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Abstract—Maulticast beamforming exploits subscriber channel
state information at the base station to steer the transmission
power towards the subscribers, while minimizing interference to
other users and systems. Such functionality has been provisioned
in the long-term evolution (LTE) enhanced multimedia broadcast
multicast service (EMBMS). As antennas become smaller and
cheaper relative to up-conversion chains, transmit antenna
selection at the base station becomes increasingly appealing in
this context. This paper addresses the problem of joint multicast
beamforming and antenna selection for multiple co-channel
multicast groups. Whereas this problem (and even plain
multicast beamforming) is NP-hard, it is shown that the mixed
{1 oo-norm squared is a prudent group-sparsity inducing convex
regularization, in that it naturally yields a suitable semidefinite
relaxation, which is further shown to be the Lagrange bi-dual
of the original NP-hard problem. Careful simulations indicate
that the proposed algorithm significantly reduces the number
of antennas required to meet prescribed service levels, at
relatively small excess transmission power. Furthermore, its
performance is close to that attained by exhaustive search, at
far lower complexity. Extensions to max-min-fair, robust, and
capacity-achieving designs are also considered.

Keywords: Multicasting, transmit beamforming, antenna
selection, capacity, sparsity, complexity, NP-hard, semidefinite
programming, relaxation.

I. INTRODUCTION

Consider a base station (BS) transmitter using an antenna
array to broadcast common information to multiple radio
subscribers. Instead of broadcasting isotropically, the BS can
exploit subscriber channel state information (CSI) to select
different weights for each antenna in order to steer power in
the directions of the subscribers while limiting interference to
other users. This type of multicast beamforming is provisioned
under the enhanced multimedia broadcast multicast service
(EMBMS) of the long term evolution (LTE) standard. After
considerable market-related delays, EMBMS is scheduled for
initial roll-out in 2012. EMBMS can markedly boost spectral
efficiency and reduce energy and infrastructure costs per bit
when the same content must be delivered wirelessly to multiple
subscribers.
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In practice, a BS may have more antennas than expensive
radio transmission chains, and it is desired to automatically
switch the available chains to the most appropriate subset
of antennas in an adaptive fashion. Each radio transmission
chain includes a digital-to-analog (D/A) converter, a mixer,
and a power amplifier. Antenna elements, on the other hand,
are becoming smaller and cheaper; thus, antenna selection
strategies are becoming increasingly desirable.

The multicast beamforming problem under minimum re-
ceived signal-to-noise ratio (SNR) constraints was initially
studied in [18]. The problem was shown to be NP-hard,
however a computationally efficient approximate solution was
developed based on semidefinite relaxation. This formulation
was later extended to multiple co-channel multicast groups
in [8], cognitive underlay scenarios [16], and joint multicast
beamforming and admission control [12]. However, antenna
selection has not been considered in any of these papers. On
the other hand, antenna subset selection has been initially
considered for point-to-point multiple-input multiple-output
(MIMO) links using various techniques [6], [17], [25]. For
the multicast scenario, an antenna selection scheme has been
proposed in [15], where the antenna subset is chosen to
maximize the minimum SNR across all users, assuming that
the BS transmits mutually uncorrelated signals of equal power
from the different antennas (across the transmission chains). In
this case, maximizing the minimum SNR also maximizes the
multicast rate under the constraint of spatially white transmis-
sion. A limitation is that attaining this rate requires complex
multi-stream Shannon encoding and decoding at long block
lengths, also implying long decoding delay that is not suitable
for streaming media multicast. While using a spatially white
transmit covariance does not require CSI at the transmitter,
the antenna selection strategy in [15] requires knowledge of
all channel gains at the transmitter. But if CSI is known at the
transmitter, then it is possible to choose the transmit covariance
accordingly, thus attaining higher rate. Beamforming, on the
other hand, requires far simpler encoding and decoding with
CSI at the transmitter, and is often close to attaining multicast
capacity [7], [18]. It is also worth noting that the optimal
higher-rank transmit covariance is obtained as a by-product
of [18]. Another significant difference between the work
reported here and [15] is that the latter requires exhaustively
searching through all antenna subset possibilities, whereas the
present paper’s computationally efficient algorithm performs
the antenna selection and beamforming design tasks jointly.

Convex sparsity-inducing regularizers have been widely
used in various applications (cf. [1] and references therein).
The most commonly used regularizer is the ¢;-norm, which
has been used in recent works for receive beamforming an-



tenna selection [5], [14]. Beampattern synthesis with antenna
selection was pursued in [14], using a convex optimization
formulation that controls the mainlobe and sidelobes while
minimizing the sparsity-inducing ¢;-norm to produce a sparse
beamforming weight vector involving fewer antennas. The
setup in [14] only applies to uniform linear antenna-array
(ULA) far-field scenarios, whereas the present paper’s ap-
proach works for arbitrary channel (or steering) vectors. An-
other important difference is that [14] restricts the beamform-
ing weights to be conjugate symmetric in order to turn the non-
convex lower bound constraints on the beampattern into affine
ones. This gives up half of the problem’s design variables
(degrees of freedom), thereby yielding suboptimal solutions
when only the magnitude of the beampattern is important,
as in transmit beamforming. No such restriction is placed on
the beamforming weight vectors here. In a similar vain, [5]
considered using the ¢;-norm to obtain sparse solutions to
convex beampattern synthesis problems. Whereas [5] does not
restrict the weight vector to be conjugate symmetric, it does
unnecessarily constrain the phase of the beampattern; without
such a constraint on the phase, the problem is non-convex, and
thus more challenging.

In this paper, the joint problem of transmit beamforming
and antenna selection is considered for multiple co-channel
multicast groups. Whereas this problem (and even plain mul-
ticast beamforming) is NP-hard, we show that using the mixed
{1,00-norm squared as a group-sparsity inducing convex reg-
ularization yields a natural semidefinite programming (SDP)
relaxation. Sparse beamforming vectors can be obtained from
the resulting sparse solution, implying antenna selection. In
order to further enhance sparsity, an iterative re-weighting
scheme similar to the one used in [4] is employed. Moreover,
we show that the same approach can be used to obtain a tight
lower bound on the multicast channel capacity with antenna
selection. More generally, the proposed novel algorithm can
easily be extended and applied to obtain sparse solutions for a
wide class of non-convex quadratically constrained quadratic
programming (QCQP) problems for which SDP relaxation is
relevant (cf. [11] and references therein). Simulations indicate
that the proposed algorithm considerably reduces the number
of antennas required to meet prescribed service levels, at
a small cost in excess transmission power. Furthermore, its
performance is close to that attained by exhaustively trying
all antenna subsets, at far lower complexity.

Relative to the conference submission [13], this journal
version 1) treats the general case of multi-group multicasting
with group sparsity of the matrix of beamforming vectors,
instead of the single group case with plain sparsity of the
beamforming vector; ii) proves that the proposed relaxation
admits a Lagrange bi-dual interpretation, which is interesting
because the native (group) sparsity-inducing formulation is
not a QCQP; iii) includes a discussion of relevant extensions,
from max-min to robust and capacity-achieving designs; and
iv) fleshed-out numerical results and comparisons.

The algorithms presented here employ general-purpose SDP
solvers, which can effectively deal with up to a moderate
number of antennas and users (order of 100 when using a
typical personal computer as of this writing). They are not

customized to handle many hundreds or even thousands of
transmit antennas, as in some recent proposals for Massive
MIMO systems [26]. Developing custom algorithms for joint
multicast beamforming and antenna selection for Massive
MIMO is certainly of interest, but striking the right balance be-
tween performance and complexity for such systems requires
a very different approach. We have preliminary results in this
direction, which will be reported in follow-up work. Here we
focus on up to moderate-size systems, which are the norm as
of this writing.

Notation: Boldface uppercase letters denote matrices,
whereas boldface lowercase letters denote column vectors. The
superscripts ()7 and (-)* denote transpose and Hermitian
(conjugate) transpose operators, respectively. tr(-), rank(-),
[l - 1l2s | -], ®{:} and 3{-} denote the trace, the rank, the
Euclidean norm, the absolute value (element-wise absolute if
used with a matrix), the real, and the imaginary operators,
respectively; z(i) denotes the i-th entry of x and X (4, 5) the
(,7)-th entry of X. MATLAB notation X(i1 : i2,Jj1 : j2)
stands for the submatrix of X obtained by deleting all rows
and columns whose indices do not fall in the range i1 : i
and j; : jo, respectively; X > Y denotes an element-wise
inequality, whereas X > 0 denotes that X is a Hermitian
positive-semidefinite matrix. Finally, Iy, 1n, 1xxns, and
On s denote the N x N identity matrix, the N x N matrix
with all one entries, the N x M all ones matrix, and the N x M
all zeros matrix, respectively.

II. PROBLEM FORMULATION

A. Basic Model

The system model is similar to [8], comprising a single BS
transmitter with NV antennas and M single-antenna receivers.
We assume there are K multicast groups (1 < K < M), and
each receiver listens to a single multicast. The set of receivers
participating in multicast group k£ € {1,...,K} is denoted
by Gy, and Y+ |Gx| = M. The BS broadcasts a common
message to the receivers of each multicast group. Vector
wy € CV is formed by the beamforming weights applied to
the N transmit-antenna elements for transmission to multicast
group k. The temporal information-bearing waveform intended
for multicast group k is denoted by si(t). The transmitted
signal vector is S r_, wits;(t). Assuming that {s;(¢)},
are temporally white, zero-mean, unit variance, and mutually
uncorrelated, the total transmission power is Zszl l|wr||3.
The complex vector that models the propagation loss and
the frequency-flat quasi-static channel from each transmit
antenna to the receive antenna of user m is denoted by h,,,
m € {1,...,M}. The noise at receiver m is assumed zero-
mean white, with variance o2,. The signal-to-interference-

plus-noise ratio (SINR) at receiver m € (Y}, is then given
by

[withy, ?
K

SINR,, , = .
11,1k Wt 2 + 02

It is assumed that the BS has acquired {h,,}M_, and
{02 }M_,. The design problem is to minimize the total



transmit-power, subject to prescribed receive-SINR thresholds
Ym at each user; that is

K
. 2
min Wi
{wkecN}k};l ]; H HQ
wih P (1
S Wi 2 o2, ©

Vm e Gy, Vk,le{l,...,K}.

s.t.:

The quadratic constraints in (1) are non-convex; therefore, (1)
is a non-convex optimization problem. In fact, (1) is NP-hard
for general channel vectors, even for a single multicast group
(K = 1) [18]. Problem (1) has been studied in [8], where a
convex approximate SDP reformulation was developed yield-
ing an efficient near-optimal solution. For the special case
K = M, that is, when each user receives an independent
message with no multicasting, (1) can be reformulated as a
convex, second-order cone programming problem [2]. It is
also worth noting that if the channel vectors are confined to
those resulting from a transmit ULA in the far-field, line-of-
sight scenario (Vandermonde channels {h,,}*_,), problem
(1) can be recast as a convex problem, and thus it can be
solved efficiently [9].

B. Antenna Selection

Suppose now that only L < N RF transmission chains
are available, and thus only L antennas can be transmitting
simultaneously. The goal is to jointly select the best L out of
N antennas, and find the corresponding beamforming vectors
{w }X | so that the transmission power is minimized, subject
to receive-SINR constraints per subscriber. Both objectives
must be jointly considered, because the constituent selection
and beamforming problems are tightly coupled.

Define the K x 1 vector W, := [wi(n),...,wx(n)]?,
where wg(n) is the n-th component of wy. Vector w,
collects all multicast group weights applied to the n-th an-
tenna. Define also the NK x 1 concatenated beamforming

vector w = [w] ...wk]T, and the N x 1 vector w :=
[[|[W1]l2;---,||Wx]|2]T. For an antenna to be excluded from

transmission, vector w,, must be set to zero. This means that
the n-th entry of each wy, for all K multicast groups, must be
set to zero simultaneously. Hence, the joint antenna selection
and transmit-power minimization problem can be expressed as

K
> lwills
k=1
[wihy,|?
Dz Wity 2 + 02,
[[Wllo < LVm € Gy,

min
{w ECN}{-,(:l

s.t.:

2 ,Ymv

Vk,le{l,...,K}
(2)
where the /y-(quasi)norm is the number of nonzero entries of

w; ie., ||W]lo := [{n : [|Wn]l2 # 0}|. Instead of the hard
sparsity constraint, an £, penalty can be employed to promote

sparsity, leading to

K
. 2 ~
min wi||5 + Al|[wl|o
fonaB k;l\ |2 + Allw]|
W ®
ﬁ 2 2 = Yms
> i Wt |* + 07,

vm € Gy, Vk,l e {1,...,K}

s.t.:

where ) is a positive real tuning parameter that controls the
sparsity of the solution, and thus the number of selected
antennas. Problem (3) strikes a balance between minimizing
the transmission power and minimizing the number of selected
antennas, where a larger A implies a sparser solution. Note that
for any A, there is a corresponding L for which problems (3)
and (2) yield the same sparse solution, and thus focus is placed

on (3) only.
Whereas the SINR constraints can be satisfied in the sin-
gle multicast group case with only one antenna (L = 1)

transmitting at sufficiently high power (assuming no channel
coefficient is identically zero), the situation is not the same
for multiple multicast groups. Problems (2) and (3) can be
infeasible due to strong interference, stringent SINR con-
straints, high correlation between channels of users belonging
to different multicast groups, and/or insufficient number of
transmit-antennas used.

Unfortunately, due to the ¢y-(quasi)norm, solving (3) re-
quires an exhaustive combinatorial search over all (12!) pos-
sible sparsity patterns of w, where the NP-hard problem (1)
must be solved (or closely approximated using the algorithm
in [18]) for each of these patterns. This motivates the pursuit of
computationally efficient, near-optimal solutions. The ensuing
section introduces a convex sparsity-inducing approximation
to the ¢y-norm, which is then used in obtaining a convex
relaxation to (3).

III. RELAXATION
A. Group-Sparsity Inducing Norms

For the special case of a single multicast group (K = 1),
the ¢1-norm (defined as ||w||; := 22;1 |w(n)]) is known to
offer the closest convex approximation to the {y-norm, albeit
a weaker and indirect measure of sparsity [4]. However, for
general K € {1,..., M}, directly applying the ¢;-norm per
wy, does not imply antenna selection. Indeed, replacing the
non convex fp-norm in the objective function of (3) with
Zé{:l ||wk||1 would result in a sparse solution for each wy,
but the zero entries of each wj will not necessarily align to
the same antenna(s) n to be omitted. Therefore, it is crucial to
utilize a regularization norm that explicitly promotes sparsity
for all the entries of w,, simultaneously.

The widely used group-sparsity promoting regularization,
which was first introduced in the context of the group least-
absolute selection and shrinkage operator (group Lasso) [24],
is the mixed ¢; »-norm, defined as

N
Iwlliz = > [[Wall2.
n=1



Note that ||[w||1,2 = ||W]|1. The ¢1 2-norm behaves as the ¢;-
norm on w, which implies that each ||w,||2 (or equivalently
W) is encouraged to be set to zero, therefore inducing group-
sparsity. More generally, it has been shown that mixed ¢; -

norms, defined as
N /K 1/a
=Y ( mw)
k=1

n=1

[lw]

induce group sparsity for ¢ > 1 [1]. Setting ¢ = 1 yields
Z,[f:l ||wi||1, which does not induce group sparsity.

Next, we argue that it is possible to replace any sparsity-
inducing norm regularization with the squared norm without
changing the regularization properties of the problem. Define
the convex function f(w) := Zle |[wg||3, and define
Q(w) := ||wl]|1,4 for ¢ > 1 as any convex sparsity-inducing
norm that replaces the ¢p-(quasi)norm in (3). Problem (3) can
thus be generically written as

i Q 4
‘Elnel%f(w) + A (w) “)
where
wih,,|?
F o= {{WkG(CN}K: : > Yo,
ht iz [Wlthy 2+ 02, "

Vm € Gy, Vk,l € {1,...,K}}.

PIOblenl ( ) 18 equIValellt to
X i ’ W S &2 W < T ‘;

since for any A, one can find a 7 such that the both problems
yield the same optimum sparse solution. By squaring both
sides of the constraint, problem (5) can be written as

min f(w) s.t. QQ(W) <7 (6)
wEF

where T = 72, If the Pareto boundary is convex, then there
exists a A > 0 such that problem

. 102
min f(w) + 0% (w) (7

is equivalent to (6) [3, Sec. 2.6.3], i.e., (7) is just a re-
parametrization of (4). This is always true for convex prob-
lems, e.g., the Lasso' [20], suggesting that Q2(w) can be
used as a sparsity-inducing regularization. In our case F is
non-convex, hence convexity of the Pareto boundary is not
guaranteed. Still, the above discussion motivates using Q2 (w)
as a sparsity-inducing penalty in place of the ¢y penalty in (3).

For our purposes, we will use the convex 1 o.-norm squared
as a group-sparsity inducing regularization to replace the non-
convex {p-norm in (3). The ¢; o.-norm is defined as

N
Wl oo 2= D" max [
n=1

The reason why the ¢; ,.-norm squared is used in particular
will become clear in the next subsection. Note that if K =1

It is also easy to check that the soft thresholding (shrinkage) property of
the Lasso holds when the ¢1-norm squared is used instead of the ¢1-norm to
induce sparsity, albeit with a different scaling for the threshold.

where no group-sparsity is required, the ¢; o.-norm reduces to
the ¢;-norm. The group-sparsity promoting properties of the
{1 ~-norm were studied in [21]. The joint antenna selection
and transmit-power minimization problem (3) can thus be
relaxed to

K N 2
min > w3 + A <Z max|wk(n)|)
{wreCVH, k=1 o1 "

|Wz{hm‘2
iz IWhn |2 + 02,

Ym e G, Vk,le{l,...,K}.

s.t.: = Yms

®)

Using the mixed ¢; o-norm (or equivalently the /; ..-norm
squared) as a convex surrogate of the p-norm in (3) results
in a solution that is no longer necessarily the minimum power
solution. This limitation is due to the properties of the ¢;-
and /,,-norms. One shortcoming is that the ¢1-norm is size-
sensitive, whereas the /p-norm counts the number of nonzero
entries without regard to their size. Another issue is that
{~-norms may have the undesired effect to favor solutions
with many components of equal magnitude. The solution of
the relaxed problem (8) compromises between minimizing
the {1 - and ¢>-norms. This implies that after obtaining an
approximate solution to (3), one should solve a reduced-size
{o-norm minimization problem of type (1) as a last step,
omitting the antennas corresponding to the zero entries of the
sparse approximate solution.

B. Semidefinite Program Formulation

After replacing the f{yp-norm in (3) by the ¢; ,-norm
squared, the resulting problem (8) is still NP-hard since it
contains (1). In this subsection we show that (8) can be
relaxed to a convex semidefinite program (SDP) [22]. SDP
problems can be efficiently solved (in polynomial time) using
interior point methods. Define Q,, := hmhz, X = ww't
(where w := [w{ ... wk]"), and X;; := w;wi for i,j €
{1,..., K}, such that

Xi1 Xik

XK1 XKkK

Then, the optimization variables can be changed from
{wi .}, to X using the following transformations:

tr(wiwit) = tr(Xp)
htwiwith,, = tr(h*w,with,,)
tr(hmhzwszl) = tr(Qkak‘)'

Iwell5 =
|Wthm|2 =



The /1 o-norm squared is also transformed as follows:

(Z mkax|wk(n)|>

(e ) - o))

I
] =
WE

1

3
=
I
-
3

2

I
] =
] =

max Xii(n1,ng)l.

) (LK) X ( )
Note that X = ww’? if and only if X >= 0 and rank(X) =
1. By dropping the non-convex rank(X) = 1 constraint,

problem (8) can be relaxed to the SDP:

K N N
X)) +A D> > max| Xi; (1, n2)
k=1 ’

ni=1ng=1

min
XecCNKXNK
st tr(XerQum) = Ym Ztr(X”Qm) + 'ymofn,
I#k
X >0, VYmeGy Vkle{l,...,K}
X =X(({—1)N+1:iN,(j —1)N+1:jN),
vi,je{l,...,K}.
9

Due to rank relaxation, the off-diagonal matrices X;;, Vi # j,
do not appear in the constraints of (9); thus, in light of the
cost in (9), they can be set to zero. Hence, using X, = Xy
for brevity, and defining X := maxy, [Xj| as the element-
wise absolute maximum among all {X;}X |, a simplified
expression for the ¢; o,-norm squared is:

N N

Z Z max X;i(ng,no

PIDINE L
N N

- Z Z ke{l,.. K} [Xi(n1,m2)]

max
n1:1 712:1

= tr(1yX). (10)

Therefore, the rank-relaxed SDP problem (9) can be re-written
as

min
{Xp}HL |, XERN XN
: 2
s.t. tr(XeQum) > Ym Z tr(X; Q) + Ymo2,
Ik
X, =0, X> Xy,
Vi, le{l,...,K}

K
> tr(Xp) + Ar(1yX)
k=1

Vm € Gy,

an
where the element-wise inequality X > |Xx|, Vk, can be
sustained using positive semidefinite constraints as shown in
the Appendix. For the single multicast group case, problem
(11) simplifies to

i tr(X) + Atr(1y|X
cDin o te(X) + Mr(1y[X])
st.: tr(XQu) > YmoZ, m=1,...,M, X 0.

(12)

On the other hand, the power minimization problem (1),
without antenna selection, can be relaxed to the SDP:

K
min tr(X
{XkGCNXN}i{:l ; ( k)

s.t.: tr(kum) Z Ym Z tr(XlQnL) + ’Ymo'gq,
1#£k
vm € Gy,

Xy = 0, Vk,le{l,...,K}.

(13)

Insights From Duality. To gain some insight on the rela-
tionship between (11) and the NP-hard problem (8), we shall
invoke duality. The Lagrangian dual problem of (8), which is
by definition a convex problem, and the SDP relaxation (11),
both provide lower bounds on the optimal value of the NP-
hard problem (8). The following result shows that these two
lower bounds in fact coincide.

Proposition 1: Problem (11) is the Lagrange bi-dual of
problem (8).

Proof: Refer to the Appendix for the complete proof. H
Proposition 1 implies that the SDP relaxation (11) yields the
same lower bound on the optimal solution of (8) as that
obtained from the Lagrangian dual problem, which is the
tightest lower bound attainable via duality. The main element
of the proof is to reformulate (8) as a QCQP. The dual of a
QCQP is an SDP [23, pp. 403-404], which is relatively easy
to find. It then follows readily that the dual of this SDP dual
problem is the SDP relaxation (11).

To extract the minimum power beamforming vectors cor-
responding to the selected antennas after solving (11), we
use the following procedure. Let X() denote the sparse
solution X of (11). Its zero diagonal entries correspond to
the antennas that should be left out, whereas the nonzero ones
correspond to the selected antennas. Note that if an entry of
X() is zero, then the corresponding entry in all {Xp K,
must be zero. Suppose that the number of nonzero diagonal
entries of X(®) is N < N, and let S C {1,..., N} denote
the corresponding subset of antennas that should be utilized,
where the cardinality of S is N. Due to the influence of the
mixed £1 o-norm squared minimization, the minimum power
beamforming vector cannot be directly extracted from X (),
Thus, to find the minimum power solution, (13) is solved
for the reduced size problem, namely {X; € CV*N}K |
where Q,,, in this case is an N x N matrix obtained after
omitting the channel entries corresponding to the left-out
antennas. Due to the rank relaxation, the solution to (13),
denoted by {Xfco)}kK:I, might not comprise only rank-one
matrices in general; hence, the optimum beamforming vectors
cannot be directly extracted from the obtained {X,(CO)},CKZI.
However, it is possible to adopt the approach of [8], where
an approximate solution to the original problem (1) can be
found using a Gaussian randomization technique to generate
candidate beamforming vectors from {X,(:)},Ile and choose
the ones yielding a feasible solution of minimum power. If
{Xg})}szl are all rank-one matrices, then their respective
principal components, suitably scaled, will be the optimal
beamforming vectors for problem (1). Scaling these principal



components is a multicast power control problem, which can
be optimally solved by linear programming [8].

The sparsest solution (meaning the one with the minimum
number of antennas) that can be obtained using this approach
corresponds to using A — oo in (11), or equivalently

N tr(1yX)
XERNXN

min
{XeCNxN}K |
st tr(XkQum) > Ym Ztr(XlQm) + Ym0,
Ik
Vk,le{l,...,

(14)

thoa

vm € Gy, K}

The use of the size-sensitive £1-norm (or ¢; o-norm squared),
however, often precludes very sparse solutions, simply because
they cost too much in terms of ¢; cost. This motivates adapting
the sparsity-enhancing iteratively re-weighted ¢;-norm idea,
originally proposed in the context of (linear) compressive
sampling problems [4], to the present context.

C. Enhancing Sparsity: Iterative Algorithm

To further increase the group-sparsity of {wy} |, the
iteratively re-weighted ¢;-norm penalty in [4] is adapted
to suit our problem. Consider the weight vector u, where
u(1),u(2),...,u(IN) are positive weights, and define the
weight matrix U := uu?. Using X; = wyw]' and
X := maxy, |X}| as before, and invoking again the implication
of rank-relaxation that was previously used to obtain the
¢1,00-norm squared expression (10), the weighted ¢; o.-norm

squared can be written as

<,§ u(n) max |wk(n)|>
=2

Mz

u(n ng)mgx|X;€(n1,n2)|
n1:1n2:1
N N B
Z Z U nl,ng)X(nl,ng)
ny= 1?7,2:1
= tr(UX).

The iterative algorithm that enhances group-sparsity can then
be described as follows:
1) Initialize the iteration count to r = 0, and the weight
matrix to U© = 1.
2) Solve the weighted /; o.-norm squared minimization
SDP problem

min tr(UMX™)
(XML X
s.t.: tr(Xi;T) Qm) Z Ym Ztr(xl(r) QT}'L) + 'Ymo'?n
I#k
X](:) - 07 X(r) > |)(§€?”)|7
Ym e Gy, Vk,le{l,...,K}

5)

to obtain the optimum {X\”}< at the r-th iteration.

3) Update the weight matrix entries to be used in the next
iteration as
(r+1) =1
U (nlanQ) - X("')(n1,7l2)+€7

VYni,ng € {1,...,N}.

4) Terminate on convergence, or, when a certain maximum
number of iterations for r is reached. Otherwise, incre-
ment 7, and go to step 2.

The weight matrix updates force small entries of X (and
thus the corresponding entries of {|Xx|}% |) to zero, and
avoid unduly restraining large entries. The small parameter
€ provides stability, and ensures that a zero-valued entry of
X(") does not strictly prohibit a nonzero estimate at the next
step. In the initial step of the iterative algorithm, problem (14)
is solved for initialization. Convergence of this algorithm is
very fast (~ 5 — 15 iterations), as observed in the simulations.
It is worth reminding the reader that this iterative algorithm is
not guaranteed to find the minimum number of antennas that
yield a feasible solution of (1); finding such minimum-antenna
solution is NP-hard.

IV. PROPOSED ALGORITHM

The proposed algorithm that jointly selects L < N antennas
and finds the beamforming vector for each multicast group
such that the transmit-power is minimized, subject to receive-
SINR constraints for each user, can be summarized as follows:

o Step 1: Run the weighted {; -norm iterative algorithm
described in Section III-C. Terminate the weighted ¢; oo-
norm iterative algorithm ‘prematurely’ if a solution com-
prising L or fewer antennas is encountered during outer
iterations. Record the resulting sparse solution X* and
the corresponding weight matrix U*. Let N* denote the
number of nonzero diagonal entries in X* If N* > L
after the iterative algorithm terminates, then the pro-
posed algorithm fails to provide a sparse-enough solution.
Brute-force enumeration can be used in this case to find a
solution, if the problem is feasible. If N* = L, then pick
S to contain the antennas corresponding to the nonzero
diagonal entries of X* and skip to step 3. Otherwise,
continue.

e Step 2: Solve the SDP problem

K
min _
{Xk}kK=1,XE]R h—1

s.t. : t]ﬁ'(Xka) > Ym Z tI'(X[Qm) + "YmO'?n

tr(Xy) + Mr(U*X)

12k
X =0, X>[Xgl,
Vm e Gy, Vkile{l,... K}

(16)
using the obtained weights U*, which is problem (11)
with 1 replaced by U*, and use binary search to find A
that gives the required number of antennas L. The binary
search procedure works as follows. For a given upper
bound Ayp and lower bound App, set A = (Ayp —
ALp)/2 + Arp and solve the SDP problem. Let X (%)



denote the solution of (16) having N nonzero diagonal
entries. If N = L, then find the subset of selected
antennas S corresponding to the nonzero diagonal entries
of X(S), and move to the next step. Otherwise, if N>L
then set A\zp = A while if N < L then set Ayp = A,
and repeat this step until N =L.

o Step 3: Now that L antennas have been selected, (13)
is solved for the reduced-size problem, namely {X; €
CLxLYE || to find the minimum power beamforming
vector. If the solution, denoted as {X,(:)}kK:l, contains
only rank-one matrices, then the (suitably scaled [8])
principal component of each X,(CO) is the optimal beam-
forming vector for group k. Otherwise, use the random-
ization technique of [8] to generate candidate sets of
beamforming vectors from {X;o) HE |, and choose the set
that yields a minimum power solution among all feasible
ones.

Note that early termination of the binary search when a
solution with fewer than the desired L antennas has been
obtained will result in higher transmission power. Since A is
non-negative, Ay, can simply be set to zero. Suitable Ay g can
be obtained empirically, depending primarily on € (since the
value of entries of U* that correspond to zero entries of X*
is 1/€ as a result of the updating step of the iterative sparsity-
enhancing algorithm), in addition to the network parameters
N, M, K, and the channel statistics.

Although the binary search over A may require solving (16)
more than once for different values of A until the appropriate
one is found, an important advantage over the exhaustive
search method is that the number of iterations is independent
of N and L, unlike exhaustive search, which requires solving
(Jg) problems of type (13). The solution obtained using the
novel algorithm occasionally coincides with that obtained
using exhaustive search, while the transmission power increase
for the other cases is insignificant, as demonstrated in the
simulations of Section VI.

Complexity analysis. Following [8], the worst-case com-
plexity of solving the SDP problem (13) using interior point
methods is O(V KN log(1/¢)) iterations, where € represents
the accuracy of the solution at the algorithm’s termination, and
each iteration requires at most O(K3N°®+ M K N?) arithmetic
operations. The actual runtime complexity scales much slower
with K, N, M than this worst-case bound predicts. The SDP
problem (16) includes an additional N x N auxiliary matrix
and K N? positive semidefinite constraints (as shown in the
appendix), that increase the actual runtime of (16) as compared
to that of (13). However, the worst-case complexity order
remains the same. Let O(R) denote the runtime complexity of
problem (16) (same as (11) and (15)), where R is a function of
K, N, M, and consider the complexity analysis of each of the
three steps of the proposed algorithm. In step 1, the weighted
¢1,00-norm iterative algorithm typically terminates within less
than 15 iterations, irrespective of the problem size. An SDP of
type (15) is solved in each iteration. Thus the total complexity
of this step is O(R). In step 2, the binary search can be
considered of constant complexity order. The number of binary
searches is typically very small with the proper choice of Ay g,

as shown in the simulations of Section VI. In each iteration,
an SDP of type (16) is solved. Hence the total complexity
of this step is also O(R). In step 3, one SDP of type (13)
is solved (replacing N with L), with a runtime complexity
that is less than O(R). Finally, the randomization technique
that may be used to obtain the beamforming vectors has been
analyzed in [8], where it is shown that an e-optimal solution
can be obtained in O(v/K log(1/¢)) iterations, each requiring
at most O(K3+ M K) arithmetic operations. Thus, the overall
worst-case complexity of the proposed 3-step algorithm is
o) (<K3.5N6.5 + MK1.5N2.5) 10g(1/5>).

V. RELEVANT EXTENSIONS

The proposed novel algorithm can easily be extended and
applied to obtain sparse solutions for a wide class of non-
convex QCQP problems, where SDP relaxation is relevant.
MIMO detection and sensor network localization are two such
applications. For further details on applications where the SDP
relaxation is used, the reader is referred to [11] and references
therein. In this section we discuss two important variations
to the multicast beamforming problem, where our proposed
approach can also be applied.

A. Limiting inter-cell or primary user interference

Suppose there is only one multicast group (K = 1), and
consider joint antenna selection and beamformer design to
minimize the transmit-power, subject to prescribed receive-
SNR constraints 7, for each user. In addition, consider that the
interference induced to J other users must not exceed a given
threshold 7. The channel vector from the transmit antennas to
the receive antenna of user j is denoted by g;, j € {1,...,J},
and is assumed known at the transmitter BS. The joint problem
is expressed as

min w3+ Al[wllo
H 2
s.t.: Mzwm, m=1,...,.M amn
T
\Wng|2§77, ]:177J

which is the same as (3) with the additional interference
constraints for J users. Problem (17) appears in two main
scenarios: inter-cell interference mitigation in a co-channel
cellular multicast setting, and secondary multicasting in a
cognitive underlay setting, where there is a need to limit
interference inflicted to primary users. These scenarios have
been considered in [16], without antenna selection. Similar to
[16], our formulation can be suitably modified to handle cases
where only imperfect channel state information is available at
the BS, in the form of channel estimates with norm-bounded
errors.

Returning to (17), upon replacing ||w||o by ||w]||? and using
the same semidefinite relaxations discussed in Section III,
problem (17) can be relaxed to the SDP:

min
XeCNxN
st.or tr(XQu) > 02 m, m=1,..., M

tr(XQ,) <n, j=1,....,J, X=0

tr(X) + Atr(1y(|X])
(18)




where Qj =g g}*. To select L < N antennas, the proposed
algorithm in Section IV can be directly applied after adding
the constraints tr(XQj) <nforj=1,...,J to all the SDP
problems solved. For the final step, the randomization algo-
rithm proposed in [16] can be used to find the minimum power
beamforming vector corresponding to the selected antennas.

B. Max-Min Fair Beamforming

We now consider the related joint problem of maximizing
the minimum received SNR over all users together with
antenna selection, subject to a bound P on the transmission
power (assuming one multicast group for simplicity):

M
. |wh,, |?
max min 5
weCN m Om m=1

lw|3 <P, [|wllo < L.

(19)
s.t.:

Problem (19) is equivalent to maximizing the beamforming
downlink achievable rate using L out of N antennas, since
in the multicast scenario, the worst-user SNR determines the
common (multicast) rate [18]. Problem (19) was studied in
[18] without the ||w||op < L constraint, and was shown to be
NP-hard. Problem (19) can be equivalently re-written as

min —t+ A|wl|o
weCN teR
H 2
s.t.: Mzt,mzl,...,M (20)
o
|wl[3 = P.

Following the same approximation steps as in Section III,
problem (20) can be relaxed to the SDP:

min
XecCNXN teR

st.: tr(XQ,,) >02t, m=1,...,.M
tr(X) =P, X >0.

— ¢+ Mr(1y]X])
(21)

To select L < N antennas, the proposed algorithm in Section
IV can be applied by solving the appropriate SDPs of type
(21), and using the randomization algorithm proposed in [18]
in the final step to extract the beamforming vector.

In closing this section, two remarks are in order on the
relations between maximizing the minimum received SNR
(19), the capacity of the multicast channel [7], and the antenna
selection with spatial multiplexing scheme in [15]:

Remark 1. Defining X as the covariance of the transmitted
signal, the optimal solution X* to the rank-relaxed SDP prob-
lem (21), without the sparsity inducing term (Atr(1y]|X])),
is the optimal covariance that achieves the capacity of the
multicast channel (maximum achievable common rate) for an
N-antenna BS with full CSI at the transmitter [7]. Whereas
exhaustive search is required to achieve capacity when only
L < N antennas are utilized, the proposed algorithm in
Section IV can be used to obtain an approximate, less complex,
solution (by solving the appropriate SDPs of type (21)).
The only difference between the multicast beamforming rate
maximization and the multicast channel capacity is that X
is restricted to be rank one with beamforming (and the

randomization algorithm proposed in [18] is needed to extract
the beamforming vector from the optimal X)), whereas there
is no such restriction (and no approximation) for the capacity-
achieving transmit covariance. The role of the rank restriction
and the use of the sparsity inducing ¢;-norm squared approx-
imation are illustrated in Section VI-C.

Remark 2. In the absence of CSI at the transmitter, the
alternative is to transmit using a spatially white covariance,
ie., X = %IN, where P is the total transmission power
and X denotes the covariance of the transmitted signal [7].
An antenna selection scheme has been proposed in [15]
for maximizing the minimum received SNR based on this
setup. When utilizing a subset of antennas S of size L, the
transmission power is equally divided among all L antennas
yielding an SNR for the m-th user SNR,,, = %Z“Esgl#(n)‘
From all possible antenna subsets S of size L, the selected
subset S* is the one maximizing the minimum SNR across
all users, namely

2

S§* =arg max  min P Zones lhm(m
ses me{l,...M} L o2,

where S is the set of all (]IY) possible antenna subsets of
size L. This antenna selection scheme requires knowledge of
the channel gain corresponding to each transmit antenna at
the transmitter (|h,,(n)|?) for each user, in addition to ex-
haustively searching through all (IX ) different antenna subset
S selections. The results of [7] imply that transmitting with
spatially white covariance will outperform beamforming (in
terms of spectral efficiency) when M > L, because every
beamforming direction will likely be nearly orthogonal to
at least one user’s channel, whereas beamforming performs
significantly better (very close to the multicast capacity) for
relatively large L. Attaining this rate with spatially white
covariance is a challenge since it requires complex multi-
stream Shannon encoding and decoding at long block lengths,
also implying long decoding delay that is not suitable for
streaming media multicast. Beamforming, on the other hand,
requires far simpler encoding and decoding. The performance
of our proposed beamforming based algorithm is compared
with that of [15] in Section VI-C.

VI. SIMULATED TESTS

To test the proposed SDP-based algorithms, YALMIP was
used. YALMIP is a modeling language for optimization prob-
lems that is implemented as a free toolbox for MATLAB [10],
and uses SeDuMi, a MATLAB implementation of second-
order interior-point methods, for the actual computations [19].
The novel algorithm was tested with two channel types;
Rayleigh fading channels and Vandermonde channels corre-
sponding to a far-field ULA setup. Throughout this section,
the noise variance for all users was set to o2 = 1.

A. Single Multicast Group

We first consider a single multicast group, and set the
minimum required SNR to v = 1 at all users.



Rayleigh fading with N = 8 antennas. The first simulation
setup included a BS with N = 8 transmit-antennas broadcast-
ing a common message to M = 16 receivers. Independent
identically distributed (i.i.d.) Rayleigh fading channel vectors
{hm}rj\f:1 were generated, each with i.i.d. entries circularly
symmetric zero-mean complex Gaussian random variables
of variance 1. To gain insight, detailed results are provided
first for a single “typical” channel realization, which allows
comparing the selected antenna subsets with the baseline
exhaustive search solution. Running the weighted ¢;-norm
iterative algorithm described in Section III-C results in the
sparsest solution of N* = 1 antenna, which corresponds to
selecting antenna number 5. This result is obtained when the
iterative algorithm converges after 8 iterations. It is worth
noting that after the initial step of the iterative weighted ¢;-
norm algorithm (which is equivalent to solving problem (14)),
the resulting sparse solution has N = 6 antennas, many more
than the single antenna solution obtained after the iterative
weighted ¢;-norm algorithm terminates.

Table 1 summarizes the results obtained using the novel
algorithm and by exhaustively searching over possible antenna
subset selections for this representative channel realization.
The required number of antennas to be selected (or, the
available number of RF chains) L is listed in column 1. The
subset of selected antennas is given in columns 2 and 6 for the
proposed algorithm and exhaustive search, respectively. The
minimum transmit-power corresponding to each L is listed in
columns 3 and 7 (in dBm units). The increase of transmission
power (compared to the case of using all N = 8 antennas)
due to antenna selection is given in columns 4 and 8 (in dB
units). Finally, the total number of SDP problems solved in
order to obtain the required solution is shown in columns 5
and 9.

The results in Table I demonstrate that as the number of
antennas selected for transmission decreases (as the solution
becomes more sparse) the corresponding minimum trans-
mission power increases, due to the decrease in degrees of
freedom, as expected. Interestingly, the simulations suggest
that the number of transmit antennas can be significantly
reduced at only a small price in terms of excess transmission
power. Halving the number of antennas from 8 to 4, for
example, entails only 1.11 dB extra power. Comparing with
the exhaustive search results, one can verify that exhaustive
search slightly outperforms the proposed algorithm only for
the cases of L = 5 and L = 6 antennas (by less than 0.1 dB),
by selecting different antenna subsets. However, the number
of SDP problems that must be solved for the exhaustive search
is significantly larger. The maximum number of iterations
required for the binary search process, namely step 2 in the
proposed algorithm, is 7 - these are needed to select L = 7
antennas, where 1 SDP problem is solved for step 1, 7 for
step 2, and 1 for the final step, yielding a worst-case total
of 9 SDP problems. On the other hand, the exhaustive search
algorithm requires solving (§) = 70 SDP problems to select
L = 4 antennas.

Table II reports the average and maximum increase in
transmission power (compared to the case of using all N =8
antennas) that correspond to selecting L antennas for the
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Fig. 1. The necessary extra power versus L for N = 8 antennas and a single
multicast group with M = 16 users in a Rayleigh fading environment.

proposed algorithm, the exhaustive search, and the case where
the number of available antennas is only L (not N) such
that no antenna selection is performed (this is equivalent to
randomly selecting the L antennas). In addition, the aver-
age and maximum number of SDP problems solved for the
proposed algorithm and exhaustive search are reported. For
a better visual comparison, Fig. 1 plots the average increase
in transmission power versus L for the compared schemes
(corresponding to columns 2, 6 and 9 of Table II). The results
are obtained for 100 different Rayleigh channel realizations.
The main conclusions from Table II and Fig. 1 are summarized
as follows:

1) The number of transmit antennas can be considerably
reduced at a relatively small cost in terms of excess
transmission power. If we halve the number of antennas,
the transmission power increases by only 1 dB, on av-
erage, to satisfy the SNR constraints using the proposed
algorithm.

2) Compared to the exhaustive search, the proposed algo-
rithm incurs much lower complexity (measured in terms
of the number of SDP problems solved) at a very small
additional power cost. The difference in power is less
than 1 dB, on average.

3) If only L RF transmission chains are available at the
BS, increasing the number of transmit antennas N
(from which only L are activated) results in a reduction
in transmission power due to the additional diversity.
For example, if only 4 RF chains and 4 antennas are
available (N = L = 4), 1.2 dB more transmission power
is required compared to having the option of selecting
4 out of 8 antennas using the proposed algorithm, on
average.

Rayleigh fading with N = 16 antennas. In Fig. 2, we
consider N = 16 antennas and M = 32 users, again assuming
ii.d. Rayleigh fading across antennas and users. The figure
depicts the average increase in transmission power (compared
to the case of using all N = 16 antennas) versus L. If we halve
the number of selected antennas (L = 8), the transmission
power increases by only 1.5 dB to satisfy the SNR constraints
using the proposed algorithm, whereas if only 8 antennas
were installed instead of 16 (i.e. no antenna selection), an
additional 0.7 dB transmission power would be necessary



Proposed Algorithm Exhaustive Search

L Selected Power | Power inc. Total Selected Power | Power inc. Total

antennas S (dBm) (dB) SDP’s antennas S (dBm) (dB) SDP’s
8 {1,...,8} 30.82 0 1 {1,...,8} 30.82 0 1
7 {1,2,3,4,5,7,8} 31.16 0.34 9 {1,2,3,4,5,7,8} 31.16 0.34 8
6 {2,3,4,5,7,8} 31.81 0.99 2 {1,2,4,5,7,8} 31.75 0.93 28
5 {2,3,4,5,7} 31.84 1.02 5 {2,4,5,7,8} 31.80 0.98 56
4 {2,457} 31.92 1.11 3 {2,457} 31.92 1.11 70
3 {2,577} 3242 1.6 6 {2,5,7} 3242 1.6 56
2 {5.7} 33.86 3.04 7 {5,7} 33.86 3.04 28
1 {5} 35.78 4.96 8 {5} 35.78 4.96 8

TABLE I

PERFORMANCE OF THE PROPOSED ALGORITHM AND THE EXHAUSTIVE SEARCH ALGORITHM FOR A PARTICULAR CHANNEL REALIZATION FOR
DIFFERENT ANTENNA SELECTIONS L, FOR N = 8 ANTENNA BS AND A SINGLE MULTICAST GROUP WITH M = 16 USERS.

Proposed Algorithm Exhaustive Search Fixed Antennas
L Power Inc. (dB) Total SDP’s Power Inc. (dB) | Total SDP’s Power Inc. (dB)
Avg. Max. Avg.  Max. Avg. Max. Avg. Max.
6 0.22 2.7 7.5 17 0.1 1.12 28 0.9 3.1
4 1 3.2 43 11 0.5 2.3 70 2.2 4.8
2 2.9 6.7 44 9 2.1 6.7 28 5.5 11.8
TABLE 11

PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM, EXHAUSTIVE SEARCH AND NO ANTENNA SELECTION, FOR N = 8 ANTENNA BS
AND A SINGLE MULTICAST GROUP WITH M = 16 USERS IN A RAYLEIGH FADING ENVIRONMENT.
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Fig. 2. The necessary extra power versus L for N = 16 antennas and a
single multicast group with M = 32 users in a Rayleigh fading environment.

(compared to the proposed algorithm), on average. The results
for the exhaustive search algorithm are not included because
of its prohibitive complexity. If, for example, it is required
to select L = 8 antennas, exhaustive search requires solving
(186) = 12,870 SDP problems per channel realization, which is
clearly prohibitive. On the other hand, the proposed algorithm
required solving less than 7 SDP problems for L = 8, on
average.

Rayleigh fading with N = 100 antennas. In Fig. 3, we
consider a scenario with a large number of antennas and users
(N =100, M = 100), again assuming i.i.d. Rayleigh fading.
The figure shows the average additional transmit-power needed
using the proposed algorithm, which is 1-2 dB less than the
transmit-power needed when the first L antennas are blindly
selected, for all values of L considered. Read in a different
way, the proposed algorithm uses far fewer transmit antennas
for the same transmit-power. Of course, it is computationally
prohibitive to apply exhaustive search in this scenario. Note
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Fig. 3. The necessary extra power versus L with N = 100 and M = 100
in a Rayleigh fading environment.

that the gains offered by the proposed algorithm are relatively
small when the number of users is relatively large and the
channel is i.i.d. across antennas and users - because the law
of large numbers kicks in. The situation is different when M
is small. For example, with N = 100 antennas to choose
from, M = 2 users, and L. = 2 antennas to be selected, the
maximum transmit-power using our proposed algorithm, over
1000 Rayleigh channel realizations, was 34.7dBm (23.9dBm
on average), whereas the maximum transmit-power when
blindly selecting the first 2 antennas was 58.9dBm (30.3dBm
on average). This means that the proposed algorithm can save
up to approximately 24dB in transmit-power compared to fixed
antenna selection in this setting.

Far-field beamforming with N 8 ULA. Figure 4
illustrates the beampatterns for a particular far-field multi-
casting scenario with N = 8 ULA antennas and M = 33
users. The N x 1 complex channel vector for each user m
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Fig. 4. Beampatterns for a far-field single-group multicasting scenario with
N = 8 ULA and M = 33 users, comparing between (a) using all N =
8 antennas, (b) the proposed algorithm selecting L = 4 antennas, and (c)
exhaustive search to select the best L = 4 antennas.

is Vandermonde: h,, = [1, e/fm, e/20m . I(N=1)0n]T
where the angles 6,,, are given by 0,,, = —277% sin(¢y, ), with d
denoting inter-element spacing between successive antennas, A
the carrier wavelength, and the angles ¢,,, define the directions
of the receivers. We set d/A = 1/2 and the M = 33 users
were allocated such that the direction angles of the first 11
users ¢, m € {1,...,11}, were from 0° to 10° with 1°
spacing between each user, the direction angles to second
11 users ¢, m € {12,...,22}, were from 40° to 50°
with 1° spacing between each user, and the direction angles
to last 11 users ¢,,, m € {23,...,33}, were from 80° to
90°with 1° spacing between each user. Figure 4 compares the
beampatterns resulting from: (a) using all N = 8 antennas, (b)
using the proposed algorithm to select L = 4 antennas, and (c)
using exhaustive search to select the best L = 4 antennas. The
proposed algorithm selects the antennas Spyop. = {3,4,5,6}
after solving 3 SDP problems and incurs additional transmit-
power of 1.38 dB (compared to using all 8 antennas), whereas
the exhaustive search selects the antennas Sgxn. = {1,5,7,8}
after solving 70 SDP problems and incurs 0.8 dB extra power.

Robust beamforming. In case of imperfect CSI, it is
possible to adopt robust beamforming designs such as those
considered in [16], which rely on the notion of worst-case
design. It is assumed in [16] that all channel vectors are
known with certain errors v, and that these errors are all norm-
bounded ||v||2 < §, where ¢ is known. The worst-case SINR
constraint for user m in multicast group k£ can be expressed
as:

|Wk (hy +vin)?
min D) B
Vi l[2<6 Y 1#£k |Wl (hyy + Vi) 2 + 02,

> Ym-

The worst-case SINR is lower bounded by
min [wi (B +vin)
[|[Vin|[2<68 Zlik (WH(By, + Vi) 2 + 02,
minjjy,,, <5 [WE (B +vin)|

D ik Max|jy, (<6 (Wt + Vi) |2 + 02,

2

Using the bounds developed in [16],

witG,wp < min _|[w}t(h, +vn)|?
HVmH2<5
WiGuwr > max  [wi(hy, + Vi)
HVmH2<5
where G,, := h,,h* + §(0 — 2,/h%h,,)I and G,, :=

h,, hH +0(6+ 2\/h7{h ), the robust SINR constraints can
be approx1mated by

wkHGmwk
Dz WG Wi+ 0,

Z FY’HTJ v m’ k? l'

The robust beamforming with antenna selection algorithm then
proceeds simply by replacing Q,, with G,,, or G, in the SDP
problem formulations. This robust algorithm was applied to the
setup of Fig. 1 yielding the average additional transmit-power
represented by the dotted lines. To simulate imperfect CSI, two
scenarios were considered where the error vectors {v,,} were
uniformly and randomly generated in a sphere centered at zero
with radii 6 = 0.005 and 6 = 0.1. With § increasing, more
transmit-power is needed to satisfy the SNR requirements, as
expected.

B. Two Multicast Groups

We now switch to simulations for the multi-group case, with
K = 2 groups for clarity of exposition.

Rayleigh fading with NV = 12 antennas. In this setup, we
consider a BS with N = 12 transmit-antennas transmitting
to two multicast groups where each multicast group consists
of 5 users. The minimum required receive SINR is assumed
to be 1 dB for each user in each group, and Rayleigh fading
channel vectors are generated. Table III reports the average
and maximum increase in transmission power (compared to
using all N = 12 antennas) that correspond to selecting L
antennas, for the proposed algorithm, the exhaustive search,
and the case where only L antennas are available such that no
antenna selection is performed. In addition, the average and
maximum number of SDP problems solved for the proposed
algorithm and exhaustive search are reported. The results
emphasize the conclusions obtained for the single multicast
group. For example, if only L = 6 RF chains are available,
using the proposed algorithm results in a 2.4 dB transmission
power increase (compared to using all N = 12 antennas), and
requires solving 7.5 SDP problems, on average. On the other
hand, exhaustive search results in 0.7 dB lesser transmission
power (on average), but requires solving 924 SDP problems.
Finally, having the option of selecting 6 antennas out of
12 saved 1.4 dB in transmission power (using the proposed
algorithm) compared to having only 6 antennas available.

To illustrate the effects of the minimum required receive
SINR and the channel conditions on the transmit-power, some
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Fig. 5. Beampatterns for a far-field two-group multicasting scenario with
N = 8 ULA and M = 32 users, comparing between using all N = 8
antennas and the proposed algorithm selecting L = 4 antennas.

variations of the last setup were considered. For a minimum
required receive-SINR = 3 dB per user in each group,
the average transmit-power using all 12 antennas was 31.2
dBm, whereas the average transmit-power after selecting 6
antennas increased to 33.6 dBm. To simulate for better channel
conditions, each user’s channel was multiplied by a constant
c = 5. As a result, the average transmit-power decreased to
17.2 dBm when all 12 antennas were utilized, and to 19.6 dBm
when 6 antennas were selected. For a 12 dB minimum SINR,
the average transmit-power was 41 dB when all antennas were
used, and 44.4 dBm when 6 antennas were selected. When
each user’s channel was multiplied by ¢ = 5, the average
transmit-power decreased to 27.2 dBm when all 12 antennas
were utilized, and to 30 dBm when 6 antennas were selected.

Far-field beamforming with N = 8 ULA. Figure 5 illus-
trates the beampatterns for a particular far-field multicasting
scenario with V = 8 ULA and M = 32 users. The users are
equally divided into two multicast groups. The 16 users of the
first multicast group (G; have direction angles ¢,, (m € Gy)
from 0° to 30° with 2° spacing between each user, while
the 16 users of the second multicast group G5 have direction
angles ¢,,, (m € G3) from 60° to 90° with 2° spacing between
each user. The minimum required receive-SINR was assumed
to be 3 dB for each user, and we set d/\ = 1/2. Figure
5 compares the beampattern resulting from using all N = 8
antennas with that resulting from using the proposed algorithm
to select L = 4 antennas. For this setting, the proposed
algorithm selects the same 4 antennas as the exhaustive search
yielding the same beampattern. The proposed algorithm (and
exhaustive search) incurs additional transmit-power of only
1.66 dB (compared to using all 8 antennas).

C. Max-min-fair Beamforming and Spectral Efficiency Con-
siderations

Here, we consider the problem of maximizing the minimum
received SNR over all users with antenna selection, which
is described in Section V-B. In this setup, we considered a
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Fig. 6.  Average spectral efficiency versus L for N = 10 antennas and
M = 16 users.

BS with N = 10 antennas, M = 16 users, Rayleigh fading
channels and the transmission power was bounded below
P = 10 dB. Figure 6 compares the following schemes: (a)
Capacity achieving transmit-covariance with exhaustive search
antenna selection (which corresponds to the multicast chan-
nel capacity with antenna selection); (b) Capacity achieving
transmit-covariance with sparsity-inducing ¢;-norm squared
approximation; (c) Beamforming with exhaustive search an-
tenna selection; (d) Beamforming with sparsity-inducing ¢;-
norm squared approximation; and, (e) Spatially white transmit-
covariance with exhaustive search antenna selection, as con-
sidered in [15]. Note that for (c) and (d), beamforming implies
rank-one transmit-covariance. For each scheme, the (average)
maximum achievable rate per unit bandwidth (which is the
average spectral efficiency given by Ep[log,(1 + F(h))] in
bps/Hz units, where #(h) is the minimum received SNR
among all M users for each channel realization, and Ej,
denotes Monte-Carlo expectation over all Rayleigh fading
channel realizations) is plotted versus the number of selected
antennas L.

Figure 6 confirms that the previous conclusions for minimiz-
ing the transmission power with SNR constraints are also valid
when antenna selection is jointly considered. For example, the
average spectral efficiency with beamforming decreases by less
than 0.5 bps/Hz when L = 4 antennas are selected compared
to using all N = 10 antennas, which is an insignificant
decrease compared to the reduction in RF chains. Moreover,
the figure shows that (b) and (d) are within 0.25 bps/Hz less
spectral efficiency than (a) and (c), respectively. On the other
hand, (b) and (d) required solving less than 5 SDP problems,
on average, while (a) and (c) required solving 210 SDP prob-
lems to select L = 4 or L = 6 antennas. This emphasizes the
effectiveness of using the sparsity-inducing ¢;-norm squared
approximation. Finally, we see that (c) outperforms (e), or in
other words beamforming outperforms using spatially white
transmit-covariance, since L is not very small compared to
M. The performance of beamforming becomes significantly
better as L increases, whereas this advantage vanishes for
smaller L. The reason, as explained in [7], is that every
beamforming direction will be nearly orthogonal to at least



Proposed Algorithm Exhaustive Search Fixed Antennas
L Power Inc. (dB) Total SDP’s Power Inc. (dB) | Total SDP’s Power Inc. (dB)
Avg. Max. Avg.  Max. Avg. Max. Avg. Max.
10 0.43 0.7 9 20 0.27 0.4 66 0.85 2
8 1 1.55 11.5 25 0.81 0.97 495 2.1 3.35
6 2.4 2.8 7.5 22 1.7 2.3 924 3.8 6.7
4 44 5.92 5.5 25 3.7 43 495 7.6 9.8
TABLE III

PERFORMANCE COMPARISON BETWEEN THE PROPOSED ALGORITHM, EXHAUSTIVE SEARCH AND NO ANTENNA SELECTION, FOR N = 12 ANTENNA BS
AND TWO MULTICAST GROUPS WITH |G1| = 5 AND |G2| = 5 IN A RAYLEIGH FADING ENVIRONMENT.

one user’s channel with high probability when M > L.

VII. CONCLUSIONS

We studied the joint problem of multicast beamforming
to multiple multicast groups with antenna selection. The
objective is to select sparse beamforming vectors such that
the transmission power is minimized, subject to the SINR
constraints at all subscribers. Instead of using the ¢;-norm to
promote sparsity, we argued that the mixed ¢; o.-norm squared
offers a more prudent group-sparsity inducing regularization
for our purposes. The reason is that it naturally (and elegantly)
yields a semidefinite relaxation that is similar in spirit to
the corresponding one for the baseline multicasting problem
without antenna selection, considered in [18]. One interesting
result is that the number of transmit antennas can be consid-
erably reduced with only minimal increase in the transmission
power. We also showed that our proposed algorithm performs
joint antenna selection and weight optimization at significantly
lower complexity compared to using exhaustive search for
antenna selection, and at negligible excess power. The novel
algorithm can be combined with admission control [12], and
can be easily modified to obtain sparse solutions for a wide
class of non-convex QCQP problems, and applications where
SDP relaxation is relevant.

Finally, developing custom algorithms for joint multicast
beamforming and antenna selection for Massive MIMO sys-
tems [26] is of interest. We have preliminary work in this
direction; but striking the right balance between performance
and complexity in the large system regime requires a very
different approach from the one presented herein. We will
therefore report these findings in follow-up work.

where h,, is normalized by /02,7,,. Using Q,, := h,,h’t
and X := ww, problem (22) is equivalent to

tr(X) + Mr(1xY)

Xe@NxIJ\Ill’l;leRNxN
tr(XQp) >1, m=1,...,. M

| X (6 4) <Y(i,5), Vi,je{l,...,N}
X >0, rank(X)=1.

s.t.:

(23)

In order to transform (23) from the complex domain to the
real domain, we define wp = R{w}, w; = X{w}, z =
wh wi]T, and Z := zz” such that Z € R*N>*2N_ Now, it
is easy to see that R{X (4,5)} = Z(i,5) + Z(N + 14, N + j)
and S{X(4,5)} = =Z(i,N 4+ j) + Z(N + i, N). Thus, the
constraints | X (4, 5)| < Y (4,7), Vi, j are equivalent to

1(Z(i,§) + Z(N +4i,N + 7)) +
V=1(=Z(i,N+j)+ Z(N +1i,N)) |2 < Y(i,5).

These constraints can be expressed as the positive semidefinite
constraints (24), Vi, j, in the real domain. The channel matrix
Q,,, can be transformed to the real domain by defining g,,, :=
[%{hTVL}T C\}{h77L}T]T’ g’l’ﬂ = [C\}{hm}T - %{h’ﬂl}T}T’ and
the 2N x 2N rank-2 matrix Q,, := gmgﬂ + gmng. Hence,
problem (23) can be expressed in the real domain as

min tr(Z) + Atr(1nY)
ZER2N><2N ,YERNXN

st.: tr(ZQun)>1, m=1,....M

(25)
C;; =0, Vi,je{l,...,N}
Z -0, rank(Z)=1.
Finally, deﬁningZ := diag(Z Y Ci1Ciz ... CiyCyy ...

such that Z € RYXN  where N := 3N + 2N2,

APPENDIX
Ly Oonvxn  Oanxone
Proof of Proposition 1: Consider the single multicast group A= Onxon Aly Onx2n2 )
scenario. In this case, the ¢; o.-norm reduces to the ¢;-norm Oanzxan  Oanzxn  O2nzion:
and problem (8) is expressed as
and
. 2 2
min - ||w[3 + Allwl[{ -
weer (22) O, = ~Qu 02w (N+2N2)
st.r [whhy|*>1, m=1,....M " O(n+anz)xan  O(Ntan2)x(N+2N2)

Cnnw)



Y (i,j) — Z(i,j) — Z(N + i, N + j)

Cij = —Z(i,N+j) + Z(N +1i,5)

problem (25) can be expressed as

tr(ZA)

st.: tr(ZQu) +1<0, m=1,...,M
tr (ZEEJU)) =0, tr (ZEE]H)) =0
tr (ZEEJQU) =0, tr (ZE@Q))

ij
Vi,je{l,...,N},

0,

rank(Z) = 1
(26)

Z >0,

where Egjl.l), Eg?z), E£;2) and Egl) provide the four entries

of C;;, for each i and j, by ensuring that:

Z (3N +2(i —1)N +2j —1,3N +2(i — 1)N + 25 — 1)
=Z(2N +i,2N + j) — Z(i,5) — Z(N + i, N + )
Z (3N +2(i — 1)N +24,3N 4 2(i — 1)N + 2)
= Z(2N +0,2N +j) + Z(i,§) + Z(N + i, N + j)
Z (3N +2(i —1)N 4+2j — 1,3N +2(i — 1)N + 27)
=—Z(i,N +j) + Z(N +1,5)
Z (3N +2(i — 1)N +24§,3N 4+ 2(i — 1)N 4+ 2j — 1)
= —Z(i,N +j) + Z(N +1i,j).

By dropping the rank(Z) = 1 constraint, problem (26) is
in the standard SDP form. Defining the N x 1 vector z :=
wh wl yT T} i, cly k) chyT where y is
an N x 1 auxiliary vector and c;; is a 2 x 1 vector, problem
(26), which is equivalent to the original problem (22), can be

expressed in the following standard QCQP form:

min zT Az
s.t.: ZTsz—i—l <0,m=1,....,.M
zTEg;l)z =0, zTEgjl-Z)z =0
zTEgl)z =0, zTEg-Z)z =0, Vi,je{l,...,N}.
27
Introducing the Lagrange multipliers g (M x 1), v (4N? x
1), and defining [ := 4(i — 1) N + j and

M

P:=A+ > ptmQmt
m=1
D DA (wEﬁ}” + VL+NE§]1-2) + Vz+2NE§32-1) + Vl+3NE532'2)) ;
the Lagrangian of problem (27) is L(z,u,v) = z' Pz +
Z%:l im, and the dual problem is
inf £ V).
Jnax in (z,p,v)
It is easy to see that
M M .
. Z —1 Hm ifP >0
inf 27 Pz + = m=
z Z fim —00 otherwise .

m=1

~Z(i,N +j)+ Z(N +1,5)
N ) L | = 0. 24
Y(ig) + 2(i,5) + Z(N +i,N +5) | =0 &4
The dual problem can thus be expressed as
M
T mZ::l“m (28)
st.: P>=0, punp>0 m=1,....M

which is an easily solvable convex SDP. Finally, it is easy
to see that the dual of the SDP (28), which is the bi-dual
of (22), is problem (23) after dropping the rank(X) = 1
constraint [22]. Also, the dual of the rank-relaxed problem
(23) is problem (28).

The duality results are easily extended to the multiple
multicast groups scenario by extending the matrix Z to
{Z)}K_, and adding K replicates for the positive semidefinite
constraints C;; = 0, Vi, j € {1,..., N}, in (25) corresponding
to each Zj, Yk € {1,...,K}. The rest of the steps are a
straightforward extension from the single multicast group case.
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