
ar
X

iv
:1

21
0.

81
16

v1
  [

cs
.IT

]  
30

 O
ct

 2
01

2
LIM AND STOJANOVIC: ON U-STATISTICS AND COMPRESSED SENSINGI: NON-ASYMPTOTIC AVERAGE-CASE ANALYSIS 1

On U-Statistics and Compressed Sensing I:
Non-Asymptotic Average-Case Analysis

Fabian Lim∗ and Vladimir Marko Stojanovic

Abstract—Hoeffding’s U-statistics model combinatorial-type
matrix parameters (appearing in CS theory) in a natural way.
This paper proposes using these statistics for analyzing random
compressed sensing matrices, in the non-asymptotic regime
(relevant to practice). The aim is to address certain pessimisms
of “worst-case” restricted isometry analyses, as observed by both
Blanchard & Dossal, et. al.

We show how U-statistics can obtain “average-case” analyses,
by relating to statistical restricted isometry property (StRIP) type
recovery guarantees. However unlike standard StRIP, random
signal models are not required; the analysis here holds in the al-
most sure (probabilistic) sense. For Gaussian/bounded entry ma-
trices, we show that bothℓ1-minimization and LASSO essentially
require on the order of k · [log((n− k)/u) +

√

2(k/n) log(n/k)]
measurements to respectively recover at least1−5u fraction, and
1− 4u fraction, of the signals. Noisy conditions are considered.
Empirical evidence suggests our analysis to compare well to
Donoho & Tanner’s recent large deviation bounds for ℓ0/ℓ1-
equivalence, in the regime of block lengths1000 ∼ 3000 with
high undersampling (50 ∼ 150 measurements); similar system
sizes are found in recent CS implementation.

In this work, it is assumed throughout that matrix columns
are independently sampled.

Index Terms—approximation, compressed sensing, satistics,
random matrices

I. I NTRODUCTION

Compressed sensing (CS) analysis involves relatively recent
results from random matrix theory [1], whereby recovery guar-
antees are framed in the context of matrix parameters known as
restricted isometry constants. Other matrix parameters are also
often studied in CS. Earlier work on sparse approximation con-
sidered a matrix parameter known asmutual coherence[2]–
[4]. Fuchs’ work onKarush-Kuhn-Tucker (KKT)conditions
for sparsity pattern recovery considered a parameter involving
a matrix pseudoinverse[5], re-occurring in recent work [4],
[6], [7]. Finally, the null-space property[8]–[10] is gaining
recent popularity - being the parameter closest related to the
fundamental compression limit dictated byGel’fand widths.
All above parameters share a similar feature, that is they
are defined over subsets of a certain fixed sizek. This
combinatorial nature makes them difficult to evaluate, even
for moderate block lengthsn. Most CS work therefore involve
some form of randomization to help the analysis.

While the celebratedk log(n/k) result was initially ap-
proached via asymptotics,e.g., [1], [11]–[13], implementations
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require finite block sizes. Hence, non-asymptotic analysesare
more application relevant. In the same practical aspect, recent
work deals with non-asymptotic analysis ofdeterministic
CS matrices, see [4], [7], [14], [15]. On the other hand
certain situations may not allow control over the sampling
process, whereby the sampling may be inherently random,e.g.,
prediction of clinical outcomes of various tumors based on
gene expressions [6]. Random sampling has certain desirable
simplicity/efficiency features - see [16] on data acquisition in
the distributed sensor setting. Also recent hardware imple-
mentations point out energy/complexity-cost benefits of im-
plementingpseudo-random binary sequences[17]–[19]; these
sequences mimic statistical behavior. Non-asymptotic analysis
is particularly valuable, when random samples are costly to
acquire. For example, each clinical trial could be expensive
to conduct an excessive number of times. In the systems
setting, the application could be running on a tight energy
budget - whereby processing/communication costs depend on
the number of samples acquired.

This work is inspired by thestatistical notion of the
restricted isometry property (StRIP), initially developed for
deterministic CS analysis [14], [15]. The idea is to relax the
analysis, by allowing sampling matrix parameters (that guar-
antee signal recovery) to be satisfied for afraction of subsets.
Our interest is in “average-case” notions in the context of
randomized sampling, reason being that certain pessimismsof
“worst-case” restricted isometry analyses have been observed
in past works [13], [20], [21]. On the other hand in [22],
Donoho & Tanner remarked on potential benefits of the above
“average-case” notion, recently pursued in an adaptation of a
previous asymptotic result [23]. In the multichannel setting,
“average-case” notions are employed to make analysis more
tractable [24], [25]. In [26] a simple “thresholding” algorithm
is analyzed via an “average” coherence parameter. However
the works in this respect are few, most random analyses are of
the “worst-case” type, see [12], [13], [21], [27]. We investigate
the unexplored, with the aim of providing new insights and
obtaining new/improved results for the “average-case”.

Here we consider a random analysis tool that is well-
suited to the CS context, yet seemingly left untouched in
the literature. Our approach differs from that of deterministic
matrices, where “average-case” analysis is typically made
accessible via mutual coherence, see [14], [15], [18]. For
random matrices, we propose an alternative approach viaU-
statistics, which do not require random signal models typically
introduced in StRIP analysis, see [14], [25], [26]; here, the
results are stated in thealmost suresense. U-statistics apply
naturally to various kinds of non-asymptotic CS analyses,
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since they are designed for combinatorial-type parameters.
Also, they have a natural “average-case” interpretation, which
we apply to recent recovery guarantees that share the same
“average-case” characteristic. Finally thanks to the wealth of
U-statistical literature, the theory developed here is open to
other extensions,e.g., in related work [28] we demonstrate
how U-statistics may also perform “worst-case” analysis.

Contributions : “Average-case” analyses are developed
based on U-statistics, which are i) empirically observed tohave
good potential for predicting CS recovery in non-asymptotic
regimes, and ii) theoretically obtain measurement rates that
incorporate a non-zero failure rate (similar to thek log(n/k)
rate from “worst-case” analyses). We utilize a U-statistical
large deviation concentration theorem, under the assumption
that the matrix columns are independently sampled. The large
deviation error bound holdsalmost surely(Theorem 1). No
random signal model is needed, and the error is of the
order (n/k)−1 log(n/k), wherebyk is the U-statistic kernel
size (andk also equals sparsity level). Gaussian/bounded
entry matrices are considered. For concreteness, we con-
nect with StRIP-type guarantees (from [6], [7]) to study the
fraction of recoverable signals (i.e., “average-case” recov-
ery) of: i) ℓ1-minimization and ii) least absolute shrinkage
and selection operator (LASSO), under noisy conditions. For
both these algorithms we showconst ·k[log((n − k)/u) +
√

2(k/n) log(n/k)] measurements are essentially required, to
respectively recover at least1 − 5u fraction (Theorem 2),
and 1 − 4u fraction (Theorem 3), of possible signals. This
is improved to1 − 3u fraction for the noiseless case. Here
const = max(4/(a1a2)

2, 2c1/(0.29−a1)
2) for to be specified

constantsa1, a2, c1, wherec1 depends on the distribution of
matrix entries. Note that the term

√

2(k/n) log(n/k) is at
most 1 and vanishes with smallk/n. Empirical evidence
suggests that our approach compares well with recent results
from Donoho & Tanner [23] - improvement is suggested
for system sizes found in implementations [17], with large
undersampling (i.e., m = 50 ∼ 100 andn = 1000 ∼ 3000).
The large deviation analysis here does show some pessimism
in the size ofconst above, wherebyconst ≥ 4 (we conjecture
possible improvement). For Gaussian/Bernoulli matrices,we
find const ≈ 1.8 to be inherently smaller,e.g., for k = 4 this
predicts recovery of1×10−6 fraction with153 measurements
- empiricallym = 150.

Note: StRIP-type guarantees [6], [7] seem to work well,
by simply not placing restrictive conditions on the maximum
eigenvalues of the size-k submatrices. Our theory applies fairly
well for various considered system sizesk,m, n (e.g., Figure
4), however innoisy situations, a (relatively small) factor of√
k losses is seen without making certain maximum eigenvalue

assumptions. Forℓ1-recovery, the estimation error is now
bounded by a

√
k factor of its bestk-term approximation error

(both errors measured using theℓ1-norm). For LASSO, the the
non-zero signal magnitudes must now be bounded below by
a factor

√
2k logn (with respect to noise standard deviation),

as opposed to
√
2 logn in [6]. These losses occur not because

of StRIP analyses, but because of the estimation techniques
employed here.

Organization: We begin with relevant background on CS

in Section II. In Section III we present a general U-statistical
theorem for large-deviation (“average-case”) behavior. In Sec-
tion IV the U-statistical machinery is applied to StRIP-type
“average-case” recovery. We conclude in Section V.

Notation: The set of real numbers is denotedR. Determin-
istic quantities are denoted usinga, a, or A, where bold fonts
denote vectors (i.e., a) or matrices (i.e., A). Random quantities
are denoted using upper-caseitalics, whereA is a random
variable (RV), andAAA a random vector/matrix. LetPr{A ≤ a}
denote the probability that event{A ≤ a} occurs. Sets are
denoted using braces,e.g., {1, 2, · · · }. The notationE denotes
expectation. The notationi, j, ℓ, ω is used for indexing. We let
|| · ||p denote theℓp-norm for p = 1 and2.

II. PRELIMINARIES

A. Compressed Sensing (CS) Theory

A vectora is said to bek-sparse, if at mostk vector coef-
ficients are non-zero (i.e., its ℓ0-distance satisfies||a||0 ≤ k).
Let n be a positive integer that denotes block length, and let
ααα = [α1, α2, · · · , αn]

T denote a length-n signal vector with
signal coefficientsαi. Thebestk-term approximationαααk of ααα,
is obtained by finding thek-sparse vectorαααk that has minimal
approximation error||αααk −ααα||2.

Let ΦΦΦ denote anm × n CS sampling matrix, where
m < n. The length-m measurement vectordenotedb =
[b1, b2, · · · , bm]T of some length-n signal ααα, is formed as
b = ΦΦΦααα. Recoveringααα from b is challenging asΦΦΦ possesses
a non-trivial null-space. We typically recoverααα by solving the
(convex)ℓ1-minimization problem

min
α̃αα∈Rn

||α̃αα||1 s. t. ||b̃−ΦΦΦα̃αα||2 ≤ ǫ. (1)

The vectorb̃ is a noisyversion of the original measurements
b, and hereǫ bounds the noise error,i.e., ǫ ≥ ||b̃ − b||2.
Recovery conditions have been considered in many flavors [2],
[3], [11], [22], [23], and mostly rely on studying parameters
of the sampling matrixΦΦΦ.

For k ≤ n, thek-th restricted isometry constantδk of an
m× n matrixΦΦΦ, equals the smallest constant that satisfies

(1− δk)||ααα||22 ≤ ||ΦΦΦααα||22 ≤ (1 + δk)||ααα||22, (2)

for anyk-sparseααα in R
n. The following well-known recovery

guarantee is stated w.r.t.δk in (2).

Theorem A, c.f., [29] Let ΦΦΦ be the sensing matrix. Letααα
denote the signal vector. Letb be the measurements,i.e., b =
ΦΦΦααα. Assume that the(2k)-th restricted isometry constantδ2k
ofΦΦΦ satisfiesδ2k <

√
2−1, and further assume that the noisy

version b̃ of b satisfies||b̃ − b||2 ≤ ǫ. Let αααk denote the
best-k approximation toααα. Then theℓ1-minimum solutionααα∗

to (1) satisfies

||ααα∗ −ααα||1 ≤ c1||ααα−αααk||1 + c2ǫ,

for small constantsc1 = 4
√
1 + δ2k/(1 − δ2k(1 +

√
2)) and

c2 = 2(δ2k(1 −
√
2)− 1)/(δ2k(1 +

√
2)− 1).

Theorem A is very powerful, on condition that we know the
constantsδk. But because of their combinatoric nature, com-
puting the restricted isometry constantsδk is NP-Hard [13].
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Let S denote a size-k subset of indices. LetΦΦΦS denote the size
m× k submatrix ofΦΦΦ, indexed on (column indices) inS. Let
σ2

max(ΦΦΦS) andσ2
min(ΦΦΦS) respectively denote the minimum and

maximum,squared-singular valuesofΦΦΦS . Then from (2) if the
columnsφφφi of ΦΦΦ are properly normalized,i.e., if ||φφφi||2 = 1,
we deduce thatδk is the smallest constant inR that satisfies

δk ≥ max(σ2
max(ΦΦΦS)− 1, 1− σ2

min(ΦΦΦS)), (3)

for all
(

n
k

)

size-k subsetsS. For largen, the number
(

n
k

)

is
huge. Fortunatelyδk need not be explicitly computed, if we
can estimate it after incorporatingrandomization[1], [11].

Recovery guarantee Theorem A involves “worst-case” anal-
ysis. If the inequality (3) is violated foranyone submatrixΦΦΦS ,
then thewholematrixΦΦΦ is deemed to have restricted isometry
constant larger thanδk. A common complaint of such “worst-
case” analyses is pessimism,e.g., in [20] it is found that for
n = 4000 and m = 1000, the restricted isometry property
is not even satisfied for sparsityk = 5. This motivates the
“average-case” analysis investigated here, where the recovery
guarantee is relaxed to hold for a large “fraction” of signals
(useful in applications that do not demand all possible signals
to be completely recovered). We draw ideas from the statistical
StRIP notion used in deterministic CS, which only require
“most” of the submatricesΦΦΦS to satisfy some properties.

In statistics, a well-known notion of a U-statistic (introduced
in the next subsection) is very similar to StRIP. We will show
how U-statistics naturally lead to “average-case” analysis.

B. U-statistics & StRIP

A function ζ : R
m×k → R is said to be akernel, if for

anyA,A′ ∈ R
m×k, we haveζ(A) = ζ(A′) if matrix A

′ can
be obtained fromA by column reordering. Let R[0,1] be the
set of real numbers bounded below by0 and above by1, i.e.,
R[0,1] = {a ∈ R : 0 ≤ a ≤ 1}. U-statistics are associated
with functionsg : R

m×k × R → R[0,1] known asbounded
kernels. To obtain bounded kernelsg from indicator functions,
simply use some kernelζ and setg(A, a) = 1 {ζ(A) ≤ a} or
g(A, a) = 1 {ζ(A) > a}, e.g.1{σ2

max(A) ≤ a}.

Definition 1 (Bounded Kernel U-Statistics). Let AAA be a
random matrix withn columns. LetΦΦΦ be sampled asΦΦΦ = AAA.
Let g : R

m×k × R 7→ R[0,1] be a bounded kernel. For any
a ∈ R, the following quantity

Un(a)
∆
=

1
(

n
k

)

∑

S

g(ΦΦΦS , a) (4)

is a U-statistic of the sampled realizationΦΦΦ = AAA, correspond-
ing to the kernelg. In (4), the matrixΦΦΦS is the submatrix of
ΦΦΦ indexed on column indices inS, and the sum takes place
over all subsetsS in {1, 2, · · · , n}. Note,0 ≤ Un(a) ≤ 1.

For k ≤ n and positiveu whereu ≤ 1, a matrixΦΦΦ has
u-StRIP constant δk, if δk is the smallest constant s.t.

(1− δk)||ααα||22 ≤ ||ΦΦΦSααα||22 ≤ (1 + δk)||ααα||22, (5)

for any ααα ∈ R
k and fractionu of size-k subsetsS. The

difference between (5) and (2) is thatΦΦΦS is in place of
ΦΦΦ. This StRIP notion coincides with [7]. Considerζ(A) =
max(σ2

max(A) − 1, 1 − σ2
min(A)) where hereζ is a kernel.

Obtain a bounded kernelg by settingg(A, a) = 1{ζ(A) >
a}. Construct a U-statisticUn(δ) of ΦΦΦ the form Un(δ) =
(

n
k

)−1∑

S 1{ζ(ΦΦΦS) > δ}. Then if this U-statistic satisfies
Un(δ) = 1 − u, the u-StRIP constantδk of ΦΦΦ is at most
δ, i.e., δk ≤ δ.

To exploit apparent similarities between U-statistics and
StRIP, we turn to two “average-case” guarantees found in
the StRIP literature. In the sequel, the conditions required
by these two guarantees, will be analyzed in detail via U-
statistics - for now let us recap these guarantees. First, an
ℓ1-minimization recovery guarantee recently given in [7], isa
StRIP-adapted version of the “worst-case” guarantee Theorem
A. For any non-square matrixA, let A† denote theMoore-
Penrose pseudoinverse1. A vectorβββ with entries in{−1, 1} is
termed asign vector. Forααα ∈ R

n, we writeαααS for the length-
k vector supported onS. Let Sc denote the complementary
set of S, i.e., Sc = {1, 2, · · · , n} \ S. The “average-case”
guarantees require us to check conditions onΦΦΦ for fractions
of subsetsS, or sign-subsetpairs(βββ,S).
Theorem B, c.f., Lemma 3, [7] LetΦΦΦ be anm× n sensing
matrix. LetS be a size-k subset, and letβββ ∈ {−1, 1}k. Assume
thatΦΦΦ satisfies

• invertibility: for at least a fraction1 − u1 of subsetsS,
the conditionσmin(ΦΦΦS) > 0 holds.

• small projections: for at least a fraction1 − u2 of sign-
subset pairs(βββ,S), the condition

∣

∣

∣
(ΦΦΦ†

Sφφφi)
Tβββ
∣

∣

∣
≤ a2 for everyi /∈ S

holds where we assume the constanta2 < 1.
• worst-case projections: for at least a fraction1 − u3 of

subsetsS, the following condition holds

||ΦΦΦ†
Sφφφi||1 ≤ a3 for everyi /∈ S.

Then for a fraction1−u1−u2−u3 of sign-subset pairs(βββ,S),
the following error bounds are satisfied

||ααα∗
S −αααS ||1 ≤ 2a3

1− a2
||ααα−αααk||1,

||ααα∗
Sc

−αααSc
||1 ≤ 2

1− a2
||ααα−αααk||1,

whereααα is a signal vector that satisfiessgn(αααS) = βββ, andαααk

is the best-k approximation ofααα andαααk is supported onS,
and finallyααα∗ is the solution to (1) where the measurements
b satisfyb = ΦΦΦααα.

For convenience, the proof is provided in Supplementary
Material A. The second guarantee is a StRIP-type recovery
guarantee for theLASSOestimate, based on [6] (also see [7]).
Consider recovery from noisy measurements

b̃ = ΦΦΦααα+ z,

herez is a length-m noise realization vector. We assume that
the entrieszi of z, are sampled from a zero-mean Gaussian
distribution with variancec2Z . The LASSO estimate considered
in [6], is the optimal solutionααα∗ of the optimization problem

min
α̃αα∈Rn

1

2
||b̃−ΦΦΦα̃αα||2 + 2cZ · θn||α̃αα||1. (6)

1If A has full column rank, thenA† = (ATA)−1AT ,
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The ℓ1-regularization parameter is chosen as aproductof two
terms cZ and θn, where we specifyθn = (1 + a)

√
2 logn

for some positivea. What differs from convention is that the
regularization depends on the noise standard deviationcZ . We
assumecZ > 0, otherwise there will be noℓ1-regularization.

Theorem C, c.f., [6] LetΦΦΦ be them×n sensing matrix. Let
S be a size-k subset, and letβββ ∈ {−1, 1}k.

• invertability: for at least a fraction1 − u1 of subsetsS,
the conditionσmin(ΦΦΦS) > a1 holds.

• small projections: for at least a fraction1−u2 of subsets
S, same as Theorem B.

• invertability projections: for at least a fraction1− u3 of
sign-subset pairs(βββ,S), the following condition holds

||(ΦΦΦT
SΦΦΦS)

−1βββ||∞ ≤ a3.

Let cZ denote noise standard deviation. Assume Gaussian
noise realizationz in measurements̃b, satisfy

i) ||(ΦΦΦT
SΦΦΦS)

−1ΦΦΦT
Sz||∞ ≤ (cZ

√
2 logn)/a1, for the con-

stanta1 in the invertability condition.
ii) ||ΦΦΦT

Sc
(I − ΦΦΦSΦΦΦ

†
S)z||∞ ≤ cZ2

√
logn, whereSc is the

complementary set ofS.

For some positivea, assume that constanta2 in the small
projections condition, satisfies

(
√
2(1 + a))−1 + a2 < 1. (7)

Then for a fraction1 − u1 − u2 − u3 of sign-subset pairs
(βββ,S), the LASSO estimateααα∗ from (6) with regularization
θn = (1 + a)

√
2 logn for the samea above, will successfully

recover both signs and supports ofααα, if

|αi| ≥
[

a−1
1 + 2a3(1 + a)

]

· cZ
√

2 logn for all i ∈ S (8)

Because of some differences from [6], we also provide
the proof in Supplementary Material A. In [6] it is shown
that the noise conditions i) and ii) are satisfied with large
probability at least1 − n−1(2π logn)−

1

2 (see Proposition 4
in Supplementary Material A). Theorem C is often referred
to as asparsity pattern recoveryresult, in the sense that it
guarantees recovery of the sign-subset pairs(βββ,S) belonging
to a k-sparse signalααα. Fuchs established some of the earlier
important results, see [5], [30], [31].

In Theorems B and C, observe that theinvertability con-
dition can be easily checked using an U-statistic; simply set
the bounded kernelg as g(A, a1) = 1 {σmin(A) ≤ a1} for
some positivea1 and measure the fractionUn(a1) = u1. Other
conditions require slightly different kernels, to be addressed in
upcoming Section IV. But first we first introduce the main U-
statistical large deviations theorem (central to our analyses) in
the next section.

III. L ARGE DEVIATION THEOREM: “AVERAGE-CASE”
BEHAVIOR

Consider two bounded kernelsg defined forA ∈ R
m×k,

corresponding to maximum and minimum squared singular
values

g(A, a) = 1
{

σ2
max(A) ≤ a

}

, and (9)

g(A, a) = 1
{

σ2
min(A) ≤ a

}

. (10)

Fig. 1. Gaussian measure. Concentration of U-statisticUn(a) for squared
singular valueσ2

min andσ2
max kernelsg, see (9) and (10). Shown form =

25, k = 2 and two values ofn = 25 and100.

Note that restricted isometry conditions (2) and (5) dependon
both σ2

min andσ2
max behaviors, although the conditions in the

previous StRIP-recovery guarantees Theorem B are explicitly
imposed only onσ2

min. See [13], [32] for the different behaviors
and implications of these two extremal eigenvalues. In this
section we consider two U-statistics, corresponding separately
to (9) and (10).

Let AAAi denote thei-th column ofAAA, and assumeAAAi to be
IID. For an bounded kernelg, let p(a) denote the expectation
Eg(AAAS , a), i.e., p(a) = Eg(AAAS , a) for any size-k subsetS.
Sincep(a) = EUn(a), thus the U-statistic meanEUn(a) does
not depend on block lengthn.

Theorem 1. Let AAA be an m × n random matrix, whereby
the columnsAAAi are IID. Let g be a bounded bounded kernel
that mapsRm×k × R → R[0,1] and let p(a) = Eg(AAAS , a) =
EUn(a). LetUn(a) be a U-statistic of the sampled realization
ΦΦΦ = AAA corresponding to the bounded kernelg. Then almost
surely whenn is sufficiently large, the deviation|Un(a) −
p(a)| ≤ ǫn(a) is bounded by an error termǫn(a) that satisfies

ǫ2n(a) = 2p(a)(1− p(a)) · (n/k)−1 log(n/k). (11)

Theorem 1 is shown by piecing together (5.5) in [33] and
Lemma 2.1 in [34]. The proof is given in Appendix A. Figure 1
empirically illustrates this concentration result forg in (9) and
(10), corresponding top(a) = Eg(AAAS , a) = Pr{σ2

max(AAAS) ≤
a} and p(a) = Pr{σ2

min(AAAS) ≤ a}. Empirical simulation
of restricted isometries is very difficult, thus we chose small
valuesk = 2, m = 25 and block lengthsn = 25 andn = 100.
For n = 25 the deviation|U25(a) − p(a)| is very noticeable
for all values ofa and bothσ2

max andσ2
min. However for larger

n = 100, the deviation|U100(a)−p(a)| clearly becomes much
smaller. This is predicted by vanishing errorǫn(a) given in
Theorem 1, which drops as the ration/k increases. In fact if
k is kept constant then the error behaves asO(n−1 logn).

Table I reproduces2 a sample of (asymptotic) estimates for
both σ2

max and σ2
min cases, taken from [21]. These estimates

are derived for “worst-case” analysis, under assumption that
every entryAij of AAA is IID and Gaussian distributed (i.e., Aij

is Gaussian with variance1/m). Table I presents the estimates

2We point out that Bah actually defined two separate restricted isometry
constants, each corresponding toσ2

min and σ2
max in [21]. In this paper to

coincide the presentation with our discussion on squared singular values, their
results will be discussed in the domain ofσ2

min andσ2
max.



LIM AND STOJANOVIC: ON U-STATISTICS AND COMPRESSED SENSINGI: NON-ASYMPTOTIC AVERAGE-CASE ANALYSIS 5

Fig. 2. Meansp(a) = EUn(a) for predicting the concentration ofUn(a).
Shown for the Gaussian case,(a) m = 50 and (b) m = 150.

TABLE I
ASYMPTOTICLOWER AND UPPERBOUNDS ON “W ORST-CASE”

EIGENVALUES, [21]

Minimum: σ2
min Maximum: σ2

max
m/n m/n

0.1 0.3 0.5 0.1 0.3 0.5

k
/
m

0.1 0.095 0.118 0.130 3.952 3.610 3.459
0.2 0.015 0.026 0.034 5.587 4.892 4.535
0.3 0.003 0.006 0.010 6.939 5.806 5.361

according3 to fixed ratiosk/m andm/n. To compare, Figure
2 shows the expectationsp(a) = EUn(a). The valuesp(a)
are interpreted as fractions, and asn/k becomes largep(a)
is approached byUn(a) within a stipulated errorǫn. Figure
2 is empirically obtained, though note that in Gaussian case
for p(a) we also have exact expressions [32], [35], and
the Bartlett decomposition[36], available. Againp(a) is a
marginal quantity (i.e. does not depend onn) and simulation
is reasonably feasible. In the spirit of non-asymptotics, we
consider relatively smallk,m values as compared to other
works [20], [21]; these adopted values are nevertheless “prac-
tical”, in the sense they come an implementation paper [17].

Differences are apparent from comparing “average-case”
(Figure 2) and “worst-case” (Table I) behavior. Consider
k/m = 0.3 where Table I shows for all undersampling ratios
m/n, the worst-case estimate ofσ2

min is very small, approxi-
mately0.01. But for fixedm = 50 andm = 150, Figures 2(a)
and (b) show that for respectivelyk = 0.3 · (150) = 15 and
k = 45, a large fraction of subsetsS seem to haveσ2

min(ΦΦΦS)
lying above0.1. From Table I, the estimates forσ2

min gets
worse (i.e., gets smaller) asm/n decreases. But the error
ǫn(a) in Theorem 1 vanishes with largern/k. For the other
σ2

max case, we similarly observe that the values in Table I also
appear more “pessimistic”.

We emphasize that Theorem 1 holds regardless of distribu-
tion. Figure 3 is the counterpart figure for Bernoulli and Uni-
form cases (i.e., each entryAij is respectively drawn uniformly
from {−1/

√
m, 1/

√
m}, or {a ∈ R : |a| ≤

√

3/m}), shown
for m = 50. Minute differences are seen when comparing with
previous Figure 2. Fork = 3, we observe the fractionp(a)
corresponding toσ2

max to be roughly 0.95 in the latter case,
whereas in the former we have roughly0.9 in Figure 3(a),
and0.88 in Figure 3(b).

3The analysis in [21] was performed for the large limit ofk,m and n,
where bothk/m andm/n approach fixed constants.

Fig. 3. Meansp(a) = EUn(a) for m = 50 and the(a) Bernoulli and(b)
Uniform cases.

Remark 1. Exponential bounds onPr{minS σ2
min(AAAS) <

1−δ} andPr{maxS σ2
max(AAAS) > 1+δ} for max(δ,

√

k/m) <√
2 − 1, see (3), employed in “worst-case” analyses, give

the optimalm = O(k log(n/k)) rate, see [1], [12], [37].
However the implicit constants are inherently not too small
(i.e., these constants cannot be improved).

These comparisons motivate “average-case” analysis.
Marked out on Figures 2 and 3 are the ranges for whichσ2

max
andσ2

min must lie to apply Theorem A (“worst-case” analysis).
In the cases shown above, the observations are somewhat
disappointing - even for smallk values, a substantial fraction
of eigenvalues lie outside of the required range. Thankfully,
there exist “average-case” guarantees,e.g., previous Theo-
rems B and C, addressed in the next section.

IV. U- STATISTICS& “A VERAGE-CASE” RECOVERY

GUARANTEES

A. Counting argument using U-statistics

Previously we had explained how theinvertability condi-
tions required by Theorems B and C naturally relate to U-
statistics. We now go on to discuss the other conditions,
whereby the relationship may not be immediate. We begin
with the projectionsconditions, in particular theworst-case
projectionscondition. For givenΦΦΦ, we need toupper bound
the fraction of subsetsS, for which there existsat least one
columnφφφj wherej /∈ S, such that||ΦΦΦ†

Sφφφj ||∞ exceeds some
valuea. To this end, letR denote a size-(k + 1) subset, and
R \ {j} is the size-k subset excluding the indexj. Consider
the bounded kernelg : R

m×(k+1) × R 7→ R[0,1] set as

g(A, a) =
1

k + 1

k+1
∑

j=1

1

{

||A†
R\{j}aj ||∞ > a

}

, (12)

where hereR = {1, 2, · · · , k + 1}, andaj denotes thej-th
column of A. Consider the U-statistic with bounded kernel
(12). We claim that

(n− k) · Un(a)

=
n− k

(k + 1)
(

n
k+1

)

∑

R

∑

j∈R

1

{

||ΦΦΦ†
R\{j}φφφj ||∞ > a

}

,

=
1
(

n
k

)

∑

S

∑

j /∈S

1

{

||ΦΦΦ†
Sφφφj ||∞ > a

}

,

where the summations overR andS are over all size-(k+1)
subsets, and all size-k subsets, respectively. The first equality
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follows from Definition 1 and (12). The second equality
requires some manipulation. First the coefficient

(

n
k

)−1
follows

from the binomial identity
(

n
k+1

)

· (k + 1) =
(

n
k

)

· (n − k).
Next for some subsetS and index j, write the indicator
1

{

||ΦΦΦ†
Sφφφj ||∞ > a

}

as 1S,j for brevity’s sake. By similar
counting that proves the previous binomial identity, we argue
∑

R

∑

j∈R 1R\{j},j =
∑

S

∑

j /∈S 1S,j , which then proves
the claim. Imagine a grid of “pigeon-holes”, indexed by pairs
(S, j), wherej /∈ S. For each size-(k+1) subsetR, we assign
k + 1 indicators1R\{j},j to k + 1 pairs (S, j). No “pigeon-
hole” gets assigned more than once. In fact we infer from the
binomial identity, that every “pigeon-hole” is in fact assigned
exactly once, and argument is complete.

Similarly for the small projectionscondition, we define a
different bounded kernelg : R

m×(k+1) × R 7→ R[0,1] as

g(A, a) =
1

2k(k + 1)

2k
∑

ℓ=1

k+1
∑

j=1

1

{∣

∣

∣
(A†

R\{j}aj)
Tβββℓ

∣

∣

∣
> a

}

, (13)

whereR = {1, 2, · · · , k+1}, andaj denotes thej-th column
of A, and βββ1,βββ2, · · · ,βββ2k enumerate all2k unique sign-
vectors in the set{−1, 1}k. By similar arguments as before,
we can show for the U-statisticUn(a) of ΦΦΦ corresponding to
the bounded kernel (13) satisfies

(n− k) · Un(a) =
1

2k
(

n
k

)

2k
∑

ℓ=1

∑

S

∑

j /∈S

1

{∣

∣

∣
(ΦΦΦ†

Sφφφj)
Tβββℓ

∣

∣

∣
> a

}

,

For indicators1S,j , note that
∑

j /∈S 1S,j ≥ 1 if at least one
indicator satisfying1S,j = 1, and we proved the following.

Proposition 1. Let Un(a3) be the U-statistic ofΦΦΦ, corre-
sponding to the bounded kernelg(A, a3) in (12). Then the
fraction of subsetsS of size-k, for which the worst-case
projections condition is violated for somea3 ∈ R, is at most
(n− k) ·Un(a3). Similarly if Un(a2) corresponds tog(A, a2)
in (13), the fraction sign-subset pairs(βββ,S), for which the
small projections condition is violated for somea2 ∈ R, is at
most(n− k) · Un(a2).

Referring back to Theorem B, we point out that thesmall
projections condition is more stringent than theworst-case
projectionscondition. We mean the following: in the former
case, the valuea2 must be chosen such thata2 < 1; in the
latter case, the valuea3 is allowed to be larger than1, its size
only affects the constant2a3/(1− a2) appearing in the error
estimate||ααα∗

S −αααS ||1. In fact if the signalααα is k-sparse, then
||ααα−αααk||1 = 0 and the size ofa3 is inconsequential,i.e., the
worst-case projectionscondition is not required in this special
case. In this special case, it is best to seta2 = 1− ǫ for some
arbitrarily small ǫ. Theorem B is in fact a stronger version
of Fuchs’ early work onℓ0/ℓ1-equivalence[5]. In the same
respect, Donoho & Tanner also produced early seminal results
from counting faces of random polytopes [22], [23].

Figure 4 shows empirical evidence, where thek,m, n values
are inspired by practical system sizes taken from an implemen-
tation paper [17]. These experiments considerΦΦΦ sampled from
Gaussian matricesAAA, exactlyk-sparse signals with non-zero
αi sampled from{−1, 1}, and usesℓ1-minimization recovery

(1). Figure 4(a) plots simulated (sparsity pattern recovery)
results for 3 measurement sizesm = 50, 100 and 150 and
block sizesn ≥ 200 andn ≤ 3000. For example the contour
marked “0.1”, delineates thek, n values for which recovery
fails for a 0.1 fraction of (random) sparsity patterns (sign-
subset pairs(βββ,S)). We examine the U-statisticUn(a2) with
kernel (13), related to the small projections condition. Since
AAA has Gaussian distribution, we seta2 = 1 in the kernel
g(A, a2), as Pr{(AAA†

SAAAi)
Tβββ = 1} = 0 for any (βββ,S) and

j /∈ S. Figure 4(b) plots the expectation(n− k) · p(1), where
p(1) = EUn(1) = Eg(AAAR, 1) for any size-(k + 1) subsetR.
Again the contour marked “0.1”, delineates thek, n values for
which (n−k) ·p(1) = 0.1. Here the valuesp(1) are empirical.
We observe that both Figures 4(a) and (b) are remarkably
close for fractions0.5 and smaller. Figures 4(c) incorporates
the large deviation errorǫn given in Theorem 1 (in doing so,
we assumen sufficiently large). The bound is still reasonably
tight for fractions≤ 0.5. Comparing with recent Donoho
& Tanners’ (also “average-case”) results forℓ1-recovery (for
only the noiseless case), taken from [23]. For fractions0.5
and 0.01, we observe that for system parametersm = 50
and n ≤ 1000 (chosen in hardware implementation [17]),
we do not obtain reasonable predictions. Form = 100, the
bounds [23] work only for very small block lengthsn ≤ 300.
The only reasonable case here ism = 150, where the
bounds [23] perform better than ours only for lengthsn ≤ 400
(i.e., Figure 4(c) shows that forn = 300, the large deviation
bounds predict a 0.01 fraction of sizek = 5 unrecoverable
sparsity patterns, but [23] predict a 0.01 fraction of sizek = 11
unrecoverable sparsity patterns).

The above experiments suggest the deviation errorǫn(a)
in Theorem 1 to be over-conservative. Fortunately in the
next two subsections (pertaining to U-statistics treastise of
ℓ1-recovery Theorem B (Section IV-B), and LASSO recovery
Theorem C (Subsection IV-C)), this conservative-ness doesnot
show up from a rate standpoint (it only shows up in implicit
constants). In fact by empirically “adjusting” these constants,
we find good measurement rate predictions (akin to moving
from Figure 4(c) to (b)).

B. Rate analysis forℓ1-recovery (Theorem B)

In “worst-case” analysis, it is well-known that it is sufficient
to have measurementsm on the order ofk log(n/k), in order
to have the restricted isometry constantsδk defined by (2),
satisfy the conditions in Theorem A. We now go on to show
that for “average-case”, a similar expression for this ratecan
be obtained. To this end we require tail bounds on salient
quantities. Such bounds have been obtained for thesmall
projectionscondition, see [6], [7], [25], where typically an
equiprobable distribution is assumed over the sign-vectorsβββℓ.
To our knowledge these techniques were born from consid-
ering deterministic matrices. SinceΦΦΦ is randomly sampled
here, we proceed slightly differently (though essentiallyusing
similar ideas) without requiring this random signal model.For
simplicity, the bound assumes zero mean matrix entries, either
i) Gaussian or ii) bounded.
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Fig. 4. Gaussian case. Comparing(a) empirical results forℓ1-minimization recovery,(b) mean parameter(n−k) ·p(1) (empirically obtained), and(c) after
accounting for large deviations (Thm. 1). We show casesm = 50, 100 and150. We also compare with Donoho & Tanners’ (DT) large deviationbounds [23].

Proposition 2. Let AAA be anm × n random matrix, whereby
its columnsAAAi are identically distributed. Assume every entry
Aij ofAAA has zero mean, i.e.,EAij = 0. Let everyAij be either
i) Gaussian with variance1/m, or ii) bounded RVs satisfying
|Aij | ≤ 1/

√
m. Let the rows[Ai1, Ai2, · · · , Ain] of AAA be IID.

Let S be a size-k subset, and let indexω be outside ofS,
i.e.,ω /∈ S. Then for any sign vectorβββ in {−1, 1}k, we have

Pr
{∣

∣

∣
(AAA†

SAAAω)
Tβββ
∣

∣

∣
> a
}

≤ 2 exp

(

−ma2δ

2k

)

+ Pr{σ2
min(AAAS) ≤ δ} (14)

for any positiveδ ∈ R.

Proof: For τ ∈ R, let E(τ) = {βββT (AAAT
SAAAS)

†βββ ≤ τ}
where E(τ) is an probabilistic event. LetEc(τ) denote the
complementary event. Bound the probability as

Pr
{
∣

∣

∣
(AAA†

SAAAω)
Tβββ
∣

∣

∣
> a

}

≤Pr
{
∣

∣

∣
(AAA†

SAAAω)
Tβββ
∣

∣

∣
> a
∣

∣

∣
E(τ)

}

+ Pr{Ec(τ)}. (15)

We upper bound the first term as follows. Denote constants
c1, c2, · · · , cm. For entries (AAAω)i of AAAω, consider the
sum

∑m
i=1 ci · (m− 1

2AAAω)i = 1
m

∑m
i=1 ciXi, where RVs

Xi satisfy Xi = (
√
mAAAω)i. By standard arguments (see

Supplementary Material B) we have the double-sided bound
Pr {|∑m

i=1 ciXi| > mt} ≤ 2 exp
(

−(mt)2/(2 · ||c||22)
)

,
where vectorc equals[c1, c2, · · · , cm]T .

Next write (AAA†
SAAAω)

Tβββ = (
√
m · βββTAAA†

S)(m
− 1

2AAAω). When
conditioning onβββTAAA†

S , then
√
m ·βββTAAA†

S is fixed, say equals
some vectorc. PutXi = (

√
mAAAω)i andXi’s are independent

(by assumed independence of the rows ofAAA). Then use the
above bound forPr {∑m

i=1 ciXi > t}, sett = a and conclude

Pr
{∣

∣

∣
(AAA†

SAAAω)
Tβββ
∣

∣

∣
> a

∣

∣

∣
βββTAAA†

S

}

≤ 2 exp

(

− (ma)2

2m||βββTAAA†
S ||22

)

= 2 exp

(

− ma2

2 · βββT (AAAT
SAAAS)†βββ

)

,

(16)

where the last equality follows from the identityAAA†
S(AAA

†
S)

T =
(AAAT

SAAAS)
†. Further conclude that the first term in (15) is

bounded by2 exp(−ma2/(2τ)), due to further conditioning
on the eventE(τ) = {βββT (AAAT

SAAAS)
†βββ ≤ τ}.

To bound the second term, letςmax(A) denote the max-
imum eigenvalue of matrixA. Since AAAT

SAAAS is positive
semidefinite, note thatβββT (AAAT

SAAAS)
†βββ is upper bounded by

||βββ||22 · ςmax((AAA
T
SAAAS)

†), which equalsk · ςmax((AAA
T
SAAAS)

†). Fur-
thermoreςmax((AAA

T
SAAAS)

†) ≤ 1/σ2
min(AAAS), where hereσmin(A)

is the minimum singular value ofA. Thus Pr{Ec(τ)} ≤
Pr{k/σ2

min(AAAS) > τ}. Finally putτ = δk to getPr{Ec(τ)} ≤
Pr{σ2

min(AAAS) ≤ δ−1}.
Proposition 2 is used as follows. First recall that previous

Proposition 1 allows us to upper bound the fractionu2 of sign-
subset pairs(βββ,S) failing thesmall projectionscondition, with
the (scaled) U-statistic(n− k) · Un(a2) with kernelg in (13)
and|S| = k. By Theorem 1 the quantity(n−k) ·Un(a2) con-
centrates around(n− k) · p(a2), wherep(a2) = Eg(AAAR, a2),
whereg in (13) is defined for size-(k+1) subsetsR. We use
Proposition 2 to upper estimatep(a2) using the RHS of (14).
Indeed verify thatp(a2) = 2−k

∑

ℓ Pr{|(AAA
†
SAAAω)

Tβββℓ| > a2}
for anyS andω /∈ S, and the bound (14) holds for anyβββ = βββℓ.
Now p(a2) is bounded by two terms. Byu2 ≤ (n−k)·Un(a2),
thus to haveu2 small, we should have the (scaled) first term
2(n−k) ·exp(−ma22δ/(2k)) of (14) to be at most some small
fractionu. This requires

m ≥ const ·k log
(

n− k

u

)

(17)

with const = 2/(a22δ) (and we dropped an insignificant
log 2 term). Next, for m ≥ 2k and δ < (0.29)2, we
can bound4 the second termPr{σ2

min(AAAS) ≤ δ} of (14)

4For m ≥ 2k, we havePr{σmin(AAA) < c · 0.29 − t} ≤ Pr{σmin(AAA) <
1−c ·

√

k/m− t} ≤ exp(−mt2/c1) for some constantsc, c1, whereAAA has
sizem × k and with proper column normalization. For simplicity we drop
the constantc in this paper; one simply needs to addc in appropriate places
in the exposition. In particular for the Gaussian and Bernoulli casesc = 1,
andc1 = 2 andc1 = 16, respectively, see Theorem B, [28].



LIM AND STOJANOVIC: ON U-STATISTICS AND COMPRESSED SENSINGI: NON-ASYMPTOTIC AVERAGE-CASE ANALYSIS 8

by exp(−m · (0.29 −
√
δ)2/c1) where c1 is some constant,

see [27], Theorem 5.39. Roughly speaking,σ2
min(AAAS) ≥ 0.29

with “high probability”. Figures 2 and 3 (in the previous
Section III) empirically support this fact. Again to haveu2

small the second term of (14) must be small. This requires
(n − k) · exp(−m · (0.29 −

√
δ)2/c1) ≤ u for some small

fraction u, in which it suffices to havem satisfy (17) with
const = c1/(0.29−

√
δ)2.

For the invertability condition in Theorem B, we also
need to upper bound the corresponding fractionu1 of size-
k subsetsS. We simply use an U-statisticUn(a1) with kernel
g(A, a1) = 1 {σmin(A) > a1} for some positivea1 (see also
Theorem C). Here Proposition 1 is not needed. To makep(a1)
small, wherep(a1) = Eg(AAAS , a1), use the previous bound
p(a1) ≤ exp(−m · (0.29 − a1)

2/c1), where we seta1 =
√
δ

with a1 ≤ 0.29. Clearlyp(a1) cannot exceed some fractionu,
if m satisfies (17) withconst = c1/(0.29− a1)

2.
For the time being considerexactly k-sparse signalsααα.

In this special case theworst-case projectionscondition in
Theorem B is superfluous (i.e., with no consequencea3 can
be arbitrarily big) - onlyinvertability and small projections
conditions are needed. While we have yet to consider the
large deviation errorǫn(a) from Theorem 1, doing so will
not drastically change the rate. ForUn(a) with kernelg and
p(a), wherep(a) = Eg(AAA, a), almost surely

Un(a) ≤ p(a) + ǫn(a) ≤ (p(a))
1

2 +
√

2p(a)ω−1 logω

≤ (p(a))
1

2

(

1 +
√

2ω−1 logω
)

(18)

where the second inequality follows becausep(a) ≤ 1,
and by settingω = n/k. Taking log of the RHS, we
obtain (1/2) log p(a) + log(1 +

√

2ω−1 logω). Note log(1 +
√

2ω−1 logω) ≤
√

2ω−1 logω, since log(1 + α) ≤ α holds
for all positiveα. For thesmall projectionscondition, bound
(p(a))

1

2 by the sum of the square-roots of each term in (14).
Then to haveu2 ≤ (n−k) ·Un(a2) ≤ 2u, it follows similarly
as before that it suffices that (see Supplementary Material C)

m ≥ const ·k
[

log

(

n− k

u

)

+
√

2 · (k/n) log(n/k)
]

(19)

with const = max(4/(a22δ), 2c1/(0.29−
√
δ)2) where we had

set
√
δ = a1 (we dropped an insignificantlog 2 term). For

invertability condition do the same. To haveu1 = Un(a1) ≤ u
it suffices thatm satisfies (19) with the sameconst. Observe
that the term

√

2 · (k/n) log(n/k) is at most 1, and vanishes
with high undersampling (smallk/n). Hence (17) and (19) are
similar from a rate standpoint.

We conclude the following: for exactlyk-sparse signals
the rate (19) suffices to recover at least1 − 3u fraction of
sign-subset(βββ,S) pairs. While const in (19) must be at
least 4 (recall that Figure 4(c) was somewhat pessimistic),
for matrices with Gaussian entries we empirically find that
const is inherently smaller, wherebyconst ≈ 1.8. This is
illustrated in Figure 5, for two fractions0.1 and 0.01 of
unrecoverable sign-subset pairs. We observe good match with
simulation results shown in the previous Figure 4(a), and

Fig. 5. Measurement rates predicted by equation (19), withconst taken to
equal1.8, required to recover at least1−3u = 0.9 and0.99 fractions of sign-
subset pairs(βββ,S) (when the signal is exactlyk-sparse), shown respectively
in (a) and (b).

quantities5 (n− k) · p(1) plotted in Figure 4(b). For example,
m = 150 suffices for a 0.01 fractional recovery failure, for
n = 300 ∼ 1000 and k = 6 ∼ 7, and for 0.1 fraction then
k = 7 ∼ 10. We conjecture possible improvment forconst.

In the more general setting forapproximatelyk-sparse
signals, we can also have rate (19). To see this, observe
that Proposition 2 also delivers an exponential bound for the
worst-case projectionscondition, see (12). This is because
||AAA†

SAAAω||1 = maxℓ: 1≤ℓ≤2k |(AAA†
SAAAω)

Tβββℓ|, and we take a
union bound over2k terms. Seta3 = a2

√
k, wherea2 anda3

respectively correspond tosmall projectionsand invertability
conditions. Then we proceed similarly as before (see Supple-
mentary Material C) to show6 that the rate for recovering at
least1 − 5u fraction of (βββ,S) pairs suffices to be (19). The
following is the main result summarizing the exposition so far.

Theorem 2. Let ΦΦΦ be an m × n matrix, where assumen
sufficiently large for Theorem 1 to hold. SampleΦΦΦ = AAA
whereby the entriesAij are IID, and are Gaussian or bounded
(as stated in Proposition 2). Then all three conditions in
ℓ1-recovery guarantee Theorem B for(βββ,S) with |S| = k,
with the invertability condition taken asσmin(ΦΦΦS) ≥ a1
with a1 ≤ 0.29. and with a3 = a1

√
k, are satisfied for

u1 + u2 + u3 = 5u for some small fractionu, if m is on the
order of (19) withconst = max(4/(a1a2)

2, 2c1/(0.29−a1)
2),

and c1 depends on the distribution ofAij ’s. Noteconst ≥ 4.
In the exactlyk-sparse case where only the first 2 conditions

are required, this improves tou1 + u2 = 3u.

We end this subsection with two comments on the rate (19)
derived here for “average-case” analysis. Firstly (19) is very
similar to that ofk log(n/k) for “worst-case” analysis. This

5Comparing (19) and (17) and the respective expressions forconst,
droppingconst from 4 to 1.8 is akin to ignoring the deviation errorǫn(a).
This, and as Figure 4 suggests, the U-statistic “means”(n− k) · p(1) seem
to predict recovery remarkably well, with similar rates to (19), and inherent
const smaller than that derived here.

6We used an assumption that(n − k)/u is suitably larger than2, see
Supplementary Material C.
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Fig. 6. Empirical LASSO recovery performance, Bernoullli case. In(a) the
non-zero signal magnitudes|αi| equal 1, and in(b) they are inR[0,1]. Noise
variances denotedc2Z .

justifies the counting employed in previous Subsection IV-A,
Proposition 1, and is reassuring since we know that “worst-
case” analysis provides the optimal rate [1], [11]. Secondly to
have (19) hold for the approximatelyk-sparse case, we lose a
factor of

√
k in the error estimate||ααα∗

S −αααS ||1, as compared
to “worst-case” Theorem A. This is because we need to set
a3 = a2

√
k, as mentioned in the previous paragraph. However,

the “average-case” analysis here achieves our primary goal,
that is to predict well for system sizesk,m, n when “worst-
case” analysis becomes too pessimistic.

C. Rate analysis for LASSO (Theorem C)

Next we move on to the LASSO estimate of [6]. Recall
from (6) that the regularizer depends on the noise standard
deviationcZ , and the termθn = (1+a)

√
2 logn that depends

on block lengthn and some non-negative constanta that we
set. This constanta impacts performance [6]. For matrices
with Bernoulli entries, Figure 6 shows recovery failure rates
for two data setsm = 50, n = 1000 andm = 150, n = 1000;
the sparsity patterns (sign-subset pairs(βββ,S)) were chosen at
random, and failure rates are shown for various sparsity values
k, and noisescZ . In Figure 6(a) we seta = 0, and in(b) we
seta = 1. Also, in (a) the non-zero signal magnitudes|αi| are
in {1,−1}, and in(b) they are inR[0,1]. The performances are
clearly different. “Threshold-like” behavior is seen in(a) for
both data sets, whereby the performances stay the same forcZ
in the range5 × 10−2 ∼ 1 × 10−4, and then catastrophically
failing for cZ = 1× 10−1. However in(b), for variouscZ the
performances seem to be limited by a “noise-floor”. We see
that in the noiseless limit (more specifically whencZ → 0),

the performances become the same. In this subsection, we
apply U-statistics on the various conditions of Theorem C,
in particular theinvertability andsmall projectionsconditions
have already been discussed in the previous subsection. We
account for the observations in Figure 6.

In the noiseless limit, the previously derived rate (19)
holds. Here, the regularizer in (6) becomes so small thata
(equivalentlyθn) does not matter. As mentioned in [5], LASSO
then becomes equivalent toℓ1-minimization (1), hence the
(noiseless) performances in Figures 6(a) and(b) are the same.
That is, in this special case the rate (19) suffices to recoverat
least1− 3u fraction of (βββ,S). To test, takek = 4, n = 3000,
and fraction1 − 3u = 1 − 6 × 10−6, and with const = 1.8
gives153, close tom here which is set to150.

In the noisy case, we are additionally concerned with
the noise conditions i) and ii), conditions (7) and (8), and
invertability projections. Recall that the noise conditions are
satisfied with probability1−n−1(2π logn)−

1

2 , that goes to 1
superlinearly [6] (Proposition 4, Supplementary MaterialA).
The remaining conditions are influenced by the valuea set in
the θn regularization term in (6).

In condition (7), the valuea sets the maximal value for
a2 (when a = 0 then a2 < 0.2929, and whena = 1 then
a2 < 0.6464). This affects thesmall projectionscondition, to
which constanta2 belongs, which in turn affects performance.
However from a rate standpoint (19) still holds, only now the
value ofconst (which has the term4/(a22δ)) becomes larger.

In condition (8), the valuea affects the size of the term
a−1
1 + 2a3(1 + a). The larger a is, the more often (8)

fails to satisfy. Here there are two constantsa1 and a3.
Recall a1 belongs to theinvertability condition discussed
in the previous subsection, which holds with rate (19) with
const = 2c1/(0.29 − a1)

2 anda1 ≤ 0.29. Consider the case
where the non-zero signal magnitudes|αi| are independently
drawn fromR[0,1]. Then we observe(mini∈S |αi|) < t with
probability 1 − (1 − t)k where t ∈ R[0,1] and |S| = k. For
t set equal to the RHS of (8), this gives the probability that
condition (8) fails. Figure 6(b) shows good empirical match
when settinga1 = 0.29 anda3 = 1, where the dotted curves
predict the “error-floors” for variousk, measurementsm = 50
andm = 150, and noisecZ . In the other case where|αi| = 1
(as in Figure 6(a)), condition (8) remains un-violated as long
as cZ (and a1, a3, n) allow the RHS to be smaller than 1.
Figure 6(a) suggests that for the appropriate choices fora1, a3,
condition (8) is always un-violated whencZ ≤ 5× 10−2, and
violated whencZ ≥ 1 × 1−1. For more discussion on noise
effects see Supplementary Material D.

The constanta3 belongs to the remaininginvertability
projectionscondition. The fractionu3 of size-k subsetsfailing
the invertability projectionscondition for somea3, can be
addressed using U-statistics. Consider the bounded kernel
g : R

m×k × R → R[0,1], set as

g(A, a) =
1

2k

2k
∑

ℓ=1

1
{

(AT
A)†βββℓ > a

}

(20)

where βββℓ ∈ {−1, 1}k and (AT
A)† is the pseudoinverse

of A
T
A. Then u3 = Un(a3), and as before Theorem 1
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guarantees the upper bound (18), which depends onp(a3)
wherep(a3) = Eg(AAAS , a3).

We go on to discuss a bound onp(a3) under some gen-
eral conditions. In [6], analysis onp(a3) (see Lemma 3.5)
requiresσ2

max(AAAS) ≤ 1.5, a condition not explicitly required in
Theorem C. Also, empirical evidence suggests not to assume
that σ2

max(AAAS) ≤ 1.5. For m = 150 and k = 5 we see
from Figure 6 that (in the noiseless limit) thefailure rate
is on the order of1 × 10−4, but in Figure 2(b) we see
σ2

max(AAAS) > 1.5 occurs with much larger fraction 0.1. Hence
we take a different approach. Using ideas behind Bauer’s
generalization ofWielandt’s inequality[38], the following
proposition allowsσ2

max(AAAS) to arbitrarily exceed 1.5. Also, it
does not assume any particular distribution on entries ofAAA.

Proposition 3. Let S be a size-k subset. Assumek ≥ 2. Let
AAAS be ank×n random matrix. Letδmin, δmax be some positive
constants. For any sign vectorβββ in {−1, 1}k, we have

Pr

{

||(AAAT
SAAAS)

†βββ||∞ >
(
√
k + 1) · |τk − 1|
δ2min · (τk + 1)

·
}

≤ Pr{Ec(δmin, δmax)} (21)

where E(δmin, δmax) = {δmin ≤ σmin(AAAS) ≤ σmax(AAAS) ≤
δmax}, and Ec(δmin, δmax) is the complementary event of
E(δmin, δmax), and the constantτk satisfies

τk = τk(δmax, δmin) =

(

δmax

δmin

)2

· 1 + k−
1

2

1− k−
1

2

. (22)

We defer the proof for now. IfAAAT
SAAAS is “almost” an identity

matrix, then we expect||(AAAT
SAAAS)

−1βββ||∞ ≈ 1 for any sign
vectorβββ (hence our above hueristic whereby we seta3 = 1).
Proposition 3 makes a slightly weaker (but relatively general)
statement. Now for some appropriately fixedδmax and δmin,
we expectPr{Ec(δmin, δmax)} in (21) to drop exponentially
in m. Just as the termPr{σmin(AAAS) ≤ δmin} in Proposition
2 can be bounded byexp(−m · (0.29 − δmin)

2/c1), we can
bound7 Pr{σmax(AAA) > δmax} ≤ exp(−m(δmax−1.71)2/c1) for
someδmax ≥ 1.71. Roughly speaking,σmax(AAAS) ≤ 1.71 (or
σ2

max(AAAS) ≤ 2.92) with “high probability”. We fix δmin = a1,
wherea1 belongs to theinvertability condition.

So to boundp(a3), both (20) and Proposition 3 imply
p(a3) ≤ Pr{Ec(δmin, δmax)} for a3 = (

√
k+1) · |τk−1|/(δ2min ·

(τk+1)). NowPr{Ec(δmin, δmax)} ≤ 2 exp(−m·t2/c1), where
we sett = δmax− 1.71 = 0.29− a1 andδmin = a1. By (18),
the rate (19) suffices to ensureu3 = Un(a3) ≤ u for some
fraction u, with the sameconst. Thus we proved the other
main theorem, similar to Theorem 2.

Theorem 3. Let ΦΦΦ be an m × n matrix, , where assume
n sufficiently large for Theorem 1 to hold. SampleΦΦΦ = AAA
whereby the entriesAij are IID, and are Gaussian or bounded
(as stated in Proposition 2). Then all three invertability,small
projections, and invertability projections conditions inLASSO
Theorem C for(βββ,S) with |S| = k ≥ 2, with a1 ≤ 0.29,
with a2 satisfying (7) for somea set in the regularizerθn,
and with a3 = (

√
k + 1) · |τk − 1|/(a21 · (τk + 1)) for τk =

7For m ≥ 2k we havePr{σmax(AAA) > 1.71 + t} ≤ Pr{σmax(AAA) >
1 +

√

k/m+ t} ≤ exp(−mt2/c1) for somec1, see [27], Theorem 5.39.

τk(1.42− a1, a1) in (22), are satisfied foru1 + u2 + u3 = 4u
for some small fractionu, if m is on the order of (19) with
const = max(4/(a1a2)

2, 2c1/(0.29 − a1)
2), and c1 depends

on the distribution ofAij ’s. Noteconst ≥ 4.
In the noiseless limit where only the first 2 conditions are

required, this improves tou1 + u2 = 3u.

Remark 2. We emphasize again that the rate (19) is measured
w.r.t. to the three conditions in Theorem 3. The probabilityfor
which both noise conditions i) and ii) are satisfied, and for
which condition (8) imposed onmini∈S |αi| is satisfied, re-
quire additional consideration. For the former the probability
is at least1− n−1(2π logn)−

1

2 , see [6]. For the latter, it has
to be derived based on signal statistics, e.g., for|αi| ∈ R[0,1]

then (mini∈S |αi|) > t is observed with probability(1 − t)k

with |S| = k.

Note that the choice fora3 in Theorem 3 implies
||(AAAT

SAAAS)
†βββ||∞ is roughly on the order

√
k. Indeed this is true

sinceτk ≥ 1, and we noteτk = (δmax/δmin)
2+2k−

1

2 +o(k−
1

2 ),
thusτk ≈ (δmax/δmin)

2 for moderatek. Now LASSO recovery
also depends on the probability that condition (8) holds. Our
choice fora3 causes the RHS of (8) to be roughly of the order
cZ

√
2k logn. Compare this to [6] (see Theorem 1.3) where it

was assumed thatσmin(AAAS) ≤ 1.5, they only requirea3 = 3,
i.e., a factor of

√
k is lost without this assumption (which

was previously argued to be fairly restrictive). To improve
Proposition 3, one might additionally assume some specific
distributions onAAA. We leave further improvements to future
work.

Proof of Proposition 3: For notational convenience, put
XXX = (AAAT

SAAAS)
†. Bound the probability

Pr
{

||XXXβββ||∞ > a
√
k
}

≤Pr
{

||XXXβββ||∞ > a
√
k
∣

∣

∣
E(δmin, δmax)

}

+ Pr{Ec(δmin, δmax)}. (23)

where we takea to mean

a =
|τk − 1|
τk + 1

· 1 + k−
1

2

σ2
min(AAAS)

(24)

for τk chosen as in (22). We claim that every entry(XXXβββ)i
of XXXβββ is upper bounded bya

√
k, for a as in (24). Then by

definition of E(δmin, δmax), the first term in (23) equals0 and
we would have proven the bound (21).

Let C denote ak × 2 matrix. The first columnC is be a
normalized version ofβββ, more specifically it equalsk−

1

2βββi.
The second column equals the canonical basis vectorci, where
ci is a 0-1 vector whereby(ci)j = 1 if and only if j = i.
Consider the2 × 2 matrix XXX ′ that satisfiesXXX ′ = C

TXXXC.
This matrix XXX ′ is symmetric (from symmetry ofXXX) and
k−

1

2 (XXXβββ)i = X ′
1,2 = X ′

2,1 (from our construction ofC).
That is the entryX ′

1,2 (and X ′
2,1) of XXX ′, correspond to the

(scaled) quantityk−
1

2 (XXXβββ)i that we want to bound.
Condition on the eventEc(δmin, δmax), thenAAAS has rankk

and thereforeXXX = (AAAT
SAAAS)

† = (AAAT
SAAAS)

−1. Let det(·) and
Tr(·) denote determinant and trace. As in [38] equation (11),
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we have

1−
X ′

1,2X
′
1,2

X ′
1,1X

′
2,2

=
4det(XXX ′)

(Tr(XXX ′))2 − (X ′
1,1 −X ′

2,2)
2

≥ 4ςmax(XXX
′) · ςmin(XXX

′)

(Tr(XXX ′))2
=

4t

(1 + t)2
(25)

where t = ςmax(XXX
′)/ςmin(XXX

′) and ςmax and ςmin respectively
denote the maximum and minimum eigenvalues. Nowt =
ςmax(XXX

′)/ςmin(XXX
′) ≥ 1. If t = 1 then 4t/(1 + t)2 = 1, and

for t ≥ 1 the function4t/(1 + t)2 decreases monotonically.
We claim thatτk in (22) upper boundsςmax(XXX

′)/ςmin(XXX
′), and

(25) then allows us to produce the following upper bound

|X ′
1,2| ≤

√

X ′
1,1X

′
2,2 ·

(

1− 4τk
(1 + τk)2

)

=
√

X ′
1,1X

′
2,2 ·

|τk − 1|
1 + τk

. (26)

Bound(X ′
1,1X

′
2,2)

1

2 by the maximum eigenvalueςmax(XXX
′) of

XXX ′. Then, further boundςmax(XXX
′) by (1 + k−

1

2 )/σ2
min(AAAS),

which gives the form (24). This bound is argued as follows.
For k ≥ 2, we have the columns inC to be linearly
independent. SinceXXX ′ = C

TXXXC andXXX is positive definite,
it is then clear thatςmax(XXX

′) ≤ ςmax(C
T
C) · ςmax(XXX). Now

C
T
C is a 2 × 2 matrix with diagonal elements 1, and off-

diagonal elements±1/
√
k. Henceςmax(C

T
C) = 1 + k−

1

2 .
Also ςmax(XXX) ≤ 1/σ2

min(AAAS), and the bound follows.
To finish, we show the claimτk ≥ ςmax(XXX

′)/ςmin(XXX
′). By

similar arguments as above, it follows that

ςmax(XXX
′)

ςmin(XXX ′)
≤ ςmax(C

T
C)

ςmin(CTC)
· ςmax(XXX)

ςmin(XXX)
=

1 + k−
1

2

1− k−
1

2

·σ
2
max(AAAS)

σ2
min(AAAS)

≤ τk

since ςmin(XXX
′) ≥ ςmin(C

T
C) · ςmin(XXX), and ςmin(XXX

′) = 1 −
k−

1

2 , andXXX = (AAAT
SAAAS)

−1. We are done.

V. CONCLUSION

We take a first look at U-statistical theory for predicting
the “average-case” behavior of salient CS matrix parameters.
Leveraging on the generality of this theory, we consider
two different recovery algorithms i)ℓ1-minimization and ii)
LASSO. The developed analysis is observed to have good po-
tential for predicting CS recovery, and compares well (empiri-
cally) with Donoho & Tanner [23] recent “average-case” anal-
ysis for system sizes found in implementations. Measurement
rates that incorporate fractionalu failure rates, are derived
to be on the order ofk[log((n− k)/u)+

√

2(k/n) log(n/k)],
similar to the known optimalk log(n/k) rate. Empirical obser-
vations suggest possible improvement forconst (as opposed to
typical “worst-case” analyses whereby implicit constantsare
known to be inherently large).

There are multiple directions for future work. Firstly while
restrictive maximum eigenvalue assumptions are avoided (as
StRIP-recovery does not require them), the applied techniques
could be fine-tuned. It is desirable to overcome the

√
k losses

observed here for noisy conditions. Secondly, it is interesting
to further leverage the general U-statistical techniques to
other different recovery algorithms, to try and obtain their
good “average-case” analyses. Finally, one might consider

similar U-statistical “average-case” analyses for the case where
the sampling matrix columns are dependent, which requires
appropriate extensions of Theorem 1.
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APPENDIX

A. Proof of Theorem 1

For notational simplicity we shall henceforth drop explicit
dependence ona from all three quantitiesUn(a), p(a) and
g(A, a) in this appendix subsection. WhileUn is made explicit
in Definition 1 as a statistic corresponding to the realization
ΦΦΦ = AAA, this proof considersUn consisting of random terms
g(AAAS) for purposes of making probabalistic estimates. Theo-
rem 1 is really alaw of large numbersresult. However even
when the columnsAAAi are assumed to be IID, the termsg(AAAS)
in Un depend on each other. As such, the usual techniques
for IID sequences do not apply. Aside from large deviation
results such as Thm. 1, there existstrong lawresults, see [39].
The following proof is obtained by combining ideas taken
from [33] and [34]. We use the following new notation just
in this subsection of the appendix. Partition the index set
{1, 2, · · · , n} into ωn = ⌊n/k⌋ subsets denotedSi each of size
k, and a single subsetR of size at mostk. More specifically,
let Si = {(i − 1) · k + 1, (i − 1) · k + 2, · · · , i · k} and let
R = {⌊n/k⌋ ·k+1, ⌊n/k⌋·k+2, · · · , n}. Let π denote aper-
mutation(bijective) mapping{1, 2, · · · , n} → {1, 2, · · · , n}.
The notationπ(S) denotes the set of allimages of each
element inS, under the mappingπ. Following Section 5c
in [33] we express the U-statisticUn of AAA in the form

Un =
1

n!

∑

π

(

1

ωn

ωn
∑

i=1

g(AAAπ(Si))

)

, (27)

the first summation taken over alln! possible permutations
π of {1, 2, · · · , n}. To verify, observe that any subsetS is
counted exactlyωn · k!(n− k)! times in the RHS of (27).

Recall p = Eg(AAAS) = EUn. From the theorem statement
let the termǫ2n equalcp(1− p) · ω−1

n logωn wherec > 2. We
show that the probabilitiesPr{|Un − p| > ǫn} for eachn are
small. For brevity, we shall only explicitly treat the uppertail
probability Pr{Un − p > ǫn}, where standard modifications
of the below arguments will address the lower tail probability
Pr{−Un + p > ǫn} (see comment in p. 1, [33]). Using the
expression (27) forUn, write the probabilityPr{Un−p > ǫn}
for anyh > 0 as

Pr{Un − p > ǫn} ≤ E exp(h(Un − p+ ǫn))

= E exp

(

1

n!

(

∑

π

h(Sπ − p+ ǫn)

))

,

where hereSπ is a RV that equals the inner summation in
(27), i.e. Sπ = 1

ωn

∑ωn

i=1 g(AAAπ(Si)). Using convexity of the
function exp(·) we express

Pr{Un − p > ǫn} ≤ 1

n!

∑

π

E exp(h(Sπ − p+ ǫn)).
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Now observe that the RVSπ is an average ofωn IID terms
g(AAAπ(Si)). This is due to the assumption that the columns
AAAi of AAA are IID, and also due to the fact that the sets
π(Si) are disjoint (recall setsSi are disjoint). Hence for any
permutationπ, by this independence we haveE exp(hSπ) =
(E exp(h′ ·g(AAAπ(S1))))

ωn , where the normalizationh′ = h/ωn

bears no consequence. The RVg(AAAπ(S1)) is bounded, i.e.
0 ≤ g(AAAπ(Si)) ≤ 1, and its expectationEg(AAAπ(S1)) equals
p. By convexity of exp(·) again and for allh > 0, the
inequality ehα ≤ ehα + 1 − α holds for all 0 ≤ α ≤ 1.
Therefore puttingα = g(AAAπ(S1)) we get the inequality
exp(h·g(AAAπ(S1))) ≤ 1+(eh−1)·g(AAAπ(S1)). By the irrelevance
of π in previous arguments, by puttingEg(AAAπ(S1)) = p

Pr{Un − p > ǫn} ≤ e−h(ǫn+p)
(

1− p+ peh
)ωn

.

We optimize the bound by puttingpeh = (1−p)(p+ǫn)/(1−
p− ǫn), see (4.7) in [33], to get

Pr{Un − p > ǫn}
≤
(

(1 + ǫnp
−1)p+ǫn(1− ǫn(1− p)−1)1−p−ǫn

)−ωn

. (28)

Following (2.20) in [34] we use the relationlog(1 + α) =
α− 1

2α
2+o(α2) asα → 0, to express the logarithmic exponent

on the RHS of (28) as

−ωnǫ
2
n · (1 + o(1))

2p(1− p)
.

Therefore by the formǫ2n = cp(1 − p) · ω−1
n logωn where

c > 2, for sufficiently largen we have

Pr{Un − p > ǫn} ≤ ω−c/2
n < ω−1

n

which in turn implies
∑∞

n=k Pr{Un − p > ǫn} < ∞.
Repeating similar arguments for the lower tail probability
Pr{−Un+p > ǫn}, we eventually prove

∑∞
n=k Pr{|Un−p| >

ǫn} < ∞ which implies the claim.
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SUPPLEMENTARY MATERIAL

A. Proofs of StRIP-type recovery guarantees appearing in
Subsection II-B

In this part of the appendix we provide the proofs for the
two StRIP-type recovery guarantees discussed in this paper.
The following are proofs for Theorems B and C.

Proof of Theorem B, c.f., Lemma 3, [7]:Defineǫǫǫ ∈ R
n

asǫǫǫ = ααα∗ −ααα, i.e., ǫǫǫ is the recovery error vector. The proof
technique closely follows that of Theorem 1.2,c.f., [29]. Since
sgn(αααS) = βββ, we have the inequality

||(ααα+ ǫǫǫ)S ||1 ≥ ||αααS ||1 + βββTǫǫǫS . (29)

Sinceααα∗ solves (1), hence||ααα∗||1 ≤ ||ααα||1. Puttingααα∗ = ααα+ǫǫǫ,
we have

||ααα||1 ≥ ||ααα+ ǫǫǫ||1 = ||(ααα + ǫǫǫ)S ||1 + ||(ααα+ ǫǫǫ)Sc
||1

≥ ||αααS ||1 + βββTǫǫǫS + ||ǫǫǫSc
||1 − ||αααSc

||1,
(30)

where the last step follows the inequality (29), and the
triangular inequality. Re-arranging and putting||αααSc

||1 =
||ααα||1 − ||αααS ||1 we get

||ǫǫǫSc
||1 ≤ −βββTǫǫǫS + 2||αααSc

||1. (31)

We next bound the term−βββTǫǫǫS with |βββTǫǫǫS |, and for now
assume that the following claim holds

|βββTǫǫǫS | ≤ ||βββTΦΦΦ†
SΦΦΦSc

||∞ · ||ǫǫǫSc
||1. (32)

We then proceed to show the bound on||ǫǫǫSc
||1 (or ||ααα∗

S −
αααS ||1) to complete the first part of the proof. Using thesmall
projectionscondition, bound||βββTΦΦΦ†

SΦΦΦSc
||∞ ≤ a2 using some

a2 < 1. This gives a upper bound ofa2 · ||ǫǫǫSc
||1 on |βββTǫǫǫS |

in (32). Finally use this in (31) get||ǫǫǫSc
||1 ≤ a2||ǫǫǫSc

||1 +
2||αααSc

||1, or equivalently||ǫǫǫSc
||1 ≤ 2/(1 − a2) · ||αααSc

||1. To
show the claim (32), note thatǫǫǫ is in the null-space ofΦΦΦ,
i.e. ΦΦΦǫǫǫ = 0, or equivalently,ΦΦΦSǫǫǫS = −ΦΦΦSc

ǫǫǫSc
. Let I denote

the size-k identity matrix. By theinvertability condition, the
pseudoinverseΦΦΦ†

S satisfiesΦΦΦ†
SΦΦΦS = I. Hence

ǫǫǫS = −ΦΦΦ†
SΦΦΦSc

ǫǫǫSc
, (33)

and take the vector inner product withβββ on both sides to obtain
βββTǫǫǫS = −βββTΦΦΦ†

SΦΦΦSc
ǫǫǫSc

. Finally (32) holds by taking absolute
value ofβββTǫǫǫS , and writing|βββTΦΦΦ†

SΦΦΦSc
ǫǫǫSc

| ≤ ||βββTΦΦΦ†
SΦΦΦSc

||∞ ·
||ǫǫǫSc

||1.
To second part is to elucidate the bound on||ǫǫǫS ||1 (or

||ααα∗
Sc

− αααSc
||1). Starting from the previous relationship (33)

we have ||ǫǫǫS ||1 = ||ΦΦΦ†
SΦΦΦSc

ǫǫǫSc
||1 ≤ ||ΦΦΦ†

SΦΦΦSc
||∞ · ||ǫǫǫSc

||1.
The result then follows by using theworst-case projections
condition to bound||ΦΦΦ†

SΦΦΦSc
||∞ by some positivea3, and also

bounding||ǫǫǫSc
||1 using the bound obtained in the first part of

this proof.
For the next two proofs we use the following notation. Let

I denote the identity matrix, and letP denote a projection
matrix onto the column subspace ofΦΦΦS , i.e.,P = ΦΦΦSΦΦΦ

†
S . We

first address the proof of Proposition 4.

Proposition 4 (c.f., [6]). Let ZZZ be a random noise vector,
whose components are IID zero mean Gaussian with vari-
ance c2Z . Assume that the matrixΦΦΦ satisfies ||φφφi||2 = 1



for all columnsφφφi. Then the realizationZZZ = z satisfies
conditions i) and ii) in Theorem C with probability at least
1− n−1(2π logn)−

1

2 .

Proof of Proposition 4, c.f., [6]:The result will follow by
showing i) holds with probabilityk ·n−2(2π logn)−

1

2 , and by
showing ii) holds with probability(n− k) · n−2(2π logn)−

1

2 .
For i), first assume each component ofZZZ has variance 1.

Let ci denote thei-th row of (ΦΦΦT
SΦΦΦS)

−1ΦΦΦS , thus we have
||(ΦΦΦT

SΦΦΦS)
−1ΦΦΦSZZZ||∞ = maxi |cTi ZZZ|. SinceZZZ is Gaussian,

thus

Pr{||(ΦΦΦT
SΦΦΦS)

−1ΦΦΦSZZZ||∞ > z} ≤ k · Pr{|Z̃| > z}, (34)

where Z̃ is a Gaussian RV with standard deviation at least
the ℓ2-norm of any rowci. It remains to then upper bound
||ci||2 for all i, which follows as||ci||2 ≤ ||(ΦΦΦT

SΦΦΦS)
−1ΦΦΦS ||2.

The spectral norm||(ΦΦΦT
SΦΦΦS)

−1ΦΦΦS ||2 is at most the recip-
rocal of the smallest non-zero singular value ofΦΦΦS , and
by the invertability condition for some positivea1, we have
||(ΦΦΦT

SΦΦΦS)
−1ΦΦΦS ||2 ≤ a−1

1 . Then we letZ̃ in (34) have standard
deviationa−1

1 . Equivalently,

Pr{||(ΦΦΦT
SΦΦΦS)

−1ΦΦΦT
SZZZ||∞ > z} ≤ k · Pr{|Z| > a1 · z}

≤ 2k · fZ(a1z)/(a1z) (35)

where Z is a standard normal RV with density function
fZ(z). Generalizing to the case where each component
of ZZZ has variancecZ , the upper bound becomes2k ·
fZ((a1z)/cZ)/((a1z)/cZ). Put z = (cZ

√
2 logn)/a1 to get

the claimed probabilistic upper estimatek · n−2(2π logn)−
1

2 .
For ii) we proceed similarly. Observe that for anyi /∈ S, we

have||φφφT
i (I − P)||2 ≤ ||φφφi||2 = 1. Then putz = cZ2

√
logn

in case ii) to get the claimed probabilistic upper estimate(n−
k) · n−2(2π logn)−

1

2 .
Proof of Theorem 1.3, c.f., [6]:We shall show that any

signalααα with sign βββ and supportS, assuming(βββ,S) satisfy
all threeinvertability, small projections, and invertability pro-
jectionsconditions together with (7) and (8), will have both
sign and support successfully recovered.

The proof follows by constructing a vectorααα′ from ααα as
follows. Let ǫǫǫ denote the errorǫǫǫ = ααα′ −ααα, andααα′ is defined
by letting ǫǫǫ satisfy

ǫǫǫS = (ΦΦΦT
SΦΦΦS)

−1(ΦΦΦT
Sz− 2cZθnβββ),

ǫǫǫSc
= 0. (36)

Let us first claim that if (8) holds, then the support ofααα′ equals
that ofααα. If this is true, then standard subgradient arguments,
see [6], [31], will lead us to conclude thatααα′ must be the
unique Lasso (6) solution (i.e.,ααα′ = ααα∗) if i) it satisfies

φφφT
i (b̃−ΦΦΦααα′) = 2cZθn · sgn(α′

i), if i ∈ S,
|φφφT

i (b̃−ΦΦΦααα′)| < 2cZθn, if i /∈ S, (37)

and ii) the submatrixΦΦΦS has full column rank. The condition
ii) follows from the invertability condition, and the latter half
of the proof will verify i). Let us first verify the previous claim
that bothααα′ andααα have exact same supports. In fact, we go
further to verify thatααα′ andααα also have the same signs. First

check

||ǫǫǫS ||∞ ≤ ||(ΦΦΦT
SΦΦΦS)

−1ΦΦΦT
Sz||∞ + 2θncZ · ||(ΦΦΦT

SΦΦΦS)
−1βββ||∞

≤ a−1
1 cZ ·

√

2 logn+ 2a3cZ · θn, (38)

where the final inequality follows from noise condition i) from
Proposition 4, and theinvertability projectionscondition which
provides the bound||(ΦΦΦT

SΦΦΦS)
−1βββ||∞ ≤ a3 for some positive

a3. By assumption (8) and comparing with the above upper
estimate for||ǫǫǫS ||∞, our claim must hold.

Next we go on to verifyααα′ satisfies (37). We have

b̃−ΦΦΦααα′ = z−ΦΦΦǫǫǫ = z− (ΦΦΦ†
S)

T
(

ΦΦΦT
Sz− 2cZθn · βββ

)

(39)

where the last equality follows by first writingΦΦΦǫǫǫ = ΦΦΦǫǫǫS ,
then substituting (36), and puttingΦΦΦ†

S = (ΦΦΦT
SΦΦΦS)

−1ΦΦΦT
S . Now

becauseΦΦΦ†
S is a right inverse ofΦΦΦT

S , by left multiplying the
above expression byΦΦΦT

S we conclude

ΦΦΦT
S (b̃−ΦΦΦααα′) = 2cZθn · βββ,

which is equivalent to the first set of equations of (36) as
we verified before thatβββ = sgn(ααα′

S). For the second set of
equations, observe from (39) that

(I−P)(b̃−ΦΦΦααα∗) = (I−P)z,

P(b̃−ΦΦΦααα∗) = 2cZθn · (ΦΦΦ†
S)

Tβββ,

where the first equality follows because(I − P)(ΦΦΦ†
S)

T =

0, and the second equality follows becauseP(ΦΦΦ†
S)

TΦΦΦT
S =

PP
T = P

2 = P. Using the above two identities, we estimate

||ΦΦΦT
Sc
(b̃−ΦΦΦααα∗)||∞

≤ ||ΦΦΦT
Sc
(I−P)(b̃ −ΦΦΦααα′)||∞ + ||ΦΦΦT

Sc
P(b̃−ΦΦΦααα′)||∞

= ||ΦΦΦT
Sc
(I−P)z||∞ + 2cZθn · ||ΦΦΦT

Sc
(ΦΦΦ†

S)
Tβββ||∞

≤ cZ
√
2θn

1 + a
+ 2cZa2 · θn, (40)

where the upper estimate(cZ
√
2θn)/(1 + a) = cZ2

√
logn

follows from noise condition ii) stated in Proposition 4, and
||ΦΦΦT

Sc
(ΦΦΦ†

S)
Tβββ||∞ ≤ a2 follows from the small projections

property. Finally from assuming (7) we have
√
2(1 + a)−1 +

2a2 < 2, and applying to the last member of (40) proves
||ΦΦΦT

Sc
(b̃ − ΦΦΦααα′)||∞ < 2cZθn, which verifiesααα′ satisfies the

second set of equations of (36). Thus we verifiedααα′ = ααα∗

which is what we need to complete the proof.

B. Derivation of standard bounds

In the Gaussian case noteEX2
i = 1 and EXi = 0.

Then
∑m

i=1 ciXi is also Gaussian with variance||c||22. Hence
by Markov’s inequality we have the (single-sided) inequal-
ity Pr {∑m

i=1 ciXi > t} ≤ exp(−ht + h2/||c||22) for any
h > 0. The claim for the Gaussian case will follow by
setting h = t · ||c||22/2, and noting that for the other
sidePr {−(

∑m
i=1 ciXi) > t} = Pr {∑m

i=1 ciXi > t}. For the
bounded case, note|Xi| ≤ 1 and EXi = 0, and the claim
follows from Hoeffding’s (2.6) in [33].



C. Derivation of measurement rates

For thesmall projectionscondition, start fromp(a2) being
bounded by the RHS of (14) wherea = a2. As before bound
Pr{σmin(AAAS) ≤ a1} ≤ exp(−m · (0.29− a1)

2/c1), where we
had set

√
δ = a1. From the identity

√
α1 ≤ √

α2 +
√
α3 for

positive quantitiesαi, it follows from Theorem 1 and (18) that
we will haveu2 ≤ (n− k) · Un(a3) ≤ 2u, if we enforce

1

2

[

log 2 + log(n− k)− m(a1a2)
2

2k

]

+ t ≤ log u,

1

2

[

log(n− k)− m(0.29− a1)
2

c1

]

+ t ≤ log u,

where t =
√

2(k/n) log(n/k). Ignoring thelog 2 term, and
using

√
n− k ≤ n − k, it follows that (19) enforces the two

above conditions.
Similarly for the invertability condition, to haveu1 =

Un(a1) ≤ u it follows from Theorem 1 and (18) that we
need to enforce to second condition above.

For theworst-case projectionscondition, to haveu3 ≤ (n−
k) · Un(a3) ≤ 2u we need to enforce

1

2

[

(k + 1) · log 2 + log(n− k)− m(a1a3)
2

2k

]

+ t ≤ log u,

1

2

[

k log 2 + log(n− k)− m(0.29− a1)
2

c1

]

+ t ≤ log u.

Taking

k log

(

n− k

u

)

≥ (k + 1) · log 2 + log

(

n− k

u

)

,

justifiable for (n − k)/u suitably larger than2, the rate (19)
generously suffices to ensure these 2 conditions.

D. More on noisy LASSO performance

The aim here is to provide more empirical evidence to
support observations made in Figure 6 for more block lengths.
Here Figure D.1 shows LASSO performance now for a wider
range ofn. We only considerm = 150, and show various
recovery failure rates displayed via contoured lines, for various
sparsitiesk and block lengthsn. Figures D.1(a) and (b) are
companion to Figures 6(a) and (b), in that they respectively
correspond to cases where the non-zero signal magnitudes|αi|
equal 1 (anda = 0), and inR[0,1] (anda = 1). That is, for
n = 1000, andk = 4 andcZ = 1×10−4, we see the recovery
failure is approximately1 × 10−3 in both Figure D.1(a) and
Figure 6(a).

As mentioned in Subsection IV-C we observe good empir-
ical match when adjusting the termt = (a−1

1 + 2a3(1 + a)) ·
cZ

√
2 logn (on the RHS of (8)) witha1 = 0.29 anda3 = 1.

Figure D.1 provides further support. In(a) we show the values
of the termt for valuesn = 300 and n = 3000. Recall in
this case whent > 1 condition (8) (and thus recovery) fails.
Observe whencZ = 5 × 10−2 the values oft are very close
to 1, and for cZ = 1 × 10−1 they exceed1. This matches
with our observation in Figure 6(a) that cZ = 5 × 10−2 is
the critical point, beyond which for largecZ recovery fails
catastrophically.

In (b) and(c) we look at the other case where|αi| ∈ R[0,1].
Here(c) plots the probability1− (1− t)k that (8) fails. Again
the contoured lines delineate a particular fixed value of1−(1−
t)k for variousk, n values, whereby we sett = 7.4·cZ

√
2 logn

(recall we useda = 1 here). We observe how closely(c)
tracks the noise floor regions in(b) (indicated by shading).
More specifically notet really depends onn, and the larger
the probabilities1 − (1 − t)k get for variousk, n in Figure
D.1(c), this probability overwhelms the LASSO recovery rates
in Figure D.1(b). This matches with our previous observations
in Figure 6(b).



Fig. D.1. Empirical LASSO performance shown form = 150 for range ofk, n values. In(a) the non-zero signal magnitudes|αi| equal 1, and in(b) they
are inR[0,1]. In (c) we plot a curve (expression)1− (1 − t)k for t = (3.4 + 2(1 + a)) · cZ

√
2 logn.
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