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Abstract

In a heterogeneous wireless cellular network, each user maybe covered by multiple access points such as

macro/pico/relay/femto base stations (BS). An effective approach to maximize the sum utility (e.g., system through-

put) in such a network is to jointly optimize users’ linear procoders as well as their base station associations. In this

paper we first show that this joint optimization problem is NP-hard and thus is difficult to solve to global optimality.

To find a locally optimal solution, we formulate the problem as a noncooperative game in which the users and

the BSs both act as players. We introduce a set of new utility functions for the players and show that every Nash

equilibrium (NE) of the resulting game is a stationary solution of the original sum utility maximization problem.

Moreover, we develop a best-response type algorithm that allows the players to distributedly reach a NE of the

game. Simulation results show that the proposed distributed algorithm can effectively relieve local BS congestion

and simultaneously achieve high throughput and load balancing in a heterogeneous network.

I. INTRODUCTION

Consider a multicell heterogeneous network (HetNet) in which every cell is installed with not only a macro base

station (BS) but also a set of micro/pico/femto base stations, all equipped with multiple antennas and sharing the

same frequency band. In such a network, the users are often simultaneously covered by multiple BSs with different

capabilities and load status. If the users in a HetNet are assigned to BSs simply according to their received signal

strengths (as is done in conventional cellular networks), then a BS located close to a hot spot may experience severe

congestion, causing poor quality of service in the network.Indeed, it has been shown that the signal strength based

approach for user-BS association in a HetNet can be highly suboptimal for congestion management and fairness

provisioning [2], [3]. For a HetNet, the overall system performance depends not only on the physical layer choices

of precoder design and power control, but also on how the users and the BSs are associated. Consequently, BS

assignment should be an integral part of physical layer optimization of the overall system performance.
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Conventionally, physical layer resource management and network performance optimization involve such aspects

as transceiver design, power control and spectrum management, while the user-BS assignment is assumed known

and fixed. For example, under this assumption, game theoretic approaches have been used to design optimal transmit

precoders for a MIMO interference channel (MIMO-IC). The authors of [4], [5], among others, propose to formulate

the transmit covariance matrix optimization problem as a noncooperative game in which the transmitters/users

compete with each other for transmission. Reference [6] further takes into consideration the robustness issue of the

problem. In these studies, each user selfishly maximizes itsown transmission rate, while treating all other users’

interference as noise. Simple distributed algorithms (based on iterative water-filling) are derived with convergence

guarantees, but the resulting solutions of the game are inefficient in terms of system throughput. This is due to both

the lack of coordination among the transmitters/users and the choice of utility functions which do not consider the

interference effect on other users in the system.

In addition to the competitive design, we can also design transmit precoders by maximizing a suitable system

utility function. Unfortunately, most optimization problems in this category have been proven to be NP-hard in

various settings [7]–[10]. As a result, many authors focus on developing efficient algorithms to compute high

quality sub-optimal solutions for these problems, e.g., inMIMO-IC, [11], [12], MISO-IC [13]–[15] and MIMO-IC

with a single data stream per user [16], [17]. In particular,references [11], [12] propose an iterative algorithm based

on the first order Taylor approximation of the nonconcave part of the weighted sum rate (WSR) objective. It is

shown that the WSR values generated by this algorithm increase monotonically, but the convergence of the users’

transmit covariances (to a stationary solution) is left unproven. For the problem of maximizing ageneralutility

function, reference [8] proposes a cyclic ascent method forlinear precoder design in a MISO network. The proposed

algorithm can deal with any smooth utility functions and is known to converge to a stationary solution. Reference

[9] develops an algorithm that optimizes the Max-Min utility in a MIMO network by adapting the transmit and

receive precoders alternately. References [18], [19] propose a weighted Minimum Mean Square Error (WMMSE)

algorithm in which the transmitters and receivers iteratively update their linear transmit and receive strategies to

optimize the system utility function. The authors show thatas long as the system utility function satisfies some

mild regularity conditions, their algorithm is guaranteedto converge to a stationary point of the problem.

All of the above cited works aim at optimizing the linear transceiver structures under the assumptionthat the

transmitter-receiver association is known and fixed. The problem of joint cell site selection and power allocation

in the traditional CDMA based network has been first considered in [20]–[22] and later in a game theoretical

perspective in [23], [24]. The objective of the network optimization is to minimize the users’ total transmit power

subject to a set of individual SNR constraints. In these works, the users optimize their uplink power levels and/or

transmit beams as well as their BS associations. The phenomenon of “cell breathing” is observed whereby the sizes

of the cells dynamically change according to the congestionlevels. Recently references [25]–[27] have considered

the joint BS selection and vector power allocation in OFDMA networks in which the BSs operate on non-overlapping

spectrum. The users compete with each other for resources ineach cell, and at the same time they are able to freely
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choose to use any (non-interfering) BS in the network. However, it is not clear how these works can be generalized

to the considered MIMO-HetNet scenario. Reference [28] is arecent work in such direction. Differently from the

present work, a downlink HetNet setting is considered. As a result, the user-BS association is determined in a

centralized fashion, which is very different than the distributed solutions to be presented in this work.

In this paper, we consider the problem ofjoint optimization of linear precoder and BS assignment for an uplink

MIMO heterogeneous network. Our main contributions are summarized as follows.

1) We establish the NP-hardness of the joint precoder designand user-BS assignment problem for the weighted

sum rate (WSR) maximization in a MIMO-HetNet. This NP-hardness result is intrinsically different from the

existing complexity results [7]–[10] for the linear precoder design problem where the user-BS assignment

is fixed. In particular, for the latter results, the NP-hardness of the precoder design problem lies in how to

determine which users/antennas should be turned off due to strong interference links. However, when the

user-BS assignment is not fixed, a strong interference link can be turned into a direct link by changing the

user-BS association, thus effectively mitigating the level of interference. As a result, what makes the joint

user-BS association and precoder design problem difficult is not the presence of strong interference links, but

rather its mixed interference pattern. Therefore, the NP-hardness of the joint optimization problem does not

follow from, nor imply, any of the existing complexity results [7]–[10] for the linear precoder design problem

when the user-BS assignment is fixed.

2) We propose a novel game theoretic formulation to find a local WSR-optimal solution of the joint precoder

design and user-BS assignment problem for a MIMO heterogeneous network. In the proposed game both

the transmitters and the BSs act as players. We introduce a set of utility functions for the players and show

that every NE of the resulting game, which gives a set of precoders and user-BS assignment for all users in

the network, is a stationary solution of the WSR maximization problem. To reach a NE of the game, each

transmitter greedily determines the best linear precoder as well as the least congested BS for transmission,

whereas each BS computes a set of optimal prices to charge theusers for causing interference. These prices

serve to coordinate the behavior of the users so that they do not cause excessive interference in the network.

We show that the resulting distributed algorithm convergesto a NE of the game. Notice that the convergence

of the algorithm implies that the network will be stable in the sense that no user will change BSs indefinitely.

Simulation results show that this algorithm is very effective in relieving local BS congestion and achieving

high throughput and load balancing in the network.

We remark that when the user-BS assignment isfixed, our proposed game reduces to the standard precoder

optimization game. In this context, the users are again charged with a set of prices that reflect their (negative)

influence to other users. Thus, our problem formulation can be viewed as a generalization of previous results for

interference pricing (e.g. [11], [15], [16], [29]) to the MIMO interfering multiple access channel (MIMO-IMAC)

setting with general system utility functions.
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The rest of the paper is organized as follows. In Section II, we give the system level description of the problem,

and provide its complexity analysis. In Section III and Section IV, we formulate the problem into a non-cooperative

game framework, and study the properties of the resulting games. Furthermore we propose an efficient algorithm

to compute the equilibrium solutions of the games. In Section V, we present numerical results to demonstrate the

performance of the proposed algorithm. Some concluding remarks are given in Section VI.

Notations: For a symmetric matrixX, X � 0 signifies thatX is positive semi-definite. We use Tr(X), |X|,
XH , λ(X) and Rank(X) to denote the trace, determinant, Hermitian, spectral radius and the rank of a matrix,

respectively. We useIn to denote an×n identity matrix, and use[y,x−i] to denote a vectorx with its ith elements

replaced byy. Moreover, we letRN×M andCN×M denote the set of real and complexN × M matrices, and

useSN andSN+ to denote the set ofN ×N Hermitian and Hermitian semi-definite matrices, respectively. Finally,

we use the notation0 ≤ a ⊥ b ≥ 0 to indicatea ≥ 0, b ≥ 0, a × b = 0, and use the notation[x]+ to represent

max(x, 0).

II. SYSTEM MODEL, PROBLEM FORMULATION AND COMPLEXITY RESULT

We consider the uplink of a general MIMO-HetNet consisting of a setN = {1, · · · , N} of users that transmit

to a setQ = {1, · · · , Q} of BSs. Leta be aN × 1 vector representing the system association profile, i.e.,an = q

means usern connects to BSq.

Suppose each usern ∈ N hasTn transmit antennas and each BSq ∈ Q hasRq receive antennas. LetHq,n ∈
CRq×Tn be the channel matrix from transmittern to receiverq. AssumeTn ≤ Rq for all (n, q) ∈ (N × Q), or

equivalently the channel matrices{Hq,n} are tall matrices. This assumption is reasonable as the number of antennas

at the BS is typically larger than that of the mobile users.

Let xn ∈ CTn andyq ∈ CRq denote the transmitted signal of usern and the received signal of BSq, respectively.

Thenyq can be expressed as

yq =
∑

n∈N
Hq,nxn + zq (1)

wherezq ∼ CN (0, σ2
q IRq

) is the additive white complex Gaussian noise vector. Suppose there are a maximum ofTn

data streams transmitted by usern and its data symbol vector is denoted bysn ∈ CTn . We assumeE[snsHn ] = ITn
.

If a linear precoderPn ∈ CTn×Tn is used for transmission, then the transmitted vector of user n is xn = Pnsn, and

the corresponding transmit covariance matrixSn is given bySn , E[xnx
H
n ] = PnP

H
n ∈ S

Tn

+ . Once the covariance

matrix Sn is computed, the precoder can be obtained by Cholesky factorization. We further assume that each user

has an individual average power constraint of the formE[Tr(xnx
H
n )] = Tr(Sn) ≤ p̄n. Define the aggregate transmit

covariance asS , {Sn}n∈N , and the aggregate covariance excluding usern asS−n , {Sm}m6=n,m∈N .

For a fixed association profilea, the interference covariance matrix for usern (at its intended BSan) can be
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expressed as

Cn(S−n;a) , σ2
an
IRan

+
∑

m6=n

Han,mSmHH
an,m

.

The covariance matrix of the total received signal at BSq can be expressed as

Gq(S) , σ2
qI+

N∑

l=1

Hq,lSlH
H
q,l. (2)

For a given user-BS associationa, the achievable rate for usern is given by [30]

Rn(Sn,S−n;a) = log
∣∣IRan

+Han,nSnH
H
an,n

C−1
n (S−n)

∣∣ (3)

= log
∣∣∣ITn

+ (S
1

2
n)

HHH
an,nC

−1
n (S−n)Han,nS

1

2
n

∣∣∣
(i)
= log

∣∣∣∣
(
ITn

− (S
1

2
n)

HHH
an,n

G−1
an

(S)Han,nS
1

2
n

)−1
∣∣∣∣

(ii)
= log

∣∣E−1
n (S)

∣∣ (4)

where in (i) we have used the matrix inversion lemma [31]; in (ii) we have definedEn(S) as usern’s minimum

mean square error (MMSE) matrix

En(S) , ITn
− (S

1

2
n)

HHH
an,n

G−1
an

(S)Han,nS
1

2
n ≻ 0. (5)

The WSR of the system can be expressed asR(S;a) ,
∑

n∈N wnRn(Sn,S−n;a), where the set of nonnegative

weights {wn}Nn=1 represent the priorities of different users. We are interested in finding the optimal user-BS

assignment as well as the transmit covariance matrices thatmaximize the WSR. This problem can be stated as

max
S,a

R(S;a) (SYS)

s.t. Tr(Sn) ≤ p̄n, Sn ∈ S
Tn

+ , ∀ n ∈ N

an ∈ Q, ∀ n ∈ N .

Our first result shows that finding the global optimal solution to the system level problem is intractable in general.

Theorem 1: Finding the optimal BS association and the transmission covariance matrices(a,S) that solve the

problem (SYS) is strongly NP-hard.

Theorem 1 is proved based on a polynomial time transformation from the 3-SAT problem, which is a known

NP-complete problem [32]. The 3-SAT problem is described asfollows. GivenM disjunctive clausesC1, · · · , CM

defined onN Boolean variablesX1 · · · ,XN , i.e., Cm = t1 ∨ t2 ∨ t3 with ti ∈ {X1, · · · ,XN , X̄1, · · · , X̄N}, the

problem is to check whether there exists a truth assignment for the Boolean variables such that all clauses are

satisfied (i.e., each clause evaluates to1) simultaneously. We leave the details of the proof to the Appendix A. We

note that our complexity result differs from the recent result in [28], in which the complexity for the joint user-BS

association and precoder design problem is analyzed for thedownlink direction.

Motivated by the above complexity result, we focus on designing low complexity algorithms that can provide
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approximately optimal solutions. In particular, we will consider in the sequel a more general system level problem

formulated as the following sum utility maximization problem

max
S,a

f(S;a) (SYS-U)

s.t. f(S;a) ,
∑

n∈N
fn(Rn (S;a)) , Rn(S;a) defined in (3),

Tr(Sn) ≤ p̄n, Sn ∈ S
Tn

+ , ∀ n ∈ N

an ∈ Q, ∀ n ∈ N

wherefn(·) : R+ → R is the utility function of usern’s data rate. We make the following assumptions onfn(·):

A-1) fn(x) is strictly increasing, concave and coercive inx for all x ≥ 0;

A-2) fn(− log(|X|)) is strictly convex inX for all X � 0.

Note that this family of utility functions includes well known utilities such as weighted sum rate, proportional

fairness and the harmonic mean rate utility functions (see [18]).

In the sequel, we will develop a distributed algorithm to compute a local stationary solution for the problem

(SYS-U). Our main approach is based on the noncooperative game theory.

III. T RANSMIT COVARIANCE OPTIMIZATION GAME FOR FIXED USER-BS ASSOCIATION

To simplify the presentation of the game theoretic approach, we first consider the case in which the user-BS

assignment is fixed in advance, and the users are only allowedto optimize their transmit covariances. We will

design a noncooperative game whose equilibrium solutions correspond to the stationary solutions of the sum utility

maximization problem (SYS-U). Extension to the general case with flexible association will be presented in the

next section.

A. Problem Formulation

When the user-BS association is fixed, the sum utility maximization problem (SYS-U) can be restated as

max
S

f(S) (SUM)

s.t. Tr(Sn) ≤ p̄n, Sn ∈ S
Tn

+ , ∀ n ∈ N .

Suppose each usern ∈ N can optimize its transmit covarianceSn. Its feasible set is given by

Fn ,

{
Sn | Tr(Sn) ≤ p̄n, Sn ∈ S

Tn

+

}
. (6)

Define the joint feasible set of all the users asF ,
∏

n∈N Fn.

In order to mitigate interference caused by unintended users, we allow each BSq ∈ Q to post a (matrix valued)

price Tq,n ∈ CRq to each usern ∈ N . That is, each usern incurs a total charge of Tr
[∑

q∈QTq,nSn

]
for the
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interference contributed to all the BSs in the network. DefineHq =
∏

n∈N CRq as the feasible set of BSq’s pricing

strategies. DefineH ,
∏

q∈QHq as the joint feasible set of all the BSs. LetTq = {Tq,n}n∈N , Tn = {Tq,n}q∈Q,

andT = {Tq}q∈Q.

We model both the users and the BSs as selfish players in a noncooperative game. The players are interested in

choosing their individual optimal strategies (transmit covariances for the users, and price matrices for the BSs) to

maximize their own utility functionsUn(·) andDq(·). We formulate a covariance optimization gameGC as follows

GC ,

{
{N ,Q},

{
F ,H

}
,
{
{Un(·)}n∈N , {Dq(·)}q∈Q

}}
.

We need to properly specify the utility functionsUn(·) andDq(·) so that the equilibriums of the gameGC correspond

to the local stationary solution of the sum utility maximization problem (SUM).

B. The BSs’ Utility Maximization Problem

The BSs’ utility functions and their maximization problemsare closely related to the structure of the desired

interference prices. As a result, we start by providing an explicit construction of the interference prices. Let us

defineNq , {n : an = q} as the set of users associated with BSq. Defineαm(S) as the derivative of userm’s

utility function w.r.t. to its rate

αm(S) ,
∂fm(x)

∂x

∣∣∣∣
x=Rm(S)

> 0 (7)

where the positivity ofαm(S) comes from the conditionA-1), i.e., fm(·) is a strictly increasing function. Then at

a given system covarianceS, usern’s negative marginal influence to the sum utility of users currently associated

to BS q is given by

−
∑

m∈Nq\n

▽Sn
fm(Rm(S))

=
∑

m∈Nq\n

αm(S)HH
q,nC

−1
m (S−m)

(
IRq

+Hq,mSmHH
q,mC−1

m (S−m)
)−1

Hq,mSmHH
q,mC−1

m (S−m)Hq,n

= HH
q,n

( ∑

m∈Nq\n

αm(S)G−1
q (S)Hq,mS

1
2
mE−1

m (S)(S
1
2
m)HHH

q,mG−1
q (S)

)
Hq,n � 0 (8)

where in the last equality we have again used the fact that

E−1
m (S) = I+ (S

1

2
m)HHH

am,mC−1
m (S−m)Ham,mS

1

2
m. (9)

We propose to mitigate the interference generated by a usern ∈ N by charging it a penalty proportionally to

its negative marginal influence. Specifically, the interference price takes the following form

Tq,n , −
∑

m∈Nq\n
▽Sn

fm(Rm(S)) � 0. (10)
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This definition of interference price leads to the followingdefinition of a BSq’s utility function

Dq(Tq,T−q,S) , −
∑

n∈N

∥∥∥∥Tq,n−
(
−

∑

m∈Nq\n
▽Sn

fm(Rm(S))

)∥∥∥∥. (11)

Clearly, for a fixedS ∈ F , the set of prices that maximizes BSq’s utility are given by (10). In what follows,

Tq,n(S) is occasionally used to explicitly indicate the dependencyof the prices on the users’ transmit covariances.

C. The Users’ Utility Maximization Problem

To strike a balance between the user’s desire to improve its utility and the need to reduce its interference in the

network, we modify each user’s utility as the difference between its true utility and the interference charge

Un(Sn,S−n,Tn) , fn(Rn(Sn,S−n))−
∑

q∈Q
Tr [Tq,nSn] . (12)

With this modification, each user’s utility maximization problem is given by

max
Sn∈Fn

Un(Sn,S−n,Tn). (13)

Note that the functionfn(Rn(Sn,S−n)) is a strictly concave function inSn, as it is a composition of a strictly

increasing and concave function (i.e.,fn(·)) and a strictly concave function ofSn (i.e., Rn(·)) (see [33, Section

3.2.4]). As a result, problem (13) has a strictly concave objective value and admits aunique solution. In the

following, we develop an efficient procedure to compute suchsolution.

Fix a usern ∈ N , let q = an. Let An ,
∑

l∈QTl,n � 0. Using these notations, usern’s utility maximization

problem (13) can be written as

max
Sn∈Fn

fn
(
log
∣∣I+Hq,nSnH

H
q,nC

−1
n

∣∣)− Tr[AnSn]. (14)

The Lagrangian of this problem is given by

L(Sn, µn) = fn
(
log
∣∣I+Hq,nSnH

H
q,nC

−1
n

∣∣)− Tr[(An + µnI)Sn] + µnp̄n (15)

whereµn ≥ 0 is the Lagrangian multiplier for the power constraint. The dual function isd(µn) = maxSn�0 L(Sn, µn).

The optimal primal-dual pair(S∗
n, µ

∗
n) should satisfy the KKT optimality conditions

S∗
n = arg max

Sn∈Fn

L(Sn, µ
∗
n), S∗

n � 0 (16)

0 ≤ µ∗
n ⊥ (p̄n − Tr[S∗

n]) ≥ 0. (17)

For any fixedµn ≥ 0, the solution to the problemargmaxSn∈Fn
L(Sn, µn) can be obtained as follows. Using

the fact thatAn � 0, then for anyµn > 0, we can perform the Cholesky decompositionAn+µnI = LH
n Ln, which
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results in Tr[(An + µnI)Sn] = Tr[LnSnL
H
n ]. DefineS̄n(µn) , LnSnL

H
n , then we have

L(Sn, µn) = fn
(
log
∣∣Cn +Hq,nL

−1
n S̄n(µn)L

−H
n HH

q,n

∣∣+ c1
)
− Tr[S̄n(µn)] + µnp̄n

(i)
= fn

(
log
∣∣I+B−1

n Hq,nL
−1
n S̄n(µn)L

−H
n HH

q,nB
−H
n

∣∣+ c2
)
− Tr[S̄n(µn)] + µnp̄n

(ii)
= fn

(
log
∣∣I+ Fn∆nM

H
n S̄n(µn)Mn∆nF

H
n

∣∣+ c2
)
− Tr[S̄n(µn)] + µnp̄n

(iii)
= fn

(
log
∣∣∣I+∆nŜn(µn)∆n

∣∣∣+ c3

)
− Tr[Ŝn(µn)] + µnp̄n , L(Ŝn(µn)) (18)

wherec1, c2, c3 are some constants that are not related toSn. In step (i) we have used the Cholesky decomposition:

Cn = BnB
H
n ; in (ii) we have used the singular value decompositionB−1

n Hq,nL
−1
n = Fn∆nM

H
n ; in (iii) we have

definedŜn(µn) = MH
n S̄n(µn)Mn and used the fact thatMn andFn are unitary matrices. Note that ifµn = 0

andAn is not full rank, we can use generalized inverse to replaceL−1
n . We then argue that the (unique) optimal

solution Ŝ∗
n(µn) to the following problem must be diagonal

max
Ŝn(µn)�0

L(Ŝn(µn)). (19)

Assume the contrary. Note that we haveI+∆nŜn(µn)∆n ≻ 0. Then from the Hadamard inequality [31], we can

always remove the off-diagonal elements of the optimal solution and increase the value oflog
∣∣∣I+∆nŜ

∗
n(µn)∆n

∣∣∣
while keeping the value of Tr[Ŝ∗

n(µn)] unchanged. Sincefn(x) is a strictly increasing function, the objective value

is also increased, a contradiction to the optimality of the non-diagonal solution.

Let si = [Ŝn(µn)]i,i. Utilizing this diagonality property, solving the matrix optimization problem (19) reduces to

a vector optimization problem of the form

max
{si≥0}Tn

i=1

fn

(
Tn∑

i=1

log(1 + si[∆n]
2
i,i) + c3

)
−

Tn∑

i=1

si (20)

Let ζi denote the Lagrangian multiplier associated with the constraint si ≥ 0. The optimal primal-dual variables

{s∗i , ζ∗i }Tn

i=1 must satisfy the following optimality conditions

∂fn(x)

∂x

∣∣∣∣
x=

∑
Tn
i=1

log(1+s∗i [∆n]2i,i)

[∆n]
2
i,i

1 + s∗i [∆n]2i,i
= 1− ζ∗i , ∀ i = 1, · · · , Tn (21)

0 ≤ ζ∗i ⊥ s∗i ≥ 0, ∀ i = 1, · · · , Tn. (22)

The condition (21) implies that there must exist a constantc∗ that satisfies

c∗ =

(
s∗i +

1

[∆n]
2
i,i

)
(1− ζ∗i ), ∀ i. (23)

wherec∗ = αn

(∑Tn

i=1 log
(
1 + s∗i [∆n]

2
i,i

))
, with αn(Rn) =

dfn(x)
dx

∣∣
x=Rn

. Due to (23), we have

c∗ = αn

( Tn∑

i=1

log

(
c∗[∆n]

2
i,i

(1 − ζ∗i )

))
.
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Suppose we have the optimalc∗ (note that due to the strict concavity of problem (20),c∗ is unique), then using

condition (22) and the definition ofc∗ in (23), the optimal primal-dual variables{s∗i , ζ∗i }Tn

i=1 can be expressed as

s∗i =





c∗ − 1
[∆n]2i,i

, if c∗ − 1
[∆n]2i,i

> 0

0, otherwise,
ζ∗i =





0, if c∗ − 1
[∆n]2i,i

> 0

(1− c∗[∆n]
2
i,i), otherwise.

(24)

In short,s∗i =
[
c∗ − 1

[∆n]2i,i

]+
andζ∗i =

[
1− c∗[∆n]

2
i,i

]+
.

Our task then becomes finding the optimalc∗. For anyc ≥ 0, let us defineζ∗i (c) ,
[
1− c[∆n]

2
i,i

]+
. We have the

following lemma characterizing the relationship betweenαn(·) andc. The proof of it can be found in Appendix B.

Lemma 1: For any fixedc, if αn

(∑Tn

i=1 log
( c[∆n]2i,i
1−ζ∗

i (c)

))
> c, thenc∗ > c. Otherwise,c∗ ≤ c.

This lemma suggests that we can find the optimalc∗ by a bisection search.

TABLE I
THE BINARY SEARCH PROCEDURE TOFIND c∗

S1) Choosecu andcl such thatc∗ lies in [cl, cu].
S2) Letcmid = (cl + cu)/2

Computes∗i (c
mid) =

[
cmid − 1

[∆n]2i,i

]+
andζ∗i (c

mid) =
[
1− cmid[∆n]

2
i,i

]+
.

S3) If αn

(∑Tn

i=1 log
( cmid[∆n]2i,i
1−ζ∗

i (c
mid)

))
> cmid, let cl = cmid. Otherwise, letcu = cmid.

S4) Go to S2) until the desired accuracy is reached.

Note that in the special case where the utility function is the weighted sum rate utility, i.e.,fn(Rn) = wnRn, we

havec∗ = wn. Hence no bisection search is needed, and we directly obtains∗i =
[
wn − 1

[∆n]2i,i

]+
, ∀ i = 1 · · · , Tn.

This is the well-known water-filling solution.

Once we have the solution̂S∗
n(µn), we can obtainS∗

n(µn) = L−1
n MnŜ

∗
n(µn)M

H
n L−H

n . Note thatL(Sn, µn) is

a strictly concave function ofSn. As a result, for a fixedµn, the solutionS∗
n(µn) is unique.

The remaining task is to find the optimalµ∗
n that satisfies the complementarity condition (17). From a general

result on penalty method for optimization, e.g., [34, Section 12.1, Lemma 1], the solution Tr[S∗
n(µn)] must be

monotonically decreasing with respect toµn. Such monotonicity result suggests that we can find the optimal µ∗
n

that satisfies the complementarity and feasibility condition (17) by the following bisection search procedure.

TABLE II
THE USER’ S UTILITY MAXIMIZATION PROCEDURE

S1) Chooseµu
n andµl

n such thatµ∗
n lies in [µl

n, µu
n].

S2) Letµmid
n = (µl

n + µu
n)/2. Compute decomposition:

An + µmid
n I = LH

n Ln

Cn = BnB
H
n

B−1
n Hq,nL

−1
n = Fn∆nM

H
n .

S3) Computec∗ using the procedure in Table I.
S4) ComputêS∗

n(µ
mid
n ) by [Ŝ∗(µmid

n )]i,i =
[
c∗ − 1

[∆n]2i,i

]+
, i = 1 · · · , Tn.

S5) ComputeS∗
n(µ

mid
n ) = L−1

n MnŜ
∗
n(µ

mid
n )MH

n L−H
n .

S6) If Tr(S∗
n(µ

mid
n )) > p̄n, let µl

n = µmid
n ; otherwise letµu

n = µmid
n .

S7) If |Tr(S∗
n(µ

mid
n ))− p̄n| < ǫ or |µu

n − µl
n| < ǫ, stop; otherwise go to S2).
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D. Analysis of Nash Equilibriums (NE)

Consider the gameGC . We first show that our choices of the utility functions give rise to a nice relationship

between the utility of the users and the system utility function f(S).

Proposition 1: If the conditionsA-1) and A-2) are satisfied, then we have

Un(Sn, Ŝ−n,Tn(Ŝ))− Un(Ŝn, Ŝ−n,Tn(Ŝ)) > 0

=⇒ f(Sn, Ŝ−n)− f(Ŝn, Ŝ−n) > 0, ∀ Sn, Ŝn ∈ Fn, Ŝ−n ∈ F−n. (25)

Proof: Fix anyS ∈ F and Ŝ ∈ F . Pick anm 6= n. Utilizing the assumption thatfm(− log |X|) is convex in

X, we can linearizefm(− log |Em(Sn, Ŝ−n)|) at the pointEm(Ŝn, Ŝ−n) using Taylor expansion

fm(− log |Em(Sn, Ŝ−n)|) ≥ fm(− log |Em(Ŝ)|) + Tr
[
∇Em

fm(Em)
(
Em(Sn, Ŝ−n)−Em(Ŝ)

)]

= fm(− log |Em(Ŝ)|)− ∂fm(x)

∂x

∣∣∣∣
x=− log |Em(Ŝ)|

Tr
[
E−1

m (Ŝ)(Em(Sn, Ŝ−n)−Em(Ŝ))
]

(26)

To proceed, we need the following lemma whose proof is relegated to Appendix C.

Lemma 2: The function−Tr
[
E−1

m (Ŝ)Em(Sn,S−n)
]

is convex inSn, for all n 6= m.

This convexity result allows us to perform a further linearization in the variableSn via Taylor expansion of

Em(Sn, Ŝ−n) at Ŝn

− Tr
[
E−1

m (Ŝ)(Em(Sn, Ŝ−n)−Em(Ŝ))
]

≥ −Tr
[
E−1

m (Ŝ)(Ŝ
1

2
m)HHH

am,mG−1
m (Ŝ)Ham,n(Sn − Ŝn)H

H
am,nG

−1
m (Ŝ)Ham,mŜ

1

2
m

]

= −Tr
[
HH

am,nG
−1
m (Ŝ)Ham,mŜ

1

2
mE−1

m (Ŝ)(Ŝ
1

2
m)HHH

am,mG−1
m (Ŝ)Ham,n(Sn − Ŝn)

]
. (27)

Plugging (27) into (26), utilizing the expression for the negative marginal influence in (8), we obtain

∑

m 6=n

fm(Rm(Sn, Ŝ−n)) =
∑

m 6=n

fm(− log |Em(Sn, Ŝ−n)|)

≥
∑

m 6=n

{
fm(Rm(Ŝ)) + Tr

[
▽Sn

fm(Rm(Ŝ))(Sn − Ŝn)
]}

.

This inequality implies

f(Sn, Ŝ−n)− f(Ŝ) = fn(Sn, Ŝ−n) +
∑

m 6=n

fm(Rm(Sn, Ŝ−n))−
N∑

m=1

fm(Rm(Ŝ))

≥ fn(Rn(Sn, Ŝ−n)) +
∑

m 6=n

{
Tr
[
▽Sn

fm(Rm(Ŝ))(Sn − Ŝn)
]}

− fn(Rn(Ŝ))

= fn(Rn(Sn, Ŝ−n))−
∑

q∈Q

Tr [Tq,nSn]−


fn(Rn(Ŝ))−

∑

q∈Q

Tr
[
Tq,nŜn

]



= Un(Sn, Ŝ−n,Tn(Ŝ))− Un(Ŝn, Ŝ−n,Tn(Ŝ)). (28)

This inequality implies that (25) is true.
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The property (25) is essentially thegeneralized potential property1 for a class of so calledPotential Games[35],

with only one subtle difference that in (25) the implicationis dependent on a “state variable”Tn(Ŝ).

Using Proposition 1, we can establish the one-to-one correspondence between the pure NE points of the game

GC and the KKT points of the sum-utility maximization problem (SUM). Recall that a pure strategy NE of the

gameGC is a tuple of strategies{S∗,T∗} such that the following set of inequalities are satisfied

Un(S
∗
n,S

∗
−n,T

∗
n) ≥ Un(Sn,S

∗
−n,T

∗
n), ∀ Sn ∈ Fn, ∀ n ∈ N

Dn(T
∗
q,T

∗
−q,S

∗) ≥ Dn(Tq,T
∗
−q,S

∗), ∀ Tq ∈ Hq, ∀ q ∈ Q.

By utilizing Proposition 1, we have the following characterization of the NEs of the gameGC .

Theorem 2: The tuple(S∗,T∗) is a NE of the gameGC if and only ifS∗ is a KKT point of the problem (SUM).

Proof: We give an outline of the proof here. First suppose(S∗,T∗) is a NE of the game. Then from the

definition of NE we have that for anySn ∈ Fn andn ∈ N , Un(S
∗
n,S

∗
−n,T

∗
n) ≥ Un(Sn,S

∗
−n,T

∗
n). Using (25),

we haveR(S∗
n,S

∗
−n) ≥ R(Sn,S

∗
−n) for all Sn ∈ Fn. This meansS∗

n = argmaxSn∈Fn
R(Sn,S

∗
−n), ∀ n ∈ N . We

can verify that the KKT condition of thisN problems is the same as the KKT condition of the original (SUM)

problem. The other direction can be proved similarly.

IV. JOINT BS SELECTION AND TRANSMIT COVARIANCE OPTIMIZATION GAME

In this section we extend the game theoretic framework described in Section III to the case where the user-BS

associations are not fixed.

Let us define usern’s joint strategy asJn , (Sn,an), and its feasible space asJn = Fn × Q. Let J−n ,

(S−n,a−n), and J , {Jn}n∈N . In this case, each user’s rate is still defined by (3), but we have to make the

dependency of association profile explicit. We useRn(Jn,J−n) to denote usern’s rate. We useCn(S−n, [q,a−n])

to denote the interference covariance that usern would have experiencedif it selectsBS q, while all other users

use the strategy(S−n,a−n). Let Nq(a) denote the set of users associated with BSq under association profilea.

Moreover, to make the dependence of the sum utility maximization problem on the underlying user-BS association

explicit, we use SUM(a) to denote the sum utility maximization problem when the association profile is chosen as

a.

Let Ūn(·) andD̄q(·) denote usern and BSq’s utility functions, respectively. The joint BS selectionand covariance

optimization gameGJ is defined as

GJ ,

{
{N ,Q},

{
J ,H

}
,
{
{Ūn(J,Tn)}n∈N , {D̄q(T,J)}q∈Q

}}
.

1The generalized potential property is referred to as the following relationship between the players’ utility functions and a “potential
function” P (·): let xn be playern’s action profile; for any twôxn,xn ∈ χn, for all x−n ∈ χ−n, and for all playern, Un(x̂n,x−n) −
Un(xn,x−n) > 0 impliesP (x̂n,x−n)− P (xn,x−n) > 0.
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We refer to the gameGJ as ahybrid game, because the strategies of a subset of the players consist ofa covariance

matrix and a discrete index. We define the utility functionsŪn(·) andD̄q(·) similarly as in (12) and (11)

Ūn(Jn,J−n,Tn) , fn(Rn(Jn,J−n))−
∑

q∈Q
Tr [Tq,nSn]

D̄q(Tq,T−q,J) , −
∑

n∈N

∥∥∥∥Tq,n −
(
−
∑

m∈Nq(a)\n
▽Sn

fm (Rm((Sn,an),J−m))

)∥∥∥∥.

Note that both of the utility functions defined above aredependenton the user-BS association vectora. In order to

emphasize the relationship between the optimal solution ofBS q and the users’ strategiesJ, we occasionally use

Tq,n(J) or Tq,n(S,a) (resp.T(J) or T(S,a)) to denote the optimal prices charged by BSq to usern (resp. the

set of prices charged by all the BSs).

The pure NE of the gameGJ is the tuple(J∗,T∗) that satisfies

Ūn

(
J∗
n,J

∗
−nT

∗
n

)
≥ Ūn

(
Jn,J

∗
−n,T

∗
n

)
, ∀ Jn ∈ Jn, ∀ n ∈ N

D̄q(T
∗
q ,T

∗
−q,J

∗) ≥ D̄q(Tq,T
∗
−q,J

∗), ∀ Tq ∈ Hq, ∀ q ∈ Q.

The gameGJ with the utility functions defined above again possesses the“generalized potential” property, which

is essential in establishing the correspondence between the pure NEs of gameGJ and the stationary solutions of

the sum-utility maximization problem.

Proposition 2: For any utility functionfn(·) that satisfies the assumptionsA-1) and A-2), we have

Ūn

(
Jn, Ĵ−nTn(Ĵ)

)
− Ūn

(
Ĵn, Ĵ−nTn(Ĵ)

)
> 0 (29)

=⇒ f
(
Jn, Ĵ−n

)
− f

(
Ĵn, Ĵ−n

)
> 0, ∀ Jn, Ĵn ∈ Jn, Ĵ−n ∈ J−n.

The proof of this proposition is relegated to Appendix D. Thekey observation used in the proof is that

Rm((Ŝn,an), Ĵ−n) = Rm((Ŝn, ân), Ĵ−n), ∀ m 6= n

Tq,n(Ŝ, â) = Tq,n(Ŝ, [an, â−n]), ∀ q ∈ Q.

That is, if usern unilaterally switches from BŜan to an but keeps its covariance matrix unchanged, then all other

users’ transmission rates as well as the price charged for user n remains the same.

Due to the hybrid structure of the users’ strategy spaceJ , conventional existence results of the NEs for a

N -person concave game (e.g., [36]) do not apply here. Fortunately, by utilizing Proposition 2, we can extend our

argument in the proof of Theorem 2 to show the following existence result of the NE of gameGJ .

Theorem 3: The gameGJ must admit at least one pure NE. Moreover, if(S∗,a∗,T∗) is a NE of the gameGJ ,

thenS∗ must be a KKT solution of the problemSUM(a∗).

Proof: We first claim that the global optimal solution of problem (SYS), say(S̃, ã), along with the corre-

sponding price matricesT(S̃, ã) is a NE of the gameGJ . Assume the contrary, then there must exist a usern ∈ N
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with (Ŝn, ân) 6= (S̃n, ãn) who has incentive to switch

Ūn

(
(Ŝn, ân), J̃−n,Tn(J̃)

)
> Ūn

(
J̃n, J̃−n,Tn(J̃)

)
. (30)

However, using Proposition 2, this implies that

f
(
(Ŝn, ân), J̃−n

)
> f

(
J̃n, J̃−n

)
(31)

which contradicts the global optimality of(S̃, ã). The second part of the theorem can be shown following the same

proof in Theorem 2.

In the following, we propose a distributed algorithm for theusers to reach a NE of the gameGJ . Central

to the proposed algorithm is the procedure developed in the previous section that allows the users to compute

their transmit covariance matrices. The algorithm works byalternating between the users’ and the BSs’ utility

maximization problems. In each iterationt, a single usern ∈ N updates its transmit covariance and BS association

by solving its utility maximization problem

(St
n,a

t
n) = arg max

(Sn,an)∈Jn

Ūn

(
(Sn,an),J

t−1
−n ,T

t−1
n

)
. (32)

Then all the BSs update their interference prices by solvingtheir respective utility maximization problems

Tt
q = argmax

Tq

D̄q(Tq,T
t−1
−q ,J

t), ∀ q ∈ Q. (33)

Each user’s utility optimization problem (32) can be performed by the following two steps: a) solveQ inner

covariance optimization problemsmaxSn∈Fn
Ūn ((Sn, q),J−n,Tn), one for each BSq ∈ Q (each of these problems

can be solved using the procedure listed in Table II in Section III); b) pick the best BS in terms of the optimal

value of the inner covariance optimization problem.

The proposed algorithm naturally incorporates the joint optimization of BS association and linear precoder into

individual mobile users’ optimization problem. The detailed algorithm is listed in Table III.
TABLE III

A D ISTRIBUTED BEST-RESPONSEALGORITHM

S1) Initialization: Let t = 0, each usern ∈ N randomly chooseJ0
n ∈ Jn;

each BSq ∈ Q setT0
q = 0.

S2) Choose a usern ∈ N . Compute
∑

q∈QTt
q,n.

S3) Usern computesJt+1
n by solving:

(St+1
n ,at+1

n ) = argmaxq∈QmaxSn∈Fn
Ūn((Sn, q),S

t
−n,a

t
−nT

t
n).

For the rest of usersm 6= n, setJt+1
m = Jt

m.
S4) Each BSq ∈ Q updates its price matrices by

Tt+1
q,n = −∑m∈Nq(at+1)\n ▽Sn

fm(Rm(St+1
m ,St+1

−m)),∀ n ∈ N .
S5) Continue: Set t = t+ 1, go to S2) unless some stopping criteria is met.

An important feature of the algorithm is that the computation of each of its steps is closed form (subject to

efficient bisection search) and distributed. We briefly remark on the distributed implementation of the algorithm.

The following three assumptions are needed for this purpose. First, local channel information is known by each
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user, that is, each usern has the knowledge of{Hq,n}q∈Q. Second, each BS has a feedback channel to all the

potential users. Third, each BS knows the utility function of the users that are associated with it.

Under these assumptions, the proposed algorithm can be implemented distributedly. At iterationt, each BSq can

compute the priceTt
q,n locally by measuring the total received signal varianceGq(S

t) and computing the MMSE

matrix Em(St) of each associated userm ∈ Nq (cf (5) and (8)). Suppose usern is scheduled to update at iteration

t. Then all the BSs can broadcast their pricing informationTt
q,n for usern as well as their total received signal

covarianceGq(S
t) (note, due to symmetry, only upper triangular parts of thesematrices need to be transmitted).

Upon receiving all this information, usern can carry out its utility maximization locally.

Moreover, when the network is operated in a time division duplex (TDD) mode, the information that needs to

be broadcast can be significantly reduced. This reduction ismade possible by utilizing the following two facts:

1) in TDD mode, the uplink channels can be viewed as the Hermitian transpose of its reverse channels (i.e.,

Hq,n = HH
n,q); 2) each usern only needs thesumof all the prices charged for it:

∑
q∈QTt

q,n. Specifically, the BSs

do not need to broadcast the pricing information for usern explicitly. Each BSq only needs to broadcastGq(S
t)

by using the following transmit covariance matrix

∑

m∈Nq\n
αm(S)G−1

q (S)Hq,mS
1

2
mE−1

m (S)(S
1

2
m)HHH

q,mG−1
q (S). (34)

This matrix can be calculated once BSq obtains the measurement of the total received signal variance Gq(S
t)

and computes the MMSE matrixEm(St), for all m ∈ Nq(a
t). In this way, usern can decode the messages and

measure the total received signal covariance expressed as

∑

q∈Q

HH
q,n


 ∑

m∈Nq\n

αm(S)G−1
q (S)Hq,mS

1
2
mE−1

m (S)(S
1
2
m)HHH

q,mG−1
q (S)


Hq,n. (35)

By the definition of prices in (8) and (10), the received signal covariance is precisely the total price
∑

q∈QTt
q,n.

In the following we provide the convergence result of the proposed algorithm. The details of the proof are

presented in Appendix E.

Theorem 4: The sequence{f(St,at)}∞t=1 generated by the proposed algorithm is monotonically increasing and

always converges. Any limit point of{St,at,Tt}∞t=1 is a NE of the gameGJ .

We remark that the proposed algorithm can also be applied to the scenario in which the user-BS assignment is

fixed. In this case the users only need to performa single inner optimization in S3). An immediate consequence

of Theorem 4 is that this reduced form of the algorithm also converges to the NE of the gameGC .

Corollary 1: When the user-BS assignment is fixed, the sequence{f(St)}∞t=1 generated by the proposed algorithm

is monotonically increasing and converges. Any limit pointof {St,Tt}∞t=1 is a NE of the gameGC .

This corollary generalizes the convergence result presented in [37], which deals with only the single antenna

case and is limited to the weighted sum rate utility. Furthermore, it establishes the convergence for the algorithm

proposed in [11], [12], since the latter is a specializationof our algorithm to the case where the user-BS association
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is fixed and the system utility is the weighted sum rate function.

V. NUMERICAL RESULTS

In this section, we compare the performance of the proposed algorithm with the WMMSE algorithm [18]. The

latter is known to be an effective method to solve the sum utility maximization problem for the MIMO interference

channel, except that it requires the user-BS assignment to be fixed. To facilitate the comparison, we fix the user-BS

assignment for the WMMSE algorithm using the received signal strengths, as is done in the conventional cellular

networks. We demonstrate that the distributed algorithm proposed in this paper can achieve a higher spectrum

efficiency and more effective load balancing in a HetNet thanthe WMMSE algorithm.

We consider a single macro cell in a HetNet. The macro cell consists of 7 pico cells, each containing 1 pico BS, and

has a total of16 users. The distance between adjacent pico BSs is 200 meters (representing a dense macro cell with

small pico cell sizes). Letdq,n denote the distance between pico BSq and usern. The entries of the channelHq,n

are generated from distributionCN (0, σ2
q,n), where the standard deviation is given byσq,n = (200/dq,n)

3.5 Lq,n,

and 10 log 10(Lq,n) ∼ N (0, 8) is used to model the shadowing effect. We fix the environment noise power as

σq = 1,∀ q ∈ Q, and let all users have the same transmit power limitp̄n = p̄, ∀ n ∈ N . We define the signal to

noise ratio as SNR, 10 log10 p̄.
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Fig. 1. Comparison of the performance of the proposed algorithm and the WMMSE algorithm when the proportional fair utility is used.
N = 16, Q = 7, users are all located at the cell edges. Left: comparison ofthe users’ averaged rates. Right: comparison of the CDF of
users’ achieved rates.

We first consider a scenario in which the users are all locatedat the pico cell edges, and one of the pico

BSs is congested. In particular, we place half of the users uniformly at the cell edges of BS1, which is within

d1,n ∈ [90, 100] meters. We place the rest of the users randomly at the cell edges of other pico BSs. For the

WMMSE algorithm, we let the users associate to the pico BSs with the strongest direct channel (in terms of the 2-

norm of the channel matrices). For our proposed algorithm, we place a restriction that the users can only choose their

association among the three strongest pico BSs. We initiateour algorithm by assigning the users to their respective

strongest pico BSs. Fig. 1 compares the performance of the algorithms when the proportional fairness utility is

used, i.e.,fn(Rn) = log(Rn), ∀ n ∈ N . Each point on this figure is averaged over100 randomly generated user

positions and channel coefficients. The left panel of Fig. 1 compares the users’ averaged rates achieved by different
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algorithms. The right panel of Fig. 1 compares the CDF (cumulative distribution function) of the individual rates of

the two algorithms when SNR= 30dB. Fig. 1 shows that if the user-BS assignment is allowed to be optimized, the

proposed algorithm can achieve a substantially higher spectrum efficiency and fairer rate allocation, as compared to

the case when the user-BS assignment is fixed. This is reasonable since assigning weak users to less congested BSs

(rather than the closest BSs) effectively reduces the interference level (hence the congestion level) of the congested

BS. In this way, both user fairness and the spectral efficiency of the entire network are enhanced.
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Fig. 2. Comparison of the performance of the proposed algorithm and the WMMSE algorithm in a HetNet with different BS capabilities.
The proportional fair utility is used.N = 16, Q = 7. Half of the users are uniformly distributed in cell1, all other users are uniformly
distributed in other cells. Three neighboring BSs have10 receiving antennas, and all other BSs have the same number ofantennas as BS1
(which is either2 or 4). Left: comparison of the users’ averaged rates. Right: comparison of the CDF of users’ achieved rates.

To highlight the load balancing capability of the proposed algorithm, we next consider a scenario in a HetNet

where the pico BSs have different capabilities. Specifically, three out of the six neighboring pico BSs of BS 1

have10 receive antennas, and all other pico BSs (including BS1) have fewer receive antennas. Half of the users

are uniformly located in cell1 (which is within d1,n ∈ [20, 100] meters) and the rest of the users are uniformly

located in other cells (dq,n ∈ [20, 100] meters,q 6= 1). Again we use the proportional fairness utility function,and

the proposed algorithm compares favorably with the WMMSE algorithm. See Fig. 2.

Interestingly, by using the proposed joint BS association and linear precoder optimization algorithm, the “cell

breathing” phenomenon [20] can be observed. This phenomenon refers to the desirable load balancing property of

a network: when a cell is congested, it contracts and the celledge users automatically switch to adjacent cells. See

Fig. 3 for an illustration.

VI. CONCLUSION

In this paper, we consider the joint design of the user-BS assignment and the users’ linear precoder in a

multicell heterogeneous network. By a careful user-BS association, users in a hot spot can avoid congesting the

nearest BS or causing excessive interference to each other.Unfortunately the overall joint optimization problem is

shown to be computationally intractable. To find a high quality locally optimal solution, we propose an efficient

and low-complexity algorithm using a game theoretic formulation. The effectiveness of the proposed algorithm
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Fig. 3. Illustration of the cell breathing phenomenon.Q = 7, N = 20, Rn = 4, Tq = 4, proportional fair utility is used. In the figures, the
diamonds denote the BSs, the dots denote the users, and the lines indicate associations. Left: user-BS assignment in which users are associated
to the BS with the strongest channel magnitude in terms of 2-norm. Right: user-BS assignment generated by the proposed algorithm.

is demonstrated via numerical simulations which show substantially improved spectrum efficiency and fairness

provisioning. A drawback of this algorithm is the fact that it requires the exact knowledge of channel state

information (CSI). An important issue worth investigatingis to what extent we can use inexact channel state

information or just use the long-term channel statistics inplace of the CSI. Another interesting issue is to incorporate

the users’ quality of service constraints in the problem formulation.

APPENDIX A

PROOF OFTHEOREM 1

Proof: GivenM disjunctive clausesC1, · · · , CM defined onN Boolean variablesX1 · · · ,XN , i.e.,Cm = t1∨
t2∨t3 with ti ∈ {X1, · · · ,XN , X̄1, · · · , X̄N}, the 3-SAT problem is to check whether there exists a truth assignment

for the Boolean variables such that all clauses are satisfied(i.e., each clause evaluates to1) simultaneously. Let

π(Cm, i) denote theith term of the clauseCm, and letI(t) denote the index of a termt’s corresponding variable.

For example ifCm = X̄1 ∨ X̄2 ∨X4, thenπ(Cm, 1) = X̄1, andI(π(Cm, 3)) = 4.

Given any 3-SAT problem withM disjunctive clauses andN variables, we construct an instance of multiple BS

multi-user uplink network with3M +N BSs andM + 2N users. LetTn = Rq = 1, σ2
q = 1, p̄n = 1 andwn = 1,

for all q, n. Let hq,n denote the channel coefficient between usern and BSq. For each clauseCm, we construct3

clause BSs{c1m, c2m, c3m}, and construct1 clause userdenoted as userCm. For each variableXn, we construct1

variable BSdenoted asxn, and construct2 variable usersdenoted as̄Xn,Xn. The channel coefficients are specified

as follows. The clause userCm has nonzero channels only to the clause BSs{cim}3i=1. The variable userXn has

nonzero channels only to the variable BSxn and the clause BSCi
m that satisfiesX̄n = π(Cm, i). Similarly, the user

X̄n has nonzero channels to the variable BSxn and the clause BSCi
m that satisfiesXn = π(Cm, i). Specifically,

the channel coefficients are designed as:

hq,Cm
=





√
7, q ∈ {c1m, c2m, c3m},

0, q /∈ {c1m, c2m, c3m}.
(36)
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hq,Xn
=





√
7, q = xn,

1, q = cim, andπ(Cm, i) = X̄n,

0, otherwise.

(37)

hq,X̄n
=





√
7, q = xn,

1, q = cim, andπ(Cm, i) = Xn,

0, otherwise.

(38)

To illustrate, for a given clauseCm = X1 ∨ X̄2 ∨X3, we construct the network shown in Fig. 4.

Fig. 4. Construction of the network for clauseCm = X1∨X̄2∨X3.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Achievable rate of user 1

A
ch

ie
va

bl
e 

ra
te

 o
f u

se
r 

2

Directly Achievable Rate Frontier

A

B

Fig. 5. Achievable rate frontier of two-user single channel
interference channel when all the direct and cross talk channel
coefficients are set to be

√
7.

Our claim is that the 3-SAT problem will be satisfied if and only if the network we constructed achieves a total

sum rate of at least3(M +N).

Suppose that the 3-SAT problem is satisfied, then we perform the following assignment: 1) IfXn = 1, assign

the corresponding variable userXn to BS xn. Otherwise, assign user̄Xn to BS xn. 2) for each clauseCm, pick

an indexi∗m ∈ {1, 2, 3} such thatπ(Cm, i∗m) = 1 (note that because the 3-SAT problem is satisfied, we can always

do so). Assign the clause userCm to the clause BSci
∗

m
m . We claim that by the above user-BS assignment, and

by letting all the assigned users transmit with full power, the overall sum rate achieved is3(M + N). To argue

this claim, we first note that there isa singleuser in the variable user pair̄Xn,Xn that transmits with full power

to BS xn. Thus each variable BSxn is free of multiuser interference and obtains a rate oflog(1 + 7
1) = 3. We

then consider an arbitrary clauseCm, and pick a termt that evaluates to1, i.e., t = π(Cm, i∗m). According to our

assignment scheme, usert̄ does not transmit while usert transmits with full power. By our construction of the

channel in (36)–(38), the only variable user that has nonzero channel to the clause BSci
∗

m
m is user t̄. Since user

t̄ does not transmit, then the clause userCm can transmit to clause BSci
∗

m
m free of interference. Consequently it

obtains a rate oflog(1 + 7
1) = 3. In summary, each variable BS is able to achieve a rate of3, while each set of

three clause BSs{c1m, c2m, c3m} obtains a total rate of3. Thus the total system sum rate is3(M +N).

Conversely, suppose the network achieves a total rate of3(M + N), we argue that the corresponding 3-SAT

problem must be satisfied. We show this direction by three steps.
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Step 1) We first claim that for any variable BSxn, its maximum achievable sum rate is obtained whena single

variable user,Xn or X̄n, transmits to it using full power, while the remaining user does not transmit. LetpXn
and

pX̄n
denote the transmission power of userXn andX̄n, respectively. The rate region of this uplink channel when

the interference is treated as noise can be expressed as

R = {(RX̄n
(pXn

, pX̄n
), RXn

(pXn
, pX̄n

)) : 0 ≤ pXn
≤ 1, 0 ≤ pX̄n

≤ 1}

where RXn
(pXn

, pX̄n
) = log

(
1 +

pXn
|hxn,Xn

|2
1 + pX̄n

|hxn,X̄n
|2
)

RX̄n
(pXn

, pX̄n
) = log

(
1 +

pX̄n
|hxn,X̄n

|2
1 + pXn

|hxn,Xn
|2

)
(39)

with the channel coefficients given ashxn,X̄n
= hxn,Xn

=
√
7. In [38], Charafeddine and Paulraj derived a complete

characterization of this rate region (without time-sharing operation). This region (plotted in Fig. 5) asserts that the

sum rate maximum point can be achieved only if a single user transmits using its full power (at point A or B).

Step 2) We then argue that a variable user should never be assigned toany clause BS at the sum-rate optimal

solution. To see this, consider an arbitraryCm and an arbitraryi ∈ {1, 2, 3}, let t = π(Cm, i). Suppose at the

optimal solution usert transmits to BScim, then it can obtain a maximum rate oflog(1 + 1
1) = 1. If BS xI(t) has

no associated user at the optimal solution, then the same user t can switch to BSxI(t) and obtain a rate increase

of log(1 + 7
1) − log(1 + 1) = 2. This is a contradiction to the optimality of the solution. Consequently BSxI(t)

must have user̄t associated to it. In this case, the maximum sum rate that usert and t̄ can obtain is the optimal

solution for the following problem

max
0≤pt,pt̄≤1

log

(
1 +

7pt̄
1 + 7pt

)
+ log (1 + pt) .

Clearly at the optimalpt̄ = 1, and the tuple(pt, pt̄) = (0, 1) is a feasible solution to the above problem with

an objective valuelog(1 + 7
1) = 3. We then argue that(pt, pt̄) = (0, 1) is in fact the optimal solution to this

optimization problem. Specifically, we will show that the following is true

log

(
1 +

7

1 + 7pt

)
+ log (1 + pt) < log(1 + 7), ∀ 0 < pt ≤ 1. (40)

Equivalent we show the following inequality

f(pt) ,

(
1 +

7

1 + 7pt

)
(1 + pt) < 8, ∀ 0 < pt ≤ 1. (41)

Note thatdf(pt)
dpt

= 1− 42
(1+7pt)2

. So whenpt ∈ [0,
√
42−1
7 ], the slope off(pt) is negative, and the functional value of

f(pt) is strictly decreasing. whenpt ∈ (
√
42−1
7 , 1], the functional value off(pt) is strictly increasing. Combining

with the fact thatf(0) = 8 and f(1) = 2 + 7
4 < 8, we have thatf(pt) < 8 for all 0 < pxn

≤ 1. In summary, a

variable user never transmits to any clause BS at the sum rateoptimal solution.

Step 3) The third step is to show that any clauseBS tuple{c1m, c2m, c3m} can at most obtain a rate oflog(1+ 7
1) = 3
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at the sum rate optimal point. This step is trivial as the onlycandidate that can select and transmit to clause BSs

{cim}3i=1 is the clause userCm. When there is no interference, the maximum rate userCm (and equivalently the

set of BSs{cim}3i=1) can get islog(1 + 7) = 3. Note that this maximum rate can be achievedonly whenat least

one of these clause BSs does not experience interference from the variable users.

Step 2-3 together imply that each variable BS and each clauseBS tuple {cim}3i=1 are able to achieve a rate

at most3 at sum rate optimal point. As a result, in order to achieve a system rate of3(M + N), each of them

must achieve a rate that exactly equals to3. From Step 3, for any clauseCm, if a BS tuple{cim}3i=1 achieves a

throughput of3, then it is only possible that there exists a indexi∗m and a usert∗m = C(m, i∗m) such that user̄t∗m

does not transmit. Set the termst∗m = 1 for each clausem = 1, · · · ,M . This assignment ensures that every clause

Cm contains at least one term that is assigned to1. Consequently, the 3-SAT problem is satisfied.

Since the above construction only involves universal constants, the joint linear precoder design and base station

selection problem (SYS) is strongly NP-hard. The proof is complete.

APPENDIX B

PROOF OFLEMMA 1

Proof: We prove this claim by contradiction. Suppose the contrary,that αn

(∑Tn

i=1 log
( c[∆n]2i,i
1−ζ∗

i (c)

))
> c and

c∗ ≤ c. Defines∗i (c) ,
[
c− 1

[∆n]2i,i

]+
. Define the following two sets

I(c) , {i | s∗i (c) = 0} , I(c) , {i | s∗i (c) > 0} .

From the definitions∗i (c) =
[
c− 1

[∆n]2i,i

]+
, ζ∗i (c) =

[
1− c[∆n]

2
i,i

]+
, we have

αn

(
Tn∑

i=1

log

(
c[∆n]

2
i,i

1− ζ∗i (c)

))
= αn



∑

i∈I(c)

log

(
c[∆n]

2
i,i

1− ζ∗i (c)

)


= αn


 ∑

i∈I(c)

log
(
c[∆n]

2
i,i

)

 .

Note that if c∗ ≤ c, we haveI(c∗) ⊆ I(c), I(c∗) ⊇ I(c). This together with the fact thatc∗ ≤ c imply

∑

i∈I(c)
log
(
c[∆n]

2
i,i

)
≥

∑

i∈I(c∗)
log
(
c∗[∆n]

2
i,i

)
.

Since, as the derivative of a concave utility function, the functionαn(·) is monotonically decreasing, we obtain

αn

(
Tn∑

i=1

log

(
c∗[∆n]

2
i,i

1− ζ∗i (c
∗)

))
= αn


 ∑

i∈I(c∗)

log
(
c∗[∆n]

2
i,i

)



≥ αn


 ∑

i∈I(c)

log
(
c[∆n]

2
i,i

)

 > c ≥ c∗.
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This is a contradiction to the optimality condition that

αn

(
Tn∑

i=1

log

(
c∗[∆n]

2
i,i

1− ζ∗i (c
∗)

))
= c∗.

Thus we conclude that any fixedc, if αn

(∑Tn

i=1 log
( c[∆n]2i,i
1−ζ∗

i (c)

))
> c, thenc∗ > c.

The other direction can be shown similarly.

APPENDIX C

PROOF OFLEMMA 2

We show that the function−Tr
[
E−1

m (Ŝ)Em(Sn,S−n)
]

is convex inSn. Let

gm(Sn) , Tr
[
E−1

m (Ŝ)(S
1

2
m)HHH

am,mG−1
m (S)Ham,mS

1

2
m

]
.

From [33], we see that in order to prove thatgm(Sn) is convex inSn, it is sufficient to prove thatgm(Sn+ tD)

is convex in the scalar variablet, for any fixed directionD ∈ STn as long asSn + tD ∈ S
Tn

+ . In what follows, we

will show that for allD ∈ STn that satisfiesSn + tD � 0, we have∂2g(Sn+tD)
∂t2

≥ 0.

To proceed, we make the following definitions

B , Han,nDHH
an,n

,

Gm(t) , σ2
an
I+

N∑

l=1

Han,lSlH
H
an,l

+ tHan,nDHH
an,n

.

The first and second order derivatives ofgm(Sn + tD) with respect tot can be expressed as

∂gm(Sn + tD)

∂t
= −Tr

[
E−1

m (Ŝ)(S
1
2
m)HHH

am,mG−1
m (t)BG−1

m (t)Ham,mS
1
2
m

]

∂2gm(Sn + tD)

∂t2
= 2Tr

[
E−1

m (Ŝ)(S
1
2
m)HHH

am,mG−1
m (t)BG−1

m (t)BG−1
m (t)Ham,mS

1
2
m

]
.

The fact thatSn + tD ≻ 0 ensuresGm(t) ≻ 0, which further implies

(S
1

2
n)

HHH
an,n

G−1
m (t)BG−1

m (t)BG−1
m (t)Han,nS

1

2
n � 0.

Combining with the fact thatE−1
m (Ŝ) ≻ 0, we conclude that∂

2gm(Sn+tD)
∂t2

≥ 0.

APPENDIX D

PROOF OFPROPOSITION2

Proof: We first write an equivalent form of (29) (note that we have defined Ĵ = (Ŝ, â))

Ūn

(
Jn, Ĵ−n,Tn(Ĵ)

)
− Ūn

(
Ĵn, Ĵ−n,Tn(Ĵ)

)

=
[
Ūn

(
(Sn,an), Ĵ−n,Tn(Ŝ, â)

)
− Ūn

(
(Ŝn,an), Ĵ−n,Tn(Ŝ, [an, â−n])

)]

+
[
Ūn

(
(Ŝn,an), Ĵ−n,Tn(Ŝ, [an, â−n])

)
− Ūn

(
(Ŝn, ân), Ĵ−n,Tn(Ŝ, â)

)]
. (42)
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We show that the following identities are true

Rm((Ŝn,an), Ĵ−n) = Rm((Ŝn, ân), Ĵ−n), ∀ m 6= n (43)

Tq,n(Ŝ, â) = Tq,n(Ŝ, [an, â−n]), ∀ q ∈ Q. (44)

This set of equations implies that if usern unilaterally switches from BŜan to an but keeps its covariance matrix

unchanged, then all other users’ transmission rates as wellas the prices charged for usern remain the same.

Identity (43) is straightforward as the interference at user m’ receiver caused by usern is unchanged as long as

usern’s transmit covariance matrix remains to beŜn.

To verify (44), we first recall that the prices are defined as follows

Tq,n(Ŝ, â) = −
∑

m∈Nq(â)\n

∂fm(Rm)

∂Rm

∣∣∣∣
Rm=Rm(Ŝ)

HH
q,nC

−1
m (Ŝ−m)

(
IRq

+Hq,mŜmHH
q,mC−1

m (Ŝ−m)
)−1

×Hq,mŜmHH
q,mC−1

m (Ŝ−m)Hq,n. (45)

Take any BSq that satisfiesq 6= an and q 6= ân. Clearly we have{m : m ∈ Nq(â),m 6= n} = {m : m ∈
Nq([an, â−n]),m 6= n}. For BS q = ân or q = an, although usern has changed its association, the other users’

associations remain the same. That is, we again have{m : m ∈ Nq(â),m 6= n} = {m : m ∈ Nq([an, â−n]),m 6=
n}. Combining the above two observations with the fact that thetransmit covarianceŝS of all the users remain the

same, we conclude thatTq,n(Ŝ, â) = Tq,n(Ŝ, [an, â−n]), for all q ∈ Q. This proves (44).

Now using (44), the first difference in (42) becomes

Ūn

(
(Sn,an), Ĵ−n,Tn(Ŝ, â)

)
− Ūn

(
(Ŝn,an), Ĵ−n,Tn(Ŝ, [an, â−n])

)

=
(
Ūn

(
(Sn,an), Ĵ−n,Tn(Ŝ, [an, â−n])

)
− Ūn

(
(Ŝn,an), Ĵ−n,Tn(Ŝ, [an, â−n])

))

(i)
≤ f

(
(Sn,an), Ĵ−n

)
− f

(
(Ŝn,an), Ĵ−n

)
. (46)

where the inequality (i) is due to (28), which states that fora fixed system association profile ([an, â−n] in this

case), the usern’s increase of utility induced by unilateral change of its transmit covariance is upper bounded by

the increase of the system sum utility. The second difference in (42) becomes

Ūn

(
(Ŝn, an), Ĵ−n,Tn(Ŝ, [an, â−n])

)
− Ūn

(
(Ŝn, ân), Ĵ−n,Tn(Ŝ, â)

)

= fn

(
Rn((Ŝn, an), Ĵ−n)

)
− Tr

[
Tn(Ŝ, [an, â−n])Ŝn

]
− fn

(
Rn((Ŝn, ân), Ĵ−n)

)
+ Tr

[
Tn(Ŝ, â)Ŝn

]

(i)
= fn

(
Rn((Ŝn, an), Ĵ−n)

)
− fn

(
Rn((Ŝn, ân), Ĵ−n)

)

(ii)
=

N∑

m=1

fm

(
Rm((Ŝm, am), Ĵ−m)

)
− fm

(
Rm((Ŝm, âm), Ĵ−m)

)
= f

(
(Ŝn, an), Ĵ−n

)
− f

(
(Ŝn, ân), Ĵ−n

)
(47)
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where the step(i) follows from (44) and step (ii) is due to (43). Combining (42), (46) and (47), we have that

Ūn

(
(Sn,an), Ĵ−n,Tn(Ŝ, â)

)
− Ūn

(
(Ŝn, ân), Ĵ−n,Tn(Ŝ, â)

)

≤ f
(
(Sn,an), Ĵ−n

)
− f

(
(Ŝn, ân), Ĵ−n

)
. (48)

This proves the claim.

APPENDIX E

PROOF OFTHEOREM 4

By the generalized potential property stated in Proposition 2, the sequence{f(St,at)} is monotonically increasing

and converges. Let us denote the limit of this sequence asf∗.

Let A be the set of association profiles that appear infinitely often in the sequence{at}. Take anya ∈ A, define

the subsequence{at̃k} of {at} that satisfies

at̃k = a, andam 6= a, ∀ m ∈ (t̃k, t̃k+1).

Clearly the sequence{f(St̃k ,at̃k)}k is also increasing and converges tof∗. Let S∗ be a limit point of{St̃k}. Take a

further subsequence{atk} of {at̃k} such thatlimk→∞ Stk = S∗. Due to the fact thatTn(·) is a continuous function

in S, the subsequence{Ttk
n (Stk)} must be convergent for alln. Let T∗

n = Tn(S
∗) for all n. We wish to show that

(S∗,a,T∗) is a NE of the gameGJ . The desired result will be shown in two steps.

S1) Ūn(S
∗,a,T∗

n) ≥ Ūn([Sn,S
∗
−n], [an,a−n],T

∗
n), ∀ Sn ∈ Fn ∀n ∈ N .

S2) Ūn(S
∗,a,T∗

n) ≥ Ūn([Sn,S
∗
−n], [ân,a−n],T

∗
n), ∀ ân 6= an, ∀ Sn ∈ Fn. ∀n ∈ N .

Without loss of generality (by possibly restricting to a further subsequence), we can assume that at time instance

tk + 1, it is user1’s turn to act.

Step 1) Let (S∗
1)

tk be the (unique) solution to the problemmaxS1∈F1
Ū1(S1,S

tk
−1,a

tk ,Ttk
1 ). To show S1), it is

sufficient to show thatlimk→∞ ‖(S∗)tk1 − Stk
1 ‖ = 0. Due to the strict concavity of̄U1(S1,S−1,a,T1) in S1, and

use the definition of(S∗
1)

tk , we have:

Ū1

(
(S∗

1)
tk ,Stk

−1,a
tk ,Ttk

1

)
> Ū1

(
S1 + t((S∗

1)
tk − S1),S

tk
−1,a

tk ,Ttk
1

)
, ∀ t ∈ [0, 1), S1 6= (S∗

1)
tk . (49)

We will show thatlimk→∞(S∗
1)

tk − Stk
1 = 0. The proof is along the lines of that of [39, Proposition 2.7.1], but

with some important modifications, due to the lack of concavity/convexity of the functionf(·) with S1. Suppose

{(S∗
1)

tk−Stk
1 } does not converge to0. Let γtk , ‖(S∗

1)
tk−Stk

1 ‖, then by possibly restricting to a further subsequence

of {tk}, we can find aγ̄ > 0 such thatγtk ≥ γ̄, ∀ k. Let Vtk
1 = ((S∗

1)
tk − Stk

1 )/γtk , which is equivalent to

(S∗
1)

tk = Stk
1 + γtkVtk

1 . Clearly,‖Vtk
1 ‖ = 1, and by possibly restricting to a further subsequence, we assume that

Vtk
1 converges toV̄1.

Let us fixed someǫ ∈ (0, 1). We must have0 < ǫγ̄ < γtk . SoStk
1 + ǫγ̄Vtk

1 lies on the line segment joiningStk
1

andStk
1 + γtkVtk

1 = (S∗
1)

tk . Since(Stk+1
1 ,atk+1

1 ) is the solution to user1’s utility optimization problem at time
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tk + 1, we have (recall thatJtk
−1 = (Stk

−1,a
tk
−1))

Ū1((S
tk+1
1 ,atk+1

1 ),Jtk
−1,T

tk
1 )

≥ Ū1((S
∗
1)

tk ,Stk
−1,a

tk ,Ttk
1 ) = Ū1(S

tk
1 + γtkVtk

1 ,Stk
−1,a

tk ,Ttk
1 )

≥ Ū1(S
tk + ǫγ̄Vtk ,Stk

−1,a
tk ,Ttk

1 ) ≥ Ū1(S
tk
1 ,Stk

−1,a
tk ,Ttk

1 ).

where the last two steps follow from the concavity ofŪ (cf. (49)). Combining the above inequality with (48), we

have

f((Stk+1
1 ,atk+1

1 ),Jtk
−1)− f((Stk

1 ,atk1 ),Jtk
−1)

≥ Ū1((S
tk+1
1 ,atk+1

1 ),Jtk
−1,T

tk
1 )− Ū1((S

tk
1 ,atk1 ),Jtk

−1,T
tk
1 )

≥ Ū1(S
tk + ǫγ̄Vtk ,Stk

−1,a
tk ,Ttk

1 )− Ū1((S
tk
1 ,atk1 ),Jtk

−1,T
tk
1 ) ≥ 0. (50)

Due to the fact that the sequence{f(St,at)} converges tof∗, we can take the limit of (50), and obtain

0 ≥ Ū1(S
∗
1 + ǫγ̄V̄,S∗

−1,a,T
∗
1)− Ū1(S

∗,a,T∗
1) ≥ 0. (51)

From the assumption,̄γ > 0, and ǫ ∈ (0, 1), we haveǫγ̄V̄ 6= 0. This contradicts the fact that for fixeda,

Ū1(S1,S
∗
−1,a,T

∗
1) has aunique maximizer (which can be seen by settingt = 0 in (49)). We conclude that

(S∗
1)

tk − Stk
1 converges to0. Due to the fact thatlimk→∞ Stk = S∗, we have(S∗

1)
tk converges toS∗

1. This implies

Ū1([S
∗
1,S

∗
−1],a,T

∗
1) ≥ Ū1([S1,S

∗
−1],a,T

∗
1), ∀ S1 ∈ F1. (52)

Step 2) From (48), we have that

f((Stk+1
1 ,atk+1

1 ),Jtk
−1)− f((Stk

1 ,atk1 ),Jtk
−1)

≥ Ū1((S
tk+1
1 ,atk+1

1 ),Jtk
−1,T

tk
1 )− Ū1((S

tk
1 ,atk1 ),Jtk

−1,T
tk
1 ) ≥ 0.

Utilizing the above relationship as well as the fact that thesequence{f(St,at)} converges tof∗, we have the

following limiting arguments (notice the fact thatatk = a, ∀ k)

lim
k→∞

Ū1(S
tk+1,atk+1,Ttk

1 ) = lim
k→∞

Ū1(S
tk ,atk ,Ttk

1 ) = Ū1(S
∗,a,T∗

1).

From the definition of(Stk+1
1 ,atk+1

1 ), we must have

Ū1(S
tk+1,atk+1,Ttk

1 ) ≥ Ū1([S1,S
tk
−1], [â1,a

tk
−1],T

tk
1 ), ∀ â1 6= atk1 , ∀ S1 ∈ F1.
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Taking limit of both sides, and notice the fact thatatk = a, ∀ k, we have

lim
k→∞

Ū1(S
tk+1,atk+1,Ttk

1 ) = Ū1(S
∗,a,T∗

1)

≥ lim
k→∞

Ū1([S1,S
tk
−1], [â1,a

tk
−1],T

tk
1 )

= Ū1([S1,S
∗
−1], [â1,a−1],T

∗
1), ∀ â1 6= a1, ∀ S1 ∈ F1.

This says

Ū1(S
∗,a,T∗

1) ≥ Ū1([S1,S
∗
−1], [â1,a−1],T

∗
1), ∀ â1 6= a1, ∀ S1 ∈ F1. (53)

Combining (52) and (53), we have

Ū1 (S
∗,a,T∗

1) ≥ Ū1

(
[S1,S

∗
−1], [â1,a−1],T

∗
1

)
, ∀ S1 ∈ F1, â1 ∈ Q. (54)

Enumerating the above steps for alln ∈ N , we have that (54) is true for every user, thus(S∗,a,T∗) is a NE of

gameGJ .
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