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Non-Asymptotic Average-Case Analysis
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Abstract—Hoeffding’s U-statistics model combinatorial-type require finite block sizes. Hence, non-asymptotic analgses
matrix parameters (appearing in CS theory) in a natural way. more application relevant. In the same practical aspecgnte
This paper proposes using these statistics for analyzing ralom work deals with non-asymptotic analysis ofeterministic

compressed sensing matrices, in the non-asymptotic regime . ; ;
(relevant to practice). The aim is to address certain pessims Co matrices, seel[4][[7],_[14][15]. On the other hand

of “worst-case” restricted isometry analyses, as observed by both Certain situations may not allow control over the sampling
Blanchard & Dossal, et. al. process, whereby the sampling may be inherently ranéagn,

We show how U-statistics can obtain “average-case” analyse prediction of clinical outcomes of various tumors based on
by relating to statistical restricted isometry property (StRIP) type  gene expression5][6]. Random sampling has certain desirabl

recovery guarantees. However unlike standard StRIP, randm imolicitv/effici feat S T16 dat it
signal models are not required; the analysis here holds in taal- SimPplicity/efficiency features - see [16] on data acquositin

most sure (probabilistic) sense. For Gaussian/bounded entry ma- the distributed sensor setting. Also recent hardware imple
trices, we show that both¢;-minimization and LASSO essentially mentations point out energy/complexity-cost benefits of im
require on the order of k - [log((n — k)/u) + \/2(k/n)log(n/k)]  plementingpseudo-random binary sequend&g]-[19]; these
measurements to respectively recover at least— 5u fraction, and sequences mimic statistical behavior. Non-asymptotityaita

1 — 4u fraction, of the signals. Noisy conditions are considered. . ticular] luabl h d I ty t
Empirical evidence suggests our analysis to compare well to IS particularly valuable, when random sampies are costly to

Donoho & Tanner's recent large deviation bounds for ¢,/¢,- acquire. For example, each clinical trial could be expensiv
equivalence, in the regime of block lengthsl000 ~ 3000 with to conduct an excessive number of times. In the systems

high undersampling (50 ~ 150 measurements); similar system setting, the application could be running on a tight energy
sizes are found in recent CS implementation. . budget - whereby processing/communication costs depend on
In this work, it is assumed throughout that matrix columns .
are independently sampled. the n_umber of_ sa_mplgs acquired. o _
This work is inspired by thestatistical notion of the
' restricted isometry property (StRIP), initially develapéor
deterministic CS analysi$ [14], [15]. The idea is to relag th
| INTRODUCTION analysis_, by allowing sampling _mgtrix parameters (thatrgua
) antee signal recovery) to be satisfied fdiraction of subsets.
Compressed sensing (CS) analysis involves relativelyntecgyyr interest is in “average-case” notions in the context of
results from random matrix theory![1], whereby recoveryrguarandomized sampling, reason being that certain pessimi$ms
antees are framed in the context of matrix parameters knewn-@orst-case” restricted isometry analyses have been vbder
restricted isometry constant®ther matrix parameters are alsqp, past works [[18], [[20], [[21]. On the other hand in [22],
often studied in CS. Earlier work on sparse approximation coponoho & Tanner remarked on potential benefits of the above
sidered a matrix parameter known @witual coherencg2l-  «ayerage-case” notion, recently pursued in an adaptaticn o
[4]. Fuchs’ work onKarush-Kuhn-Tucker (KKTonditions previous asymptotic result [23]. In the multichannel segfi
for sparsity pattern recovery considered a parametervimgl “average-case” notions are employed to make analysis more
a matrix pseudoinversgs], re-occurring in recent work_[4], tractable [24],1125]. In[[25] a simple “thresholding” algtm
[6], [7]. Finally, the null-space property8]-{10] is gaining s analyzed via an “average” coherence parameter. However
recent popularity - being the parameter closest relatethdo he works in this respect are few, most random analyses are of
fundamental compression limit dictated Bel'fand widths ine “worst-case” type, seB [12], [13], [21], [27]. We invigstte
All above parameters share a similar feature, that is thgye unexplored, with the aim of providing new insights and

are defined over subsets of a certain fixed skzeThis optaining new/improved results for the “average-case”.
combinatorial nature makes them difficult to evaluate, evenere we consider a random analysis tool that is well-

for moderate block lengths. Most CS work therefore involve gyjited to the CS context, yet seemingly left untouched in

some form of randomization to help the analysis. the literature. Our approach differs from that of deterstiai
While the celebrated:log(n/k) result was initially ap- matrices, where “average-case” analysis is typically made
proached via asymptotics,g, [1], [11]-[13], implementations 5ccessible via mutual coherence, seel [14]) [15]] [18]. For
F. Lim and V. M. Stojanovic are with the Research Laboratdrilectron- fando_m mat_riceS' we prOp_Ose an altemative approacllu_via
ics, Massachusetts Institute of Technology, 77 Massatisusgenue, Cam- Statistics which do not require random signal models typically
bridge, MA 02139. Email{flim,viada}@mit.edu. This work was supported introduced in StRIP analysis, see [14], [[25], [26]; hereg th
by NSF grant ECCS-1128226. ) : ST
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since they are designed for combinatorial-type parameteirs Sectior]l. In Sectiofi 1ll we present a general U-statati
Also, they have a natural “average-case” interpretatidrickv  theorem for large-deviation (“average-case”) behavioSéc-
we apply to recent recovery guarantees that share the saie [[V] the U-statistical machinery is applied to StRIP-¢yp
“average-case” characteristic. Finally thanks to the theaf “average-case” recovery. We conclude in Secfidn V.
U-statistical literature, the theory developed here isnotme Notation: The set of real numbers is denot&dDetermin-
other extensionse.g, in related work [[28] we demonstrateistic quantities are denoted usiaga, or A, where bold fonts
how U-statistics may also perform “worst-case” analysis. denote vectord.g., a) or matricesi(e., A). Random quantities
Contributions: “Average-case” analyses are developedre denoted using upper-cagalics, where A is a random
based on U-statistics, which are i) empirically observeletee variable (RV), andA a random vector/matrix. Létr{A < a}
good potential for predicting CS recovery in non-asymptotdenote the probability that evedtd < a} occurs. Sets are
regimes, and ii) theoretically obtain measurement rates$ tlienoted using braces,g, {1,2,---}. The notatiorit denotes
incorporate a non-zero failure rate (similar to thivg(n/k) expectation. The notation j, ¢, w is used for indexing. We let
rate from “worst-case” analyses). We utilize a U-statatic || - ||, denote the/,,-norm forp = 1 and2.
large deviation concentration theorem, under the assompti
that the matrix columns are independently sampled. Thelarg II. PRELIMINARIES
deviation error bound holdalmost surely(Theorem1L). No
random signal model is needed, and the error is of t i ] )
order (n/k) " log(n/k), wherebyk is the U-statistic kernel _ A VEctorais said to bek-sparse, if at most vector coef-
size (andk also equals sparsity level). Gaussian/boundd§ients are non-zerd.g, its fo-distance satisfiegallo < k).
entry matrices are considered. For concreteness, we cbft” P€ & positive |2teger that denotes block length, and let
nect with StRIP-type guarantees (frofii [€]] [7]) to study th® = [@1,a2,---, an]” denote a lengthr signal vector with
fraction of recoverable signals.€., “average-case” recov- Signal coefficients,;. Thebestk-term approximatiora, of
ery) of: i) ¢;-minimizationand ii) least absolute shrinkage IS Obtained by finding thé-sparse vectag). that has minimal

and selection operator (LASSQ)nder noisy conditions. For @PProximation erroflay, — a||. _ _

both these algorithms we showonst -k[log((n — k)/u) + Let & denote anm x n CS sampling matrix, where
2(k/n) log(n/k)] measurements are essentially required, {§ < " The I;:‘ngthm measurement vectordenotedb =

respectively recover at least — 5u fraction (Theoreni2), [1:02:--,bm]" of some lengthe signal @, is formed as

and 1 — 4u fraction (Theorenil3), of possible signals. Thi = ®a. Recoveringx from b is challenging as possesses

is improved tol — 3u fraction for the noiseless case. Herdnon-trivial null-spaceWe typically recover: by solving the

const = max(4/(ayas)?, 2¢1/(0.29—ay)?) for to be specified (CONVeX)¢1-minimization problem

constantsu, as, ¢, Wherec; depends on the distribution of min ||&@|[; st ||B — ®a|l; <e. (1)

matrix entries. Note that the terny2(k/n)log(n/k) is at eRn

most 1 and vanishes with smati/n. Empirical evidence The vectorb is a noisyversion of the original measurements

suggests that our approach compares well with recent sesit and heree bounds the noise errore., ¢ > ||B — b||o-

from Donoho & Tanner[[23] - improvement is suggestefecovery conditions have been considered in many flavors [2]

for system sizes found in implementations [17], with larggg], [11], [22], [23], and mostly rely on studying parameter

undersamplingi(e., m = 50 ~ 100 andn = 1000 ~ 3000). of the sampling matrixp.

The large deviation analysis here does show some pessimisrRor k < n, the k-th restricted isometry constantd;, of an

in the size ofconst above, wherebyonst > 4 (we conjecture m x n matrix ®, equals the smallest constant that satisfies

possible improvement). For Gaussian/Bernoulli matrives,

find const ~ 1.8 to be inherently smalleg.g, for £ = 4 this (1= a)llelfs < [[@all; < (1+04)llallz, 2)

predicts recovery of x 10~¢ fraction with 153 measurements for any k-sparseax in R™. The following well-known recovery

- empirically m = 150. guarantee is stated w.rd; in (@).

b the. StRIP-typ_e guarantees [61. [7] seem to WOFK WeILI'heorem A, cf., [29] Let & be the sensing matrix. Let
y simply not placing restrictive conditions on the maximum

; ] . . . _denote the signal vector. Létbe the measuremenis.,, b =
eigenvalues of the sizesubmatrices. Our theory applies falrly(I) Assume that thé2k)-th restricted isometry constag
well for various considered system sizesn,n (e.g, Figure a. u €2k) : ! y b

[4), however innoisy situations, a (relatively small) factor of of & satisfiessy; < v2—1, and further assume that the noisy

i ) . . . ) ionb isfies||b — < e a
V'k losses is seen without making certain maximum elgenval\gér:tfgb ?(Ix?mzé:itcl)sr:clteoﬂbTheaHt; o ;Ihﬁ;fm SEITJ ‘t)it;;*je
assumptions. For;-recovery, the estimation error is nowtO a sgtri)sfies ' !
bounded by a/% factor of its best-term approximation error )

(both errors measured using thenorm). For LASSO, the the [la* —alli < clle — a1 + cze,

non-zero signal magnitudes must now be bounded below _ _
a factor\/2klogn (with respect to noise standard deviation)&sr;g” ignstst/gt)m 1_) /4( 5 1;%’“\4% %’“(1 +v2)) and
- 2k - - 2k - .

as opposed tq/Zlogn in [6]. These losses occur not because

of StRIP analyses, but because of the estimation technique¥heorem A is very powerful, on condition that we know the

employed here. constants,. But because of their combinatoric nature, com-
Organization: We begin with relevant background on CSuting the restricted isometry constamsis NP-Hard [13].

I'"?\é Compressed Sensing (CS) Theory
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Let S denote a sizé-subset of indices. Labs denote the size Obtain a bounded kernel by settingg(A,a) = 1{¢(A) >
m x k submatrix of®, indexed on (column indices) if. Let a}. Construct a U-statistid/,,(6) of ® the form U, () =
2ax(®s) ando?,(®s) respectively denote the minimum and(?) ™" "¢ 1{¢(®s) > 6}. Then if this U-statistic satisfies
maximum squared-singular valuesf @ s. Then from[2) ifthe /,(§) = 1 — u, the u-StRIP constan®;, of & is at most
columnsg; of ® are properly normalized,e,, if ||¢i|l2 =1, 4, i.e, §. < 6.
we deduce thady, is the smallest constant iR that satisfies ~ To exploit apparent similarities between U-statistics and
2 _ _ 2 StRIP, we turn to two “average-case” guarantees found in
O 2 max(oma(®s) = 1,1 = omin(®s)), ®) the StRIP literature. In the sequel, the conditions reguire
for all (};) size subsetsS. For largen, the number(}) is py these two guarantees, will be analyzed in detail via U-
huge. Fortunately, need not be explicitty computed, if westatistics - for now let us recap these guarantees. First, an
can estimate it after incorporatimgndomization[1], [11]. ¢1-minimization recovery guarantee recently givenlih [7]ais
Recovery guarantee Theorem A involves “worst-case” an&@tRr|P-adapted version of the “worst-case” guarantee Emor
ysis. If the inequality[(B) is violated fanyone submatri®s, A. For any non-square matriA, let AT denote theMoore-
then thewholematrix ® is deemed to have restricted isometrpenrose pseudoinver&A Vectorﬁ with entries in{_L 1} is
constant larger thafi,. A common complaint of such “worst- termed asign vector. Fora € R", we writeas for the length-
case” analyses is pessimiseng, in [20] it is found that for 1 vector supported o. Let S, denote the complementary
n = 4000 and m = 1000, the restricted isometry propertyset of S, i.e, S. = {1,2,---,n} \ S. The “average-case”

is not even satisfied for sparsity = 5. This motivates the guarantees require us to check conditionsofor fractions
“‘average-case” analysis investigated here, where theveego of subsetss, or sign-subsetpairs (8, S).

guarantee is relaxed to hold for a large “fraction” of signal _ .
(useful in applications that do not demand all possibleaiggn 1heorem B, c.f., Lemma 3, [7] Let® be anm X T Sensing
to be completely recovered). We draw ideas from the stedisti M2{rix. LetS be a sizek subset, and lef € {—1,1}". Assume
StRIP notion used in deterministic CS, which only requirfiat @ satisfies

“most” of the submatrice®s to satisfy some properties. « invertibility: for at least a fractionl — u; of subsetsS,
In statistics, a well-known notion of a U-statistic (intuazkd the conditionomin(®s) > 0 holds.

in the next subsection) is very similar to StRIP. We will show * small projections: for at least a fractioh — u, of sign-

how U-statistics naturally lead to “average-case” analysi subset pairg3, S), the condition

‘@L@)Tﬂ‘ < ay for everyi ¢ S

holds where we assume the constani< 1.
« worst-case projections: for at least a fractidn— ug of
subsetsS, the following condition holds

B. U-statistics & StRIP

A function ¢ : R™** — R is said to be aernel, if for
any A, A’ € R™** we have((A) = ¢((A’) if matrix A’ can
be obtained fromA by column reordering Let Ry ;) be the
set of real numbers bounded below @wand above by, i.e., ||(I):fg¢i||1 < ag for everyi ¢ S.

R, = {a € R: 0 < a < 1}. U-statistics are associatedrhen for a fractionl —u; —u; —us of sign-subset pairé3, S),
with functionsg : R™** x R — Rp,1) known asbounded  the following error bounds are satisfied
kernels. To obtain bounded kernedsfrom indicator functions,

2a _
simply use some kerngland sety(A,a) = 1 {C(A) < a} or llas —as|[i < . _‘22 |l — a1,
9(A,a) =1{((A) > a}, e-g-]l{ar%lax(A) <a}.
o o llos, —as. |1 < |l — @],
Definition 1 (Bounded Kernel U-Statistics)Let A be a 1—aq

random matrix withn columns. Le® be sampled a® = A.  wherea is a signal vector that satisfiegn(as) = B, anday,
Let g : R™** x R — Rp,1j be a bounded kernel. For anyis the best approximation ofa and @ is supported orsS,

a € R, the following quantity and finallya* is the solution to[{ll) where the measurements
A 1 b satisfyb = ®a.
Un(a) 2 3 g(@s, a) (4) b =1 -
(k) S For convenience, the proof is provided in Supplementary

is a U-statistic of the sampled realizatidn= A, correspond- Material[A. The second guarantee is a StRIP-type recovery
ing to the kernel. In @), the matrix®s is the submatrix of guarantee for theASSCestimate, based ohl[6] (also seé [7]).
® indexed on column indices if, and the sum takes placeConsider recovery from noisy measurements

over all subsetsS in {1,2,---,n}. Note,0 < U,(a) < 1. b=da+z,
For k < n and positiveu whereu < 1, a matrix® has herez is a lengthm noise realization vector. We assume that
u-StRIP constant d, if J; is the smallest constant s.t. the entriesz; of z, are sampled from a zero-mean Gaussian
(1 —6p)|lal]2 < | ®sell2 < (1+ )|, (5) distribution with variance,. The LASSO estimate considered

_ ) in [6], is the optimal solutiorx* of the optimization problem
for any @ € R* and fractionu of size% subsetsS. The

1 -~ - ~
difference between[]5) and](2) is th&s is in place of mg}b §||b—<I>a||2+2cZ-9n||a||1. (6)
®. This StRIP notion coincides with [7]. ConsidéfA) = *e

max(o2,(A) — 1,1 — 02,,(A)) where hereC is a kernel.  if A has full column rank, thel\’ = (AT A)~1AT,
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The ¢, -regularization parameter is chosen gsr@ductof two Og,Pr{aii;(As)éa}
termscz and 6,,, where we specify),, = (1 + a)v/2logn o5} & Uroo(a)
for some positivex. What differs from convention is that the o7t
regularization depends on the noise standard deviatjoie o0
assumezz > 0, otherwise there will be nd;-regularization.

Fraction

Theorem C, cf., [6] Let® be them x n sensing matrix. Let 03
S be a sizek subset, and leB € {—1,1}*. o
« invertability: for at least a fractionl — u; of subsetsS, ‘
the conditionomin(®s) > a1 holds. Values 00
« small projections: for at least a fractioh— us of subsets
S. same as Theorem B Fig. 1. Gaussian measure. Concentration of U-statiSti¢a) for squared
] . . ’ . singular valueoﬁ1in and oay kernelsg, see [[®) and(10). Shown fon =
« invertability projections: for at least a fractioh — uz of 25 % — 2 and tWo values of. = 25 and 100.
sign-subset pairgs, S), the following condition holds

|(@%5®5) B0 < as. Note that restricted isometry conditios (2) ahd (5) depamd

) o both o2, and o2, behaviors, although the conditions in the
Let ¢z denote noise standard deviation. Assume Gauss'ﬁﬂevious StRIP-recovery guarantees Theorem B are explicit

noise realizationz in measurementb, satisfy imposed only o2, See[[13],[[32] for the different behaviors

i) [[(®5®s) '®%z|loc < (czv/2logn)/ay, for the con- and implications of these two extremal eigenvalues. In this

Pr{o2,.(As) <u}
\ Uioo(a)

12 14 16

stanta; in the invertability condition. section we consider two U-statistics, corresponding ssplyr
i) [|®% (I - ®s®L)zl|c < cz2/logn, whereS, is the to @) and [ID).

complementary set &. Let A; denote the-th column ofA, and assumel; to be
For some positivez, assume that constant; in the small [ID. For an bounded kernel, let p(a) denote the expectation
projections condition, satisfies Eg(As,a), i.e, p(a) = Eg(As,a) for any sizek subsetS.

-1 Sincep(a) = EU,(a), thus the U-statistic meahbU,, (a) does
(V2(1+a)™ +ar < 1. (") not depend on block length.

Then for a fractionl — u; — us — uz of sign-subset pairs A .

(8,S), the LASSO estimate* from (8) with regularization Theorem 1. Let A be anm x n random matrix, whereby

6, = (1 + a)y/ZTogn for the sames above, will successfully the columnsnilxikare IID. Let g be a bounded bounded kernel
recover both signs and supports @f if that mapsR x R = Rjo,1) and letp(a) = Eg(As,a) =
EU,(a). LetU,(a) be a U-statistic of the sampled realization

il > [ay! +2a3(1 4 a)] - cz\/2logn forall ieS (8) & = A corresponding to the bounded kerngl Then almost

Because of some differences froifl [6], we also provid''ely whenn is sufficiently large, the deviatiofl,,(a) —
the proof in Supplementary Materiall A. 1a1[6] it is shownP(@)| < ¢n(a) is bounded by an error termy, () that satisfies
that the noise conditions i) and ii) are satisfied with large 20\ _ _ ) -1
probability at leastl — n~!(2rlogn) 2 (see Propositiof]4 en(a) = 2p(@)(1 = p(a)) - (n/k) ™" log(n/k). 1D
in Supplementary Materid[JA). Theorem C is often referred Theorenl is shown by piecing together (5.5)[in/[33] and
to as asparsity pattern recoveryesult, in the sense that itLemma2.1in[[34]. The proof s given in AppendiX A. Figlde 1
guarantees recovery of the sign-subset péirsS) belonging empirically illustrates this concentration result fpin (9) and
to a k-sparse signak. Fuchs established some of the earligl0), corresponding tp(a) = Eg(As,a) = Pr{opa(As) <
important results, se€][5], [30], [B1]. a} and p(a) = Pr{o2,,(As) < a}. Empirical simulation

In Theorems B and C, observe that timwertability con- Of restricted isometries is very difficult, thus we chose kma
dition can be easily checked using an U-statistic; simply sealuesk = 2, m = 25 and block lengths, = 25 andn = 100.
the bounded kerne as g(A,a1) = 1 {omn(A) <a;} for Forn = 25 the deviation|Uz;(a) — p(a)| is very noticeable
some positiver; and measure the fractid, (a;) = u;. Other for all values ofa and boths?,, ando?,,. However for larger
conditions require slightly different kernels, to be added in 7 = 100, the deviation{Usoo(a) —p(a)| clearly becomes much
upcoming Sectiof TV. But first we first introduce the main Usmaller. This is predicted by vanishing errgs(a) given in
statistical large deviations theorem (central to our asedyin Theorenl]L, which drops as the ratigk increases. In fact if

the next section. k is kept constant then the error behavesds ! logn).
Table[] reproduc@sa sample of (asymptotic) estimates for
[1l. L ARGE DEVIATION THEOREM: “AVERAGE-CASE’ both o7,a and o, cases, taken froni[21]. These estimates
BEHAVIOR are derived for “worst-case” analysis, under assumptiat th

every entryA;; of A is IID and Gaussian distributed€., A;;

H : mxk
Consider two bounded kernejs defined forA < R ' i‘%Gaussian with variance/m). Tablell presents the estimates

corresponding to maximum and minimum squared singul

values ) ) "
2We point out that Bah actually defined two separate restrigemetry

g(A, a) 1 {Ur%qax(A) < a} , and (9) constants, each corre_sponding ctﬁm and fTr2r1ax in [21]. In 'this paper to
9 - coincide the presentation with our discussion on squarggliar values, their
g(A,a) = 1 {amin(A) < a} . (10) results will be discussed in the domain @t and o ax.
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k=604020 5 m = 150 [Thm. A] m =50
N 1 e : '/' r;v :..w T
0.9 ;nin kg o7
08— Pmax ;59;'4'
SO kAl ks 3
& 06 ! o
8os 4
' B 04 3
B k60 Hosp
‘min H ; H 0.2 :
. J 5 ' @ 0.1 o
; ; : £ Ly kESkER ;oA k ;o k i
05 i 75 2 25 0 05 1 15 2 25 3 < o y Lol L
(a) Va.hles a (b) Va.hles a (()a) 02 04 06 \(}211116510,2 14 16 18 20b 02 04 06 0.\8]al1ue1s.2a1.4 16 1.8
Fig. 2. Meansp(a) = EUn(a) for predicting the concentration @&fy,(a). Fig. 3. Meansp(a) = EUn(a) for m = 50 and the(a) Bernoulli and (b)

Shown for the Gaussian cage,) m = 50 and (b) m = 150. Uniform cases.
TABLE |
ASYMPTOTICLOWER AND UPPERBOUNDS ON“W ORST-CASE"
EIGENVALUES, [21]

Remark 1. Exponential bounds oPr{minso2;,(4ds) <
1—-6} andPr{maxs 02,(As) > 1+6} for max(d, /k/m) <
V2 — 1, see [[B), employed in “worst-case” analyses, give
the optimalm = O(klog(n/k)) rate, see [[1], [12], [37].

— — T T2
Minimum: o2 . Maximum: o ax

min
m/n m/n However the implicit constants are inherently not too small
0.1 0.3 0> 0.1 0.3 0> (i.e., these constants cannot be improved)
<[ 01| 0.095| 0.118 | 0.130 || 3.952 | 3.610 | 3.459 €., Improved).
<[ 0.2 | 0.015| 0.026 | 0.034 || 5.587 | 4.892 | 4.535 : - p . ;
031 0.003 1 0.006 I 0.010 11 6.939 | 5.806 T 5361 These comparisons motivate “average-case” analysis.

Marked out on Figurels|2 arid 3 are the ranges for whigh,
ando?,, must lie to apply Theorem A (“worst-case” analysis).
according to fixed ratiosk /m andm/n. To compare, Figure !N the cases shown above, the observations are somewhat
shows the expectations(a) = EU,(a). The valuesp(a) dlsappomtlng - even fo_r smakl values, gsubstantlal fraction
are interpreted as fractions, and gk becomes large(a) of elgen\_/alu:es lie outside ”of the required range. Thankfull

is approached by/,,(a) within a stipulated erroe,,. Figure there exist average-case” guaranteeg, previous Theo-

is empirically obtained, though note that in Gaussian cams B and C, addressed in the next section.

for p(a) we also have exact expressioris [34],][35], and

the Bartlett decompositiorf36], available. Againp(a) is a IV. U-STATISTICS& "A VERAGE-CASE’ RECOVERY

marginal quantity i(e. does not depend on) and simulation GUARANTEES

is reasonably feasible. In the spirit of non-asymptotice, WA, Counting argument using U-statistics

consider relatively smalk, m values as compared to other Previously we had explained how thievertability condi-
works [20], [21]; these adopted values are neverthelesatzc‘—‘pri-Ons required by Theorems B and C naturally relate to U-

tical”, in the sense they come an implementation paper [17 tatistics. We now go on to discuss the other conditions,

_Differences are apparent from comparing “gverage-c_agﬁhereby the relationship may not be immediate. We begin
(Figure [2) and “worst-case” (Tablg 1) behavior. Consid

) A&Lith the projectionsconditions, in particular thevorst-case
k/m = 0.3 where Tablé]ll shows for.aII undersampling ra,t'ofjrojectionscondition. For given®, we need toupper bound
m/n, the worst-case estimate Oin iS very sma}ll, aPProXI- the fraction of subsets, for which there existat least one
mately0.01. But for fixedm = 50 andm = 150, Figure§®a) columng; where;j ¢ S, such that||q):rg¢j||oo exceeds some
and (b) show that fo_r respectively = 0.3 - (150) :215 and \ayeq. To this end, letR denote a siz¢k + 1) subset, and
k = 45, a large fraction of subsets seem to havery,,(®s) R\ {j} is the sizek subset excluding the indekx Consider

lying above(.1. From Tablelll, the estimates forZ;, gets the bounded kerng) : R™*(+1) x R s Ryg ;| set as

worse (.e, gets smaller) asn/n decreases. But the error '

en(a) in Theorem(IL vanishes with larger/k. For the other kl ;

02 .« Case, we similarly observe that the values in Téble | also 9(A,a) = Frl Z 1 {”AR\{j}aj”OO > a} ; (12)
j=1

appear more “pessimistic”.

We emphasize that Theordrh 1 holds regardless of distribvhere hereR = {1,2,--- ,k + 1}, anda; denotes thej-th
tion. Figure[B is the counterpart figure for Bernoulli and Unicolumn of A. Consider the U-statistic with bounded kernel
form casesi(e., each entryd,;; is respectively drawn uniformly (I2). We claim that
from {—1/\/77_?,1/\/5}, or{a € R:|a| < /3/m}), shpwn _ (n—k) - Un(a)
for m = 50. Minute differences are seen when comparing with i
previous Figurél2. Fok = 3, we observe the fractiop(a) - Lﬂ 14]|®%, 185l > af,
corresponding tar2,, to be roughly 0.95 in the latter case, (k+ 1)(k+1) ZR:;; { RA\{5} 77 }

whereas in the former we have roughilyd in Figure[Ja), 1
and0.88 in Figure[3b). = @] Y1 {||‘I’js¢.j||w > a} ;
S j¢S

where the summations ov@& andS are over all sizd4 + 1)
subsets, and all size-subsets, respectively. The first equality

3The analysis in[[21] was performed for the large limit fofm and n,
where bothk/m andm/n approach fixed constants.
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follows from Definition [1 and [(12). The second equality)). Figure[4a) plots simulated (sparsity pattern recovery)
requires some manipulation. First the coeﬁici@)(l follows results for 3 measurement sizes = 50,100 and 150 and
from the binomial identity(,";;) - (k + 1) = (}) - (n — k). block sizesn > 200 andn < 3000. For example the contour
Next for some subseS and indexj, write the indicator marked “0.1”, delineates thg, n values for which recovery
1 {||‘I>L~¢j||oo >ay as 1s, for brevity's sake. By similar fails for a 0.1 fraction of (rgndom) sparsi.ty.patterns.(sign
counting that proves the previous binomial identity, weuarg SUPSet pairgs, 5)). We examine the U-statistitl,, (a2) with
Sk ZjeR Ty = Ss ngzs 1s.;, which then proves kernel [13), re_lated_to_the_ small prolectlons_condltlomcﬁl
the claim. Imagine a grid of “pigeon-holes”, indexed by paird has Gaussian distribution, we sef = 1 in the kernel
(S.4), wherej ¢ S. For each sizék-+1) subselR, we assign 9(A:a2), asPr{(AsA;)"B = 1} = 0 for any (8,S) and
k+ 1 indicatorsig, ;y ; to k + 1 pairs (S, j). No “pigeon- J # S- Figure[4b) plots the expectatiofv. — k) - p(1), where
hole” gets assigned more than once. In fact we infer from t#él) = EUx(1) = Eg(Ar, 1) for any sizetk + 1) subsetr.
binomial identity, that every “pigeon-hole” is in fact agsed Again the contour marked “0.1", delineates the: values for

exactly once, and argument is complete. which (n—k)-p(1) = 0.1. !—|ere the valuep(1) are empirical.
Similarly for the small projectionscondition, we define a We observe that both Figuré3«} and (b) are remarkably
different bounded kerngj : R™* (1) » R Rjo.1] @S close for frac_tlo_nso.5 and smallgr. Figuresl4) m_corpgrates
’ the large deviation errar,, given in Theoreni]l (in doing so,
2 kt1 we assume: sufficiently large). The bound is still reasonably

9(A,a) = m YD1 {’(A;g\{j}aj)Tﬁz‘ > a}7 (13) tight for fractions < 0.5. Comparing with recent Donoho
£=175=1 & Tanners’ (also “average-case”) results fqrrecovery (for
whereR = {1,2,---,k+1}, anda; denotes thg-th column only the noiseless case), taken from|[23]. For fractiOris
of A, and B1,8s, - ,Box enumerate all2* unique sign- and0.01, we observe that for system parameteis= 50
vectors in the se{—1,1}*. By similar arguments as before,and n < 1000 (chosen in hardware implementation [17]),

we can show for the U-statistiti,,(a) of ® corresponding to We do not obtain reasonable predictions. For= 100, the
the bounded kernel[ {13) satisfies bounds|[28] work only for very small block lengths< 300.

" The only reasonable case hereris = 150, where the

f AT bounds|[[23] perform better than ours only for lengths 400
Z ZZ 1 {‘((I)S‘pj) ﬂé‘ = a}’ (i.e, Figure[4c) shows that fom = 300, the large deviation
bounds predict a 0.01 fraction of siZze= 5 unrecoverable
For indicatorsls,;, note thaty®,.s1s,; > 1 if at least one sparsity patterns, bUf[23] predict a 0.01 fraction of gize 11
indicator satisfyingls ; = 1, and we proved the following. unrecoverable sparsity patterns).

Proposition 1. Let U, (a3) be the U-statistic of®, corre- The above experiments suggest the deviation erige)

sponding to the bounded kemnglA., as) in (2). Then the in Theorem[IL to_ be over-c_onservative. Fprt_unately ip the
fraction of subsetsS of sizek, for which the worst-case next two subsections (pertal_nlng to U-statistics treast$
projections condition is violated for somg € R, is at most (1-recovery Theorem B (SeCt'B)' and LASSO recovery
(n— k) - Un(as). Similarly if Uy, (as) corresponds taj(A, as) Theorem C (Subsectnbﬁ_V}C))_, th|_s conservatlve-ne.ss_doe.s .
in (I3), the fraction sign-subset pairg, S), for which the show up from a rate standpomt ('t oply _shczws up in implicit
small projections condition is violated for someg € R, is at con;tants). In fact by empirically ad]u.stl_ng thesg camds, .
most(n — k) - Uy (as). we find good measurement rate predictions (akin to moving

from Figure[4c) to (b)).

1
(n—k) - Un(a) = W =1 S j¢s

Referring back to Theorem B, we point out that sraall
projections condition is more stringent than thgorst-case
projectionscondition. We mean the following: in the formerB. Rate analysis fof,-recovery (Theorem B)

case, the value; must be chosen such thai < 1; in the In “worst-case” analysis, it is well-known that it is suftcit

latter case, the value; is allowed to be larger thah, its size ) 1 4ve measuremenis on the order of: log(n/k), in order
only affects the constaru; /(1 — a2) appearing in the ermor v, paye the restricted isometry constastsdefined by [2),
estimatefjas —as||1. In fact if the signakx is k-sparse, then gaisty the conditions in Theorem A. We now go on to show
lloe — @[l =0 .and_ the slze Of“?’ IS mconsgque_nnall,e., the. that for “average-case”, a similar expression for this &#n
worst-case projectionsondition is not required in this speC|aI|Oe obtained. To this end we require tail bounds on salient
case. lr_‘ this special case, it is pe;t to@et= 1 — e for Some guantities. Such bounds have been obtained for simall
arbltrarlly’ smalle. Theorem B is in fact a stronger Version, wiections condition, see[[6],[[7],[[25], where typically an
of Fuchs'’ early work or/y/(1-equivalenceld]. In the same o isrohable distribution is assumed over the sign-ve@or
respect, anOhO & Tanner also produced early seminal sy, o knowledge these techniques were born from consid-
from counting faces Of_ _random polytopes [22]. [23]. ering deterministic matrices. Sinc® is randomly sampled
F|_gure_B shows err_1pmca| ewdence, where then, n yalues here, we proceed slightly differently (though essentiakjyng
are inspired by practical system sizes taken from an impleme;in,ijar igeas) without requiring this random signal modelr

tation paper[17]. These experiments consilesampled from g jicity. the bound assumes zero mean matrix entrieseeit
Gaussian matriced, exactly k-sparse signals with non-zeroy G scian or iiy bounded

a; sampled from{—1,1}, and use€;-minimization recovery



LIM AND STOJANOQVIC: ON U-STATISTICS AND COMPRESSED SENSING NON-ASYMPTOTIC AVERAGE-CASE ANALYSIS 7
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Fig. 4. Gaussian case. Comparifig empirical results fo¥;-minimization recovery(b) mean parametem — k) - p(1) (empirically obtained), andc) after
accounting for large deviations (Thid. 1). We show cases- 50, 100 and 150. We also compare with Donoho & Tanners’ (DT) large deviatmunds[[23].

Proposition 2. Let A be anm x n random matrix, whereby where the last equality follows from the identiA/L(AL)T =

its columnsA; are identically distributed. Assume every entryALAs)'. Further conclude that the first term ii{15) is

A;; of A has zero mean, i.eLA;; = 0. Let everyA;; be either bounded by2 exp(—ma?/(27)), due to further conditioning

i) Gaussian with variancé /m, or ii) bounded RVs satisfying on the event(r) = {87 (ALAs)'B < 7}.

|A;;| < 1/y/m. Let the rowsA;1, Aia, - - - , Ain] Of A be 1ID. To bound the second term, lefax(A) denote the max-
Let S be a sizek subset, and let index be outside ofS, imum eigenvalue of matrixA. Since AZAs is positive

i.e.,w ¢ S. Then for any sign vectg8 in {—1,1}*, we have semidefinite, note thaB” (ALAs)'8 is upper bounded by

mals 18113 - smax((A% As)'), which equalst - smax((A%As)T). Fur-
Pr {‘(ALAW)Tﬂ‘ > a} < 2exp (— % ) thermoresmax((ALAs)") < 1/02,,(As), where herermin(A)

is the minimum singular value oA. Thus Pr{&.(7)} <
+Pr{ogin(As) <8} (14) Pr{k/o2, (As) > 7}. Finally putr = 6k to getPr{€.(1)} <
Pr{o2;,(As) < d7'}. [ |
Propositior[ 2 is used as follows. First recall that previous
Proof: For 7 € R, let £(1) = {BT(ALAs)'B < 7} Propositiofil allows us to upper bound the fractigrof sign-
where £(7) is an probabilistic event. Lef.(7) denote the subset pairés, S) failing thesmall projectionsondition, with
complementary event. Bound the probability as the (scaled) U-statisti¢n — k) - U, (a2) with kernelg in (I3)
and|S| = k. By Theoreni L the quantityn — k) - U, (a2) con-
Pr{’(AgAw)Tﬁ‘ Z a} SPY{ ’(ALA“)T'B’ = a’ 5(7)} cent|ra|tes arounth — k) - p(az), wheregZag) L [Eg((Ag, az),
+ Pr{&.(1)}. (15) whereg in (13) is defined for sizék + 1) subsetsk. We use
] Propositiod? to upper estimatgas) using the RHS of((14).
We upper bound the fl_rst term as follows. Deno_te constanisjeed verify thatp(az) = 2%, Pr{|(ALAw)T,Bg| > as)}
€12, 5 Cme For entries (Awfi Ori A, consider the o any g andw ¢ S, and the bound{14) holds for agy= ;.
sum > iy ¢ - (m™2An)i = 5302, 6iXa, where RVS Now p(a,) is bounded by two terms. Bys < (n—Fk)-Un(as),
X; satisfy X; = (y/mA,);. By standard arguments (segps to haveu, small, we should have the (scaled) first term
Supplementary MateridlIB) we have the double-sided bou@%—k)-exp(—ma%é/(%)) of (I4) to be at most some small

Pr{|32%, aiXi| >mt} < 2exp(—(mt)*/(2-[lell3)), fractionw. This requires

for any positived € R.

where vectore equalsicy, ¢z, - -+, ¢l”. )

Next write (A5A4,)78 = (v/m - BTAL)(m~$A,). When m > const -k log <L) (17)
conditioning on3” AL, then/m - BT AL, is fixed, say equals u
some vectoe. PutX; = (ymA, ); andX;’s are independent with const = 2/(a26) (and we dropped an insignificant

(by assumed independence of the rowsA)f Then use the 1og2 term). Next, form > 2k and § < (0.29)2, we
above bound foPr {}";" | ¢;X; > t}, sett = a and conclude can bounl the second ternPr{o2, (As) < ¢} of (M)

min
Pr{ |(ALA,)TB| > a| BT AL a
r s4w a S For m > 2k, we havePr{omin(A) < c¢-0.29 — t} < Pr{omin(4) <
9 9 1—c-v/k/m—t} < exp(—mt?/c1) for some constants, c;, whereA has
< 2exp ( (ma) ) . D ( ma > sizem x k and with proper column normalization. For simplicity we pro
= - TaAt 2 | — T 5. AT( AT T »  the constant in this paper; one simply needs to addn appropriate places
2m||,3 AS||2 2-p (ASAS) B in the exposition. In particular for the Gaussian and Belihcasesc = 1,

(16) andc; =2 ande; = 16, respectively, see Theorem B, [28].
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by exp(—m - (0.29 — v/3)?/c1) wherec, is some constant, (a)me’;e‘foverabl? fraction 0.1 s
see [27], Theorem 5.39. Roughly speaking;,(As) > 0.29 T
with “high probability”. Figures[2 andd3 (in the previous o e ]
Section[ll) empirically support this fact. Again to have *E’ 12 200 . B
small the second term of{l14) must be small. This requires g 150 150 50
(n — k) - exp(—=m - (0.29 — v/6)?/¢;) < u for some small w eﬁo\m”_sc o
fraction u, in which it suffices to haven satisfy [1T) with R T T T
const = 01/(0.29 - \/3)2 (b) Unrecoverable fraction 0.01

For the invertability condition in Theorem B, we also U ‘ : : :
need to upper bound the corresponding fractignof size- R O\*OO\ﬁoo—%
k subsetsS. We simply use an U-statistid,, (a1) with kernel Z 70\400\400\
9(A,a1) = 1{omin(A) > a1} for some positivez; (see also % 12 2;:%"'” U
Theorem C). Here Propositigh 1 is not needed. To make) LN PP A —
small, wherep(a;) = Eg(As,a1), use the previous bound N oo 100
p(al) < exp(—m . (0,29 — a1)2/01), where we sety; = \/3 900 500 1000 1500 2000 2500 3000
with a; < 0.29. Clearlyp(a;) cannot exceed some fractian Block Length n.

' isfi i of — 2
if m satisfies[(1I7) withconst = ¢1/(0.29 — a1)*. Fig. 5. Measurement rates predicted by equafion (19), withst taken to
For the time being consideexactly k-sparse signalgx. equall.8, required to recover at least-3u = 0.9 and0.99 fractions of sign-

In this special case thaorst-case projectiongondition in isn“k(’z)etaf]f‘j"é’?’s) (when the signal is exactli-sparse), shown respectively
Theorem B is superfluous.€., with no consequence; can ’

be arbitrarily big) - onlyinvertability and small projections
conditions are needed. While we have yet to consider t
large deviation errok,(a) from Theorem 1L, doing so will
not drastically change the rate. Foy,(a) with kernelg and
p(a), wherep(a) = Eg(A, a), almost surely

Hgantitie (n—k)-p(1) plotted in Figuré }b). For example,
m = 150 suffices for a 0.01 fractional recovery failure, for
n = 300 ~ 1000 andk = 6 ~ 7, and for 0.1 fraction then
k =7 ~ 10. We conjecture possible improvment fesnst.
In the more general setting foapproximately k-sparse
signals, we can also have rafe (19). To see this, observe

Un(a) < pla) + €n(a) < (p(a) that Propositiofi]2 also delivers an exponential bound fer th

+ v/ 2p(a)w—logw

[V [SIE

< (p(a)) (1+ \/Qw_llogw) (18) waorst-case projectiongondition, see[(12). This is because
JALAL|L = max, 1<p<or |[(A5AL)TBe|, and we take a
where the second inequality follows becaus@:) < 1, union bound ovee* terms. Setis = a2k, Whereay andas
and by settingw = n/k. Taking log of the RHS, we respectively correspond temall projectionsand invertability

obtain (1/2)logp(a) + log(1 + /2w=1logw). Notelog(1 + conditions. Then we proceed similarly as before (see Supple
V2w Togw) < /2w Tlogw, sincelog(l + o) < a holds Mentary Materia[ €) to shdivthat the rate for recovering at
for all positive ow. For thesmall projectionscondition, bound leastl — 5u fraction of (8, S) pairs suffices to be (19). The
(p(a))% by the sum of the square-roots of each termin (14fpllowing is the main result summarizing the exposition ap f

Then to haveu, < (n—k)-Un(az) < 2u, it follows similarly  Ttheorem 2. Let & be anm x n matrix, where assume
as before that it suffices that (see Supplementary Mafe)ial gufficiently large for Theorerfil 1 to hold. Sample = A

—_— whereby the entried;; are IID, and are Gaussian or bounded
m > const -k |:10g (—) + /2 (k/n)log(n/k)| (19) (as stated in Propositiof]2). Then all three conditions in
u ¢,-recovery guarantee Theorem B f¢8,S) with |S| = &k,

with the invertability condition taken asmin(®s) > a1
with a; < 0.29. and with a3 = a1Vk, are satisfied for
u1 + us + ug = 5u for some small fraction, if m is on the
order of [I9) withconst = max(4/(a1a2)?,2c¢1/(0.29—a1)?),
and c¢; depends on the distribution of;;’s. Note const > 4.

In the exactlyk-sparse case where only the first 2 conditions
are required, this improves ta; + us = 3u.

with const = max(4/(a36), 2¢1/(0.29 — v/9)?) where we had
setv/d = a; (we dropped an insignificarlbg 2 term). For
invertability condition do the same. To hawg = U,,(a1) < u
it suffices thatm satisfies[(19) with the sam®nst. Observe
that the termy/2 - (k/n)log(n/k) is at most 1, and vanishes
with high undersampling (smatl/»). Hence[(IlF) and(19) are
similar from a rate standpoint. _ _ _
We conclude the following: for exactly:-sparse signals Ve end this subsection with two comments on the (19)
the rate [(IP) suffices to recover at ledst- 3u fraction of derived here for “average-case” analysis. Firsflyl (19) ésyv
sign-subset(8, S) pairs. While const in (@3) must be at similar to that ofklog(n/k) for “worst-case” analysis. This
least4 (recall that Figurd ) was somewhat pessimistic), 5Comparing D) and[717) and the respective expressionscloist
for matrices with Gaussian entries we empirically find thagoppingconst from 4 to 1.8 is akin to ignoring the deviation erra,rl(a).’
const is inherently smaller, wherebyonst ~ 1.8. This is This, and as Figurel4 suggests, the U-statistic “megns™ k) - p(1) seem
illustrated in Figure[ 5, for two fraction.1 and 0.01 of z%rﬁ’srfdsir‘;]‘aﬁzﬂ‘ﬁ;rx {ﬁ;?%r:fi‘\% Vﬁ’g'r'é""“h similar rates i@, and inherent
unrecoverable sign-subset pairs. We observe good matbh Witsyye ysed an assumption thas _ k)/u is suitably larger thare, see
simulation results shown in the previous Figl:)} and Supplementary Materi&lIC.
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— -1 . .
(a)mo Z =1x 10 the performances become the same. In this subsection, we

apply U-statistics on the various conditions of Theorem C,
in particular theinvertability andsmall projectionsconditions
have already been discussed in the previous subsection. We
account for the observations in Figtire 6.

In the noiseless limit, the previously derived rafe](19)
holds. Here, the regularizer ifi]l(6) becomes so small that
(equivalentlyd,,) does not matter. As mentioned in [5], LASSO
then becomes equivalent tG-minimization [1), hence the

= -
OI O.

Recovery Failure
=)

1 -©-m =50,n = 1000 |

- m = 150,n = 3000 (noiseless) performances in Figutés pand(b) are the same.
103 7 5 5 10 12 That is, in this special case the rafe](19) suffices to recawer

cz=1x10"3 leastl — 3u fraction of (8, S). To test, takek = 4, n = 3000,
~ ‘ and fractionl — 3u = 1 — 6 x 1075, and withconst = 1.8
gives 153, close tom here which is set td 50.

In the noisy case, we are additionally concerned with
the noise conditions i) and ii), conditiong] (7) arid (8), and
invertability projections Recall that the noise conditions are
satisfied with probabilityl —n—! (27 logn)~2, that goes to 1
superlinearly[[6] (Propositioh]4, Supplementary Mateldl
The remaining conditions are influenced by the valuget in
| = = Probability that (8) gets violatéd‘ the 0, regl.'ll.arlzatlon term inl{6). .

5 = = = = - In condition [7), the valuex sets the maximal value for
Sparsity k az (whena = 0 thenay < 0.2929, and whena = 1 then

as < 0.6464). This affects thesmall projectionscondition, to
Fig. 6. Empirical LASSO recovery performance, Bernoullise. In(a) the \hich constanti, belongs, which in turn affects performance.
non-zero signal magnitudes;| equal 1, and in(b) they are inR o ;]. Noise . .
variances denoted,. However from a rate standpoifi{19) still holds, only now the
value ofconst (which has the term/(a346)) becomes larger.

justifies the counting employed in previous Subsedfion JV-A _|1n condition [8), the value: affects the size of the term
PropositiorlL, and is reassuring since we know that “worsts + 2as(1 + a). The largera is, the more often[(8)
case” analysis provides the optimal r&fé [I].][11]. Secpnal fails to satisfy. Here there are two constamts and a;.
have [[I9) hold for the approximatekysparse case, we lose aRecall a; belongs to theinvertability condition discussed
factor of vk in the error estimatéla’s — as||1, as compared in the previous subsecgion, which holds with. rdie] (19) with
to “worst-case” Theorem A. This is because we need to ¢@0st = 2¢1/(0.29 —a1)® anda; < 0.29. Consider the case
as = a2v/k, as mentioned in the previous paragraph. Howevdhere the non-zero signal magnltuqe§| are independently
the “average-case” analysis here achieves our primary, gddWn fromRjo ;. Then we observémin;es |a;|) < ¢ with

that is to predict well for system sizdsm,n when “worst- Probability 1 — (1 — #)* wheret € Ryp,) and|S| = k. For
case” analysis becomes too pessimistic. t set equal to the RHS 0of](8), this gives the probability that

condition [8) fails. Figurél®) shows good empirical match
. when settinga; = 0.29 andas = 1, where the dotted curves
C. Rate analysis for LASSO (Theorem C) predict the “error-floors” for various, measurements, = 50
Next we move on to the LASSO estimate of [6]. Recatindm = 150, and noisecz. In the other case whete;| = 1
from (©) that the regularizer depends on the noise standds@ in Figurd 6a)), condition [8) remains un-violated as long
deviationcz, and the tern®,, = (1+a)/2logn that depends as c; (and ai, a3, n) allow the RHS to be smaller than 1.
on block lengthn and some non-negative constanthat we Figurel§a) suggests that for the appropriate choicesifgms,
set. This constant impacts performance [6]. For matricescondition [8) is always un-violated whery < 5 x 1072, and
with Bernoulli entries, Figur€l6é shows recovery failureemat violated whenc; > 1 x 1~t. For more discussion on noise

Recovery Failure
S

for two data setsn = 50, n = 1000 andm = 150, n = 1000;
the sparsity patterns (sign-subset p&fsS)) were chosen at
random, and failure rates are shown for various sparsityegal
k, and noises:z. In Figure[&a) we seta = 0, and in(b) we
seta = 1. Also, in (a) the non-zero signal magnitudes | are
in {1, -1}, and in(b) they are inRy ;). The performances are
clearly different. “Threshold-like” behavior is seen (a) for

both data sets, whereby the performances stay the samg for

in the ranges x 1072 ~ 1 x 10~%, and then catastrophically
failing for c; = 1 x 10~1. However in(b), for variouscy the

effects see Supplementary Matefidl D.

The constantaz belongs to the remainingnvertability
projectionscondition. The fraction:3 of size4 subsetdailing
the invertability projectionscondition for someas, can be
addressed using U-statistics. Consider the bounded kernel
g: R™* xR — Rp,1), Set as

Qk
g(A,a) = 2ik > 1{(ATA)B, > a} (20)
/=1

performances seem to be limited by a “noise-floor”. We seehere 3, ¢ {—1,1}* and (ATA)" is the pseudoinverse

that in the noiseless limit (more specifically whep — 0),

of ATA. Thenus = U,(a3), and as before Theorefd 1
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guarantees the upper bourld](18), which depend® @) 7x(1.42—a1,a;) in (22), are satisfied for; + us +uz = 4u

wherep(as) = Eg(As, as). for some small fraction, if m is on the order of[(19) with
We go on to discuss a bound gifa3) under some gen- const = max(4/(aia2)?,2c1/(0.29 — aq)?), and ¢; depends

eral conditions. In[[B], analysis op(as) (see Lemma 3.5) on the distribution of4;;’s. Note const > 4.

requireso,(As) < 1.5, a condition not explicitly required in | the noiseless limit where only the first 2 conditions are

Theorem C. Also, empirical evidence suggests not to assupaguired, this improves ta; + us = 3u.

that 02,,(As) < 1.5. Form = 150 and k¥ = 5 we see _ . _
from Figure[® that (in the noiseless limit) tHailure rate Remark 2. We emphasize again that the ratel(19) is measured

is on the order ofl x 10~%, but in Figure[®h) we see W-IL O the three conditions in Theorér 3. The probabfiity
02 (As) > 1.5 occurs with much larger fraction 0.1. Hencévhich both noise conditions i) and ii) are satisfied, and for
we take a different approach. Using ideas behind Bauewich condition [(B) imposed omin;es |o;| is satisfied, re-
generalization ofWielandt's inequality[38], the following Quire additional consideration. For the former the probiti
proposition allowss2,,(As) to arbitrarily exceed 1.5. Also, it IS at leastl —n~' (2w logn)~2, see [6]. For the latter, it has

does not assume any particular distribution on entried.of t0 be derived based on signal statistics, e.g., [tof € Ry 1)
" ) then (min;es |a;|) > t is observed with probability1 — ¢)*
Proposition 3. Let S be a sizek subset. Assume > 2. Let \iih S| = k.

Ags be ank xn random matrix. Lebmin, dmax b€ SOome positive

constants. For any sign vectg@ in {—1,1}*, we have Note that the choice foraz in Theorem[B implies
Vi (AL As)B||~ is roughly on the ordet/k. Indeed this is true

P1"{||(A:£A$)T5||OO > ( k2+ D7 — 1] } sincer;, > 1, and we notey, = (dmax/Omin)2+2k 2 +o(k~2),
Sonin * (Tk + 1) thus T, ~ (Omax/dmin)> for moderatek. Now LASSO recovery

< Pr{&(6min, omax) } (21) also depends on the probability that conditibh (8) holdst Ou
choice fora; causes the RHS dfl(8) to be roughly of the order
\(;vhere 5(5&“”‘%,5";)‘_) ; {Omin Sh Gmi”(ASI) < omalds) < o7 Tog n. Compare this td |6] (see Theorem 1.3) where it
gmgx}a ;n c(c;mnr,] max) 1S the c_cnpp ementary event ol s assumed thatmin(As) < 1.5, they only requireas = 3,
(Omin; Omax), and the constant;, satisfies i.e., a factor of vk is lost without this assumption (which
)2 1+k 2 was previously argued to be fairly restrictive). To improve

1- (22) Proposition[ B, one might additionally assume some specific

1—-k 2
. . .. distributions onA. We leave further improvements to future
We defer the proof for now. IAEQAS is “almost” an identity work P

matrix, then we expecl|(ALAs) 18|/~ ~ 1 for any sign . . .

vector 8 (hence our above?wueristic whereby we set= 1). X 7P§$j40f TPrgposf;orri]:B. Fot: r:)(_)lt_atwnal convenience, put

Propositio 8 makes a slightly weaker (but relatively galjer © — (A54s)". Bound the probability

statement. Now for some appropriately fixégax and dmin,

we expectPr{&.(dmin, dmax)} in (@I) to drop exponentially PY{HXﬂHoo > a\/E} SPY{ 1X Bl > aVk 5(5min75max)}

in m. Just as the termPr{omin(As) < dmin} iNn Proposition )

can be bounded byxp§—m§ (O.)29 - 5mii)2/c1), we can + Pr{&.(6min; Imax) }- (23)

bound Pr{omax(A) > dmax} < exp(—m(dmax—1.71)%/c;) for

somedmax > 1.71. Roughly speakinggmax(As) < 1.71 (or

02.x(As) < 2.92) with “high probability”. We fiX émin = a1, e — 1 1

wherea; belongs to thenvertability condition. a= C =5 (24)
So to boundp(as), both [20) and Propositioh] 3 imply Tt 1 Onin(As)

p(az) < Pr{&(dmin, Omax)} for az = (Vk+1)- |7, — 1|/ (dpin-

(76 +1)). Now Pr{&.(Smin, Smax) } < 2exp(—m-t2/c1), where

we sett = dmax — 1.71 = 0.29 — a; and épmin = a1. By (@8),

the rate [(IP) suffices to ensutg = U, (a3) < u for some

fraction u, with the sameconst. Thus we proved the other

main theorem, similar to Theorelm 2.

1)
Tk = Tk (6ma><a 6min) - ( max

5min

where we take: to mean

for 7, chosen as in[{22). We claim that every ent¥ 3);
of X is upper bounded byvk, for a as in [23). Then by
definition of £(dmin, dmax), the first term in[(2B) equalg and
we would have proven the bourd{21).

Let C denote ak x 2 matrix. The first columnC is be a
normalized version of3, more specifically it equalé—23;.
Theorem 3. Let ® be anm x n matrix, , where assume The second column equals the canonical basis vegtovhere
n sufficiently large for Theoreml 1 to hold. Samde= A c; is a 0-1 vector wherebyc;); = 1 if and only if j = .
whereby the entried;; are IID, and are Gaussian or boundedcgnsider the2 x 2 matrix X’ that satisfiesX’ = CTXC.
(as stated in Proposition] 2). Then all three invertabilgmall This matrix X’ is symmetric (from symmetry ofX) and
projections, and invertability projections conditionsliASSO -3 (x8), = X/, = X}, (from our construction ofC).
Theorem C for(8,S) with [S| = k > 2, with a1 < 0.29, That is the entryX/, (and X} ,) of X', correspond to the
with a, satisfying [7) for some: set in the regularize®,,, (scaled) quamity(g(xﬂ)i that we want to bound.

- _ e 2 _
and withas = (V& +1) - | — 1|/(at - (7 + 1)) for 7 = Condition on the event.(dmin, dmax), then As has rankk
TFor m > 2k we havePr{omax(A) > 1.71 + t} < Pr{omax(4) > and thereforeX = (A$As)" = (ALAs)™'. Letdet(-) and

1+ /k/m +t} < exp(—mt?/c1) for someci, see[[27], Theorem 5.39. Tr(-) denote determinant and trace. As[in|[38] equation (11),
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we have similar U-statistical “average-case” analyses for theeagisere
X! ,X1 5 4det(X") the sampling matrix columns are dependent, which requires
1- m = (Tr(X"))% — (X] | — X34)? appropriate extensions of Theorém 1.
. X /
> 4<maxETXr()Xf)”)“;‘(X ) _ q ft)i’ (25) ACKNOWLEDGMENT

, , ) The first author is indebted to A. Mazumdar for discussions,
wheret = Gmax(X’)/smin(X') and smax and cmin respectively oo for suggesting to perform the rate analysis.
denote the maximum and minimum eigenvalues. Now:

Smax(X') /smin(X’") > 1. If t = 1 then4t/(1 + ¢)?> = 1, and

for t > 1 the function4t/(1 + t)? decreases monotonically.

We claim thatry, in (22) upper boundgnax(X’) /smin(X’), and A. Proof of Theorer]1
(29) then allows us to produce the following upper bound  For notational simplicity we shall henceforth drop exlici
dependence om from all three quantitied/,,(a), p(a) and

APPENDIX

X1 ] < /X1 XD, (1 A 2) g(A, a_) i.n_ this appendix §upsecti0n. Whilgén is made expllicit.
’ o (1+ %) in Definition[d as a statistic corresponding to the realaati
—— | — 1] ® = A, this proof considerd/,, consisting of random terms

=/ X11X2 1+ (26) 9(As) for purposes of making probabalistic estimates. Theo-

| ) , rem[1 is really alaw of large numbersesult. However even
Bound (X1, X3 ,)2 by the maximum e|genva!u@1ax(X’) of \when the columngi, are assumed to be IID, the term&As)
X'. Then, further boundmax(X"’) by (1 +k~2)/03,(As). in U, depend on each other. As such, the usual techniques
which gives the form[(24). This bound is argued as followser [ID sequences do not apply. Aside from large deviation
For k > 2, we have the columns irC to be linearly yesylts such as Thifll 1, there exstiong lawresults, sed [39].
independentSinceX’ = CTXC and X is positive definite The following proof is obtained by combining ideas taken
it is then clear thatmax(X') < ma(C"C) - smad(X). NOW from [33] and [34]. We use the following new notation just
C”C is a2 x 2 matrix with diagonal elements 1, and off-in this subsection of the appendix. Partition the index set
diagonal elementst1/v/k. Hencesma(C'C) = 1+ k2. (1 2... nlintow, = |n/k| subsets denotes} each of size

AlsO gmax(X) < 1/07,,(As), and the bound follows. k, and a single subs& of size at most. More specifically,
To finish, we show the claimy > cma(X')/min(X'). BY JetS; = {(i—1) k+1,(i—1) - k+2,---,i-k} and let
similar arguments as above, it follows that R ={|n/k|-k+1,|n/k|-k+2,--- ,n}. Letw denote ger-
smax(X') < §max(CTC),§max(X) — L+k"E ,Grznax(AS) <7 _rpﬁtation (pijeCti?) (Tapping{t’ 2, ,nf} Tm{l’ 2, 'f. ’n}h
ain(X) ~ snin(CTC) sun(X) 1— k% 02, (As) — e notationn(S) denotes the set of alimagesof eac

element inS, under the mappingr. Following Section 5c
in [33] we express the U-statistic,, of A in the form

o " i=1

We take a first look at U-statistical theory for predictinghe first summation taken over all! possible permutations
the “average-case” behavior of salient CS matrix pararsetes of {1,2,---,n}. To verify, observe that any subsét is
Leveraging on the generality of this theory, we considefounted exactly, - k!(n — k)! times in the RHS of[(27).
two different recovery algorithms ij;-minimization and ii)  Recallp = Eg(As) = EU,. From the theorem statement
LASSO. The developed analysis is observed to have good jet-the terme2 equalep(1 — p) - w;, ! logw,, wherec > 2. We
tential for predicting CS recovery, and compares well (gmpi show that the probabilitieBr{|U,, — p| > ¢, } for eachn are
cally) with Donoho & Tanner([23] recent “average-case” anasmall. For brevity, we shall only explicitly treat the uppail
ysis for system sizes found in implementations. Measurémeobability Pr{U,, — p > ¢,}, where standard modifications
rates that incorporate fractional failure rates, are derived of the below arguments will address the lower tail probapbili
to be on the order ok[log((n —k)/u) + \/2(k/n)log(n/k)], Pr{-U, +p > e,} (see comment in p. 1[[33]). Using the
similar to the known optimat log(n/k) rate. Empirical obser- expression(27) fot/,,, write the probabilityPr{U,, —p > €, }
vations suggest possible improvementdonst (as opposed to for any h > 0 as
typical “worst-case” analyses whereby implicit constaate
known to be inherently large). Pr{lUn —p>en} < Eexp(h(Un —p+en))

Th_erg are mgltlple d.|rect|ons for future _Work. F|rstly.V\¢1|I Fexp (i <Z h(Sy —p+ %))) 7
restrictive maximum eigenvalue assumptions are avoided (a n!

StRIP-recovery does not require them), the applied teckasiq "
could be fine-tuned. It is desirable to overcome e losses
observed here for noisy conditions. Secondly, it is intémgs
to further leverage the general U-statistical techniques

other different recovery algorithms, to try and obtain thei Pr{U, —p>en} < -~ Z[Eexp(h(S,r —p+en)).

Sin?egmin(X/) > §min(CTC) : §min(X), and §min(X/) =1-
k=2, andX = (ALAs)~!. We are done. [ ]

V. CONCLUSION

where hereS, is a RV that equals the inner summation in

22), ie. Sx = ;-2 9(Ax(s,)). Using convexity of the
ftunction exp(-) we express

good “average-case” analyses. Finally, one might consider o
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Now observe that the R\, is an average of,, IID terms [11]
9(Az(s,)). This is due to the assumption that the column§2
A, of A are IID, and also due to the fact that the set[s ]
7(S;) are disjoint (recall sets$; are disjoint). Hence for any
permutationr, by this independence we hatexp(hS,) =
(Eexp(h'-g(Ax(s,))))*", where the normalizatioh’ = h/w,
bears no consequence. The RVA.(s,)) is bounded, i.e.
0 < g(Axs,)) < 1, and its expectatiorig(A,(s,)) equals
p. By convexity of exp(-) again and for allh > 0, the
inequality "> < ea 4+ 1 — « holds for all0 < o < 1.
Therefore puttinga = g(Ars,)) we get the inequality
exp(h-g(Ax(s,))) < 1+(e"—1)-g(Ar(s,)). By the irrelevance (1,
of 7 in previous arguments, by puttirigy (A, (s,)) = p

(23]

[14]

[15]

Pr{U, —p > €,} < e MentP) (1-p +peh)w" [17]

We optimize the bound by putting:" = (1—p)(p+e,)/(1—
p — €,), See (4.7) in[[38], to get

Pr{U, —p>e,}

< (L4 enp™Prr (1= en(1=p)~H)Pe)
Following (2.20) in [34] we use the relatiolog(1 + «)

a—1a?+o(a?) asa — 0, to express the logarithmic exponent20]
on the RHS of[(2B) as

_wnei (1 +0(1))
2p(1—p)

Therefore by the forme2 = cp(1 — p) - w;, ! logw, where
¢ > 2, for sufficiently largen we have

(18]

—Wn

(2g) 19

[21]

[22]

(23]
Pr{U, —p>e,} <w,? <w;?

which in turn implies Y2, Pr{U, — p > €,} < oo
Repeating similar arguments for the lower tail probabilit{4!

Pr{-U,+p > €,}, we eventually provg_ >, Pr{|U,—p| >

€n} < oo which implies the claim.
[25]
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In this part of the appendix we provide the proofs for the
two StRIP-type recovery guarantees discussed in this paper
The following are proofs for Theorems B and C.

Proof of Theorem B, c.f.,, Lemma 3] [7]Definee € R™
ase = a* —a, i.e, € is the recovery error vector. The proof
technique closely follows that of Theorem 1c¢Z,, [29]. Since
sgn(as) = B, we have the inequality

(@ +€)sl1 = [lasls + BTes. (29)

Sincea* solves[(1), hencBa*||; < ||a||:. Puttinga® = a+e,
we have

lalls = [l +€lly = [[(@+e)slli + [[(a+€)s. |1

lles|ls + B es + lles. |l — [les. |1,

(30)
where the last step follows the inequality {29), and the
triangular inequality. Re-arranging and puttiniges, ||:
llalli — [las|l we get

lles. |l < —BTes +2llas. |- (31)

We next bound the term-B7es with |87es|, and for now
assume that the following claim holds

B es| < 18" @5®s. ||oc - les. |1 (32)

We then proceed to show the bound ek, || (or |lal —

asl|1) to complete the first part of the proof. Using theall

projectionscondition, bounc1|ﬂT<I>f,5<I>gc||OO < ay using some
as < 1. This gives a upper bound af - |les,||1 on |BTes]

in (32). Finally use this in[(31) gefles,|l1 < az|les, |1 +

2||as,||1, or equivalently|les.|l1 < 2/(1 — a2) - ||las.||1- TO

show the claim[{32), note that is in the null-space of®,

i.e. ®e = 0, or equivalently®ses = —Ps_€s,. Let I denote
the sizek identity matrix. By theinvertability condition, the
pseudoinvers®; satisfiesd’.®s = I. Hence

\

(33)

and take the vector inner product wigron both sides to obtain
BTes = —BT®L®s, es, . Finally (32) holds by taking absolute
value of 87 es, and writing|37®L® s €s.| < |[BT®L®s, || oo -
les. 1.

To second part is to elucidate the bound [b&s||; (or
llas — as,|[1). Starting from the previous relationship {(33)
we have|les|li = |[®5®s.es.[li < [|®5®s, || - [les. |-
The result then follows by using theorst-case projections
condition to bounq|<I>:fS<I>5C||OO by some positivei3, and also
bounding|les. ||1 using the bound obtained in the first part of
this proof. [ ]

For the next two proofs we use the following notation. Let
I denote the identity matrix, and I& denote a projection
matrix onto the column subspace®g, i.e.,P = <I>3<I>g. We
first address the proof of Propositibh 4.

€s = _(I)TS(I)SCCSC N

Proposition 4 (c.f, [6]). Let Z be a random noise vector,
whose components are IID zero mean Gaussian with vari-
ance ¢%. Assume that the matri® satisfies||@;|l> = 1



for all columns¢;. Then the realizationZ = z satisfies check
conditions i) and ii) in Theorem C with probability at least

1—n~'(2rlogn) 2. leslloe < [[(@5Ps) ™' @520 + 20ncz - [|(@5Ps) ™ Bl
. ) . < ayley-+/2logn + 2ascy - 0 (38)
Proof of Propositiof 4, c.f.[[6]: The result will follow by =" "

L , o o _1
showing i) holds with probability:-n == (2r logn)~ 2, and by -y here the final inequality follows from noise condition ipfn

. e . e _2 —_

showing ii) holds with probabilityn — k) - n* (27 log n) . Propositioi %, and thiavertability projectionscondition which
For i), first assume each con;ponenltZthas variance 1. provides the bound(®%®s)~!B||.. < as for some positive

Let Ci de_nlote thei-th row of (‘1;5‘1’8) ~®s, thus we have . By assumption[(8) and comparing with the above upper

|(@5®s)” ' @sZ|c = max;[c; Z|. Since Z is Gaussian, ggtimate forjles| |, our claim must hold.

thus Next we go on to verifyn’ satisfies[(3]7). We have

Pr{|@505) @52l > 2) K -PHZI> 2 G § ae_y gem s @L) (@12 2000, B) (39

where Z is a Gaussian RV with standard deviation at least

. here the last equality follows by first writinfe = ®eg,
the /3-norm of any rowc;. It remains to then upper bound”’ o - 7 e et
llesls for all 7, which follows as||c;||» < [|(®1®s)~®s]s. then substituting((36), and puttig; = (25®s) '®5. Now

The spectral norm|(®@%5®s)~'®s|l; is at most the recip- becauseI)fg is a right:ipnverse oL, by left multiplying the
rocal of the smallest non-zero singular value ®f, and 2PO0Ve expression b@s we conclude

by the invertability condition for some positive;, we have T (b — ®a’) = 2¢.0.. -
|(®5®s) '®s||2 < a;'. Thenwe letZ in (34) have standard s o) = 2ezbn - B,
deviationa; . Equivalently, which is equivalent to the first set of equations bf](36) as

T C1xT we verified before tha = sgn(a’). For the second set of
Prill(@s®s)” @52Z|lec > 2} < k- Pr{|Z] > a1 - 2} equations, observe frorh (39) that
<2k fz(a12)/(a12) (35) }

I1-P)(b-®a’) = (I-P)z,

where Z is a standard normal RV with density function ~ .

fz(z). Generalizing to the case where each component P(b—®a®) = 2029"'((1);)Tﬂ’

of Z has variancecz, the upper bound become?k -

fz((ar2)/cz)/((a12)fez). Putz = (czv/2Togn)/a: to get

the claimed probabilistic upper estimaten=2(2r logn)~2.
For ii) we proceed similarly. Observe that for ang S, we

where the first equality follows becaugé — P)(@E)T
0, and the second equality follows becauBéd’)”®% =
PP7 = P2 = P. Using the above two identities, we estimate

_have||¢g(1 —P)||2 < ||¢i||2 = 1. Th_e_n putz = CZQ\_/logn ||‘I’£C(B — ®a")||oo

g?is_eQ(lg;(l)oge;)T%e.clalmed probabilistic upper estln(azti < ||‘I’§C (1— P)(B — @) + ||‘I>§CP(B — &)
Proof of Theorem 1.3, c.f[6]:We shall show that any = [|®%. (I — P)z||o + 220, - ||®F (@5)" Bl

signala with sign 8 and supportS, assuming(8, S) satisfy cz V26,

all threeinvertability, small projectionsandinvertability pro- = 1+a +2czaz - On, (40)

jections conditions together with{7) andl(8), will have both _

sign and support successfully recovered. where the upper estimatezv/20,,)/(1 + a) = cz2y/logn

The proof follows by constructing a vectar’ from a as follows from noise condition ii) stated in Propositibh 4,dan
follows. Lete denote the erroe = o’ — a, ande’ is defined ||1®% (@5)7Bl« < a follows from the small projections

by letting e satisfy property. Finally from assuming](7) we hav&(1 +a)~" +
2a5 < 2, and applying to the last member ¢f [40) proves
es = (B58s) 1 (®52 — 2¢20,8), |®% (b — ®a')||« < 2cz0,, which verifiesa’ satisfies the
es, = 0. (36) second set of equations df (36). Thus we verifigd= a*
which is what we need to complete the proof. ]

Let us first claim that if[(B) holds, then the supporindfequals

that of . If this is true, then standard subgradient arguments,
see [6], [31], will lead us to conclude that must be the B. Derivation of standard bounds
unique Lasso[{6) solution (i.eey’ = a*) if i) it satisfies

In the Gaussian case noteX? = 1 and EX; = 0.
¢T(b—®a') = 2cz0, -sgn(a}), ifieS, Then}_ ", ¢;X; is also Gaussian with varian¢||3. Hence
67 (b — ®a’)| < 2c6, ifi¢dS (37) by Markov’s inequality we have the (single-sided) inequal-

ity Pr{> ", ¢;X; >t} < exp(—ht + h?/||c||3) for any
and ii) the submatrix@s has full column rank. The condition 2 > 0. The claim for the Gaussian case will follow by
ii) follows from the invertability condition, and the latter half setting » = ¢ - ||c||3/2, and noting that for the other
of the proof will verify i). Let us first verify the previousaim sidePr{—(}_", ¢;X;) >t} = Pr{>", ¢;X; > t}. For the
that botha’ anda have exact same supports. In fact, we gbounded case, note¥;| < 1 and EX; = 0, and the claim
further to verify thata’ anda also have the same signs. Firsfollows from Hoeffding’s (2.6) in[[3B].



C. Derivation of measurement rates In (b) and(c) we look at the other case wheikg;| € Ry, 1.

o i . |

For thesmall projectionscondition, start fromp(as) being Here(¢) plots the probabilityl — (1 )" that [8) fails. Again
bounded by the RHS of{14) whete= a.. As before bound the contogred lines delineate a particular fixed value-of1 —
Pr{omin(As) < a1} < exp(—m - (0.29 — a1)?/c1), where we 1)* for variousk, n values, whereby we set= 7.4-cz/2logn
had setv/d = a,. From the identity,/a7 < \/as + /@3 for (recall we useds = 1 here). We observe how closely)

positive quantitiesy;, it follows from Theorenill and (18) that tracks the noise floor regions ifb) (indicated by shading).
we will haveus < (n — k) - Un(as) < 2u, if we enforce More specifically note really depends om, and the larger
- " - the probabilitiesl — (1 — t)* get for variousk,n in Figure

1 m(awz)?] [B.(¢), this probability overwhelms the LASSO recovery rates
— |log2 +1 —k)— ————|+t < logu, e . . : :
2 [ °8 og(n — k) 2k = st in Figure[D.Xb). This matches with our previous observations
1 0.29 — ay)? in Figure[®&D).
3 [log(n—k)—u] +t < logu, qurel&?)
C1

wheret = /2(k/n)log(n/k). Ignoring thelog2 term, and
usingvn — k < n — k, it follows that [19) enforces the two
above conditions.

Similarly for the invertability condition, to haveu; =
Un(a1) < u it follows from Theoremdl and[{18) that we
need to enforce to second condition above.

For theworst-case projectionsondition, to have.s < (n—
k) - Upn(as) < 2u we need to enforce

1 2
5[(k—i—l)-log?—l—log(n—k)—%]+t < logu,
1 29 —aq)?
§{klog2+log(n—k)—M]+t < logu.
a1

Taking

—k —k
klog (n_) > (k+1)-log2+log (n_) ,
u u

justifiable for (n — k)/u suitably larger thar2, the rate [(ID)
generously suffices to ensure these 2 conditions.

D. More on noisy LASSO performance

The aim here is to provide more empirical evidence to
support observations made in Figlile 6 for more block lengths
Here Figurd D.1 shows LASSO performance now for a wider
range ofn. We only considern = 150, and show various
recovery failure rates displayed via contoured lines, foious
sparsitiesk and block lengths:. Figured D.{a) and (b) are
companion to Figurels|6) and (b), in that they respectively
correspond to cases where the non-zero signal magnitades
equal 1 (andz = 0), and inRy 1) (@nda = 1). That is, for
n = 1000, andk = 4 andcz = 1 x 10~4, we see the recovery
failure is approximatelyt x 10~2 in both Figurd DJla) and
Figure[@a).

As mentioned in Subsectidn TV-C we observe good empir-
ical match when adjusting the tertn= (a; ' 4 2a3(1 + a)) -
cz+/2logn (on the RHS of[(B)) witha; = 0.29 andaz = 1.
Figure[D.1 provides further support. (n) we show the values
of the term¢ for valuesn = 300 andn = 3000. Recall in
this case when > 1 condition [8) (and thus recovery) fails.
Observe wherr; = 5 x 1072 the values oft are very close
to 1, and forcz = 1 x 10~! they exceedl. This matches
with our observation in FigurEl6) thatcz = 5 x 1072 is
the critical point, beyond which for large; recovery fails
catastrophically.
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Fig. D.1. Empirical LASSO performance shown for = 150 for range ofk, n values. In(a) the non-zero signal magnitudés;| equal 1, and in(b) they

are inR o 1). In (c¢) we plot a curve (expressior) — (1 — t)k for t = (3.4 4+ 2(1 + a)) - cz/2logn.
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