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Sampling and Reconstruction of Spatial Fields
Using Mobile Sensors
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Abstract—Spatial sampling is traditionally studied in a static
setting where static sensors scattered around space take measure-
ments of the spatial field at their locations. In this paper, we study
the emerging paradigm of sampling and reconstructing spatial
fields using sensors that move through space. We show that mobile
sensing offers some unique advantages over static sensing in
sensing bandlimited spatial fields. Since a moving sensor encoun-
ters such a spatial field along its path as a time-domain signal, a
time-domain anti-aliasing filter can be employed prior to sampling
the signal received at the sensor. Such a filtering procedure, when
used by a configuration of sensors moving at constant speeds along
equispaced parallel lines, leads to a complete suppression of spatial
aliasing in the direction of motion of the sensors. We analytically
quantify the advantage of using such a sampling scheme over a
static sampling scheme by computing the reduction in sampling
noise due to the filter. We also analyze the effects of nonuniform
sensor speeds on the reconstruction accuracy. Using simulation
examples, we demonstrate the advantages of mobile sampling over
static sampling in practical problems. We extend our analysis to
sampling and reconstruction schemes for monitoring time-varying
bandlimited fields using mobile sensors. We demonstrate that in
some situations we require a lower density of sensors when using
a mobile sensing scheme instead of the conventional static sensing
scheme. The exact advantage is quantified for a problem of sam-
pling and reconstructing an audio field.

Index Terms—Mobile sensors, spatial anti-aliasing, spatial field
sampling and reconstruction.

I. INTRODUCTION

HE typical approach for measuring a spatial field

makes use of static sensors distributed over the area of
interest [2]. Consequently much of the literature on spatial sam-
pling and reconstruction have focused on such static sensing
schemes [3], [4]. An emerging paradigm in spatial sampling
is the use of mobile sensors that move through the area of
interest, taking measurements along their paths [5], [6]. Mobile
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sensing schemes have several advantages over static schemes,
the chief of which is the fact that a single mobile sensor can
be used to take measurements at several distinct positions in
space. Such a scheme is often more cost-effective and easier
to implement than static sensing since it requires only a single
sensor for monitoring a large spatial area. In this paper we
illustrate and analyze various unique aspects of mobile sensing
and the advantages that they offer.

Consider a time-invariant spatial field! defined over d-dimen-
sional space represented by a square integrable mapping f :
R? — R with f € L?(R?). For any r € R4, the quantity f(r)
represents the value of the field at spatial location +. The field
could represent, for instance, some spatially varying parameter
like the temperature of air or the concentration of a pollutant
in the air. Suppose further that the field f is slowly varying in
space and can hence be modeled as a spatially bandlimited field.
Let f represent the observed field that is a noisy version of the
field of interest expressed as

F(r) = £(r) + w(r),r € R? (1)
where w denotes non-bandlimited spatial noise, which we refer
to as environmental noise. The objective in a typical sampling
and reconstructing scheme is to use the samples of the observed
field f to obtain a reconstruction f of the field f such that the
mean-square error (MSE) E[||f — f|/3] in the reconstruction is
minimal. If the noise w is absent, then the observed field f =f
is bandlimited in space, and we know from classical sampling
theory [7] that we can recover the field exactly from samples
of the field taken by static sensors located on a lattice of points
in space. However, if w # 0 then the observed field f is not
bandlimited and we expect to see some effects of spatial aliasing
while sampling the field using static sensors. More importantly,
unlike in the case of sampling a time-domain signal, there is no
way to implement a spatial anti-aliasing filter in a static sensing
setup. This drawback of spatial sensing using static sensors has
been observed in various applications (see, e.g., [8]-[10]).

Sampling using mobile sensors provides us with an approach
that partially addresses the issue of spatial aliasing. Mobile
sensing allows filtering in time prior to sampling which induces
filtering over space in the direction of motion of the sensor.
Such spatial filtering is not possible in a static sensing setup.
A moving sensor receives as input a time-domain signal repre-
senting the field along the path of the sensor given by,

()= F(r(t) = f (r(®)) + w (r(t)) )

li.e., a field that is a function of space alone and does not vary with time.
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Fig. 1. Sampling a two-dimensional field bandlimited only in one direction. Spectrum under static sampling is aliased but that under mobile sampling is not. (a)
Spectrum of field bandlimited to R X [—p, p|. (b) Aliased spectrum under static sampling. (c) No aliasing under mobile sampling with filtering in the :x-direction.

Wy ¢Hs,(o.)) =1
A N\
Haa(wt) \
—p \ \/J Wy
yL " Grelocr \& /!
i ety —vp vp We Hs(w) =0
(a) () ©

Fig. 2. Sampling a two-dimensional field using mobile sensors: Sensor trajectories, frequency response of time-domain filter, and the induced sampling kernel. (a)
Equispaced parallel line trajectories. (b) Frequency response of time domain anti-aliasing filter. (c) Frequency response of the induced sampling kernel is supported

on{w : |w.| < p}.

where r(¢) € R? denotes the position of the sensor at time £. The
analog signal §(%) can be passed through an analog anti-aliasing
filter prior to discretizing into samples. Such filtering discards
out-of-band noise in the direction of motion of the sensor thus
inducing spatial smoothing. Implementing such a filter requires
redesigning of the sensing process employed in the sensor and
may be feasible only in some scenarios. For the purpose of il-
lustration consider a problem of measuring the concentration of
a gas in the air along a straight road, assumed to be constant in
time. Assume further that one has a sensor that can measure the
average concentration of the gas in a chamber. We want to de-
sign a scheme that computes the filtered samples

20

Sy 1= / $(rYh(nT — 7)dr

— 00

at times n7 for alln € Z. If we assume that 4 is a finite impulse
response filter satisfying h(t) > 0 for all # and h(t) = 0 for
[t| > (T'/2), then such a filter can be implemented by designing
a system in which a chamber is mounted on a vehicle moving
along the road at a constant velocity. Air is pumped into the
chamber through an opening whose size can be varied dynam-
ically such that the rate of entry of air at time 7 is proportional
to h(T[(v/T)+ (1/2)] — ) where |z | indicates integer com-
ponent of a real number z. The chamber is periodically emp-
tied after each sample is measured at times (n + (1/2))T for all
n € Z. Such a scheme essentially implements an analog domain
sampling prefilter with impulse response - up to a normaliza-
tion constant.

However, in the proposed approach, a caveat to note is the
peculiar fact that such filtering permits spatial smoothing only
in the direction of motion of the sensor. Hence, for spatial fields

of dimension d > 1, the anti-aliasing filters are thin, i.e., the ef-
fective spatial impulse response of the filter is supported on a set
of dimension 1. Thus this form of spatial smoothing allows us
to discard only one component of the out-of-band noise. For the
sake of illustrating the potential advantage offered by such a fil-
tering scheme, let us consider the problem of sampling a field in
two-dimensional space having a Fourier transform that is ban-
dlimited only in one direction as shown in Fig. 1(a). Sampling
such a field using static sensors will always lead to aliasing be-
cause the repetitions in the sampled spectra necessarily overlap.
An example of the sampled spectrum obtained by static sam-
pling on a lattice of the form {(mA,,nA,) : m,n € Z} is
shown in Fig. 1(b) where A, < (2m/p). However, we will
see later that such a field can be sampled on the same lattice
using sensors that move along equispaced straight lines parallel
to the x-axis as shown in Fig. 2(a) and use ideal anti-aliasing
filters in the time domain. This leads to a complete suppres-
sion of aliasing as shown in Fig. 1(c). We analyze such a mo-
bile sensing scheme for sampling bandlimited fields later in the
paper and quantify advantages obtained in terms of suppressing
out-of-band noise.

The scenario is a little different in the case of sampling
time-varying bandlimited fields, represented by functions of
both time and space of the form f(r,t) where r denotes posi-
tion and ¢ time. Here the advantages of mobile sensing are less
pronounced since the field values at various points in space
are also varying in time. Hence it is possible to filter in time
even with static sensors. Furthermore, one has to account for
the Doppler effect while sensing with moving sensors (see e.g.,
[11, Sec 5.2]). Nevertheless we show that in some scenarios
mobile sensing requires fewer sensors than the number of
sensors required with static sampling. These results could have
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TABLE 1
SUMMARY OF MODEL ASSUMPTIONS IN DIFFERENT SECTIONS. THE LAST TWO COLUMNS REPRESENT TWO DIFFERENT ADDITIVE NOISE
MODELS THAT WE CONSIDER—ANALOG SPATIAL NOISE ADDED TO THE FIELD PRIOR TO SAMPLING, AND
DISCRETE NOISE ADDED TO THE FIELD MEASUREMENTS OBTAINED AFTER SAMPLING

Section Field properties Noise added | Noise added
Bandlimited | Time-varying | to the field to samples

1I.A v X X X

11.B,D,F v X v X

In.C X X X X

ILE v X X v

1I1.A,B v v X X

potential applications in limiting spatial aliasing in certain
sampling problems, e.g., wave-field synthesis [10].

The advantage of mobile sensing over static sensing in sup-
pressing spatial aliasing has been noted in the context of audio
source localization in [6] where the authors show that using a
planar rotating array of microphones, the effective number of
measurement points can be increased thus reducing the amount
of spatial aliasing while using the beamforming technique. In
some other works moving microphones have been used for es-
timating room impulse responses [12] and head related impulse
responses [13]. In these works the desired responses are esti-
mated from a finely sampled version of the audio signal received
at the moving microphones. Other works on mobile sensing
focus on adaptive path-planning algorithms [5], [14] for envi-
ronmental monitoring. However, to the best of our knowledge,
this is the first work to illustrate the possibility of implementing
spatial smoothing by using a mobile sensing scheme together
with time-domain anti-aliasing filtering, and to quantify the im-
provements of such a scheme over static sensing. In earlier work
[15], [16], we studied the problem of designing trajectories for
mobile sensing which minimize the total distance required to be
traveled by the sensors per unit area of the field being sampled.

The paper is organized as follows. We study the sampling
of time-invariant fields in Section II and time-varying fields in
Section ITI. We discuss sensor trajectories, filter designs, recon-
struction schemes, and comparisons with static sensing in var-
ious aspects. In order to highlight various advantages of mobile
sensing we have considered several different models for the field
and the noise. To enable easy navigation through the paper we
summarize the model assumptions used in the various subsec-
tions in Table I. In Section IV we discuss a simulation example
comparing mobile and static sampling for a practical problem
and conclude in Section V.

II. TIME-INVARIANT FIELDS

Consider a time-invariant field in d-dimensional space repre-
sented by a mapping f : R? — R with f € L2(R?). We define
its Fourier transform F' as

Flw) = / F(r)exp (—itw. ) dr,  w e R
Rd

where i denotes the imaginary unit, and (u, v) denotes the Eu-
clidean inner product between vectors % and v. We assume that
the field f is bandlimited to a set 2 C R?, i.e., suppose that the
Fourier transform £ of f is supported on a known set 2 C R?,
so that F'(w) = 0 forw & Q. We use f to denote the observed

field, which may either be the field f itself or a noisy version of
it as shown in (1). In the noisy case, we model the environmental
noise w(r) as a zero mean wide sense stationary (WSS) process
with unknown power spectral density S,,,. For mathematical reg-
ularity, we assume that the noise power spectral density decays
at a faster rate than O(||w||; %), i.e., we assume that

Sw(w) =0 (|[w][3") forsomer > d.

)

Time-invariant fields are particularly well-suited for mobile
sensing schemes since the field does not vary as the sensor
moves around taking measurements in space. We distinguish
between two distinct scenarios—one-dimensional fields in
which a single moving sensor can visit a/l points in the one-di-
mensional spatial region of interest, and higher-dimensional
fields in which each sensor can measure the field only on a
one-dimensional sub-manifold of the spatial region of interest.
To illustrate this difference we consider one-dimensional fields
and two-dimensional fields with the understanding that the
analysis for two-dimensional fields can be easily generalized to
higher-dimensional fields. In this section, we detail the mobile
sensing scheme and describe how a time domain anti-aliasing
filter can be used to perform spatial smoothing. We quantify the
improvements of such a sensing scheme over the static sensing
scheme. We initially assume that the sensors are moving
with constant velocities and later consider the scenario with
non-uniform speeds.

A. Sensor Trajectories for Mobile Sensing

For sampling a field in R? where d > 2, there are several
possible choices of trajectories that can be used by the moving
sensors. In our recent work [15] we studied the problem of
designing sensor trajectories that admit perfect reconstruction
of bandlimited fields from measurements taken by the sensors
moving along these trajectories in a noise-free setting. We in-
troduced the notion of optimal trajectories that minimize the
total distance required to be traveled by the moving sensors. For
d = 2 we showed that a set of trajectories comprising one set of
equispaced parallel lines is optimal from certain classes of tra-
jectories. In this paper, we will restrict ourselves to such a col-
lection of trajectories for fields in R? and assume that we have
one sensor moving along each line taking measurements on its
path.

B. Sampling and Reconstruction

Consider a sensor moving at a constant velocity through
space. The position 7(t) of the sensor at time ¢ is given by an
affine function of the form r(¢) = u + vi where u,v € R?



UNNIKRISHNAN AND VETTERLI: SAMPLING AND RECONSTRUCTION OF SPATIAL FIELDS USING MOBILE SENSORS

represent the initial position and velocity of the sensor respec-
tively. Without loss of generality we assume that 4 = 0 for
simplifying the analysis. In the absence of noise the time-do-
main signal seen by such a sensor is given by

so(ty = f(r(0) = flu+ol), teR.
In this scenario it easily follows (see, e.g., [15, Lemma 2.2]) that
the signal sq(.) is bandlimited to

Q= {{v,w) weQ} CR. 4)
It follows via the Nyquist sampling theorem that s,(.) can be
perfectly recovered by sampling it uniformly at temporal in-
tervals less than or equal to 27 /(max{2;, — min €2, ). Fur-
thermore, in the presence of noise, the signal received by the
sensor can be passed through an anti-aliasing filter with pass-
band aligned with {2, prior to sampling. This limits the contri-
bution of out-of-band noise in the samples.

1) One-Dimensional Field: Suppose f(.) denotes a one-di-
mensional field bandlimited to {2 = [—p, p]. In this case, if a
sensor moves along the field at a constant velocity v, the signal
it sees in the absence of noise is bandlimited to [—vp, vp] as we
argued in (4). Hence, in the presence of noise, the signal can be
filtered prior to sampling. Let A(.) denote the impulse response
of an ideal filter with passband in the interval [—p, p]:

h{z) = P sine (&> , z€R %)

™ ™
where sinc(x) := sin 7z /7. Then the ideal choice for an anti-
aliasing filter while sampling the time-domain signal 5(t) =
f(vt) is given by ha,(t) = vh(vt). Let s(t) denote the signal at
the output of the anti-aliasing filter. Suppose the sensor takes
measurements every 7' time units after passing the observed
signal through the filter. Thus we get uniform samples of

8(t) = (8 % haa)(t) = (80 * haa) () + (1 * hag) (%)

where @(t) = w(vt) and * denotes convolution. Since [ is
bandlimited we can write

s(t) = fvt) + (w = h)(vt).

Now, if the sensor takes samples every 7' time units, we essen-
tially get uniform noisy samples of the field at intervals of 7’
spatial units. We know from classical sampling theory [17] that
when noise is absent the field f(.) can be exactly recovered from
these samples using sinc interpolation as

flx) = Z @s(jT)sinc <M> . z€R (6)

; T i
JjEZ
provided that the sampling interval satisfies T < (7 /vp). In
the noisy case, this reconstructed field is completely devoid of
out-of-band noise which is suppressed by the sinc? pre-filtering.

2Note that our rationale behind using sinc filters for anti-aliasing and inter-
polation is the fact that the only assumption we have about the field is that it is
bandlimited. For a stochastic field model the MSE can be minimized by using
a Wiener filter [18].
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The interpolation in (6) converges to a square-integrable func-
tion when the noise satisfies (3). However sinc interpolation is
sensitive to errors in the samples and can lead to unbounded
errors in the approximation at some values of z. This can be
avoided by using alternate kernels in place of the sinc kernel
(see, e.g., [19] and references therein).

2) Two-Dimensional Field: In the case of a two-dimensional
field f(.), we consider sensors moving along equispaced par-
allel lines through space. For a given €2 the optimal orienta-
tion of these parallel lines can be computed as described in
[15]. However, to simplify analysis we assume that the sensors
are moving at a constant velocity v along lines parallel to the
z-axis spaced A, units apart as illustrated in Fig. 2(a). The po-
sition of the j-th sensor at time # is given by (vt, A, ). Hence
the j-th sensor is exposed to the signal §,(¢) = f(vt, jA,).
In the absence of noise, we know from (4) that these signals
are bandlimited. Hence in the noisy scenario the signals §;(t)
can be filtered and sampled uniformly, just like in the case of
the one-dimensional field as we outlined in Section II-B-1. In
particular, if @ = [—p, p] X [—p, p], then it follows from (4)
that the signal so(t) = f(vt, jA,) is bandlimited to an interval
of the form [—pw, pv]. Hence, like in Section II-B-1, the filter
haa(t) = wh(wvt) can be used prior to uniform sampling. The
frequency response of this ideal time-domain filter is shown in
Fig. 2(b). Thus, at the output of the sampler we obtain uniform
samples of

si(t) = f(ol, JAy) + (w; x h)(vt)

where w; (1) = w(z, jA,) and h is the filter defined in (5). Sup-
pose that the samples are taken at time-intervals of T' < (7 /vp)
units. Let A, = 7. We further assume that the samples taken
by the sensors are aligned with each other, and hence the col-
lection of samples from all the sensors lie on a two-dimensional
lattice of the form {(iA,, jA,) : 4, j € Z} and can be expressed
as

ijeZ. ()
Thus, results from classical sampling theory [7] can be used to
estimate the field from these samples as:

s;(1T) = fiA,, 1Ay) + (w; = B)(IA,),

2. (s o
oy = 3 2t sl (M)
ij€Z Q 7
X sinc (M) (8)
w

provided A,, A, < (w/p). The reconstructed field in (8) is
square integrable when the noise satisfies (3) and is exact when
noise is absent.

Using the notation u[n] = s;(iT) where n = (i,5)7, the
filtering and sampling relation of (7) can be written as a two-
dimensional convolution as follows:

pln] = (f * hs)(An),

where x denotes two-dimensional convolution,

A, 0
=% a)

ne7z?,
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Fig. 3. Sampling and reconstruction setup.

and A represents the effective two-dimensional sampling kernel
induced by the sampling trajectories of Fig. 2(a) and the filtering
operation of Fig. 2(b) given by

P (PTY
hs(w,y) = Lsine (22) 5 9
() = Esine (22) o(y) ©)
where §(.) represents the Dirac delta function. This kernel has
the following representation in the Fourier domain as illustrated
in Fig. 2(c)

0 else.

Fig. 3 shows the system of sampling and reconstruction where

v plays the role of f and # the role of f. In the figure the sam-

ples ji[n] passes through a discrete to continuous converter to

produce 1, (r), an impulse stream in the continuous space given
by

na(r) = 3 u[nl62(r — An)

nez?

where &2 represents the Dirac delta function in two dimensions.
The reconstruction kernel #4,(.) is the two-dimensional sinc-
kernel

AL Ay p? <p$) . (py)
—F—SsInc{ — |smcl| —).
2 T T

The kernel has the following representation in the Fourier do-
main

hr($7y) =

H(w) = {AJ;Ay for 0 < |wy, jwy| < p an

0 else

where w = (w,,w,). In this representation the reconstructed
field of (8) is given by

f(r) = Z plnlh(r — An), 7€ R2.

nez?

We will use this new representation for simplifying the discus-
sion in the rest of the paper.

C. Comparison With Static Sampling: Aliasing Suppression
for Non-Bandlimited Fields

Before proceeding to discuss bandlimited fields in detail, we
now take a slight detour to consider the problem of sampling
a non-bandlimited field in a noise-free setting. We know from
classical sampling theory that sampling a signal at a rate less
than the Nyquist rate leads to aliasing in the reconstructed
signal, which is highly undesirable. In practice, while sampling
a non-bandlimited signal in the time-domain, one typically em-
ploys an anti-aliasing filter to suppress the out-of-band portion
of the signal. The ideal choice for the anti-aliasing filter and
the reconstruction filter are ideal low-pass filters with cutoff

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 9, MAY 1, 2013

O Spectrum of interest O Spectrum of interest
@ Out-of-band energy @ Out-of-band energy

(@ (b)

Fig. 4. Spectrum of a non-bandlimited two-dimensional field and its filtered
version. (a) Non-bandlimited spectrum. (b) Filtered spectrum.

frequencies given by half of the sampling rate. However, for
sampling in the spatial domain, it is not possible to implement a
spatial anti-aliasing filter in a static sensing setup. Nevertheless,
in a mobile sampling scheme, an ideal time-domain filter can be
used to reduce the amount of aliasing. In the one-dimensional
case, as we argued in Section II-B-1, this sampling procedure
effectively implements an ideal anti-aliasing filter thereby
suppressing aliasing completely. Thus the mobile sampling
scheme is completely devoid of aliasing effects even while
sampling a non-bandlimited field. Furthermore, the squared
error in the reconstruction can be further reduced by simulta-
neously increasing the sampling rate and the bandwidth of the
anti-aliasing filter.

The scenario is different in the two-dimensional case. Sup-
pose we design the sampling scheme for fields bandlimited
to & = [—p,p] x [-p.p] and suppose that the observed
noise-free field f = f is in fact bandlimited to the bigger set3
0= [—p. 5] x [—p, ] where p > p. Such a field is shown in
Fig. 4(a). In a static sensing scheme this field is sampled without
filtering and hence the sampled spectrum and reconstructed
spectrum are aliased in both the w, and w,, directions as shown
in Figs. 5(a) and 5(b). In the mobile sampling case, however,
we can use the anti-aliasing filter described in Section I1-B-2.
In this case we know from the form of the effective sampling
kernel in Fig. 2(c) that the out-of-band energy in the w,, direc-
tion is filtered out as shown in Fig. 4(b). Hence the sampled
spectrum and reconstructed spectrum are aliased only in the
w,, direction as shown in Figs. 5(c) and 5(d) respectively. Al-
though the obtained reconstruction f is not completely devoid
of aliasing, the squared error ||f — f||% in the reconstruction
is lower than the squared error in the reconstruction obtained
via static sampling which is aliased both in the w, and w,
directions.

Two observations are in order. Firstly, from the discussion
above and Fig. 5 it is clear that the scheme of mobile sampling
with filtering is effective in suppressing aliasing in the w, di-
rection even when the field is not bandlimited in the w,, direc-
tion. We discussed such an example in the introduction. The
Fourier transform was supported on a semi-infinite set and the
sampled spectrum is completely devoid of aliasing as illustrated
in Fig. 1. Such a complete suppression of aliasing is not possible
with static sensing unless the field is bandlimited to a compact
set in R2. Secondly, it is possible to improve upon the mobile

3The assumption that the field is bandlimited to Qs only used to simplify the
illustration. The advantages of filtering persist even when f is not bandlimited.
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Fig. 5. Comparison of aliasing in static and mobile sampling schemes while sampling a two-dimensional field. The reconstructed field is aliased in two directions
for the static scheme while only in one direction for the mobile scheme. (a) Sampled spectrum from static sampling. (b) Reconstructed spectrum from static
sampling. (¢) Sampled spectrum from mobile sampling with filtering. (d) Reconstructed spectrum from mobile sampling with filtering.

sampling scheme described here by employing mobile sampling
along more complex sampling trajectories. For instance, in the
example of Fig. 4 if we replaced the sensors moving parallel to
the z-axis with a similar set of sensors moving at constant veloc-
ities parallel to the y-axis then it would be possible to suppress
aliasing in the w,, direction by using ideal anti-aliasing filters as
before. Now if we had both kinds of sensors, those moving along
the # direction and those moving along the ¥ direction, then the
prefiltered samples from the former set of sensors would be de-
void of aliasing in the w, direction and the prefiltered samples
from the latter set of sensors would be devoid of aliasing in the
w, direction. The samples from both these sets of sensors may
be combined to obtain better aliasing suppression than that ob-
tained in the Fig. 5(d). The optimal procedure to combine the
samples would depend on the exact model of the noise and on
the out-of-band component of the field, and hence, we do not
discuss the reconstruction scheme here.

D. Comparison With Static Sampling: Noise Suppression for
Bandlimited Fields in Noise

We now study the reduction of out-of-band noise that can be
obtained in the mobile sensing scheme using an anti-aliasing
filter while sampling a bandlimited field in WSS noise satisfying
(3). The analysis is straightforward for one-dimensional fields.
We provide a more detailed study for the two-dimensional case.

1) One-Dimensional Field: In a scheme of sampling a one-
dimensional field using static sensors, one has access only to
field measurements taken on a discrete set of points. Hence it
is not possible to completely filter out the out-of-band noise in
a static setup. However, if we use a sensor moving at constant
velocity v, it is possible to filter out all the out-of-band noise as
we showed in Section II-B-1. We can quantify the advantage
by comparing the noise variance in the reconstruction of (6)
with the noise variance in the reconstruction of a static sampling
scheme. Assume that field f is bandlimited to 2 = [—p, p] and
is sampled at the Nyquist rate. In the case of static sampling
there is no anti-aliasing filter and hence the noise variance in
the resulting reconstruction is given by

r
. 1 f
oot = 5= / D Su(w — 2np)dw (12)

—'p nez

where S, (.) denotes the power spectral density (p.s.d.) of the
noise process w(.). In the mobile sampling case, however, the
field is effectively filtered by an anti-aliasing filter given by (5)
as in Section II-B-1 prior to sampling. Since the anti-aliasing
filter prevents aliasing due to out-of-band noise, the total noise
in the reconstruction of (6) is given by

2 1

m = %
—p

o S (w)dw. (13)

Clearly, we see that the contribution from the repetitions of S,
that appear in the static reconstruction of (12) is absent in the
variance of noise in the reconstruction of (13) corresponding
to the mobile sampling and filtering scheme of Section II-B-1.
Moreover, the contribution from the terms with n # 0 in (12)
leads to aliasing in the reconstruction which is particularly un-
desirable.

2) Two-Dimensional Field: Consider a two-dimensional
spatial field f bandlimited to Q@ = [—p,p] X [—p,p] C R2.
The static and mobile schemes for sampling the field can be
represented as shown in Fig. 3 where v represents the input
field being sampled, s denotes the specific choice of the sam-
pling kernel and A is a 2 x 2 matrix that generates the spatial
sampling lattice. In general,  is a noisy version f of the field f.

We consider a static sampling scheme that uses a rectan-
gular sampling grid at the Nyquist sampling rate i.e., A, =
A, = w/p, and we consider a mobile sampling scheme as in
Section II-B-2 with the spacing A, between the sensor trajecto-
ries equal to the Nyquist interval 7 /p. We consider two extreme
choices for the low-pass filter employed prior to sampling in the
mobile sensing scheme—the ideal low-pass filter (LPF) with a
sinc response, and a more practically feasible filter, the box-filter
whose impulse response is a rectangular pulse.

We first characterize the response of the sampling schemes
to noise. Suppose the input v in Fig. 3 represents weak-sense
stationary noise with power spectral density S, (w),w € R2.
Then the p.s.d. of x is given by,

S, (A Y w —2mn)) |H (A~Hw — 27n) ?
3 ( ) |4 ( )|

nez?

|y

The output signal © is cyclostationary since its autocorrelation
function is invariant to shifts by 2r A1, Its effective p.s.d. can
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be computed just as one computes the power spectra of linearly
modulated signals (see, e.g., [20, Sec. 3.4-2]) and is given by

So(w) = wW)|? Spu(e?™). (14)

1
A,TA.I [

Below, we separately compute the noise variances in the case of
static and the two cases of mobile sampling.

Static sampling: In the case of static sensing we do not
have any spatial filtering and hence the sampling kernel is an
impulse function hs(x, y) = 6(x)6(y) and is equivalently given
in the Fourier domain by,

Hy(w) =1forall w € R% (15)
Since we assume Nyquist rate sampling we also have A, =
A, = w/p. Substituting (15) in (14) and integrating we obtain
the following expression for the noise variance o2,

0'2 = —1
stat 471_2

/ > Su(w — 2np)dw.

O n€Z?

(16)

Since we are sampling at the Nyquist rate we do not observe any
signal distortion in this case.

Mobile sampling with ideal low-pass filter: 1f the ideal sinc
filter is employed as the LPF prior to sampling at the mobile sen-
sors, the effective two-dimensional sampling kernel A, is given
by (9) which is equivalently given in the Fourier domain by,

_ 1 for0< |w,| <p
Hylw) = {0 else. {17

We note that the filter H is frequency limited in the z-direction.
Further, since the spacing between the trajectories is equal to
the Nyquist interval A, = = /p it follows that as long as the
sampling interval along the trajectories satisfies A, < (7/p),
we have the following expression for the noise variance o2

ml-
ml . 19 / ZSV

Q nez

(0,2np) )d . (18)

Comparing the expressions (16) and (18) we see that in the case
of mobile sampling, only spectral shifts at lattice points along
the z-axis contribute to the noise variance whereas in the case of
static sampling spectral shifts from all points in the two-dimen-
sional lattice contribute to the noise signal spectrum. The exact
value of the reduction in noise variance obtained with mobile
sampling can be computed if the true noise spectrum S, (.) is
known.

Mobile sampling with box filter: We now consider the case
of mobile sampling with a box filter that is easier to implement.
In this case we expect some distortion in the reconstruction be-
cause the filter response is not flat in the pass-band. The effec-
tive two-dimensional sampling kernel in this case is hs(x, y) =
boxa, (2)6(y) where

, : Jx] < A
boxa, (2) = {6“ |1|else b
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where 2A; denotes the spatial width of the box- ﬁlter res onse
andk = (2p)(1/2)[(AZ/x? )ffp sinc (Abw/w)dw] The
sampling kernel is equivalently given in the Fourier domaln by

HAb . Ahwm
sime—.

Hi(w) =

(19)

The choice of # ensures that [, Hy(w)?dw = 4p* which is
consistent with the responses in (15) and (17).

Since the box filter is a non-ideal LPF, we expect some dis-
tortion in the reconstructed field. As before, let us assume that
A, < (m/p) and that A, = w/p. Let F' denote the Fourier
transform of the bandlimited field being sampled and F' denote
the Fourier transform of the reconstruction obtained by using an
ideal reconstruction filter of the form (11). We have

. SYAN
Plw) ==

Apw,
F(w)sinc( b ) weQ  (20)

™ ™

Clearly, we see that the reconstructed field is a distorted version
of the original field even in the absence of noise. The amount
of distortion introduced for a given F' can be computed using
relation (20). We can also quantify the variance o2, of the noise
in the reconstruction using relations (19) and (14):

K A2 / ( (2!LT > )
m2 = W = 277‘)/)
Q2
o9 (Ab (
xsine” | — | wy —
T

Now if it is inexpensive to increase the sampling rate used by
each moving sensor, we can let A, — 0, whence we obtain,

2A2 Apw
o S, (w ) dw.
Oma2 = /Z - W

ne”z

2n
If we now also allow A, it is easy to see that
(kAp/m) — 1. Hence the reconstruction in (20) becomes
accurate and the expression in (21) reduces to that in (18).
This means that we have lima, .o F'(w) = F(w) forw € Q,
and lima, o lima, 002, = o2,;. This means that if the
sensors oversample at high rates along their path and use a
rectangular LPF with a short impulse response, we can recreate
the performance with an ideal LPF and Nyquist sampling.

We note that if the noise spectral density were white (i.e.
S,(w) = 1forallw € R?), then the expressions for the variance
in (16), (18) and (21) tend to infinity. This is because unfiltered
white noise samples have infinite variance. However, in prac-
tice environmental noise is never completely white. If the noise
spectrum is flat with a bandwidth along each dimension equal to
o times the field bandwidth, then we obtain a reduction in noise
variance by a factor of a when we employ mobile sampling in
place of static sampling, as shown below.

Proposition 2.1: Suppose the noise spectral density S, (.)
takes a value of unity on the set [—ap, ap] X [—ap,ap] and 0
elsewhere for some p > 0. Then the variances in (16) and (18)

> s,

nez?

(0,2np)") sinc” (

— 0,
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decay as O(a?) and O(a) respectively. In particular when a is
an odd number the variances reduce to

2
o2 = pra
ml 72

2 2

2 pa )
Ogtat — 71'—27 and
Thus if the noise spectrum is flat with a bandwidth along each
dimension equal to a times the field bandwidth, then we obtain
a reduction in noise variance by a factor of @ when we employ

mobile sampling in place of static sampling.

E. Noise Suppression via Oversampling on Sensor Paths

A unique aspect of a mobile sensing scheme is the fact that
it is possible to sample at high rates along the paths of the mo-
bile sensors. This is a significant advantage over static sensing,
because in static sensing the sampling rate can be increased
only by increasing the number of sensors which is, in general,
more expensive than increase the density of samples taken by
a moving sensor. Such oversampling helps in suppressing mea-
surement noise, i.e., noise added to the discrete measurements
after sampling. In the case of sampling a one-dimensional field
bandlimited to 2 = [—p, p], as we discussed earlier, the Nyquist
sampling rate is vp /7 Where v is the velocity of the sensor. It is
known [21, p. 136] that, in the presence of additive zero-mean
white measurement noise, oversampling by a factor of % rela-
tive to the Nyquist rate leads to a reduction of noise variance in
the reconstruction by a factor of 1/k. Similarly, with non-linear
processing quantization noise can be reduced by a factor of 1/k>
(see, e.g., [22], [23], and references therein).

A similar noise reduction by oversampling can also be
obtained while sampling a two-dimensional field. As in
Section II-D-2 let 2 = [—p, p] X [—p, p] and assume that the
sensors move along equispaced straight lines parallel to the
x-axis and spaced A, = 7/p apart. The temporal Nyquist
sampling rate along the lines is vp/7 where v denotes the speed
of the sensors. Now if the sensors take samples at & times the
Nyquist rate, the effective sampling operation can be inter-
preted as a measurement of the inner products of the field with
vectors from % disjoint orthogonal bases, as discussed in [21, p.
136]. Since these vectors form a tight frame with redundancy
k, it follows via [21, Prop. 5.3] that oversampling by a factor
of % leads to a reduction in noise variance in the reconstruction
by a factor of 1/k when sampling in the presence of additive
zero-mean white measurement noise. It is possible that the
known result [24] on the reduction of quantization noise by
oversampling can also be extended to the two-dimensional
case, but we do not consider such an extension here.

F. Non-Uniform Sensor Speeds

In practice it may not always be possible to ensure that the
sensors move at a constant velocity. We now analyze the mo-
bile sensing of a one-dimensional field f bandlimited to 2 =
[—p, p] using a sensor with time-varying speed. The analysis
can be generalized to sensors moving along straight line trajec-
tories in higher-dimensional fields, since the restriction of the
higher-dimensional field to such trajectories is also bandlimited
(see, e.g., [25]). Suppose that the position z(¢) of the sensor at
time ¢ is a known monotonically increasing function of time .
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We have so far studied the case when «(t) is an affine func-
tion, i.e., when the sensor has constant speed. In that case the
signal so(t) = f(x(¢)) is exactly bandlimited and hence can
be sampled uniformly. For non-affine functions (), the signal

s0(t) = f(xz(t)) is not bandlimited. However, such a signal is
also essentially bandlimited to some pg < oo. The value of pg
can be calculated as we show in the Appendix. Hence we can ob-
tain an approximate reconstruction of s () by uniformly sam-
pling an appropriately filtered version of it. Although this fil-
tering operation is linear and time-invariant, there is still some
distortion introduced because of the non-linearity in z(#) which
we now analyze. Let A;,(.) denote the impulse response of an
ideal low-pass filter (LPF) employed prior to sampling. Let Ay,
denote its 3-dB spread in the temporal domain. Denote by Z(¢)
the output of the low-pass filter. We have 2(t) = z(t) + @(t)

where
/ [
iy (¢~ T(x)) ,

:[ﬂﬂwn@>

Here v(t) = dx(t)/dt is the velocity function, 7(.) := = 1(.)
is the inverse function of (.), and w(t) = [ w(z(T))hy(t —
7)dr. Thus at the output of the sampler, we get uniform sam-
ples {2z, := z(¢,)} at times {,, := n7T. Two observations are
in order. The spatial separation between two successive sam-
ples is approximately, 11 — Z,, & v(ty,)(tn+1 — L,) which
means that samples are taken farther apart in space when the
sensor is moving fast. We also note from (22) that the effective
spatial spread of the sampling kernel while obtaining sample
Zn is given by v(t,,)A;, which means that samples obtained
while the sensor is moving fast are obtained via a broader ef-
fective sampling kernel in space. It is also clear from (22) that
the sampling kernel is also scaled down by a factor propor-
tional to the velocity. Now, since z(#) is bandlimited, it can
be reconstructed exactly from its uniformly spaced samples by
sinc interpolation. Hence we can reconstruct an estimate for the
field as f(z) := Z(T(z)). Clearly f(z) can be expressed as
flx) = 2(T(x)) + w(T(x)) where the first term z(T'(z)) rep-
resents the contribution of the true field in the estimate and the
second term represents the contribution of noise. We note that
even in the absence of noise the reconstructed field is a distorted
version of the field due to the non-linearity in 2(¢). The distor-
tion in z(7T'(x)) can be quantified as follows:

hlpt—T)d

z. (22)

/ (f(x) = 2 (T(x)) dz = / (s0(t) — 2(8))* v(t)dt
R R

(23)

<Tlso - 23

where T = sup, |v(#)| denotes the maximum speed of the sensor
and ||so — z||3 denotes the total energy in so(#) outside of the
passband of the LPF. This suggests that the amount of distortion
in the reconstruction can be reduced by increasing the band-
width of the low-pass filter. This however comes at a cost of
increasing the contribution of noise w(.) in the reconstructed
field f (). As a heuristic one can use the effective bandwidth
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of the signal so(t) = f(x(t)) as the bandwidth of the low-
pass filter. An alternative to the scheme proposed here is to use
schemes from non-uniform sampling theory [19]. However, we
do not consider such details in this paper to keep the presenta-
tion simple.

III. TIME-VARYING FIELDS

We now consider the more general problem of sampling time-
varying spatial fields using mobile sensors. We focus on time-
varying fields in one-dimensional space—i.e., fields of the form
f(x,t) where 2 € R is a one-dimensional spatial parameter and
t denotes time. Our approach can be extended to time-varying
fields in higher-dimensional spaces.

A. Sampling and Reconstruction

Let f(z,t) where z,t € R, denote a time-varying field in
one-dimensional space. Suppose that f is bandlimited to 2 C
RZ. If z(t) denotes the position of a moving sensor at time ¢,
the signal seen by the sensor is given by f{x:(t), ). For a sensor
moving at a constant speed v the position is an affine function
of time of the form x(#) := w4+ v¢. Then it is clear from (4) that
the signal so(t) = f(x(t),t) is bandlimited to

{vw, + wr : (wy,wy) € 2} (24)
Thus in the absence of noise, the signal so(%) is bandlimited
and can be exactly reconstructed by taking its samples at uni-
form intervals, as in the time-invariant case we considered in
Section II-B-2. In the presence of noise, an anti-aliasing filter
with the appropriate bandwidth can be employed prior to sam-
pling like in the time-invariant case. Furthermore, if the sensors
are moving at non-uniform speeds then the signals are not ex-
actly bandlimited but they can be approximated by bandlimited
signals by following an approach similar to that in Section II-F.

We consider a scheme of sampling using a uniform collec-
tion of mobile sensors moving with equal velocities and sepa-
rated by a constant separation in space. Such a configuration of
moving sensors is illustrated in Fig. 6(a). Each line in the figure
represents the position of an individual sensor as a function of
time. The moving sensors are separated by a distance of A apart
and move in the positive z direction at a constant speed of v
represented by the slope tan § of the lines in the figure. From
(24) we know that the signal seen by each sensor is bandlimited
to py + vp,. We assume that the sensors sample in time at the
temporal Nyquist rate of {p; + vp,,) /7. We further assume that
the samples taken by the various sensors are all synchronized
in time such that the collection of all samples lie on a two-di-
mensional lattice. In this case, we know from classical sampling
theory [7] that we can perfectly reconstruct any spatio-temporal
field bandlimited to € from its values at these sample locations
provided that the repetitions of its spectra do not overlap in the
spectrum of the samples. Furthermore, since the temporal sam-
pling rate is above the Nyquist rate, it can be shown that only
repetitions along one direction need be considered. These rep-
etitions are illustrated in Fig. 6(b) for a rectangular set of the
form 2 = [—p,., p.] X [—pt, pe]. A detailed explanation of this
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Fig. 6. Uniform configuration of moving sensors and resultant spectrum. (a)
Sensor trajectories. (b) Repetitions in sampled spectrum.

no-alias condition can be found in [15] for time-invariant fields.

We now explicitly compute the no-alias conditions for two
specific choices of €2.

1) Spatio-Temporal Field Bandlimited to Rectangular Re-
gion: Suppose & = [—p,, ps] X [—pt. ps] is a rectangular re-
gion. Under the sampling configuration described above, the
condition to ensure that there is no aliasing in the field recon-
struction is that the repetitions shown in Fig. 6(b) do not overlap.
This means that A should satisfy either

2m

K > 2/% or
Since tan # represents the velocity of the sensors, the above con-
dition is equivalent to the following requirement on the spatial
separation between adjacent moving sensors:

1
A< Wnlax{i,—}.
Pt Pu

Thus 7 max{wv/pt,1/p,} is the maximum admissible spatial
separation between adjacent sensors.

2) Wave Field: We now consider a time-varying field with
a non-rectangular frequency spectrum. Suppose we are inter-
ested in reconstructing the spatio-temporal wave field along a
line. Assume that the field is produced by bandlimited sources
located far from the region of interest. In this setting, we can
use the far-field approximation to study the spectrum of the
bandlimited field. It was shown in [26] that the spectrum of
such a field is approximately supported on the region shown
in Fig. 7(a). Here p; is the bandwidth of the source signals and
pe = pt/c where ¢ denotes the speed of propagation of the
wave. Now suppose that we sample the field using moving sen-
sors with trajectories shown in Fig. 6(a) under the sampling con-
figuration described before. Then, as before the condition re-
quired to ensure that there is no aliasing is that the spectral rep-

2T anf > 2
— tan .
A Pt

(25)
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Fig. 7. Far-field spectrum of a bandlimited source and its sampled version
from samples taken by the mobile sensors of Fig. 6(a). (a) Wave field spectrum;
(b) sampled wave field spectrum.

etitions in Fig. 7(b) do not overlap. It follows from the figure that
for sensor velocities v < ¢ a sufficient condition on the spacing
A to ensure that the spectral repetitions do not overlap is that
—(2n/A) < =2p5 + (p/p1) (27 /A) tan 8, or equivalently

A<1(1+%). (26)

Pz

A similar analysis can also be performed for sampling a wave
field over two-dimensional space using moving arrays of sen-
sors. The sampling of such a field using an array of sensors is
described in [27]. These ideas can be extended to the case of
mobile sampling by following an approach like the one we de-
scribed in this section.

B. Comparison With Static Sampling

In Section II-D we noted the advantages of mobile sampling
over static sampling obtained by using an anti-aliasing filter to
limit the contribution of out-of-band noise while sampling and
reconstructing time-invariant fields. For sampling time-varying
fields, however, such an advantage is not as significant. Con-
sider filtering and sampling a one-dimensional time-varying
field using sensors moving according to the configuration
depicted in Fig. 6(a). In this case, we are essentially filtering
along the lines in the ¢ — x plane shown in Fig. 6(a). We note
that it is possible to filter over time even with static sensors.
This would amount to filtering along lines parallel to the #-axis
in Fig. 6(a). Thus the only difference between filtering in the
mobile and static sensing cases is in the direction of filtering
in the £ — = plane. Hence the relative advantages of the two
schemes would depend on the spectral characteristics of the
additive noise. However, mobile sensing offers a different sort
of advantage over static sensing: In some situations, we can get
a reduction in the spatial density of sensor deployment required
while using mobile sensors, as we show below.

Consider a time-varying field bandlimited to a rectangular
region [—p.., px] X [—pt, pt] as in Section II-A-1. We know
from classical sampling [7] that for sampling with static sen-
sors the maximum spacing allowed between adjacent sensors
is 7/ p... Comparing with the spacing requirement in the mobile
setting given in (25), it follows that when the mobile sensors are
moving at a speed v > (p:/p. ), the inter-sensor spacing can be
increased by a factor of vp.. /p;. In other words, this means that
for a given length of the spatial region of interest, we can reduce
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the number of sensors required by a factor p;/vp, . The advan-
tage is more significant when v >> (p;/p..), i.e., for spatio-tem-
poral fields that vary slowly in time and at fast rate over space.
This matches with the intuition that slowly varying fields are
easier to track using mobile sensors. However, as the speed v is
increased, the required temporal rate of sampling given by the
Nyquist rate, (p: + vp, )/, also increases. Hence, in short, by
using moving sensors we can reduce the spatial density of sen-
sors at the cost of increasing their temporal sampling rates.

Now consider the scenario of sampling a wave field along
a line located in the far field of bandlimited sources as in
Section I1I-A-2. For sampling with static sensors the maximum
spacing allowed between adjacent sensors is again 7/p,.
Hence it follows from (26) that the inter-sensor spacing can be
increased by a factor of (1 + (v/c)) when we employ sensors
moving at speed v. This observation suggests that for wave
field reconstruction we get a significant improvement in the
sensor spacing using mobile sensing only when the sensors can
move at a speed of the order of the speed of wave propagation
in the medium.

IV. SIMULATIONS: MERITS OF MOBILE SENSING

We simulated the static and mobile sampling schemes for
measuring the surface temperature field on a portion of the
EPFL campus. For the true temperature field we used the
readings obtained from [28] as illustrated in Fig. 8. For static
sensing, we considered sensors on a rectangular grid. For
mobile sensing we assumed that the sensors move parallel to
the z-axis and apply an anti-aliasing filter prior to sampling,
like in Section II-B-2. They take samples at the same points
on the rectangular grid as in the static case. As seen in Fig. 8
the field has sharp variations in space and hence is not ban-
dlimited. Thus we expect some aliasing in the reconstruction
obtained via sinc interpolation from samples of such a field. In
Table II we list the percentage root-mean-square errors in the
reconstructed fields, defined as (||f — f|l2/||f]|2) x 100. The
last column represents the performance obtained with mobile
sensing assuming that the sensors measure the field at all points
on their paths without any filtering. As the values in the table
indicate, mobile sampling outperforms static sampling, and
oversampling along the trajectories improves the performance
further. The filtering operation in the mobile sampling scheme
reduces the amount of aliasing in the samples leading to a
reduction in the reconstruction error. We note that the temper-
ature field is not truly bandlimited and hence the performance
gains are more modest than what could be expected if the field
were truly bandlimited.

We also simulated the same schemes for sampling and re-
constructing a truly bandlimited field in noise. For the true field
shown in Fig. 9 we used a bandlimited approximation to the
spatial radiation field around the site of the Fukushima nuclear
accident on 11 March 2011. The radiation levels in this field
were measured in units of micro-Sieverts per hour (Sv/h) at
various positions during the months of July—September, 2011,
and are available online at [29]. We considered the sampling ofa
noisy version of this field with the noise spectrum as described
in the statement of Proposition 2.1, with the ratio of the sides
a = 40 and estimated the percentage root-mean-square errors
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Fig. 8. Spatial temperature field on EPFL campus.
TABLE II
PERCENTAGE ROOT-MEAN-SQUARE ERRORS WITH VARIOUS SCHEMES
Data type Static Mobile | Mobile sensing with
sensing | sensing | oversampling
Temperature 0.53% 0.45% 0.42% (no filter)
Bandlimited radia- | 9.9% 1.5% 1.5% (with filter)
tion (SNR 20 dB)

(VE[If = F1I131/II£]l2) x 100 in the reconstruction. The values
of the errors shown in Table II suggest that the reduction in the
error obtained with mobile sensing is more significant than that
was seen for the temperature field. We also see that the ratio of
the errors under the static and mobile reconstruction schemes
is approximately a(!/?) as expected by the result of Proposi-
tion 2.1. In this example we allow filtering in the oversampling
scheme since the field of interest is bandlimited. From the last
column of Table IT we see that there is no improvement in ac-
curacy with oversampling. This is expected since there is no
advantage in increasing the sampling rate beyond the Nyquist
rate.

V. CONCLUSION AND FUTURE WORK

In this paper we have studied strategies for sampling and re-
constructing a bandlimited spatial field using moving sensors,
including both time-invariant and time-varying fields. We high-
lighted and quantified the advantages of mobile sensing over
classical static sensing, both in theory and through simulations.
Our results for time-invariant fields clearly demonstrate the fol-
lowing advantages when using a time domain anti-aliasing filter
together with a mobile sensor:

(i) For non-bandlimited fields: Anti-aliasing filtering with
mobile sampling suppresses aliasing in the direction of
motion. For one-dimensional fields, higher sampling rates
yield lower distortion in the reconstruction.

(i) For bandlimited fields in noise: Anti-aliasing filtering
with mobile sampling suppresses noise in the direction of
motion. This prevents aliasing in the direction of motion.
Sampling at the Nyquist rate is sufficient.

In the latter case we quantified the SNR improvement of the
mobile sampling scheme over the static sampling scheme. For
time-varying fields, we demonstrated the improvement in sam-
pling density that can be obtained by using mobile sensors.
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Fig. 9. Bandlimited approximation of the radiation field near Fukushima.

In our analysis of mobile sensing of time-invariant fields in
R? we considered only trajectories composed of a set of equis-
paced parallel lines. The analysis of SNR in the reconstruction
can be generalized to higher dimensional spaces and to more
general configurations of straight line trajectories like the ones
studied in [15]. In practice one may be forced to use non-linear
sensor trajectories. In such cases, a possible approach would
be to approximate the paths by straight line segments and then
use the appropriate anti-aliasing filters to reduce spatial anti-
aliasing as we did for the non-uniform speed sensing example
of Section II-F. However, quantifying the noise suppression in
such cases would be more complex. For general trajectories, it
would be interesting to study the tradeoff between the SNR im-
provement and the path density metric of the trajectories intro-
duced in [15]. Similar extensions are also relevant for studying
time-varying fields.

For making mobile sampling schemes practical, one would
also need to consider the effects of mobility on the field and
on the sensing process. It is possible that the physical process
of moving the sensor through the field may affect the charac-
teristics of the field or introduce noise and irregularities in the
sensing process. These effects must also be taken into account to
completely characterize the advantages of mobile sensing over
static sensing in practice.

APPENDIX
BANDWIDTH OF TIME-WARPED SIGNAL $q(#) =

f(x (1))

Consider a piecewise-affine function of the form

K

= (o T € )

k=1

€Ty (f) (27)

where 15, < tx41, and 0 < v < T where U denotes the max-
imum speed of the sensor. Let A, 1= tpr1 —tr, A 1= ming Ay
and #) := (fg41 + tr)/2. We know that the Fourier transform

of s1(t) := f(x1(t)) is given by

K
1 e 7 Ay,
S1(§) = Z [af’ SR (f—k) ke e ¢ Aysine (E—QT:')}

k=1
(28)
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where F'(.) denotes the Fourier transform of the field f(.), and
the operation *¢ denotes convolution with respect to £. From the
structure of the Fourier transform we can argue as in [30] that
the effective bandwidth of s; is given by

1 1
max {Wp + A_k] <vp+ x (29)

We now study how the Fourier transform of the observed signal
gets modified by a slight deviation from the piecewise affine
trajectory. Suppose the trajectory is given by

K
x(t) = Z (u, + vt + €2 (F) T{t € [trstrgr1)}.  (30)
k=1

Let pz denote the maximum low-pass bandwidth of all &j,. As-
sume that f is twice differentiable. Then we have by Taylor’s
approximation that for ¢ € [ty, try1),

so(t) = f(x(t))
= [ (up +vgt + exx(t)), fort € [tg, tpy1)
= f(uk + Ukt) + f’(uk + ’Ukt)E.’i'k(t) + (')(62)

Using S5(&) to denote the spectrum of so(%) it follows that for
small € we have

—i§Ay, Ay
xg€ 5o Apsine (52—") } +0(e?). (31
T

Thus, we can argue that for small € the difference between the
Fourier transforms of so(¢) and s1(t) is given by a term propor-
tional to € over frequencies in the range

1 1
|€| < In]?'X VEpPf + pz, + A—k:| < ’T?/)f + pz + z

and only by terms of order O(e?) for other frequencies. By con-
sidering higher order terms in the Taylor series expansion, it
follows that the difference between Fourier transforms of so(#)
and s1(¢) is given by a term of order O(¢™*1) over frequencies
outside of the range

vpr +mpz + —.
S vpy 12 A
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