The StRIP guaranteessuccessful reconstruction of all but an

exponentially small fraction ofs sparse signals. The definition of StRIP uses a probability criterion

to replace the hard requirement demanded in the definition ofthe RIP.
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Definition 2: A matrix A ∈ R
m×n̂ is said to be an(s, δ, η)-StRIP matrix if fors sparse vectorsx ∈ R

n̂

the inequalities

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (38)

hold with probability exceeding1− η with respect to a uniform distribution of the vectorsx among all

s sparse vectors inRn̂ having the same fixed magnitudes.

Calderbank et al. [22] demonstrate that deterministic sensing matrices are StRIP matrices if they satisfy

all of the following criteria:

1) The rows ofA are orthogonal and all the row sums are zero, i.e.,
∑n̂

i=1 ai = 0;

2) The columns ofA form a group under point-wise multiplication;

3) There is one column ofA equal to1, which can be assumed as the first column. For alli ∈
{2, . . . , n̂}, ‖ai‖22 ≤ m2−β , where0 < β ≤ 1.

A large class of matrices, including discrete chirp sensingmatrices, Bose, Chaudhuri, and Hocquenghem

(BCH) sensing matrices, Kerdock, Delsarte-Goethals and second order Reed Muller sensing matrices,

satisfy these criteria, and thus are StRIP matrices. In [22], they prove that the RIP of these matrices is

satisfied with a probability exceeding1−O
(

exp
(

− δ2mβ

s

))

. However, a unit norm tight frame does not

necessarily satisfy these criteria. For example, an orthonormal matrix, which is also a unit norm tight

frame withm = n̂, does not necessarily satisfy
∑n̂

i=1 ai = 0.

The following Proposition demonstrates that a unit-norm tight frame is also a StRIP matrix

Proposition 4: Let A ∈ R
m×n̂ be a unit norm tight frame with mutual coherence equal toµ. For any

s sparse vectorsx ∈ R
n̂, the RIP holds with probability:

P

(
∣

∣

∣
‖Ax‖22 − ‖x‖22

∣

∣

∣
≤ δ ‖x‖22

)

> 1− (s/2)
− (0.3894δ− s

m )2

36µ2s loge(1+s/2) , (39)

where
√

237.42µ2s loge(1 + s/2) + 2.57s
m ≤ δ < 1.

Proof: Let AJs
∈ R

m×s be ans-column submatrix ofA ∈ R
m×n̂ (s < m ≤ n̂), whereJs ⊂

{1, . . . , n̂} denotes a support set with cardinalitys. Let λ
AT

Js
AJs

1 ≥ . . . ≥ λ
AT

Js
AJs

s ≥ 0 be the

eigenvalues of the positive semi-definite matrixAT
Js
AJs

. We have that the maximum eigenvalueλ
AT

Js
AJs

1

and minimum eigenvalueλ
AT

Js
AJs

s of AT
Js
AJs

are given by

λ
AT

Js
AJs

1 = max
z6=0

‖AJs
z‖22

‖z‖22
, (40)

and

λ
AT

Js
AJs

s = min
z6=0

‖AJs
z‖22

‖z‖22
, (41)
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wherez ∈ R
s. Therefore, we have

λ
AT

Js
AJs

s ‖z‖22 ≤ ‖AJs
z‖22 ≤ λ

AT
Js

AJs

1 ‖z‖22, (42)

or

(λ
AT

Js
AJs

s − 1)‖z‖22 ≤ ‖AJs
z‖22 − ‖z‖22 ≤ (λ

AT
Js

AJs

1 − 1)‖z‖22, (43)

for any z ∈ R
s. By definingδJs

= max
(
∣

∣

∣
λ
AT

Js
AJs

1 − 1
∣

∣

∣
,
∣

∣

∣
λ
AT

Js
AJs

s − 1
∣

∣

∣

)

, it follows that

∣

∣‖AJs
z‖22 − ‖z‖22

∣

∣ ≤ δJs
‖z‖22. (44)

We can immediately derive that the RIC satisfiesδs = maxJs
δJs

by comparing (44) with (5).

The following theorem, which has been proved by Tropp in [51], defines a probability bound forδJs
.

Theorem 2:Theorem LetA ∈ R
m×n̂ (m < n̂) be a matrix whose columns have unit norm, i.e.,

‖ai‖2 = 1 for all i ∈ {1, . . . , n̂}, AJs
∈ R

m×s (s < m) be a randoms-column submatrix ofA with a

supportJs ⊂ {1, . . . , n̂} of cardinalitys, andµ be the mutual coherence ofA. Suppose that

√

144µ2s loge(1 + s/2)ρ+
2s

n̂
‖A‖2 ≤ e−0.25δ, (45)

whereρ ≥ 1 and0 < δ < 1. Then

Pr(δJs
≥ δ) ≤ (s/2)−ρ. (46)

We now use the fact thatA is a unit norm tight frame with frame bound equal ton̂m , so that‖A‖2 = n̂
m .

We then rewrite (45) to be

1 ≤ ρ ≤
(

e−0.25δ − 2s
m

)2

144µ2s loge(1 + s/2)
, (47)

where
√

144e0.5µ2s loge(1 + s/2)+ 2e0.25s
m ≤ δ < 1. Since the inequality (46) holds for anyρ satisfying

(45), we have that for a random setJs, the inequality (44) leads to the probability bound

P
(
∣

∣‖AJs
z‖22 − ‖z‖22

∣

∣ ≤ δ‖z‖22
)

≥P (δJs
≤ δ)

>1− (s/2)
− (0.3894δ− s

m )2

36µ2s loge(1+s/2) ,

(48)

when
√

237.42µ2s loge(1 + s/2) + 2.57s
m ≤ δ < 1.

Remark 1: The mutual coherenceµ plays as an important role in this probability bound. The mutual

coherence of various unit norm tight frames could be different, and its distribution is unknown. However,

the mutual coherence is fixed for some specific unit norm tightframes. For example, the Fourier-Dirac

tight frame has mutual coherenceµ = 1√
m

[51], and the equiangular tight frame has mutual coherence

µ =
√

n̂−m
m(n̂−1) [52].
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Remark 2: In [22], the authors conclude that the RIP is satisfied with aprobability exceeding1 −
O
(

exp
(

− δ2mβ

s

))

(0 < β ≤ 1) for a large class of matrices, including discrete chirp sensing matrices,

Bose, Chaudhuri, and Hocquenghem (BCH) sensing matrices, Kerdock, Delsarte-Goethals and second

order Reed Muller sensing matrices. According to Proposition 4, we can conclude that the RIP holds with

a probability that exceeds1−O
(

exp
(

− δ2m
s

))

for Fourier-Dirac tight frames and the equiangular tight

frame, so that these tight frames exhibit better quality in terms of the StRIP in relation to the sensing

matrices in [22].

Remark 3: Proposition 4 requires unit norm tight frames with frame bound n̂
m . It turns out that, one

can scale a unit norm tight frame viaA =
√
mA

‖A‖F
, which leads to a Parseval tight frame with an equal

column norm, in order to achieve the frame bound equal to 1 used in the paper. In fact, scaling the unit

norm tight frames does not change the matrix structure, onlythe sensing energy.
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vol. 346, no. 9-10, pp. 589–592, 2008.

[37] E. Candès and T. Tao, “Decoding by linear programming,” Information Theory, IEEE Transactions on, vol. 51, no. 12, pp.

4203 – 4215, Dec. 2005.

[38] S. Kim and C. Yoo, “Underdetermined blind source separation based on subspace representation,”Signal Processing, IEEE

Transactions on, vol. 57, no. 7, pp. 2604 –2614, Jul. 2009.

[39] V. Bostanov, “Bci competition 2003-data sets ib and iib: feature extraction from event-related brain potentials with the

continuous wavelet transform and the t-value scalogram,”Biomedical Engineering, IEEE Transactions on, vol. 51, no. 6,

pp. 1057 –1061, Jun. 2004.

[40] G. Yen and K.-C. Lin, “Wavelet packet feature extraction for vibration monitoring,” Industrial Electronics, IEEE

Transactions on, vol. 47, no. 3, pp. 650 –667, Jun. 2000.
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