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Frugal Sensing: Wideband Power Spectrum Sensing from Few Bits
Omar Mehanna, Member, IEEE, Nicholas D. Sidiropoulos†, Fellow, IEEE

Abstract—Wideband spectrum sensing is a key requirement
for cognitive radio access. It now appears increasingly likely
that spectrum sensing will be performed using networks of
sensors, or crowd-sourced to handheld mobile devices. Here,
a network sensing scenario is considered, where scattered
low-end sensors filter and measure the average signal power
across a band of interest, and each sensor communicates a
single bit (or coarsely quantized level) to a fusion center,
depending on whether its measurement is above a certain
threshold. The focus is on the under-determined case, where
relatively few bits are available at the fusion center. Exploiting
non-negativity and the linear relationship between the power
spectrum and the autocorrelation, it is shown that adequate
power spectrum sensing is possible from few bits, even for dense
spectra. The formulation can be viewed as generalizing classical
nonparametric power spectrum estimation to the case where the
data is in the form of inequalities, rather than equalities.

Keywords: Spectrum sensing, cognitive radio, spectral analysis,
distributed spectrum compression.

I. INTRODUCTION

Efficient utilization of the wireless spectrum has been a
growing concern, due to the remarkable growth in the mobile
Internet and the variety of emerging wireless devices and
services competing for bandwidth. Actively seeking and ex-
ploiting transmission opportunities while respecting the ‘right
of way’ of licensed users, cognitive radio is a promising
cohabitation paradigm that is currently at the center stage of
wireless communication and networking research.

Spectrum sensing is a core functionality for cognitive radio,
as it forms the basis for adaptive spectrum sharing. The goal
of spectrum sensing is to detect spectral occupancy, and per-
haps coarsely estimate power levels, under sensing constraints
that typically preclude explicitly scanning the full band. A
variety of spectrum sensing methods have been developed in
recent years, ranging from narrowband energy detection to
wideband sensing, mostly based on isolated hypothesis testing
per narrowband channel ‘bin’, without taking into account
dependence across frequency bins or exploiting any underlying
parametrization. Reference [1] provides a good up-to-date
review of spectrum sensing for cognitive radio.

The premise of cognitive radio is that most of the band
is idle, most of the time, i.e., measured spectra are typically
sparse. Building upon this premise, compressive spectrum
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sensing has been introduced to exploit frequency-domain
sparsity to obtain accurate spectrum estimates at sub-Nyquist
sampling rates, without frequency sweeping [2], [3]. A coop-
erative protocol for distributed compressive spectrum sensing
has been developed in [4], enabling cognitive radio users to
reach consensus on globally fused sensing outcomes.

Most work on spectrum sensing focuses on detecting activ-
ity in the spectrum versus the power spectrum, i.e., the Fourier
transform of the signal, as opposed to the Fourier transform
of its autocorrelation function. The power spectrum is an
expectation that reflects long-term spectral activity patterns;
short-term effects such as fading are integrated out. Power
spectrum sensing has been explored very recently in [5]–[10],
where it was shown that neither Nyquist-rate sampling nor full-
band scanning is necessary when the goal is to estimate only a
finite set of correlation lags, which is then Fourier transformed
to yield an estimate of the power spectrum. This approach
can decrease the sampling rate requirements by exploiting
the ‘correlation parametrization’ (i.e., a low-order correlation
model), without requiring spectrum sparsity. The key to this
line of work is that power measurements are linear in the
autocorrelation function, hence a finite number of autocor-
relation lags can be estimated by collecting enough power
measurements to build an over-determined system of linear
equations. In [5], the power spectrum is estimated using sub-
Nyquist rate sampling by exploiting the relationship between
the autocorrelation function of the Nyquist-rate samples and
that of the compressive measurements. The assumption that
compressed measurements remain wide-sense stationary is
relaxed in [6], where the under- and over-determined cases
are considered. When over-determined, the power spectrum is
estimated using linear least-squares, without recourse to addi-
tional signal properties. When under-determined, the problem
is regularized by minimizing the ℓ1 norm of the estimated
power spectrum, thus relying on sparsity in this case.

A bank of periodic modulators is considered in [7], [8],
where each branch is sampled at a fraction of the Nyquist rate,
and cross-correlations of the branch outputs are used to build a
system of linear equations in the unknown input correlation for
a fixed number of lags. This approach has been generalized
to the case of cyclostationary signals in [9]. In [10], multi-
coset sampling is employed producing multi-resolution power
spectral estimates at arbitrarily low average sampling rates.
A different approach exploiting spectrum sparsity has been
proposed in [11], where K wideband filters are used to
detect occupancy in N channels with K < N , assuming
that the number of occupied channels is up to O(K) (less
than K/2). Note that [11] does not exploit the autocorrelation
parametrization.

References [5]–[11] assume analog amplitude samples (i.e.,
ignore quantization issues), which is reasonable for lumped
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measurements taken with relatively accurate A/D converters
at a high number of bits per sample. The situation is very
different in a network sensing setting using scattered low-end
sensors with limited communication capabilities, which is the
scenario considered here. Suppose that each sensor can only
down-convert, filter, and measure average power at the output
of its filter. Depending on the computed power level, the sensor
may send a binary signal to the fusion center, or broadcast it
to its peers. Is it possible to form a satisfactory estimate of
the ambient power spectrum using just few such bits? This is
the central question we set to address in this paper.

Power spectrum sensing from few bits has never been
considered in the past, to the best of our knowledge - yet is
a natural extension of classical spectral estimation to the case
where the data is in the form of inequalities, rather than equal-
ities. Exploiting linearity with respect to autocorrelation and
important non-negativity properties in a novel optimization-
based formulation, it is shown that the power spectrum sensing
problem can be reduced to linear programming, and that
adequate power spectrum sensing is possible from few bits,
even for dense spectra. The tradeoffs that emerge in the
selection of key parameters, such as filter length and power
threshold, and how these affect spectrum sensing performance
and complexity are studied. Also, relevant extensions, such
as adaptive sensor polling and how to deal with inconsistent
sensor readings, are discussed.

Our problem formulation may be reminiscent of one-bit
compressed sensing [12]–[14]. In [12], [13], it has been
shown that signals can be recovered with good accuracy
from compressive sensing measurements quantized to just
one bit per measurement. The reconstruction is performed by
treating the 1-bit measurements as sign constraints, and further
constraining the sparse signal on the unit sphere, such that
it is recovered within a scaling factor (unavoidable, since 1-
bit quantization eliminates all scaling information). The unit-
sphere constraint is replaced by an ℓ1-norm equality constraint
in [14] to obtain a linear programming formulation. The main
differences between our work and the one-bit compressed
sensing framework can be summarized as follows:

• We operate on the autocorrelation vector, instead of the
signal per se, and for this reason we exploit positivity
constraints that are not present in the one-bit compressed
sensing framework.

• Our choice of (positive) thresholds mitigates the scaling
problem, so we do not use a unit sphere constraint as in
[12], [13], or the ℓ1-norm constraint as in [14].

• We do not need to assume sparsity of the unknown vector,
and our method works even with few measurements due
to the strong positivity constraints that we exploit.

It is also worth mentioning that 1-bit measurements were used
to perform localization in a sensor network in [15].

The rest of the paper is organized as follows. Some pre-
liminaries are presented in Section II. The proposed frugal
sensing scheme is developed in Section III, followed by
simulations and a discussion of the various design trade-offs in
Section IV. Relevant extensions and variations are presented
in Section V. Technical derivations and proofs are deferred to
the Appendices. Conclusions are drawn in Section VI.

II. PRELIMINARIES

Consider a discrete-time wide-sense stationary (WSS) sig-
nal x(n), and let r(ℓ) := E[x(n)x∗(n − ℓ)] denote its
autocorrelation sequence, where r(ℓ) = r∗(−ℓ), ∀ℓ, and
r(0) is nonnegative, by definition. The power spectrum
of x(n) is the discrete-time Fourier transform (DTFT) of
r(ℓ), Sx(ω) =

∑∞
ℓ=−∞ r(ℓ)e−jωℓ, where Sx(ω) is real

and nonnegative. If only a finite K-lag autocorrelation se-
quence is available, represented by the vector rx = [r(1 −
K), . . . , r(−1), r(0), r(1), . . . , r(K − 1)]T , then a windowed
estimate of the power spectrum can be obtained as Ŝx(ω) =∑K−1

ℓ=−K+1 r(ℓ)e
−jωℓ. Due to truncation to a finite number

of lags, however, such an estimate is not guaranteed to be
nonnegative at all frequencies. If we discretize the frequency
axis, then an NF -point estimate of the power spectrum can
be obtained as ŝx = Frx, with ŝx(f) = Ŝx

(
2πf
NF

)
, for

f = 0, . . . , NF − 1, using the NF × (2K − 1) (phase-shifted)
discrete Fourier transform (DFT) matrix:

F =



1 · · · 1 · · · 1

e
−j 2π

NF
(1−K) · · · 1 · · · e

−j 2π
NF

(K−1)

e
−j 2π

NF
2(1−K) · · · 1 · · · e

−j 2π
NF

2(K−1)

...
...

...

e
−j 2π

NF
(NF−1)(1−K) · · · 1 · · · e

−j 2π
NF

(NF −1)(K−1)


.

Define the K ×K Toeplitz-Hermitian autocorrelation matrix

Rx = Toeplitz(rx) :=


r(0) r(−1) · · · r(1−K)

r(1) r(0)
. . .

...
...

. . .
. . . r(−1)

r(K − 1) · · · r(1) r(0)

 .

(1)
The construction of Rx from rx can be explicitly parame-
terized as follows. Let Eℓ denote the K × K matrix with
ones on the ℓ-th lower diagonal and zeros elsewhere, ℓ ∈
{1, · · · ,K − 1}. Define the (K − 1) × 1 vectors rℜ :=
Re{rx(K+1 : 2K−1)} and rℑ := Im{rx(K+1 : 2K−1)},
such that rℜ(ℓ)+jrℑ(ℓ) = r(ℓ), for ℓ ∈ {1, · · · ,K−1}, where
(K +1 : 2K − 1) denotes the range of indices from K +1 to
2K − 1, and Re{·}, Im{·} denote real and imaginary parts,
respectively. Then

Rx = r(0)I+

K−1∑
ℓ=1

[
(rℜ(ℓ) + jrℜ(ℓ))Eℓ + (rℜ(ℓ)− jrℑ(ℓ))ET

ℓ

]

= r(0)I+

K−1∑
ℓ=1

[
rℜ(ℓ)Ēℓ + rℑ(ℓ)Ẽℓ

]
(2)

where Ēℓ := Eℓ +ET
ℓ and Ẽℓ := j(Eℓ −ET

ℓ ).

III. POWER SPECTRUM SENSING FROM FEW BITS

Consider M scattered sensors measuring the ambient signal
power and reporting to a fusion center - the measurement
and reporting mechanisms will be specified shortly. We begin
by assuming that all sensors sense a common signal, up to
a sensor-specific constant modeling path loss and frequency-
flat shadowing and fading, and that each sensor samples the
signal at Nyquist rate. Both these assumptions will be lifted
in the sequel, but they simplify exposition at this point. In
Appendix A, it is shown that frequency-selective fading can be
mitigated by averaging the measurements over a long period of
time, and that the basic approach carries over without further
modification. The Nyquist sampling requirement can be lifted
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by using an equivalent analog processing and integration chain
- the details can be found in Appendix B, see also [7]. Note
that we do not assume that the sensors are synchronized;
sensing time offsets and phase shifts are allowed.

A. Sensor Measurement Chain

First, each sensor m ∈ {1, . . . ,M} uses automatic gain
control (AGC) to adjust the scaling of its received signal
ym(t) = γmx(t) to a common reference, where γm models the
associated sensor-specific loss. Note that the power spectrum
is invariant with respect to timing offset and phase shift,
hence we may assume without loss of generality that every
sensor processes the same signal, x(t), after the AGC stage.
Then, x(t) is sampled using an analog-to-digital converter
operating at Nyquist rate, yielding the WSS sequence x(n).
Sensor m ∈ {1, . . . ,M} then passes x(n) through a wideband
FIR filter with impulse response gm(n) of length K (i.e.,
gm(n) = 0 for n < 0 and n > K − 1). In order to
monitor a wide swath of spectrum with relatively few sensors,
it is necessary to use broadband filters {gm(n)}Mm=1, which
should somehow provide, loosely speaking, independent yet
complementary views of the underlying power spectrum. We
propose to use random complex pseudo-noise (PN) impulse
responses, i.e., gm(n) is generated using a PN linear shift
register, whose initial seed is unique for each sensor (e.g., its
serial number) and known to the fusion center. This approach
is simple, works well (as shown in the next section), and
requires no coordination between sensors: a sensor may fail
when its battery runs out, or new sensors may be added without
re-programming the other ones. Using random PN filters can
also be motivated from a random projections viewpoint, as for
the compression matrix applied to sparse signals [2].

The filter’s output sequence zm(n) is the convolution of
the signal x(n) with the impulse response gm(n), expressed
as zm(n) =

∑K−1
k=0 gm(k)x(n − k). Let αm := E[|zm(n)|2]

denote the average power of the WSS signal zm(n). Each
sensor estimates αm using a sample average:

α̂(N)
m =

1

N

N−1∑
n=0

|zm(n)|2

with limN→∞ α̂
(N)
m = αm under appropriate mixing condi-

tions [16, p. 171]. Finally, each sensor compares the estimated
α̂
(N)
m to a threshold (or set of thresholds). The simplest setup

is to use a single threshold t and binary {0, 1} signaling.
If α̂

(N)
m ≥ t, then sensor m sends ‘1’ to the fusion center,

otherwise it sends1 ‘0’. This sensor measurement chain is
shown in Fig. 1.

1Nothing at all, when censoring is adopted. Censoring blends well with
random access ‘uplink’ communication from the sensors to the fusion
center, because it reduces contention. When fixed multiplexing (such as
time/frequency- or code-division multiple-access) is used for sensor to fusion
center communication, it is appealing to use ternary {0,±1} signaling, cor-
responding to two power thresholds t1 and t2, where t2 > t1. If α̂(N)

m ≥ t2,
then sensor m sends ‘-1’ to the fusion center, else if t1 ≤ α̂

(N)
m < t2 it

sends ‘1’, else it sends ‘0’. We focus on binary signaling for simplicity and
clarity of exposition.

Fig. 1. Sensor measurement chain.

B. Fusion Center

Define the sets Ma := {m : α̂m ≥ t} and Mb :=
{m : α̂m < t}, with Ma := |Ma| and Mb := |Mb| such
that Ma + Mb = M . The superscript in α̂

(N)
m is dropped

for brevity. Also, define the K × 1 vector gm := [g∗m(K −
1), g∗m(K−2), . . . , g∗m(0)]T (conjugate reversal of gm(n)), and
the K×1 vector xK,n := [x(n), x(n+1), . . . , x(n+K−1)]T .
It can then be verified that the Toeplitz-Hermitian matrix
Rx defined in (1) is the autocorrelation matrix of xK,n, i.e.,
Rx = E[xK,nx

H
K,n] ≽ 0 (positive semi-definite), and that

E[|zm(n)|2] = E[|xH
K,ngm|2]. Hence αm = E[|xH

K,ngm|2] =
gH
mRxgm. It follows that, upon receipt of a ‘1’ (or ‘0’)

from sensor m, the fusion center learns that gH
mRxgm ≥ t

(resp. gH
mRxgm < t), assuming sufficient averaging such

that sample averages converge to ensemble averages. Note
that since we only need to ensure that the inequality is
not reversed, sample averaging requirements are considerably
relaxed relative to high-rate quantization.

The job of the fusion center is to estimate the ambient
power spectrum based on the information it received from
the sensors, represented by the partition {Ma,Mb}. This can
be accomplished by reconstructing the K-lag autocorrelation
function r̂x, and then applying the DFT: ŝx = Fr̂x. Due to
the truncation of the autocorrelation to K lags (as well as
inaccurate estimation of r̂x), the corresponding ŝx is no longer
guaranteed to be nonnegative. In classical spectral analysis,
non-negativity of the spectral estimate can be ensured by posi-
tive extension of the truncated correlation sequence [17]. There
are infinitely many extensions that give rise to positive spectra,
a popular one being Burg’s Maximum Entropy extension - this
is a well-studied subject in spectral analysis.

Unlike classical spectral analysis, the data here is in the
form of linear inequalities involving the autocorrelation ma-
trix. The setup is more heavily under-determined, and we
need to employ all available structural properties and prior
information to obtain a meaningful estimate of the power
spectrum. Towards this end, we propose including both Rx =
Toeplitz(rx) ≽ 0 and Frx ≥ 0 as explicit constraints in an
optimization-based formulation.

The remaining issue is to find an appropriate cost function.
A reasonable choice is to minimize the total signal power, i.e.,
r(0) = E[|x(n)|2], consistent with the premise of cognitive
radio that most of the spectrum is unused in most places, most
of the time. Interestingly, since we enforce sx = Frx ≥ 0, and
since r(0) =

∑NF−1
f=0 sx(f), it follows that r(0) = ||sx||1, i.e.,

minimizing the total signal power implicitly encourages spar-
sity in the reconstructed power spectrum. Putting everything
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together leads to the following problem formulation:

r̂x = argmin
rx

r(0)

s.t. : gH
mRxgm ≥ t, m ∈ Ma,

gH
mRxgm < t, m ∈ Mb,

rx := [r(1−K), . . . , r(−1), r(0), r(1), . . . , r(K − 1)]T ,

r(ℓ) = r∗(−ℓ), ℓ = 1, . . . ,K − 1,

Rx = Toeplitz(rx), Rx ≽ 0, Frx ≥ 0.

(3)
Note that the constraint Rx = Toeplitz(rx) is a linear relation
between Rx and rx as expressed in (2). This implies that all
the constraints in (3) are ordinary linear inequalities in the
variables r(0) ∈ R and {rℜ(ℓ) ∈ R, rℑ(ℓ) ∈ R}K−1

ℓ=1 , except
for the constraint Rx ≽ 0, which is a linear matrix inequality
(LMI). Hence, problem (3) is a semidefinite program (SDP)
that can be optimally solved using efficient interior point
methods. The following proposition, however, asserts that the
constraint Rx ≽ 0 is redundant; it is in fact implied by the
constraint Frx ≥ 0.

Proposition 1: For NF ≥ 2K − 1, Frx ≥ 0 ⇒ Rx :=
Toeplitz(rx) ≽ 0. The converse is generally not true.
The proof can be found in Appendix C. Proposition 1 implies
that problem (3) is not affected by removing the constraint
Rx ≽ 0. Thus, (3) can be expressed as the following linear
program (LP):

min
r(0)∈R, {rℜ(ℓ)∈R, rℑ(ℓ)∈R}K−1

ℓ=1

r(0)

s.t. : gH
m

[
r(0)I+

K−1∑
ℓ=1

(
rℜ(ℓ)Ēℓ + rℑ(ℓ)Ẽℓ

)]
gm ≥ t, m ∈ Ma,

gH
m

[
r(0)I+

K−1∑
ℓ=1

(
rℜ(ℓ)Ēℓ + rℑ(ℓ)Ẽℓ

)]
gm < t, m ∈ Mb,

r(ℓ) = r∗(−ℓ) = rℜ(ℓ) + jrℑ(ℓ), ℓ = 1, . . . ,K − 1

rx := [r(1−K), . . . , r(−1), r(0), r(1), . . . , r(K − 1)]T ,

Frx ≥ 0.
(4)

The significance of this reduction from an SDP to an LP is
that the latter is easier to solve using specialized algorithms.
The LP problem (4) can be expressed in the standard form as
follows. Define the two (2K − 1)× 1 vectors:

dm :=

[
g∗m(0)gm(K − 1) , . . . ,

K−2∑
n=0

g∗m(n)gm(n+ 1),

K−1∑
n=0

|gm(n)|2,
K−2∑
n=0

gm(n)g∗m(n+ 1), . . . , gm(0)g∗m(K − 1)

]T

,

r̃x :=

[
r(0),Re{r(1)}, . . . ,Re{r(K − 1)},

Im{r(1)}, . . . , Im{r(K − 1)}
]T

,

where rx can be obtained from r̃x using a (2K−1)×(2K−1)
transformation matrix Q: rx = Qr̃x. For example, for K = 3,

the transformation matrix is:

Q =


0 0 1 0 −j
0 1 0 −j 0
1 0 0 0 0
0 1 0 j 0
0 0 1 0 j


Hence, it is easy to verify that αm = dT

mrx = dT
mQr̃x =

d̃T
mr̃x, where d̃m := QTdm. Finally, defining F̃ := FQ

and c := [1, 0, . . . , 0]T , problem (4) can be formulated in the
standard LP form:

min
r̃x∈R(2K−1)

cT r̃x

s.t. : d̃T
mr̃x ≥ t, m ∈ Ma,

d̃T
mr̃x < t, m ∈ Mb,

F̃r̃x ≥ 0.

(5)

IV. SIMULATIONS AND PARAMETER TUNING

In this section, we provide simulation results and discuss the
effect of some design parameters on the quality of the power
spectrum estimate. We begin with a simulation that illustrates
what one can expect from the proposed approach. In Fig. 2 and
Fig. 3, a scenario with M = 100 sensors was considered, and
the estimated power spectrum (dashed line) has been obtained
by solving the LP (5). For Fig. 2 the true power spectrum is
sparse (solid line), filter length K = 24 was used, and the
threshold t was set such that Ma = 30; whereas for Fig. 3 the
true power spectrum is dense, filter length K = 10 was used,
and t was set such that Ma = 50. The plotted spectra have
been normalized by the peak value of the true power spectrum.
The quality of the estimates in Figs. 2, 3 is very satisfactory
considering that only 100 bits have been used as input data
- corresponding roughly to three single precision IEEE floats,
or about what it would take to transmit three accurate power
measurements, or r(0) and r(1) (note that r(1) is complex,
requiring two floats).

In the rest of the paper, we use the normalized mean square
error (NMSE) to measure the quality of the power spectrum
estimate. The NMSE is defined as

NMSE := E
[
||sx − ŝx||2

||sx||2

]
(6)

where the expectation is taken with respect to the random
signal and the random impulse responses of the FIR filters,
obtained via Monte-Carlo simulations. Note that using E[||sx−
ŝx||2]/E[||sx||2] instead of (6) to define NMSE made very
little difference in our experiments - the results were almost
identical.

A. Threshold Selection

In this subsection, we show that, from an estimation per-
formance point of view, the threshold t should be selected
according to the sparsity level of the power spectrum (assum-
ing prior sparsity knowledge is available). Let η denote the
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Fig. 2. Illustrative example for the proposed frugal sensing approach with
sparse spectrum.
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Fig. 3. Illustrative example for the proposed frugal sensing approach with
dense spectrum.

sparsity ratio, defined as the ratio of the nonzero2 entries to
the total length of the power spectrum, and define ν as the
ratio of the number of sensors with measurements above t to
the total number of reporting sensors (i.e., ν := Ma/M ).

In Fig. 4, we plot the NMSE versus the ratio ν, for signals
with different sparsity ratios η. The sparse signal was fixed for
each η, and 1000 Monte-Carlo simulations for each ν were
used to obtain the corresponding NMSE (here the expectation
was taken with respect to the random FIR filters only). The
setup included M = 60 sensors and the filter length was
set to K = 8. Two main points can be deduced from Fig.
4. First, we see that as the sparsity ratio η increases, the
NMSE is minimized at a higher ratio ν. This means that
the threshold t should be tuned such that number of sensors
reporting measurements above t decreases as the power spec-
trum becomes more sparse. Historical data can be used to get
an expectation for η, and to identify the distribution of αm.
Exploiting such prior statistical information, the threshold t
can be selected such that ν minimizes the NMSE for the
corresponding η. The second point that can be drawn from
Fig. 4 is that the minimum NMSE increases as the power
spectrum becomes less sparse. This implies that the quality
of the estimated power spectrum using the proposed approach
is relatively better for sparser signals. It is worth mentioning
that an adaptive threshold selection algorithm for the one-bit
compressed sensing framework has been introduced in [18],

2Or above a small quantity ϵ.
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Fig. 4. The optimum ν that yields the minimum NMSE depending on η of
the signal being estimated.

assuming a signal with a separable distribution that is known
a priori.

B. Filter Type and Length K

Next, we look at how the filter length K affects the
quality of the power spectrum estimate, and also discuss two
candidate classes of random filters. Note that the number of
filter taps K is also the number of estimated autocorrelation
lags. Truncation of the autocorrelation sequence smears the
estimated power spectrum [17], and the smaller K is, the
more pronounced this smearing will be. This is the reason
why K = 24 has been used in Fig. 2, where the spectrum
is a sparse superposition of narrowband spectra, whereas
K = 10 has been used in Fig. 3 which features two main
lobes occupying more than half the bandwidth. On the other
hand, K is also the number of unknowns, and the larger K is,
relative to the number of inequality constraints in (5), the more
under-determined the problem becomes, which counteracts
the reduced smearing. The choice of K thus determines the
trade-off between smearing and inequalities-versus-unknowns
considerations. In addition, the complexity of solving (5) is
roughly O(K3.5), which is another reason why K should be
kept moderate.

Fig. 5 illustrates this tradeoff, showing the NMSE as a
function of K for various M . In Fig. 5, two types of random
impulse responses were used for the filters: (a) complex binary
antipodal ±1±j-valued random PN, and (b) normalized white
complex Gaussian random variables. Random sparse signals
with η = 0.25 were generated and the reported NMSE for each
K is the result of averaging across more than 1000 Monte-
Carlo simulations (with respect to the random signals and
filters). Three scenarios were considered with M =50, 100
and 200 sensors, where t was selected such that Ma =12, 25
and 50, respectively3. Fig. 5 confirms our intuition about the
trade-off in the choice of K. Fig. 5 also shows that the optimal
K is an increasing function of M , which can be understood
by noting that as M increases, the number of inequalities

3The results in the figure were obtained by varying the threshold with each
simulation run to sustain the required Ma in each run. Very similar results
were obtained when the threshold was fixed across all simulation runs, which
was selected as the average of the different thresholds that sustain the required
Ma in each run.
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Fig. 5. Tradeoff between the NMSE and the filter length K.

increases, hence one can afford more unknowns. Another point
worth noting is that the performance of Gaussian filters (dotted
lines) is almost identical to that of binary PN filters. However,
binary PN filters are much simpler to implement via cheap
linear shift registers, hence preferable to Gaussian filters.

V. RELEVANT EXTENSIONS

In this section we discuss some extensions and variations
to the proposed frugal sensing scheme.

A. Another Reconstruction Method

So far, we have considered minimizing the total signal
power as our objective function in (5), which implicitly
encourages sparsity in the reconstructed power spectrum. In
this subsection, we consider a different formulation of the
reconstruction problem. First, note that the feasible region:

C := {r̃x|d̃T
mr̃x ≥ t,m ∈ Ma, d̃

T
mr̃x < t,m ∈ Mb, F̃r̃x ≥ 0}

is a convex polyhedron, whose volume is a measure of the
uncertainty in r̃x associated with the constraint set C; however,
finding the volume of a convex polyhedron is NP-hard [19].
The optimal solution of the LP (5) will always be on the
boundary of C - in fact, without loss of optimality, can be
taken to be a vertex of C. Thus the boundary of C is associated
with sparse feasible spectra. If the sought spectrum is known
to be non-sparse, then it makes sense to steer away from the
boundary of C, and a good way to enforce this is to use the
“center” of C to estimate r̃x. There are different ways to define
the center of C, and we use the center of the maximum volume
inscribed ellipsoid.

Define: {
am = −g̃m, bm = −t if m ∈ Ma

am = g̃m, bm = t if m ∈ Mb

and let the vector vn correspond to the negative of the n-th
row of F̃, where n ∈ {1, . . . , NF } (i.e., Frx ≥ 0 ⇔ vT

n r̃x ≤
0, ∀n). Finding the ellipsoid ε := {Bu + p| ||u||2 ≤ 1} of
maximum volume that lies inside the convex polyhedron C
can be used to lower bound the actual volume of C. This can
be expressed as a convex optimization problem in the variables

B and p [20, Sec. 8.4.2]:

min
B,p

log detB−1

s.t. : ||Bam||2 + aTmp ≤ bm, m = 1, . . . ,M

||Bvn||2 + vT
np ≤ 0, n = 1, . . . , NF .

(7)

The volume of the ellipsoid ε is proportional to detB, and p is
the center of ε [20, Sec. 8.5.2]. Now, instead of minimizing the
total signal power r(0) = ||sx||1 as in (5), we propose setting
the estimate of r̃x to p, i.e., the estimated autocorrelation r̃x
is the center of the maximal inscribable ellipsoid.

Clearly, this approach does not promote sparsity, however
it can yield better estimates, as compared to (5), when the
spectrum is non-sparse. This was numerically verified for the
following setup. The setup included M = 60 sensors, the
filter length was set to K = 6, and the threshold was selected
such that Ma = 30. A non-sparse spectrum was randomly
generated, and the NMSE was obtained using 500 Monte-
Carlo simulations. Using the LP reconstruction method (5),
the NMSE was found to be 0.2544, whereas using (7) gave an
NMSE of 0.2228, showing a slight advantage for (7) over (5).
The real reason for introducing the ellipsoid approximation
though is discussed in the next subsection.

B. Sensor Polling - Adaptive Sensing

So far, we have assumed that sensors are active and the
fusion center is passive; each sensor sends a bit based on its
own measurement, while the fusion center collects the sensor
reports and estimates rx. A more intelligent strategy is to
allow the fusion center to selectively poll sensors on the basis
of previously received sensor reports. The idea here is that,
given partial information about the sought spectrum, certain
sensors are more valuable than others. Polling also makes
sense from an energy conservation point of view for battery-
operated sensors, which can be put to sleep until polled by the
fusion center. Thus, the question we are addressing here is:

Assuming that the fusion center has already obtained
measurements from M sensors, which are the best
sensors to poll next among the J remaining ones,
and in what order?

We propose the following greedy approach. Since finding
the exact volume of the feasible region C is NP-hard [19], we
use the volume of the maximal inscribable ellipsoid, which
is obtained by solving (7), as an uncertainty measure for
the estimated power spectrum. The volume of this ellipsoid
V is proportional to detB, i.e, V = cdetB, where c
is a constant. Polling sensor j will result in either adding
d̃T
j r̃x ≥ t or d̃T

j r̃x < t to the set of constraints. Let V ′
j

denote the new volume of the maximal inscribable ellipsoid
corresponding to the addition of the first inequality, and
V ′′
j the volume corresponding to the addition of the second

inequality. The proposed approach is to poll the sensor j
that yields the minimum worst-case volume after its cor-
responding inequality is included in the constraint set, i.e.,
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Fig. 6. The decrease of the estimation error as more sensors are polled, for
a typical scenario.

j∗ = argminj∈{1,...,J} max(V ′
j , V

′′
j ), where j∗ is the selected

sensor. This approach requires that the fusion center searches
through all remaining non-polled J sensors and solves 2J
problems of type (7) before deciding on which sensor to poll at
each step. This can be a heavy computational burden, but note
that for modest sensor populations all required computations
can be performed once off-line, and the results stored for on-
line use.

In Fig. 6, we illustrate the performance of the proposed
sensor polling scheme as compared to randomly selecting
any sensor, for a typical scenario. A dense power spectrum
is considered, and a short filter length K = 6 is used. It
is assumed that the fusion center has already received the
1-bit measurements from M = 10 sensors, and J = 10
sensors remain to be polled. The normalized error in the power
spectrum estimate ( = ||sx − ŝx||2/||sx||2), as each of the
remaining J sensors is polled by the fusion center, is plotted
in the figure. The figure shows that using the proposed sensor
polling scheme, the error significantly decreases after polling
each of the first 3 sensors due to the good choice of sensors to
be polled; whereas randomly selecting the sensor to poll does
not give the same performance. Note that both curves meet
at the end when all J = 10 sensors are polled, as expected.
Also note that polling some sensors may have no effect on the
feasible region, and consequently no effect on the estimated
power spectrum. That is why the error does not change for
the proposed scheme when polling each of the last 5 sensors,
as shown in the figure.

In Fig. 7, we report the average performance considering a
similar setup as in Fig. 6, but with J = 15. A total of 5 sensors
are polled in each run, and we plot the NMSE, obtained using
20 Monte-Carlo simulations, when each one of them is polled
using the proposed sensor polling scheme and with random
sensor selection. The figure shows the better performance of
the proposed scheme due to the good choice of sensors to be
polled.

C. Higher-Resolution Quantization

It is clear that finer-grained quantization of α̂m will improve
the quality of the power spectrum estimate, but at the cost
of higher signaling rate and sensor hardware complexity.
Using multi-bit quantization should be considered vis-a-vis the
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Fig. 7. The decrease of the NMSE as more sensors are polled.

alternative of employing more single-bit sensors while holding
hardware, energy, and signaling costs fixed. Another factor
that must be taken into account in deciding the right number
of quantization levels is that coarse quantization is naturally
more robust to sample averaging errors in estimating output
power. In the limit, if the analog {α̂m}Mm=1 are communicated
to the fusion center (e.g., using analog modulation), the power
spectrum can be estimated by solving the following weighted
least squares minimization

min
r̃x∈R(2K−1)

cT r̃x +
M∑

m=1

µm||d̃T
mr̃x − α̂m||2

s.t. : F̃r̃x ≥ 0.

(8)

where the weights {µm} reflect the relative accuracy of α̂m

and µ =
∑M

m=1 µm trades off the data term versus prior
information on the total power (and sparsity) of the measured
power spectrum.

Here, we consider a fixed bit-budget B = MB setup, where
B is the number of quantization bits used to describe the
estimated αm at each sensor (i.e., 2B quantization levels),
and compare the performance of the different quantization
schemes. We assume that the measurements {α̂m} are mapped
to discrete levels via a uniform quantizer. In Fig. 8, we plot the
NMSE as a function of B for different bit-budgets. Random
sparse signals with η = 0.25 were generated and the reported
NMSE for each point was averaged over more than 1000
Monte-Carlo simulations (with respect to the random signal
and filters). The filter length was set to K = 24. Selecting
the threshold for the one-bit quantization problem (5) as the
average threshold that yields ν = Ma/M = 0.25 results in
the NMSE point that is connected to the B = 2 point via a
dashed line, whereas the NMSE points that correspond to the
uniform quantizer are connected via a solid line.

Fig. 8 shows that the NMSE can be significantly decreased
by properly selecting the threshold in the one-bit quantization
scenario (compared to uniform one-bit quantization). It can
also be seen that if the bit-budget B is small relative to K, then
it is better to have a larger number of sensors with coarsely-
quantized power measurements (i.e., small B), whereas for a
larger B relative to K, increasing B gives better performance.
More specifically, we can see that the one-bit quantization
with the adapted threshold yields the minimum NMSE for
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B = 24 and B = 48, while it is very close to the minimum
NMSE for B = 96 and B = 144. Therefore, considering the
implementation and complexity advantages of 1-bit quantizers,
these results motivate the usage of 1-bit sensors.

It is worth mentioning that a similar tradeoff in performance
between the number of measurements and the number of bits
per measurement has been studied in [21] for the compressed
sensing setting. In addition to the autocorrelation-specific
positivity constraints that are imposed in our formulation
as opposed to [21], reference [21] considers the tradeoff in
presence of errors due to both signal noise and quantization,
whereas we do not consider any errors. Interestingly, [21]
also concludes that it is better to acquire as few as 1 bit per
measurement in many practical applications.

D. Robust Estimation: Inconsistent Sensor Measurements

Due to insufficient sample averaging in the estimation of
αm, and/or decoding errors in the sensor to fusion center
communication links, it is possible that the set of correlation
matrices satisfying the constraints in (4) can be empty. In such
cases, it makes sense to find Rx that is consistent with as many
inequalities as possible. This can be formulated as follows.
Add a slack variable q(m) ≥ 0, that represents the possible
error in the measurement or reporting of αm, to the constraints
of type gH

mRxgm ≥ t (gH
mRxgm ≤ t), such that they become

gH
mRxgm + q(m) ≥ t (resp. gH

mRxgm − q(m) ≤ t). Then,
add a sparsity-inducing penalty λ||q||1 =

∑M
m=1 q(m) to the

cost function, where q := [q(1), · · · , q(M)]T , to promote
sparsity among the slack variables, in order to (approximately)
minimize the number of inconsistent inequalities. In this way,
problem (5) is modified to the following robust LP:

min
r̃x∈R(2K−1),q∈RM

cT r̃x + λ1Tq

s.t. : d̃T
mr̃x + q(m) ≥ t, m ∈ Ma,

d̃T
mr̃x − q(m) < t, m ∈ Mb,

F̃r̃x ≥ 0, q ≥ 0.

(9)

where 1 is the vector of all ones, and λ ≥ 0 is a tuning
parameter that controls the level of sparsity. It is worth
mentioning that using the ℓ1-norm for robust estimation was
introduced in [22], see also [23].
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Fig. 9. Example showing the performance of the proposed robust frugal
sensing scheme.

In Fig. 9, we consider a similar setup to that used for Fig. 2,
assuming a sparse power spectrum (solid line), M = 100, and
K = 24. The plotted spectra have been normalized by the peak
value of the true power spectrum. To model for inconsistencies
and errors in the reported measurement bits, an independent
uniform random variable is added to each α̂m. As a result, the
fusion center received 20 wrong bits from the sensors (i.e., 20
reversed inequalities); 14 ‘0’ bits are received as ‘1, and 6 ‘1’
bits are received as ‘0’. This resulted in an infeasible problem
(5). The estimated power spectrum that has been obtained
by solving the robust LP (9) is plotted as the dotted line,
where the tuning parameter λ was set to 1. It is worth noting
that the resulting sparse q after solving (9) included only 16
nonzero entries (representing the inconsistencies). If the true
measurement bits are received by the fusion center such that
the inequality constraints are consistent, the estimated power
spectrum obtained by solving (9) is given as the dashed line.
Note that in this case problem (9) is equivalent to problem
(5), since the added sparsity-inducing penalty λ1Tq in the
objective of (9) gives q = 0, for λ sufficiently large. The
quality of the power spectrum estimate using the robust LP
(9) is very satisfactory, considering that 20% of the received
measurement bits were flipped.

VI. CONCLUSIONS

A network sensing scenario was considered, where scattered
low-end sensors pass the received signal through a random
filter, measure average power at the output of the filter, and
send out a bit or coarsely quantized power level to a fusion
center. The fusion center obtains an estimate of the power
spectrum by solving an under-determined linear program com-
prising inequality constraints derived from the sensor data,
plus prior information in the form of the cost function and
non-negativity constraints. It was shown that adequate power
spectrum sensing is possible from relatively few bits, even for
dense spectra. The selection of some key design parameters
was considered, and important trade-offs were revealed and
illustrated in pertinent simulations. It was demonstrated that
judicious choice of the filter length is needed to balance
smearing effects against inequalities-versus-unknowns consid-
erations, and the detection threshold at the sensors should be
tuned such that number of sensors reporting measurements
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above it decreases as the power spectrum becomes more
sparse. Some extensions and variations were also considered,
notably an active sensor polling / adaptive sensing scheme
that minimizes an estimate of the worst case uncertainty after
sensor selection. This polling strategy performs considerably
better than passive listening or random selection.

The formulation here can be viewed as generalizing classical
nonparametric power spectrum estimation to the case where
the data is in the form of inequalities, rather than equalities. A
key challenge is that estimation relies on solving appropriate
optimization problems, and cannot be put in closed form. This
makes performance analysis challenging as of this writing,
however we hope to pursue new directions and tackle some
of these issues in future work.

APPENDIX

A. Fading Considerations

First note that if the discrete signal ym(n) is received in
presence of frequency-flat fading, then the difference in the
received power spectrum across sensors can be compensated
for using AGC. Consider now a more general frequency-
selective fading scenario. The received signal ym(n) is the
convolution of the transmitted discrete-time WSS signal x(n)
with the linear (possibly time-varying) finite-impulse re-
sponse fading channel {hm(n; ℓ)}L−1

ℓ=0 , expressed as ym(n) =∑L−1
ℓ=0 hm(n; ℓ)x(n − ℓ). Assuming that x(n) is independent

of {hm(n; ℓ)}, the received autocorrelation is thus given as

E[ym(n)y∗m(n− k)]

= E

L−1∑
ℓ1=0

hm(n; ℓ1)x(n− ℓ1)

L−1∑
ℓ2=0

h∗
m(n− k; ℓ2)x

∗(n− k − ℓ2)


=

L−1∑
ℓ1=0

L−1∑
ℓ2=0

E[hm(n; ℓ1)h
∗
m(n− k; ℓ2)]rx(k + ℓ2 − ℓ1). (10)

Next, we consider two scenarios for the fading channel.
Scenario 1: {hm(n; ℓ)} is random, time-invariant, and the

correlation between two filter taps is only a function of the
ordinal distance between them. This implies that

E[hm(n; ℓ1)h
∗
m(n− k; ℓ2)] = E[hm(ℓ1)h

∗
m(ℓ2)]

= rhm(ℓ1 − ℓ2).

Then, from (10):

E[ym(n)y∗m(n− k)]

=
L−1∑
ℓ1=0

L−1∑
ℓ2=0

rhm(ℓ1 − ℓ2)rx(k + ℓ2 − ℓ1)

=
L−1∑

ℓ=−L+1

(L− |ℓ|)rhm(ℓ)rx(k − ℓ)

= rym(k)

and thus ym(n) is WSS, and the received power spectrum is

expressed as

Sym(ω) =
∞∑

k=−∞

rym(k)e−jωk

=
L−1∑

ℓ=−L+1

(L− |ℓ|)rhm(ℓ)
∞∑

k=−∞

rx(k − ℓ)e−jωk

=

L−1∑
ℓ=−L+1

(L− |ℓ|)rhm(ℓ)e−jωℓ
∞∑

m=−∞
rx(m)e−jωm

= Shm(ω)Sx(ω)

where Shm(ω) :=
∑L−1

ℓ=−L+1(L− |ℓ|)rhm(ℓ)e−jωℓ. Note that
since the channel frequency response is given as Hm(ω) =∑L−1

ℓ=0 hm(ℓ)e−jωℓ, then

E[|Hm(ω)|2] =
L−1∑
ℓ1=0

L−1∑
ℓ2=0

E[hm(ℓ1)h
∗
m(ℓ2)]e

−jω(ℓ1−ℓ2)

=

L−1∑
ℓ=−L+1

(L− |ℓ|)rhm(ℓ)e−jωℓ

= Shm(ω)

Assuming that E[|Hm(ω)|2] is the same across all sensors,
and that sensors acquire sufficient samples with different
channel realizations such that the sample average converges to
the expectation, then all sensors will be reporting consistent
power spectrum measurements. This effectively assumes that
the channel remains constant over a relatively long period of
time, then jumps to a new realization, dwells there for another
measurement epoch, and so on. This is a reasonable model if
each sensor only spends a small part of its time to sense the
spectrum, while it does other things most of the time. Every
time it returns to the spectrum sensing task, it will encounter
a new channel realization, not only because of drift but also
due to acquiring a new carrier/phase lock. If the reported
measurements reflect averaging over many such epochs, then
the proposed model is well-motivated.

Scenario 2: The Wide Sense Stationary Uncorrelated Scat-
tering (WSSUS) channel model [24, Sec. 3.3], first introduced
by Bello [25], where hm(n; ℓ) is WSS with respect to the
time variable n and uncorrelated across the lag variable ℓ. This
implies that E[hm(n; ℓ1)h

∗
m(n−k; ℓ2)] = rhm(k; ℓ1)δ(ℓ1−ℓ2).

Hence, substituting in (10) yields:

E[ym(n)y∗m(n− k)] =
L−1∑
ℓ=0

E[hm(n; ℓ)h∗
m(n− k; ℓ)]rx(k)

= ϕm(k)rx(k) = ry(k)

where ϕm(k) :=
∑L−1

ℓ=0 E[hm(n; ℓ)h∗
m(n − k; ℓ)]. For slowly

varying channels, hm(n; ℓ) ≈ hm(n − k; ℓ) for the (small)
range of autocorrelation lags considered here, which implies
that ϕm(k) ≈

∑L−1
ℓ=0 E[|hm(n; ℓ)|2] is approximately constant

(not a function of k). Hence, all sensors will be reporting
consistent power spectrum measurements, assuming that sen-
sors acquire sufficient samples such that the sample average
converges to the expectation.
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Fig. 10. Sensor measurement chain: analog processing.

B. Analog Sensor Measurement Chain

Assume that the complex-valued analog signal x(t) is
bandlimited with two-sided bandwidth 1/T (i.e, Nyquist rate
= 1/T ). Let g̃m(t) be the impulse response of the analog filter
of duration KT that corresponds to the FIR filter gm(n),
satisfying g̃m(t) = gm(n) for nT < t ≤ (n + 1)T , where
n = 0, . . . ,K − 1, and g̃m(t) = 0 for t > KT and t < 0.
Let the discrete-time signal x(n) be the output samples from
passing x(t) through an integrate and dump device operating
at Nyquist rate:

x(n) =

∫ nT

(n−1)T

x(t)dt.

Passing the signal x(t) through the filter g̃m(t) yields

z̃m(t) =

∫ KT

0

g̃m(τ)x(t− τ)dτ

=

∫ T

0

g̃m(τ)x(t− τ)dτ +

∫ 2T

T

g̃m(τ)x(t− τ)dτ

+ . . .+

∫ KT

(K−1)T

g̃m(τ)x(t− τ)dτ

= gm(0)

∫ T

0

x(t− τ)dτ + gm(1)

∫ 2T

T

x(t− τ)dτ

+ . . .+ gm(K − 1)

∫ KT

(K−1)T

x(t− τ)dτ

=

K−1∑
ℓ=0

gm(ℓ)

∫ (ℓ+1)T

ℓT

x(t− τ)dτ

Now, consider the Nyquist-rate samples of z̃m(t) at t = nT ,

z̃m(nT ) =

K−1∑
ℓ=0

gm(ℓ)

∫ (ℓ+1)T

ℓT

x(nT − τ)dτ

=
K−1∑
ℓ=0

gm(ℓ)

∫ (n−ℓ)T

(n−ℓ−1)T

x(τ̃)dτ̃

=
K−1∑
ℓ=0

gm(ℓ)x(n− ℓ)

which is the discrete-time convolution of x(n) and gm(n).
This shows that

1

T

∫ NT

0

|z̃m(t)|2dt ≈
N∑

n=0

|zm(n)|2

The modified analog measurement chain is depicted in Fig.
10.

C. Proof of Proposition 1:
We show that enforcing nonnegativity of the discretized

NF -point power spectrum estimate, i.e., sx = Frx ≥ 0, where
sx(f) = Sx

(
2πf
NF

)
, f ∈ {0, . . . , NF − 1}, and F is the

NF ×(2K−1) (phase-shifted) DFT matrix, implies a positive
semidefinite K ×K autocorrelation matrix Rx. We consider
NF ≥ (2K − 1) and assume that NF is odd (extending
the proof to even NF follows along the same lines). Define
the NF × 1 vector r̄x as the zero-padded extension of rx,
r̄x := [ 0 . . . 0︸ ︷︷ ︸

NF −2K+1

2

rTx 0 . . . 0︸ ︷︷ ︸
NF −2K+1

2

]T . Also, define nF := NF−1
2

and let F̄ be the square NF ×NF phase-shifted DFT matrix:

F̄ =



1 · · · 1 · · · 1

e
−j 2π

NF
(−nF ) · · · 1 · · · e

−j 2π
NF

(nF )

e
−j 2π

NF
2(−nF ) · · · 1 · · · e

−j 2π
NF

2(nF )

...
...

...

e
−j 2π

NF
(NF−1)(−nF ) · · · 1 · · · e

−j 2π
NF

(NF −1)(nF )

 .

It is easy to verify that F̄r̄x = Frx = sx. Let matrix W be
the original (non-phase-shifted) NF -point DFT matrix, vector
v be the first column of F̄, and define the diagonal matrix
D := diag(v) with elements of v on the main diagonal, such
that F̄ = DW (and W = DHF̄).

Let r̆(j)x be the j-th circular shift of r̄x obtained by removing
the last j entries of r̄x and putting them as the first j

entries (with r̆
(0)
x = r̄x). A negative j signifies a shift in

the reverse direction. Define the NF × NF circulant matrix
Rc := [r̆

(−nF )
x , . . . , r̆

(0)
x , . . . , r̆

(nF )
x ]. For example, for K = 2

and NF = 5,

Rc =


r(0) r(−1) 0 0 r(1)
r(1) r(0) r(−1) 0 0
0 r(1) r(0) r(−1) 0
0 0 r(1) r(0) r(−1)

r(−1) 0 0 r(1) r(0)

 .

Circulant matrices are diagonalized by a DFT: Rc =
1

NF
WHΛW, where Λ = diag

(
Wr̆

(−nF )
x

)
holds the eigen-

values of Rc [26, p. 107]. Note that Wr̆
(−nF )
x = F̄r̆

(0)
x . Since

we enforce F̄r̄x = sx ≥ 0, this directly implies that Rc is
positive semidefinite. Next, it is easy to see that the K ×K
autocorrelation matrix Rx = Toeplitz(rx) can be obtained
by deleting the last NF − K rows and the last NF − K
columns of Rc, i.e., Rx is the K-th order leading principal
submatrix of Rc. Sylvester’s criterion states that a matrix is
positive semidefinite if and only if the determinant of every
principal submatrix is nonnegative [26, p. 160]. This implies
that if Rc ≽ 0, then the principal submatrix Rx ≽ 0. Hence,
we showed that enforcing Frx ≥ 0 implies that Rx ≽ 0. The
converse is not true since Rx ≽ 0 does not necessarily imply
that Rc ≽ 0.



11

REFERENCES

[1] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum sensing
for cognitive radio: State-of-the-art and recent advances,” IEEE Signal
Processing Mag., vol. 29, no. 3, pp. 101–116, May 2012.

[2] E. J. Candes and M. B. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30,
Mar. 2008.

[3] Z. Tian and G. B. Giannakis, “Compressed sensing for wideband cogni-
tive radios,” in Proc. of the IEEE ICASSP Conf., vol. 4, Honolulu, HI,
pp. 1357–1360, Apr. 2007.

[4] F. Zeng, C. Li, and Z. Tian, “Distributed compressive spectrum sensing in
cooperative multihop cognitive networks,” IEEE J. Select. Topics Signal
Process., vol. 5, no. 1, pp. 37–48, Feb. 2011.

[5] Y. L. Polo, Y. Wang, A. Pandharipande, and G. Leus, “Compressive
wideband spectrum sensing,” in Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing (ICASSP 2009), pp. 2337–2340, Taipei, Apr. 2009.

[6] D.D. Ariananda, and G. Leus, “Wideband power spectrum sensing
using sub-Nyquist sampling,” in Proc. IEEE SPAWC, pp. 101–105, San
Francisco, CA, June 26–29, 2011.

[7] D.D. Ariananda, and G. Leus, “Power spectrum blind sampling,” IEEE
Signal Processing Letters, vol. 18, no. 8, pp. 443–446, Aug. 2011.

[8] D.D. Ariananda, and G. Leus, “Compressive Wideband Power Spectrum
Estimation,” IEEE Trans. Signal Processing, vol. 60, no. 9, pp. 4775–
4789, Sept. 2012.

[9] G. Leus, and Z. Tian, “Recovering second-order statistics from compres-
sive measurements,” in Proc. IEEE CAMSAP, pp. 337–340, San Juan,
PR, Dec. 13-16, 2011.

[10] M. Lexa, M. Davies, J. Thompson, and J. Nikolic, “Compressive power
spectral density estimation,” in Proc. of IEEE Int. Conf. Acoustics, Speech
and Signal Processing (ICASSP), pp.3884–3887, Prague, Czech Republic,
May 2011.

[11] V. Havary-Nassab, S. Hassan, and S. Valaee, “Compressive detection
for wideband spectrum sensing,” in Proc. of IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP), pp. 3094–3097, Dallas, TX,
Mar. 2010.

[12] P. Boufounos and R. Baraniuk, “1-bit compressive sensing,” in Proc.
Conf. Inform. Science and Systems (CISS), Princeton, NJ, Mar. 2008.

[13] L. Jacques, J. Laska, P. Boufounos, and R. Baraniuk, “Robust 1-bit
compressive sensing via binary stable embeddings of sparse vectors,”
Arxiv preprint arXiv:1104.3160, July 2011.

[14] Y. Plan, and R. Vershynin, “One-bit compressed sensing by linear
programming,” Arxiv preprint arXiv:1109.4299, March 2012.

[15] V. Cevher, P. Boufounos, R. Baraniuk, A. Gilbert, and M. Strauss, “Near-
optimal bayesian localization via incoherence and sparsity,” Proc. of the
International Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, CA, April 13-16, 2009.

[16] R. Gray and L. Davidson, Random Processes: A Mathematical Approach
for Engineers, Prentice-Hall, 1986.

[17] P. Stoica, and R.L. Moses, Spectral Analysis of Signals, Prentice Hall,
2005.

[18] U. Kamilov, A. Bourquard, A. Amini, and M. Unser, “One-bit meau-
rements with adaptive thresholds,” IEEE Signal Processing Letters, vol.
19, no. 10, pp. 607–610, Oct. 2012.

[19] M. Dyer and A. Frieze, “On the complexity of computing the volume of
a polyhedron,” SIAM Journal on Computing, vol. 17, no. 5, pp. 967–974,
1988.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[21] J. Laska, and R. Baraniuk, “Regime change: bit-depth versus
measurement-rate in compressive sensing,” Arxiv preprint
arXiv:1110.3450, Oct. 2011.

[22] J.J. Fuchs, “A new approach to robust linear regression,” in Proc. 14th
IFAC World Congress, pp. 427–432, Beijing, China, July 1999.

[23] S. Farahmand, D. Angelosante, and G. B. Giannakis, “Doubly robust
Kalman smoothing by exploiting outlier sparsity,” in Proc. of Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov.
7-10, 2010.

[24] A. J. Goldsmith, Wireless Communications. New York: Cambridge
University Press, 2005.

[25] P.A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Comm. Syst., pp. 360–393, Dec. 1963.

[26] F. Zhang, Matrix Theory: Basic Results and Techniques. New York:
Springer-Verlag, 1999.

Omar Mehanna (S’05) received the B.Sc. degree in
Electrical Engineering from Alexandria University,
Egypt in 2006, and his M.Sc. degree in Electrical
Engineering from Nile University, Egypt in 2009.
Since 2009, he has been working towards his Ph.D.
degree at the Department of Electrical and Computer
Engineering, University of Minnesota. His current
research focuses on signal processing for communi-
cations, ad-hoc networks, and cognitive radio.

Nicholas D. Sidiropoulos (F’09) received the
Diploma in Electrical Engineering from the Aris-
totelian University of Thessaloniki, Greece, and
M.S. and Ph.D. degrees in Electrical Engineering
from the University of Maryland - College Park,
in 1988, 1990 and 1992, respectively. He served
as Assistant Professor at the University of Virginia
(1997-1999); Associate Professor at the University
of Minnesota - Minneapolis (2000-2002); Professor
at the Technical University of Crete, Greece (2002-
2011); and Professor at the University of Minnesota

- Minneapolis (2011-). His current research focuses primarily on signal and
tensor analytics, with applications in cognitive radio, big data, and preference
measurement. He received the NSF/CAREER award (1998), the IEEE Signal
Processing Society (SPS) Best Paper Award (2001, 2007, 2011), and the
IEEE SPS Meritorious Service Award (2010). He has served as IEEE SPS
Distinguished Lecturer (2008-2009), and Chair of the IEEE Signal Processing
for Communications and Networking Technical Committee (2007-2008).


