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Abstract

We investigate a relay network where the source can potentially utilize an untrusted non-regenerative

relay to augment its direct transmission of a confidential message to the destination. Since the relay is

untrusted, it is desirable to protect the confidential data from it while simultaneously making use of it to

increase the reliability of the transmission. We first examine the secrecy outage probability (SOP) of the

network assuming a single antenna relay, and calculate the exact SOP for three different schemes: direct

transmission without using the relay, conventional non-regenerative relaying, and cooperative jamming

by the destination. Subsequently, we conduct an asymptotic analysis of the SOPs to determine the

optimal policies in different operating regimes. We then generalize to the multi-antenna relay case and

investigate the impact of the number of relay antennas on the secrecy performance. Finally, we study

a scenario where the relay has only a single RF chain which necessitates an antenna selection scheme,

and we show that unlike the case where all antennas are used, under certain conditions the cooperative

jamming scheme with antenna selection provides a diversity advantage for the receiver. Numerical results

are presented to verify the theoretical predictions of the preferred transmission policies.
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I. INTRODUCTION

The broadcast characteristic of the wireless medium facilitates a number of advanced com-

munication protocols at the physical layer, such as cooperative communications with the aid

of relay nodes. Since relays can overhear signals emanating from a source and rebroadcast

them towards the intended destination, the reliability of the transmission can be improved via

diversity. However, the broadcast property also makes it difficult to shield information from

being leaked to unintended receivers (eavesdroppers), which has led to an intensive study of

improving information security at the physical layer of wireless networks [1].

The foremost metric of physical-layer information security is the secrecy capacity, which

quantifies the maximal transmission rate at which the eavesdropper is unable to decode any

of the confidential data. An alternative secrecy criterion that has recently been investigated for

fading channels is the secrecy outage probability (SOP), from which one can determine the

likelihood of achieving a certain secrecy rate [2].

In the context of single-input single-output (SISO) relay channels, the SOP has been inves-

tigated in [3]–[5] for networks composed of external eavesdroppers that are distinct from the

source/sink and relay nodes. Secrecy may still be an issue even in the absence of external

eavesdroppers, since one may desire to keep the source signal confidential from the relay itself

in spite of its assistance in forwarding the data to the destination [6]. The relay is in effect also

an eavesdropper, even though it complies with the source’s request to forward messages to the

destination. For example, an untrusted relay may belong to a heterogeneous network without

the same security clearance as the source and destination nodes. This scenario has been studied

in [7], [8] where the authors presented bounds on the achievable secrecy rate. Furthermore, they

showed that non-regenerative or amplify-and-forward (AF) and compress-and-forward relaying

(including a direct link) admit a non-zero secrecy rate even when the relay is untrusted, which

does not hold for decode-and-forward relaying.

Our paper analyzes a three-node relay network where the source can potentially utilize a

multi-antenna untrusted relay to augment the direct link to its destination. In [9], the authors

considered the joint source/relay beamforming design problem for secrecy rate maximization via

an AF multi-antenna relay. In realistic fading channels, the secrecy outage probability is a more

meaningful metric compared to the ergodic secrecy rate, which is ill-defined under finite delay
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constraints. Thus, unlike [9], in this work we focus on the SOP of the AF relaying protocol,

which is chosen due to its increased security vis-à-vis decode-and-forward and lower complexity

compared to compress-and-forward.

When multiple antennas are employed in relay networks, any potential performance benefits

must be balanced against increased hardware complexity and power consumption. As a reduced-

complexity solution that can maintain full diversity, antenna selection has received extensive

attention in AF relay networks, for example in cases where only one RF chain is available at the

relay [10]. In [11], a low-complexity near-optimal antenna selection algorithm was proposed for

maximizing the achievable rate. The bit error rate performance obtained by choosing the best

antenna pairs over both relay hops was examined in [12]. However, the open problem addressed

in our paper is the tradeoff between the diversity gain for the legitimate receiver versus the

inadvertent diversity gain of the information leaked to the untrusted relay in the first hop.

In this paper, we calculate the exact SOP with a multi-antenna relay for three different

transmission policies: (1) direct transmission (DT) where the relay is considered as a pure

eavesdropper, (2) conventional AF relaying, and (3) cooperative jamming (CJ) by the destination

in the first hop to selectively degrade the relay’s eavesdropping capability. There are scenarios

(with different SNR, number of antennas, channel gains, etc.) where each of these three schemes

owns a performance advantage over the other two. Our analysis allows these performance

transitions to be determined. We also conduct an asymptotic analysis for the special case of

a single-antenna relay and elicit the optimal policies for different power budgets and channel

gains. Secrecy is typically compromised with a multi-antenna relay employed, especially if the

number of relay antennas grow large. We show that the secrecy performance improves when

the relay can only perform antenna selection instead of beamforming, but in nearly all cases the

SOP still grows with the number of relay antennas. A non-increasing SOP is shown to only be

obtained when the CJ scheme is used and the second-hop CSI can be hidden from the relay.

The remainder of this work is organized as follows. The mathematical models of the AF

relaying and cooperative jamming approaches are introduced in Section II. The secrecy outage

probabilities of direct transmission, AF relaying, and cooperative jamming with a multi-antenna

relay are examined in Section III, and the specialization to a relay employing antenna selection

is presented in Section IV. Selected numerical results are shown in Section V, and we conclude

in Section VI.
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II. MATHEMATICAL MODEL

We consider a half-duplex two-hop relaying network composed of a source (Alice), a desti-

nation (Bob), and an untrusted relay that when active employs the AF protocol. Alice and Bob

are both single-antenna nodes, and the relay is assumed to be equipped with K antennas. The

channel is assumed to be quasi-static (constant during the two hops) with Rayleigh fading and

a direct link between Alice and Bob is assumed to be available. We also assume all nodes in

the network have the same power budget P .

A. Relay Protocol

For AF relaying, during the first phase the relay receives

yR = hA,RxA + nR (1)

where xA is the zero-mean signal transmitted by Alice with variance E{xHAxA} = P , hA,R =

[hA,1, hA,2, . . . , hA,K ]T is the complex circularly symmetric Gaussian channel vector with covari-

ance matrix CA,R = diag{γ̄A,1, γ̄A,2, . . . , γ̄A,K}, and nR is additive white Gaussian noise with

covariance N0I. For the moment, we assume spatially white noise with no jamming present;

the case of cooperative jamming will be discussed separately. In general, we will use hi,j to

represent the channel vector between node i and j, with i, j ∈ {A,B,R} denoting which of the

terminals is involved. Let γi,j , |hi,j|2 be the instantaneous squared channel strength, so that γi,j

is exponentially distributed with hazard rate 1
γ̄i,j

, i.e. γi,j ∼ exp
(

1
γ̄i,j

)
. The probability density

function (p.d.f.) of γi,j is given by

pγi,j(x) =
1

γ̄i,j
e
− x
γ̄i,j , x ≥ 0. (2)

When the relay has K RF chains and can implement beamforming, we assume that, for

purposes of forwarding the message, the relay adopts maximum ratio combining (MRC) on

receive and maximum ratio transmission (MRT) on transmit. Thus, the output of the relay receiver

is given by

ỹR =

√∑K

i=1
|hA,i|2xA +

∑K
i=1 h

H
A,ini√∑K

i=1 |hA,i|2
.
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The relay then transmits the signal xR =
√
P
σ

hHR,B
||hR,B ||

ỹR, where σ =
√
E{||ỹR||2} and hR,B =

[h1,B, h2,B, . . . , hK,B]. The received signal at Bob over both phases is then given by

yB =

 hA,B
√
P
σ

√∑K
i=1 |hi,B|2

√∑K
i=1 |hA,i|2

xA+

 nB1

√
P
σ

√∑K
i=1 |hi,B |2∑K
i=1 |hA,i|2

∑K
i=1 h

H
A,ini + nB2

 , (3)

where we assume that nB1 and nB2 are uncorrelated Gaussian noise with variance N0. The

subscripts 1 and 2 refer to the first and second transmission phases, respectively. Since the

antennas on the relay are much closer together compared to their distances to the source and

the destination, we assume {γ̄A,i}Ki=1 = γ̄A,R and {γ̄i,B}Ki=1 = γ̄R,B.

We assume Alice uses a codebook C(2nR0 , 2nRs , n) where Rs is the intended secrecy rate

(Rs ≤ R0), n is the codeword length, 2nR0 is the size of the codebook, and 2nRs is the the

number of confidential messages to transmit. The 2nR0 codewords are randomly grouped into

2nRs bins. To send confidential message w ∈ {1, · · · , 2nRs}, Alice will use a stochastic encoder

to randomly select a codeword from bin w and send it over the channel. Since in our model

the untrusted relay only wiretaps in the first phase, and since the AF and CJ schemes are

mathematically equivalent to a one-stage 1× 2 SIMO wiretap channel [8], [13], a conventional

wiretap code can be applied. The achievable secrecy rate is then the same as for the equivalent

one-hop channel: i.e., Rs = [IB − IE]+ where [x]+ , max{0, x}, IB is the mutual information

for the legitimate link and IE is the mutual information for the eavesdropper link.

B. Cooperative Jamming

Various cooperative jamming schemes involving the transmission of artificial interference

have been proposed in previous work for improving secrecy [5], [14]–[17]. In this paper, as

an alternative to the traditional AF protocol, we assume a half-duplex cooperative jamming

scheme where Bob forfeits information from Alice during the first phase in favor of transmitting

a jamming signal. Under this model, the received signal at the relay is

yR = hA,RxA + hR,BzB + nR (4)

where zB is the jamming signal transmitted by Bob with power E{zHB zB} = P . Similar to the

AF scheme, during the second phase, the relay scales yR and forwards it to Bob, and thus the
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received signal at Bob can be written as

yB =

√
P

σ

√√√√ K∑
i=1

|hi,B|2
K∑
i=1

|hA,i|2 xA+

√
P

σ

√∑K
i=1 |hi,B|2∑K
i=1 |hA,i|2

(
K∑
i=1

hHi,BhA,izB +
K∑
i=1

hHA,ini

)
+nB2

(5)

where we assume a reciprocal channel between the relay and Bob: hR,B = hHB,R. Note that the

intentional interference term can be removed by Bob since zB is known to him.

While we assume that the relay forwards the output of the MRC beamformer to Bob, when

computing the mutual information available to the relay we assume that she can perform MMSE

(maximum SINR) beamforming to counteract the jamming from Bob. Recall that since Bob is

the source of the interference, he can subtract its contribution from the signal forwarded by the

relay regardless of the choice of receive beamformer employed at the relay.

III. TRANSMISSION WITH AN UNTRUSTED RELAY

A. Single-antenna Relay

We begin with the case where the relay employs a single antenna. In this section, we will cal-

culate the exact SOP expressions for the DT, AF and CJ schemes and analyze the corresponding

asymptotic behavior under limiting conditions on the power budgets and channel gains.

1) DT: Direct transmission refers to the case where Alice uses a single-hop transmission to

communicate with Bob rather than cooperating with the relay. As illustrated later, in some cases

this strategy provides better secrecy performance than AF and CJ. Under DT, the relay is simply

treated as a pure eavesdropper. Thus the model will be simplified to a traditional wiretap channel

with Rayleigh fading, which has been fully characterized in [2], for example. Since the channel

gains are assumed to be quasi-static, the achievable secrecy rate for one channel realization is

given by

RDT
s = [IDTB − IDTR ]+ (6)

where IDTB and IDTR represent the mutual information between Alice and Bob, and between

Alice and the relay respectively, and are given by IDTB = log2(1 + P
N0
|hA,B|2) and IDTR =

log2(1 + P
N0
|hA,R|2).
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When K = 1, the probability of a positive secrecy rate is given by [2]

PDTpos = P(IDTB − IDTR > 0) = P(|hA,B|2 > |hA,R|2)

=
γ̄A,B

γ̄A,R + γ̄A,B
. (7)

It is interesting to note that, in the presence of fading, a nonzero secrecy rate exists even when

γ̄A,R > γ̄A,B, i.e. when the eavesdropper’s channel is on average better than the legitimate channel

[2] (although the probability of such an event is less than 1/2). Eq. (7) also indicates that Alice

will be unable to reliably transmit secret messages when γ̄A,R → ∞, e.g., when the untrusted

relay is proximate to Alice.

The outage probability for a target secrecy rate R is given by [2]

PDTout (R) = P{IDTB − IDTR < R} = P
{

1 + ρ|hA,B|2
1 + ρ|hA,R|2

< 2R
}

= 1− γ̄A,B
2Rγ̄A,R + γ̄A,B

e
− 2R−1
ργ̄A,B , (8)

where ρ , P
N0

is the transmit SNR. The secrecy outage probability is a criterion that indicates

the fraction of fading realizations where a secrecy rate R cannot be supported, and also provides

a security metric for the case where Alice and Bob have no CSI for the eavesdropper [2].

However, we recognize the alternative definition of SOP that was recently proposed in [18],

which provides a more explicit measurement of security level by only considering secrecy outage

events conditioned on a reliable legitimate link. The secrecy outage results presented in this work

can be reformulated according to this alternative definition in a straightforward manner.

2) AF: When the untrusted AF relay is employed for cooperation, the channel is equivalent

to the conventional wiretap channel where Bob receives the signal from two orthogonal channels

[8], and thus the achievable secrecy rate can be computed from RAF
s =

[
IAFB − IAFR

]+, where

IAFB =
1

2
log2

(
1 + ρ|hA,B|2 + ρ

|hR,B|2|hA,R|2
|hR,B|2 + γ̄A,R + 1

ρ

)
(9)

and

IAFR =
1

2
log2

(
1 + ρ|hA,R|2

)
. (10)

Therefore, the probability of achieving a positive secrecy rate for AF relaying is formulated as

PAFpos = P
{
|hA,B|2 +

|hR,B|2|hA,R|2
|hR,B|2 + γ̄A,R + 1

ρ

> |hA,R|2
}
. (11)
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In Appendix A, we show that this probability is given by

PAFpos = µ1(β1 − 1)eµ1β1Ei(−µ1β1) + 1 (12)

where µ1 =
γ̄A,R+1/ρ

γ̄R,B
, β1 = 1 +

γ̄A,R
γ̄A,B

and Ei(·) is the exponential integral Ei(x) =
´ x
−∞ e

tt−1 dt.

The outage probability of the AF scheme for a given secrecy rate R can be written as

PAFout (R) = P

1 + ρ|hA,B|2 + ρ
|hR,B |2|hA,R|2

|hR,B |2+γ̄A,R+ 1
ρ

1 + ρ|hA,R|2
< 22R

 , (13)

and the exact SOP is given by the following proposition.

Proposition 1: The secrecy outage probability for AF relaying can be expressed as

PAFout (R) = 1− γ̄A,B
(22R − 1)γ̄A,R + γ̄A,B

e
− 22R−1
ργ̄A,B

[
µ1(β2 − 1)eµ1β2Ei(−µ1β2) + 1

]
(14)

where µ1 =
γ̄A,R+1/ρ

γ̄R,B
, β2 =

22Rγ̄A,R+γ̄A,B
(22R−1)γ̄A,R+γ̄A,B

, and R is the target secrecy rate.

Proof: See Appendix B.

For the high SNR regime, (13) can be approximated as

PAFout (R) ' P

 |hA,B|2 +
|hR,B |2|hA,R|2
|hR,B |2+γ̄A,R

|hA,R|2
< 22R

 , (15)

which is a function independent of ρ. This indicates that the AF scheme does not approach zero

SOP even as the transmit power is increased. Intuitively, this is reasonable since any increase in

the transmit power will bolster the SNR at both the legitimate user and the eavesdropper. The

asymptotic value of the SOP at high SNR will be characterized in Section III-B.

3) CJ: As mentioned above, for the CJ approach we assume Bob ignores the direct link and

transmits a jamming signal during the first phase. According to the signal model in Section II-B,

we have the following expression for the mutual information between Alice and Bob in this

case:

ICJB =
1

2
log2

(
1 + ρ

|hR,B|2|hA,R|2
|hR,B|2 + γ̄A,R + γ̄R,B + 1

ρ

)
(16)

ICJR =
1

2
log2

(
1 +

|hA,R|2
|hR,B|2 + 1

ρ

)
, (17)

and the corresponding probability of a positive secrecy rate is given by

PCJpos = P
{
ρ

|hR,B|2
|hR,B|2 + γ̄A,R + γ̄R,B + 1

ρ

>
1

|hR,B|2 + 1
ρ

}
= e

− 1
γ̄R,B

√
γ̄A,R+γ̄R,B+ 1

ρ
ρ . (18)
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From (18), we see that PCJpos is a monotonically increasing function of γ̄R,B when γ̄A,R is fixed. In

other words, CJ is not appropriate when the second hop channel is weak. This is not surprising

since, when CJ is employed, the half-duplex constraint for Bob means that the information from

the direct link is ignored, and Bob relies heavily on the second hop to obtain the information

from Alice.

The outage probability in this case can be expressed as

PCJout (R) = P

1 + ρ
|hR,B |2|hA,R|2

|hR,B |2+γ̄A,R+γ̄R,B+ 1
ρ

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R

 , (19)

and the exact SOP expression is provided in the following proposition.

Proposition 2: The secrecy outage probability for the CJ scheme is given by

PCJout (R) = 1− 1

γ̄R,B

ˆ ∞
t

e
− 22R−1
γ̄A,Rφ(z)

− z
γ̄R,B dz, (20)

where

φ(z) =
ρz

z + γ̄A,R + γ̄R,B + 1
ρ

− 22R

z + 1
ρ

, (21)

t =
(22R − 1) +

√
(22R − 1)2 + ρ22R+1(γ̄A,R + γ̄R,B + 1/ρ)

2ρ
. (22)

Proof: See Appendix C.

It is important to note at this point that we have assumed each node transmits at its maximum

power budget P . It is straightforward to formulate a secrecy outage minimization problem subject

to various power constraints for the transmission strategies discussed above, but obtaining closed-

form solutions to these problems appears to be intractable. Thus our theoretical analysis will

focus on the case where all nodes transmit with full power, but in the simulations presented later

we will show examples of the performance gain that can be obtained with an optimal power

allocation.

B. Asymptotic Behavior

Based on the above analytical expressions, we see that the choice of which scheme (DT,

AF or CJ) to employ depends on the specific power budgets and channel gains; each of these

methods is optimal for different operating regimes. Next, we investigate the asymptotic behavior

of the outage probability to determine conditions under which each approach offers the best

performance.
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1) Case of ρ→∞: From (8), we have

lim
ρ→∞
PDTout = 1− γ̄A,B

2Rγ̄A,R + γ̄A,B
, (23)

and according to (14),

lim
ρ→∞
PAFout = 1− γ̄A,B

(22R − 1)γ̄A,R + γ̄A,B

[
µ′1(β1 − 1)eµ

′
1β1Ei(−µ′1β1) + 1

]
(24)

where µ′1 =
γ̄A,R
γ̄R,B

. Therefore, both PDTout and PAFout converge to nonzero constants as ρ→∞. For

CJ, however, according to (20)-(22), we have

lim
ρ→∞
PCJout = 1− 1

γ̄R,B

ˆ ∞
0

e
− z
γ̄R,B dz = 0, (25)

which shows that CJ is preferable for ρ→∞, or high SNR or transmit power scenarios.

2) Case of γ̄A,B → ∞ or 0: From (8) and (14), it is also straightforward to obtain that

PDTout ,PAFout → 0 as γ̄A,B → ∞. When γ̄A,B is sufficiently large, using the fact that 1 − ex =

x + O(x2), we can observe that with respect to γ̄A,B, both DT and AT decay proportionally to

1/γ̄A,B. Conversely, we also have that PDTout ,PAFout → 1 as γ̄A,B → 0. Since PCJout does not depend

on γ̄A,B, we can conclude that the DT and AF schemes are better than CJ when the direct link is

significantly stronger than the others, while CJ will perform better when the direct link is weak.

3) Case of γ̄R,B → ∞ or 0: Since PDTout is not a function of γ̄R,B, it will be the same as in

(8). When γ̄R,B → ∞, according to (14) and using the result that xEi(−x) → 0 as x → 0 [5],

we have

lim
γ̄R,B→∞

PAFout = 1− γ̄A,B
(22R − 1)γ̄A,R + γ̄A,B

e
− 22R−1
ργ̄A,B . (26)

For CJ when γ̄R,B →∞, intuitively the cooperative jamming support from Bob can fully prevent

the relay from eavesdropping, and thus we will have the follwing lemma whose proof is given

in Appendix D.

Lemma 1: When γ̄R,B →∞, outage events will only depend on the relay link, and the outage

probability in (19) will converge to:

lim
γ̄R,B→∞

PCJout = P
(

1 + ρ
|hR,B|2|hA,R|2

|hR,B|2 + γ̄A,R + γ̄R,B + 1
ρ

< 22R

)
. (27)

Based on Lemma 1 and following the same approach as in Appendix C, we have

lim
γ̄R,B→∞

PCJout = lim
γ̄R,B→∞

1− 1

γ̄R,B

ˆ ∞
0

e
− 22R−1
γ̄A,Rh

′(z)−
z

γ̄R,B dz (28)
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where

h′(z) =
ρz

z + γ̄A,R + γ̄R,B + 1
ρ

.

Further manipulation of (28) reveals

lim
γ̄R,B→∞

PCJout = lim
γ̄R,B→∞

1− 1

γ̄R,B

ˆ ∞
0

e
− 22R−1
γ̄A,Rh

′(z)−
z

γ̄R,B dz

= lim
γ̄R,B→∞

1− 1

γ̄R,B
e
− 22R−1
ργ̄A,R

ˆ ∞
0

e
−

(22R−1)(γ̄R,B+γ̄A,R+1/ρ)

ργ̄A,Rz
− z
γ̄R,B dz

= 1− e−
22R−1
ργ̄A,R

√
4(22R − 1)

ργ̄A,R
K1

(√
4(22R − 1)

ργ̄A,R

)
, (29)

where K1(·) is the modified Bessel function of the second kind, and [19, eq. 3.324.1] is used

to obtain (29). Therefore, as γ̄RB → ∞, the outage probability for all schemes converges to

different constants, and the analysis does not reveal an advantage of one method over another.

When γ̄RB → 0, CJ is obviously not applicable since PCJout → 1. For the the AF scheme,

applying a procedure similar to that in Appendix D on (13), the outage probability will converge

to

lim
γ̄RB→0

PAFout = P
{

1

2
log2

(
1 + ρ|hA,B|2
1 + ρ|hA,R|2

)
< R

}
(30)

≥ P
{

log2

(
1 + ρ|hA,B|2
1 + ρ|hA,R|2

)
< R

}
(31)

where (31) is equal to PDTout . Thus, DT is a better choice when γ̄RB → 0 due to the resource

division factor 1/2.

4) Case of γ̄A,R → 0: In this case, it is easy to verify from (20) that, for CJ,

lim
γ̄A,R→0

PCJout = 1, (32)

since t→∞ as γ̄A,R → 0 and the result of the integral in (20) approaches 0. However, for DT

and AF, the outage probability will converge to constants given by

lim
γ̄A,R→0

PDTout = 1− e−
2R−1
ργ̄A,B (33)

lim
γ̄A,R→0

PAFout = 1− e−
22R−1
ργ̄A,B . (34)

Similar to the case in Section III-B3, we see from the above equations that limγ̄A,R→0PAFout
≥ limγ̄A,R→0PDTout , i.e., the SOP of the DT scheme is lower than that of the AF scheme and thus

DT is preferred in this case.
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C. Multi-antenna Relay

In this section, we generalize our analysis to the case of a multi-antenna relay. We will

theoretically characterize the SOP and the impact of the number of relay antennas on the secrecy

performance.

1) Direct Transmission (DT): Similar to the expression in (8), when the relay uses multiple

antennas and MRC beamforming, the outage probability for a given target secrecy rate R is

given by

PDTout (R) = P
{

log2

(
1 + ρ|hA,B|2

1 + ρ
∑K

i=1 |hA,i|2

)
< R

}
. (35)

Denote X = |hA,B|2 and Y =
∑K

i=1 |hA,i|2, and recall that X ∼ exp
(

1
γ̄A,R

)
. Since Y can be

rewritten as γ̄A,R
2

∑2K
i=1 α

2
i where {α}2K

i=1 are 2K independent standard normal Gaussian random

variables (r.v.s),
∑2K

i=1 α
2
i has a central chi-square distribution with 2K degrees of freedom.

Therefore, we have

PY (y) =
yK−1

γ̄KA,R(K − 1)!
e
− y
γ̄A,R (36)

and thus

PDTout = EY
{
FX

(
2R − 1

ρ
+ 2RY

)}
= 1−

ˆ ∞
0

PY (y) e
− 1
γ̄A,B

(
2R−1
ρ

+2RY
)
dy

= 1−
(

γ̄A,B
2Rγ̄A,R + γ̄A,B

)K
e
− 2R−1
ργ̄A,B . (37)

It can be seen from (37) that the SOP of the DT scheme will approach unity as K grows, which

is also consistent with the intuition that the presence of more antennas at the eavesdropper will

result in a deterioration in secrecy performance.

2) Amplify-and-Forward (AF): According to the signal model (1) and (3), the outage proba-

bility in (13) for a target secrecy rate R and K antennas at the relay can be written as

PAF
out (R) = P


1 + ρ|hA,B|2 + ρ

∑K
i=1 |hi,B |2

∑K
i=1 |hA,i|2∑K

i=1 |hi,B |2+Kγ̄A,R+K
ρ

1 + ρ
∑K

i=1 |hA,i|2
< 22R

 . (38)

The exact SOP is given by the following proposition:
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Proposition 3: The secrecy outage probability for AF relaying with K relay antennas is

PAFout (R) = 1−
[
1 +

γ̄A,R(22R − 1)

γ̄A,B

]−K
e
− 22R−1
ργ̄A,B

+

ˆ ∞
0

ˆ 22Ry+ 22R−1
ρ

(1+ρy)(22R−1)
ρ

yK−1

γ̄A,Bγ̄KA,R(K − 1)!
FV

(
22R +

22R − 1− ρx
ρy

)
e
− x
γ̄A,B

− y
γ̄A,R dxdy, (39)

where R is the target secrecy rate, and the c.d.f. of V is

FV (v) = 1−
K−1∑
n=0

1

n!

[
vK(γ̄A,R + 1

ρ
)

γ̄R,B(1− v)

]n
e
−
vK(γ̄A,R+ 1

ρ )

γ̄R,B(1−v) . (40)

Proof: Defining X = |hA,B|2, Y =
∑K

i=1 |hA,i|2, and V =
∑K
i=1 |hi,B |2∑K

i=1 |hi,B |2+Kγ̄A,R+K/ρ
, according

to (38) the SOP is given by

PAFout (R) = P{1 + ρX − ρ(22R − V )Y < 22R}. (41)

In order to obtain the SOP, we first compute the c.d.f. of V . It is obvious that FV (v) = 1 when

v ≥ 1 due to the fact that V ≤ 1. When v < 1,

FV (v) = P
{ ∑K

i=1 |hi,B|2∑K
i=1 |hi,B|2 +K(γ̄A,R + 1

ρ
)
≤ v

}

= P
{

K∑
i=1

|hi,B|2 ≤
vK(γ̄A,R + 1/ρ)

1− v

}
a
= P

{
2K∑
i=1

α2
i ≤ 2

vK(γ̄A,R + 1/ρ)

γ̄R,B(1− v)

}
b
= 1−

K−1∑
n=0

1

n!

[
vK(γ̄A,R + 1/ρ)

γ̄R,B(1− v)

]n
e
−
vK(γ̄A,R+1/ρ)

γ̄R,B(1−v)

where (b) results because {αi}2K
i=1 are 2K independent standard normal Gaussian r.v.s and thus∑2K

i=1 α
2
i has a central chi-square distribution with 2K degrees of freedom.

Recall that the p.d.f.s for X and Y are PX(x) = 1
γ̄A,B

e
− x
γ̄A,B and PY (y) = yK−1

γ̄KA,R(K−1)!
e
− y
γ̄A,R ,

so the SOP can be written as

PAFout (R) = EYEX
{
FV

(
22R +

22R − 1− ρX
ρY

)}
=

ˆ ∞
0

ˆ xu

xl

FV

(
22R +

22R − 1− ρX
ρY

)
PX(x)PY (y) dxdy +

ˆ ∞
0

ˆ xl

0

PX(x)PY (y) dxdy,

(42)
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where the limits xl = (1+ρy)(22R−1)
ρ

and xu = 22Ry + 22R−1
ρ

can be derived from the fact that

0 ≤ V ≤ 1. With some further manipulations, the first term in (42) can be computed as
ˆ ∞

0

ˆ xl

0

PX(x)PY (y) dxdy = 1−
ˆ ∞

0

yK−1

γ̄KA,R(K − 1)!
e
−y
(

1
γ̄A,R

+ 22R−1
γ̄A,B

)
− 22R−1
ργ̄A,B

= 1−
[
1 +

γ̄A,R
γ̄A,B

(22R − 1)

]−K
e
− 22R−1
ργ̄A,B . (43)

Inserting PX(x), PY (y), FV (v) and (43) to (42), the SOP for the multi-antenna case is then

obtained.

Corollary 1: The secrecy outage probability of AF relaying approaches unity as the number

of relay antennas grows: PAFout → 1 as K →∞.

Proof: According to (39) in Proposition 3, since
[
1 + γ̄AR(22R−1)

γ̄AB

]−K
e
− 22R−1
ργ̄AB converges to

0 as K grows, and since the third term in (39) is non-negative, the corollary follows in a

straightforward manner.

3) Cooperative Jamming (CJ): According to (4) and (5), the mutual information between

Alice and Bob can be expressed as

ICJB =
1

2
log2

(
1 + ρ

∑K
i=1 |hi,B|2

∑K
i=1 |hA,i|2∑K

i=1 |hi,B|2 +Kγ̄A,R +Kγ̄R,B + K
ρ

)
.

As discussed above, when computing the mutual information available to the relay, we assume

the use of an optimal MMSE receive beamformer that allows the relay to maximize her SINR

[16], i.e.,

w = G
(
hA,Rh

H
A,R,hR,Bh

H
R,B +

1

ρ
IK

)
, (44)

where G(A,B) is the operator that returns the eigenvector associated with the largest generalized

eigenvalue of the matrix pencil (A,B). Since hA,Rh
H
A,R is rank one, we can explicitly obtain

the MMSE beamformer w =
(hR,BhHR,B+ 1

ρ
IK)

−1
hA,R

||(hR,BhHR,B+ 1
ρ
IK)

−1
hA,R||

, and thus the mutual information between

Alice and the relay is given by

ICJR =
1

2
log2

(
1 + hHA,R

(
hR,Bh

H
R,B +

1

ρ
IK

)−1

hA,R

)
.

Therefore, the secrecy outage probability of the CJ scheme can be written as

PCJout = P


1 + ρ

∑K
i=1 |hi,B |2

∑K
i=1 |hA,i|2∑K

i=1 |hi,B |2+Kγ̄A,R+Kγ̄R,B+K
ρ

1 + hHA,R

(
hR,BhHR,B + 1

ρ
IK

)−1

hA,R

< 22R

 . (45)
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Unlike the analysis for the AF scheme, (45) is more complicated and it is unclear how to

obtain a closed-form SOP expression. Instead, we focus here on finding an asymptotic SOP

with respect to the transmit SNR and the number of relay antennas, as detailed in the following

corollaries.

Corollary 2: When K > 1, the secrecy outage probability of the CJ scheme approaches a

constant as ρ→∞.

Proof: When ρ → ∞, the receive beamformer in (44) converges to w ∈ N (hR,B) where

N (·) represents the null space operator. As a result, ICJR → 1
2

log2

(
1 + ρhHA,RhA,R

)
and thus we

have

PCJout ' P


∑K
i=1 |hi,B |2

∑K
i=1 |hA,i|2∑K

i=1 |hi,B |2+Kγ̄A,R+Kγ̄R,B∑K
i=1 |hA,i|2

< 22R

 (46)

which is a nonzero constant independent of ρ.

Recall from the previous section that unlike the above corollary, when K = 1 the SOP of CJ

converges to zero, which indicates a more favorable scenario for using CJ. Clearly, this is due

to the fact that a relay with multiple antennas is able to suppress the jamming signal from Bob.

This point is formalized in the following corollary.

Corollary 3: The secrecy outage probability of the CJ scheme approaches unity as the number

of relay antennas grows: PCJout → 1 as K →∞.

Proof: Using the Sherman-Morrison formula, we have(
hR,Bh

H
R,B +

1

ρ
IK

)−1

= ρIK − ρ2
hR,Bh

H
R,B

1 + ρ||hR,B||2
(47)

and thus (45) can be rewritten as

PCJout = P


1 + ρ

∑K
i=1 |hi,B |2

∑K
i=1 |hA,i|2∑K

i=1 |hi,B |2+Kγ̄A,R+Kγ̄R,B+K
ρ

1− ρ2hA,RGhHA,R + ρ
∑K

i=1 |hA,i|2
< 22R


a

≥ P
{

1 + ρ
∑K

i=1 |hA,i|2
1− ρ2hA,RGhHA,R + ρ

∑K
i=1 |hA,i|2

< 22R

}
(48)

where G =
hR,BhHR,B

1+ρ||hR,B ||2
and inequality (a) holds since

∑K
i=1 |hi,B |2∑K

i=1 |hi,B |2+Kγ̄A,R+Kγ̄R,B+K
ρ

≤ 1. Since

G is a unit-rank Hermitian matrix, it can be seen that hA,RGhHA,R is exponentially distributed

as exp
(

1
γ̄A,RλG

)
where λG is the largest eigenvalue of G and limK→∞ λG = 1

ρ
. Consequently,

hA,RGhHA,R is not a function of K as K → ∞. On the other hand,
∑K

i=1 |hA,i|2 is obviously
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an increasing function of K and
∑K

i=1 |hA,i|2 →∞ as K →∞. Therefore, the lower bound in

(48) approaches unity and the proof is complete.

Corollarys 1 and 3 provide pessimistic conclusions regarding secrecy for an untrusted relay

implementing beamforming with a large number of antennas. However, in the next section, we

show that if the relay is forced to perform antenna selection (e.g., because it only has a single RF

chain), under certain conditions an increase in the number of relay antennas actually improves

secrecy. It is also worth noting that in this paper we adopt a relaying protocol where Alice does

not transmit information signals to Bob in the second phase, and thus the conclusions obtained

above may not hold for other relaying protocols, such as those where Alice can transmit signals

in the second phase (e.g. Protocol III in [20]).

IV. SECRECY WITH RELAY ANTENNA SELECTION

In this section, we consider a scenario where the untrusted relay must perform antenna selection

for receive and transmit, rather than beamforming. In particular, we assume the untrusted relay

chooses the receive antenna with the largest channel gain for maximizing her wiretapping ability

in the first hop, while still assisting Alice by using the best transmit antenna to forward the

message to Bob in the second hop. Such behavior is consistent with a relay that is untrusted but

not malicious. This follows a similar CSI-based antenna selection approach assumed in traditional

relaying systems [3], [10], [12]. Since the relay loses the flexibility of using beamforming to

cope with the artificial jamming signals, and since Bob is still able to enjoy a diversity benefit

due to antenna selection, a secrecy performance improvement is expected for the CJ scheme. We

will characterize the SOP for AF and CJ and study the impact of the number of relay antennas.

We let m and n respectively denote the indices of the receive and transmit antenna used by the

relay.

A. Direct Transmission (DT)

In this scheme, the untrusted relay chooses the best antenna to wiretap the signal from Alice,

and the resulting SOP can be found by a straightforward extension of (35), which in this case

becomes

PDTout (R) = P
{

log2

(
1 + ρ|hA,B|2
1 + ρ|hA,m∗|2

)
< R

}
, (49)
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where m∗ = arg maxm{|hA,m|2}. Assume Z = |hA,B|2, Y = |hA,m|2 and Y ∗ = |hA,m∗|2. Since

|hA,m∗ |2 increases as K grows, it is obvious that PDTout (R)→ 1 as K →∞. To obtain the exact

SOP, since Z and Y are both exponentially distributed, using the theory of order statistics [21]

we have

pY ∗(y) =
K

γ̄A,R

K−1∑
n=0

(
K − 1

n

)
(−1)ne

− y
γ̄A,R

(n+1)
. (50)

Therefore, the SOP can be computed as

PDTout = E∗Y
{
FZ

(
2R − 1

ρ
+ 2RY ∗

)}
= 1−K

K−1∑
n=0

(
K − 1

n

)
(−1)n

γ̄A,B
2Rγ̄A,R + γ̄A,B(n+ 1)

e
− 2R−1
ργ̄A,B . (51)

B. Amplify-and-Forward (AF)

Here we consider two cases, one where the relay has Bob’s CSI for the second hop, and one

where it does not. The latter case corresponds to the scenario where Bob is a passive receiver

or where he simply does not transmit training data to the relay.

1) Relaying with second-hop CSI: Similar to (13), the SOP of the AF scheme with antenna

selection for a given secrecy rate R is given by

PAFout (R) = P

1

2
log2

1 + ρ|hA,B|2 + ρ
|hn∗,B |2|hA,m∗ |2

|hn∗,B |2+γ̄A,R+ 1
ρ

1 + ρ|hA,m∗|2

 < R

 ,

where the receive and transmit antennas on the relay are selected using the following criteria:

m∗ = arg max
m
{|hA,m|2} (52)

n∗ = arg max
n
{|hn,B|2} . (53)

These criteria are obtained assuming that the untrusted relay will maximize her SNR for wiretap-

ping first with (52) and then consider offering assistance to Bob with (53). An exact expression

for the SOP in this case is given by the following proposition.
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Proposition 4: The secrecy outage probability for AF relaying with antenna selection can be

expressed as

PAFout (R) =1−K2

K∑
m=1

K∑
n=1

(
K − 1

m

)(
K − 1

n

)
(−1)m+n

× γ̄A,B
(22R − 1)γ̄A,R + γ̄A,B(n+ 1)

e
− 22R−1
ργ̄A,B

×
[
µ(βn − 1)eµβn(m+1)Ei(−µβn(m+ 1)) +

1

m+ 1

]
(54)

where µ =
γ̄A,R+1/ρ

γ̄R,B
, βn =

22Rγ̄A,R+γ̄A,B(n+1)

(22R−1)γ̄A,R+γ̄A,B(n+1)
, R is the target secrecy rate, and Ei(·) is the

exponential integral Ei(x) =
´ x
−∞ e

tt−1 dt.

Proof: Define X = |hA,B|2, Y = |hA,m|2, V =
|hn,B |2

|hn,B |2+γ̄A,R+1/ρ
, Y ∗ = |hA,m∗|2, V ∗ =

|hn∗,B |2
|hn∗,B |2+γ̄A,R+1/ρ

, and note that the p.d.f. of Y ∗ is given in (50). For V, using the Jacobian

transformation, we have

pV (v) =
γ̄A,R + 1/ρ

γ̄R,B(1− v)2
e
−

(γ̄A,R+1/ρ)v

γ̄R,B(1−v) ,

and the p.d.f. of V ∗ can be expressed using order statistics as

pV ∗(v) =
Kµ

(1− v)2

K−1∑
m=0

(
K − 1

m

)
(−1)me−

µv
1−v (m+1), (55)

where µ =
γ̄A,R+1/ρ

γ̄R,B
. The proof of (54) is completed by inserting (50) and (55) into

PAF
out (R) = P

{
Z < 22R

}
= EV ∗{EY ∗{FZ|Y ∗,V ∗(22R)}}

where Z = 1+ρX+ρV ∗Y ∗

1+ρY ∗
.

Corollary 4: The secrecy outage probability of AF relaying approaches unity as the number

of relay antennas grows: PAFout → 1 as K →∞.

Proof: This corollary can be proved by showing that a lower bound for PAFout goes to 1 as

K →∞. Following the notation in the proof of Proposition 4, we have

PAFout (R) = P
(

1 + ρX + ρV ∗Y ∗

1 + ρY ∗
< 22R

)
a

≥ P
(

1 + ρX + ρY ∗

1 + ρY ∗
< 22R

)
(56)

b

≥ P
(
X

Y ∗
< 22R − 1

)
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= P
(

min
m

{ |hA,B|2
|hA,m|2

}
< 22R − 1

)
c
= 1−

[
1− γ̄A,R(22R − 1)

γ̄A,B + γ̄A,R(22R − 1)

]K
, (57)

where it is obvious that (57) converges to 1 as K goes to ∞. Inequality (a) holds since V ∗ ≤ 1.

The fraction in (56) is a quasi-linear function of ρ, and is monotonically increasing with respect

to ρ since X + Y ∗ ≥ Y ∗; thus inequality (b) is obtained by letting ρ → ∞. To obtain (c), we

have used the result in (65) that

P
{ |hA,B|2
|hA,m|2

≤ u

}
=

γ̄A,Ru

γ̄A,B + γ̄A,Ru
.

Corollary 4 shows that although both the relay and Bob receive diversity gain from an increasing

number of relay antennas, the untrusted relay accrues a proportionally greater benefit to the

detriment of the information confidentiality.

2) Relaying without second-hop CSI: In this case, the relay is forced to choose a random

antenna for the second hop transmission, and the exact SOP is simply a special case of (54):

PAF
out (R) = EV {EY ∗{FZ|Y ∗,V (22R)}}

= 1−K
K∑
n=1

(
K − 1

n

)
(−1)n

γ̄A,B[µ(βn − 1)eµβnEi(−µβn) + 1]

(22R − 1)γ̄A,R + γ̄A,B(n+ 1)
e
− 22R−1
ργ̄A,B (58)

where µ and βn were given in Proposition 4. It is obvious that the performance in this case is

always worse than the case where the second-hop CSI is available. However, we will see below

that for CJ, the lack of second-hop CSI can lead to improved secrecy.

C. Cooperative Jamming (CJ)

The relay’s antenna selection protocol is slightly different in this case since the relay must

account for the interference from Bob in the first hop.

1) Relaying with second-hop CSI: We first consider the case where the relay possesses the

CSI for the second-hop. Similar to (19), the corresponding SOP for the CJ protocol is given by

PCJout (R) = P

1 + ρ
|hn∗,B |2|hA,m∗ |2

|hn∗,B |2+γ̄A,R+γ̄R,B+ 1
ρ

1 +
|hA,m∗ |2

|hm∗,B |2+ 1
ρ

< 22R

 (59)
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but in this case the receive and transmit antenna at the relay are selected by

m∗ = arg max
m

{ |hA,m|2
|hm,B|2

}
(60)

n∗ = arg max
n
{|hn,B|2}. (61)

where (60) indicates that to improve its performance, the relay chooses its receive antenna to

maximize the ratio of the power of Alice’s signal to the power of Bob’s jamming. It is difficult

to exactly calculate the SOP in this case. However, it can still be observed that PCJout → 1 as

K → ∞ since the denominator in (59) tends to increase with the growth of K, while the

numerator in (59) is upper bounded by 1 + ρ|hA,m∗|2 which will not necessarily increase as

K grows. However, as explained next, a different conclusion is obtained if the relay does not

possess Bob’s CSI.

2) Relaying without second-hop CSI: Here we assume that the relay has no information about

hR,B, which applies to the case where Bob transmits no training data to the relay, and jams only

when Alice is transmitting so the relay cannot collect interference information. Alternatively,

a more advanced training sequence design, such as the methods for discriminatory channel

estimation in [22], [23], can be applied to prevent the relay from acquiring CSI from Bob. Thus,

the relay uses the receive antenna with the largest channel gain during the first hop, and then

uses either the same or some random antenna for transmission during the second hop. In this

case, the SOP is given by a slightly different expression than (59):

PCJout (R) = P

1 + ρ
|hm∗,B |2|hA,m∗ |2

|hm∗,B |2+γ̄A,R+γ̄R,B+ 1
ρ

1 +
|hA,m∗ |2

|hm∗,B |2+ 1
ρ

< 22R

 (62)

where m∗ = arg maxm{|hA,m|2}. Note that since |hm∗,B|2 is independent of |hA,m∗|2, it is

equivalent to selecting the transmit antenna randomly. Therefore, following the result in Appendix

C, we can compute the SOP as

PCJout (R) = P
(
φ(|hm∗,B|2)|hA,m∗ |2 < 22R − 1

)
=

1

γ̄R,B

ˆ t

0

e
− z
γ̄R,B dz +

1

γ̄R,B

ˆ ∞
t

[
1− e−

22R−1
γ̄A,Rφ(z)

]K
e
− z
γ̄R,B dz (63)

= (1− e−
t

γ̄R,B ) +
1

γ̄R,B

K∑
n=0

(
K

n

)
(−1)n

ˆ ∞
t

e
− (22R−1)n
γ̄A,Rφ(z)

− z
γ̄R,B dz, (64)
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where φ(z) and t are provided in (74) and (77) respectively. According to (63) and (64), we can

also give the following corollary.

Corollary 5: Without second-hop CSI at the relay, the SOP of the CJ scheme with antenna

selection decreases as K grows and converges to 1− e−
t

γ̄R,B , where

t =
(22R − 1) +

√
(22R − 1)2 + ρ22R+1(γ̄A,R + γ̄R,B + 1/ρ)

2ρ
.

This corollary indicates that if the second-hop CSI can be hidden from the relay, although the

legitimate user loses the diversity benefits that come from transmit antenna selection, the overall

secrecy performance is still improved since the relay loses the diversity gain due to cooperative

jamming, while the legitimate user can still achieve a diversity gain from the first-hop antenna

selection.

V. NUMERICAL RESULTS

In this section, we present numerical examples of the outage performance for the DT, AF

and CJ transmission schemes in both single-antenna and multi-antenna scenarios. The SOP is

computed for various values of the transmit powers, average channel gains, and number of

antennas. In all cases, the normalized target secrecy rate is set to R = 0.1 bits per channel use

as assumed in [2], [3].

A. Single-Antenna Case

Fig. 1 depicts the outage probability as a function of the transmit SNR ρ, assuming the

average channel gains are γ̄A,B = γ̄A,R = 0dB, γ̄R,B = 5dB. The analytical SOP results for DT,

AF and CJ are evaluated through Eqs. (8), (14) and (20), and are seen to agree well with the

simulations, exactly predicting the performance cross-over points. Ignoring the available relay

link and treating it as a pure adversary as in DT is clearly suboptimal for medium to high SNR

regimes. This figure shows that when ρ → ∞, the outage probability converges to a constant

for DT and AF while it goes to 0 for CJ, which agrees with the discussion in Section III-B1.

This is due to the fact that the jamming signals from Bob only selectively interfere with the

untrusted relay and have no impact on the overall two-hop data signal reception. Therefore, the

outage performance for CJ is better than AF for high SNR, while the converse is true in the low

SNR regime. We also show in this figure the SOPs for AF and CJ assuming an optimal power
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Fig. 1. Outage probability versus ρ, single antenna relay, γ̄A,B = γ̄A,R = 0dB, γ̄R,B = 5dB, analytical results computed with

Eqs. (8) for DT, (14) for AF, and (20) for CJ.

allocation obtained by direct numerical optimization. It can be seen that the performance gap

between the fixed and optimal power allocations is more obvious for AF than for the CJ scheme,

since AF utilizes the direct link between Alice and Bob and thus the secrecy performance is

more sensitive to the power allocation. The figure also illustrates that the performance under the

optimal power allocation still follows the asymptotic analysis conducted in Section III-B.

The impact of γ̄R,B on performance is illustrated in Fig. 2, where γ̄A,B = 5dB, γ̄A,R = 0dB,

and ρ = 15dB. Observe that when γ̄R,B → 0, the outage probability for CJ approaches 1, due

to its sensitivity to the quality of the second hop, while the performance of both DT and AF

converges to nonzero constant values. Although not obvious, DT still exhibits a gain over AF

due to its efficient resource usage, as can be seen from Eqs. (30) and (31). Note that from (31),

we expect that this gain will increase with a higher target secrecy rate R. It is also worth noting

that although this figure shows that CJ has the best performance as γ̄R,B → ∞, the relative

performance of these schemes will change with different values of γ̄A,R and γ̄A,B, and thus we

can not draw any definite conclusions in this asymptotic case.

Fig. 3 depicts the impact of the first hop channel gain γ̄A,R on the outage performance, where

γ̄A,B = 0dB, γ̄A,R = 5dB, and ρ = 20dB. It is interesting to see that when γ̄A,R is either

extremely small or large, CJ approaches outage. This is because when γ̄A,R →∞, the untrusted
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Fig. 2. Outage probability versus γ̄R,B , single-antenna relay, γ̄A,B = 5dB, γ̄A,R = 0dB, ρ = 15dB, asymptotic results

computed with Eqs. (26) for AF, and (29) for CJ.

relay is nearly colocated with Alice and secure transmission is impossible. On the other hand,

when γ̄A,R → 0, it is hard to establish a reliable relay link from Alice to Bob without the direct

link, and thus the outage probability will also approach unity. Therefore, CJ can only achieve

its best performance for in-between values of γ̄A,R. Again, our analysis allows the optimal

operating regime for CJ to be determined. Also, as γ̄A,R → 0, the asymptotic results validate the

analytical expectations in (33) and (34) which predict that DT will asymptotically outperform

AF. Therefore, the outage performance in Fig. 2 and Fig. 3 agrees with the analytical prediction

in Section III-B1 that DT is preferred when either relay hop is weak.

Fig. 4 shows the performance as a function of γ̄A,B, with γ̄A,R = 2dB, γ̄R,B = 10dB and

ρ = 10dB. It is shown that when γ̄A,B is small, CJ is the best scheme since both DT and AF

will be in outage. Conversely, with large γ̄A,B, the outage probability for DT and AF decays to

0. Moreover, as discussed in Section III-B2, the outage probability for both DT and AF is seen

to decay as 1/γ̄A,B.

In Fig. 5, the outage performance is shown when γ̄A,B and γ̄R,B both increase simultaneously,

where γ̄A,R = 2dB and ρ = 10dB. Note that since the performance of CJ does not depend on

the direct link, the asymptotic SOP of CJ can still be characterized via Eq. (29), which indicates

that the SOP of CJ will converge to a constant. On the other hand, we see that AF outperforms
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Fig. 4. Outage probability versus γ̄A,B , single-antenna relay, γ̄A,R = 2dB, γ̄R,B = 10dB, ρ = 10dB.

the other schemes since its outage probability decays to zero faster. This is due to the fact that

when only γ̄A,B increases, the outage probability of DT and AF decays with the same slope

(see Fig. 4), and when γ̄R,B also increases at the same time, AF will enjoy a better second hop

channel (and thus the outage probability decays faster), which does not benefit DT.
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Fig. 5. Outage probability versus γ̄A,B , single-antenna relay, γ̄R,B = γ̄A,B , γ̄A,R = 2dB, ρ = 10dB, asymptotic results

computed with Eq. (29).

B. Multi-Antenna Case

Fig. 6 compares the multi-antenna SOP as a function of the number of relay antennas K for

average channel gains γ̄A,B = 5dB, γ̄A,R = 0dB and γ̄R,B = 10dB with ρ = 30dB. As seen

from the DT and AF curves, the exact analytical SOP for the multi-antenna scenario derived in

(37) and (39) agrees very well with the simulations. When all available antennas are used at the

untrusted relay, the figure shows that the SOPs of all schemes converge to unity as K grows,

as predicted in Section III-C. Moreover, we see that when K changes from 1 to 2, the SOP of

CJ increases rapidly, because multi-antenna receive beamforming at the relay can suppress the

intentional interference from Bob, rendering CJ ineffective. Also, the performance achieved by

an optimal power allocation is shown in the figure, and we see a slight reduction in the outage

probability for both AF and CJ. Consistent with the result in Fig. 1, the performance gain of

power allocation for CJ is not obvious when K = 1.

The secrecy performance for various relaying schemes with antenna selection is shown in

Figs. 7 and 8. In Fig. 7, the SOP is evaluated as a function of ρ for γ̄A,B = 5dB, γ̄A,R = 0dB

and γ̄R,B = 5dB with six antennas employed at the relay. We see that the analytical results

derived in (51), (54) and (64) respectively match the simulations for DT, AF and CJ without
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Fig. 6. Outage probability versus number of relay antennas, multi-antenna relay, γ̄A,B = 5dB, γ̄A,R = 0dB, γ̄R,B = 10dB,

ρ = 30dB, analytical results computed with Eqs. (37) for DT, (39) for AF.

the second-hop CSI. The schemes with antenna selection show properties similar to those for a

single-antenna relay in Fig. 1 as ρ increases; i.e. the SOP of DT and AF converges to constants

and that of CJ decays to zero. As expected, CJ with second-hop CSI decays to zero faster than

CJ without CSI, since in the former approach the best transmit antenna at the relay is chosen,

and such diversity gain is more obvious with larger ρ, as seen in the numerator of (59).

The SOP of relaying schemes with and without antenna selection for increasing K is depicted

in Fig. 8, and again we see that the SOP of DT and AF converges to unity. For both the AF and

CJ schemes, the antenna selection schemes demonstrate lower SOP. This is due to the fact that

the relay loses the array gain under antenna selection, and this gain is more beneficial to the

relay than to Bob. We also see the significantly improved secrecy that results for CJ when the

relay can only perform antenna selection instead of beamforming. Interestingly, the SOP of CJ

with second-hop CSI decreases first and then gradually increases as the number of relay antennas

grows. This is because the second-hop diversity gain at first outweighs the first-hop diversity for

the relay, and then there is a diminishing marginal return for the second-hop with larger K (
|hn∗,B |2

|hn∗,B |2+γ̄A,R+γ̄R,B+ 1
ρ

→ 1 as K →∞ in (59)) and the secrecy performance gradually degrades.

However, when the relay does not have second-hop CSI, the SOP monotonically decreases with

K and converges to 1 − e−
t

γ̄R,B , which validates Corollary 5. Therefore, for large K, in order
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to maintain confidentiality, CJ should be used with the second-hop CSI concealed from the

untrusted relay.
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Fig. 7. Outage probability versus ρ, multi-antenna relay (K = 6) with antenna selection , γ̄A,B = 5dB, γ̄A,R = 0dB,

γ̄R,B = 5dB, analytical results computed with Eqs. (51) for DT, (54) and (58) for AF, and (64) for CJ.
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VI. CONCLUSIONS

This paper has analyzed a three-node network where the source can potentially utilize an

untrusted multi-antenna relay to supplement the direct link to its destination. The untrusted relay

is in effect an eavesdropper, although also assisting the source with cooperative transmission.

We derived the exact secrecy outage probability of three different transmission policies: direct

transmission without using the relay, conventional non-regenerative relaying, and cooperative

jamming by the destination. The SOP computation allows performance transitions between the

three algorithms to be determined for different scenarios. An asymptotic analysis of the outage

probabilities is also conducted to elicit the optimal policies for different operating regimes.

When the relay has a large number of antennas, we showed that the SOP for all three approaches

converges to unity. However, when antenna selection is used at the relay, the secrecy performance

for all schemes is improved, and the CJ scheme in particular can obtain a significant diversity

gain with a moderate growth in the number of antennas. Moreover, if the destination conceals

its CSI from the relay, secrecy will not be compromised as the antenna number grows. Our

theoretical predictions were validated via various numerical examples.

APPENDIX A

PROBABILITY OF POSITIVE SECRECY RATE FOR AF

Assuming all channels γij are independent, define two random variables U and V as

U =
|hA,B|2
|hA,R|2

, V =
|hR,B|2

|hR,B|2 + γ̄A,R + 1
ρ

.

The c.d.f. of U is given by

FU(u) = P
{ |hA,B|2
|hA,R|2

≤ u

}
=

ˆ ∞
0

ˆ yu

0

p|hA,B |2(x)p|hA,R|2(y) dxdy

=
γ̄A,Ru

γ̄A,B + γ̄A,Ru
. (65)

Differentiating FU(u) with respect to u, we obtain the p.d.f. of U as pU(u) =
γ̄A,B γ̄A,R

(γ̄A,B+γ̄A,Ru)2 . For

V , the c.d.f. is given by

FV (v) = P
{

|hR,B|2
|hR,B|2 + γ̄A,R + 1

ρ

≤ v

}
= P

{
|hR,B|2 ≤ g(v)

}
= 1− e−

g(v)
γ̄R,B (66)
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where g(v) =
(γ̄A,R+ 1

ρ
)v

1−v . Differentiating FV (v) with respect to v, we have

pV (v) =
γ̄A,R + 1

ρ

(1− v)2γ̄R,B
e
−

(γ̄A,R+ 1
ρ )v

γ̄R,B(1−v) . (67)

Next, we can calculate PAFpos as

PAFpos = P
{
|hA,B|2
|hA,R|2

+
|hR,B|2

|hR,B|2 + γ̄A,R + 1
ρ

> 1

}
= P {U + V > 1} . (68)

Since U and V are independent,

PAFpos =

ˆ 1

0

ˆ ∞
1−v

pU,V (u, v) dudv =

ˆ 1

0

ˆ ∞
1−v

pU(u)pV (v) dudv

=
γ̄A,Bγ̄A,R(γ̄A,R + 1

ρ
)

γ̄R,B

ˆ 1

0

ˆ ∞
1−v

1

(γ̄A,B + γ̄A,Ru)2

1

(1− v)2
e
−

(γ̄A,R+ 1
ρ )v

γ̄R,B(1−v) dudv

=
γ̄A,Bγ̄A,R(γ̄A,R + 1

ρ
)

γ̄R,B

ˆ 1

0

1

(γ̄A,Bγ̄A,R + γ̄2
A,R − γ̄2

A,Rv)

1

(1− v)2
e
−

(γ̄A,R+ 1
ρ )v

γ̄R,B(1−v) dv

= µ1

ˆ ∞
0

x+ 1

x+ β1

e−µ1x dx (69)

= µ1

[ˆ ∞
0

x

x+ β1

e−µ1x dx+

ˆ ∞
0

1

x+ β1

e−µ1x dx

]
= µ1(β1 − 1)eµ1β1Ei(−µ1β1) + 1, (70)

where in (69), we use the transformation x = v
1−v , µ1 =

γ̄A,R+1/ρ

γ̄R,B
and β1 = 1 +

γ̄A,R
γ̄A,B

. Eq. (70)

is obtained using the identity in [19, eq. 3.353.5].

APPENDIX B

PROOF OF PROPOSITION 1

Let X = |hA,B|2 and Y = |hA,R|2 be exponentially distributed random variables and define

Z =
1 + ρ|hA,B|2 + ρ

|hR,B |2|hA,R|2

|hR,B |2+γ̄A,R+ 1
ρ

1 + ρ|hA,R|2
, V =

|hR,B|2
|hR,B|2 + γ̄A,R + 1

ρ

where the p.d.f. of V is given by (67). We thus have

PAF
out = P

(
1 + ρX + ρY V

1 + ρY
< 22R

)
= EV {EY {FZ|Y,V (22R)}}
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=

ˆ 1

0

ˆ ∞
0

{
1− e−

1
γ̄A,B

(
22R−1
ρ

+(22R−v)y
)}

pY (y)pV (v) dydv

= 1−
γ̄A,R + 1

ρ

γ̄A,Rγ̄R,B
e
− 22R−1
ργ̄A,B

ˆ 1

0

ˆ ∞
0

1

(1− v)2
e
− (22R−v)y

γ̄A,B
− y
γ̄A,R

−
(γ̄A,R+ 1

ρ )v

γ̄R,B(1−v) dydv

= 1−
γ̄A,B(γ̄A,R + 1

ρ
)

γ̄R,B
e
− 22R−1
ργ̄A,B

ˆ 1

0

1

(22Rγ̄A,R + γ̄A,B − γ̄A,Rv)(1− v)2
e
−

(γ̄A,R+ 1
ρ )v

γ̄R,B(1−v) dv

= 1− µ1γ̄A,B
(22R − 1)γ̄A,R + γ̄A,B

e
− 22R−1
ργ̄A,B

ˆ ∞
0

x+ 1

x+ β2

e−µ1x dx (71)

= 1− γ̄A,B
(22R − 1)γ̄A,R + γ̄A,B

e
− 22R−1
ργ̄A,B

[
µ1(β2 − 1)eµ1β2Ei(−µ1β2) + 1

]
(72)

where in (71), we use the transformation x = v
1−v , µ1 =

γ̄A,R+1/ρ

γ̄R,B
, β2 =

22Rγ̄A,R+γ̄A,B
(22R−1)γ̄A,R+γ̄A,B

, and

the result in (69)-(70) is applied to obtain (72).

APPENDIX C

PROOF OF PROPOSITION 2

The outage probability for a given secrecy rate R is given by

PCJout = P

1 + ρ
|hR,B |2|hA,R|2

|hR,B |2+γ̄A,R+γ̄R,B+ 1
ρ

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R


= P

(
φ(|hR,B|2)|hA,R|2 < 22R − 1

)
, (73)

where

φ(z) =
ρz

z + γ̄A,R + γ̄R,B + 1
ρ

− 22R

z + 1
ρ

. (74)

Then, we have

PCJout =

ˆ ∞
t

F|hA,R|2

(
22R − 1

φ(z)

)
p|hR,B |2(z) dz +

ˆ t

0

[
1− F|hA,R|2

(
22R − 1

φ(z)

)]
p|hR,B |2(z) dz

=

ˆ ∞
t

[
1− e−

22R−1
γ̄A,Rφ(z)

]
p|hR,B |2(z) dz +

ˆ t

0

p|hR,B |2(z) dz

= 1− 1

γ̄R,B

ˆ ∞
t

e
− 22R−1
γ̄A,Rφ(z)

− z
γ̄R,B dz (75)

where

φ(z)

 ≥ 0, z ≥ t

< 0, 0 ≤ z < t
(76)

and

t =
(22R − 1) +

√
(22R − 1)2 + ρ22R+1(γ̄A,R + γ̄R,B + 1/ρ)

2ρ
. (77)



31

APPENDIX D

PROOF OF LEMMA 1

Define X = ρ
|hR,B |2|hA,R|2

|hR,B |2+γ̄A,R+γ̄R,B+ 1
ρ

. The outage probability of CJ with γ̄R,B →∞ is written as

lim
γ̄R,B→∞

PCJout = lim
γ̄R,B→∞

P

 1 +X

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R


= lim

γ̄R,B→∞

P
 1 +X

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R

∣∣∣∣∣∣ |hR,B|2 ≥√γ̄R,B

P(|hR,B|2 ≥
√
γ̄R,B)

+P

 1 +X

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R

∣∣∣∣∣∣ |hR,B|2 <√γ̄R,B

P(|hR,B|2 <
√
γ̄R,B)

 .

Since |hR,B|2 follows the exponential distribution, i.e. |hR,B|2 ∼ exp
(

1
γ̄R,B

)
, we have limγ̄R,B→∞P(|hR,B|2 ≥

√
γ̄R,B) = limγ̄R,B→∞ e

−1√
γ̄R,B = 1 and limγ̄R,B→∞P(|hR,B|2 <

√
γ̄R,B) = 1−limγ̄R,B→∞ e

−1√
γ̄R,B =

0. So the SOP of CJ is given by

lim
γ̄R,B→∞

PCJout = lim
γ̄R,B→∞

P

 1 +X

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R

∣∣∣∣∣∣ |hR,B|2 ≥√γ̄R,B

 .

Under the condition that |hR,B|2 ≥
√
γ̄R,B, we have

1 +X

1 +
|hA,R|2√
γ̄R,B+ 1

ρ

≤ 1 +X

1 +
|hA,R|2
|hR,B |2+ 1

ρ

≤ 1 +X

and consequently,

P

 1 +X

1 +
|hA,R|2√
γ̄R,B+ 1

ρ

< 22R

 ≥ P
 1 +X

1 +
|hA,R|2
|hR,B |2+ 1

ρ

< 22R

∣∣∣∣∣∣ |hR,B|2 ≥√γ̄R,B

 ≥ P {1 +X < 22R
}
.

(78)

Because P

 1+X

1+
|hA,R|2√
γ̄R,B+ 1

ρ

< 22R

 is continuous with respect to γ̄R,B, which can be verified by

showing that the function inside the probability integral is differentiable (results in Appendix C

can be reused, but we skip the details here due to space constraints), we have

lim
γ̄R,B→∞

P

 1 +X

1 +
|hA,R|2√
γ̄R,B+ 1

ρ

< 22R

 = lim
γ̄R,B→∞

P
{

1 +X < 22R
}
. (79)

Combining (78) and (79), the conclusion in Lemma 1 can be inferred and the proof is completed.
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