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Abstract

This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel model,

where there exists a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple

antennas. In this paper, we first revisit the rank property of the optimal input covariance matrix that

achieves the secrecy capacity of the multiple antenna MIMO Gaussian wiretap channel under the average

power constraint. Next, we obtain necessary and sufficient conditions on the MIMO wiretap channel

parameters such that the optimal input covariance matrix is full-rank, and we fully characterize the

resulting covariance matrix as well. Numerical results are presented to illustrate the proposed theoretical

findings.
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I. INTRODUCTION

The broadcast nature of a wireless medium makes it very susceptible to eavesdropping, where the

transmitted message is decoded by unintended receiver(s). Recent information-theoretic research on

secure communication has focused on enhancing security at the physical layer. The wiretap channel,

first introduced and studied by Wyner [1], is the most basic physical layer model that captures the

problem of communication security. Wyner showed that when an eavesdropper’s channel is a degraded

version of the main channel, the source and destination can achieve a positive secrecy rate, while ensuring

that the eavesdropper gets zero bits of information. The maximum secrecy rate from the source to the

destination is defined as the secrecy capacity. The Gaussian wiretap channel, in which the outputs at the

legitimate receiver and at the eavesdropper are corrupted by additive white Gaussian noise, was studied

in [2].

Determining the secrecy capacity of a Gaussian wiretap channel is in general a difficult non-convex

optimization problem, and has been addressed independently in [3]-[9]. Oggier and Hassibi [3] and Khisti

and Wornell [4] followed an indirect approach using a Sato-like argument and matrix analysis tools. They

considered the problem of finding the secrecy capacity of the Gaussian MIMO wiretap channel under

the average total power constraint, and a closed-form expression for the secrecy capacity in the high

signal-to-noise-ratio (SNR) regime was obtained in [4]. In [5], the rank property of the optimal input

covariance matrix for the secrecy rate maximization problem is discussed but the authors were unable

to characterize the solution for the general case. For some special cases of the MIMO wiretap channel,

where the solution has rank one, the optimal input covariance matrix that achieves the secrecy capacity

under the average total power constraint was obtained in [5]-[7].

In [8], Liu and Shamai propose a more information-theoretic approach using the enhancement concept,

originally presented by Weingarten et al. [10], as a tool for the characterization of the MIMO Gaussian

broadcast channel capacity. Liu and Shamai have shown that an enhanced degraded version of the channel

attains the same secrecy capacity as does a Gaussian input distribution. From the mathematical solution

in [8] it was evident that such an enhanced channel exists; however it was not clear how to construct such

a channel until the work of [9], which provided a closed-form expression for the secrecy capacity under

a covariance matrix power constraint. While this result is interesting since the expression for the secrecy

capacity is valid for all SNR scenarios, there still exists no computable secrecy capacity expression for

the MIMO Gaussian wiretap channel under an average total power constraint.

In this paper, we first investigate the rank property of the optimal input covariance matrix that achieves
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the secrecy capacity of the general Gaussian multiple-input multiple-output (MIMO) wiretap channel

under the average total power constraint, where the number of antennas is arbitrary for both the transmitter

and the two receivers. Next, we obtain the optimal input covariance matrix for the case that this optimal

covariance matrix is full-rank. Necessary and sufficient conditions to have a full-rank optimal input

covariance matrix are characterized as well.

The rest of this paper is organized as follows. In the next section, we describe the assumed mathematical

model and revisit the current solution for the wiretap channel under the matrix power constraint. The

rank property of the optimal input covariance matrix under the average power constraint is investigated

in Section III, and in Section IV we characterize the conditions under which the input covariance matrix

that achieves the secrecy capacity of a wiretap channel under the average power constraint is full-rank.

In Section V, we discuss some interesting facts regarding the optimal solution, and in Section VI we

present numerical results to illustrate the proposed solutions. Finally, Section VII concludes the paper.

Notation: Vector-valued random variables are written with non-boldface uppercase letters (e.g., X),

while the corresponding non-boldface lowercase letter (x) denotes a specific realization of the random

variable. Scalar variables are written with non-boldface (lowercase or uppercase) letters. The Hermtian

(i.e., conjugate) transpose is denoted by (.)H , the matrix trace by Tr(.), and I indicates an identity

matrix. Inequality A � B means that A−B is Hermitian positive semi-definite. The Euclidean norm of

the vector x is written as ‖x‖. Mutual information between the random variables A and B is denoted

by I(A;B), E is the expectation operator, and CN (0, σ2) represents the complex circularly symmetric

Gaussian distribution with zero mean and variance σ2.

II. SYSTEM MODEL AND PRIOR WORKS

We begin with a multiple-antenna wiretap channel with nt transmit antennas and nr and ne receive

antennas at the legitimate recipient and the eavesdropper, respectively:

yr = Hx + zr

ye = Gx + ze

(1)

where x is a zero-mean nt × 1 transmitted signal vector, zr ∈ Cnr×1 and ze ∈ Cne×1 are additive

white Gaussian noise vectors at the receiver and eavesdropper, respectively, with i.i.d. entries distributed

as CN (0, 1). The matrices H ∈ Cnr×nt and G ∈ Cne×nt represent the channels associated with the

receiver and the eavesdropper, respectively. Similar to other papers considering the perfect secrecy rate

of the wiretap channel, we assume that the transmitter has perfect channel state information (CSI) for
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both the legitimate receiver and the eavesdropper. For the Gaussian channel, where Gaussian inputs are

an optimal choice, the secrecy capacity is given by [3]

Csec = max
x

[I(X;Yr)− I(X;Ye)] = max
Q�0

¯

R(Q) (2)

where R(Q) = log |HQHH + I| − log |GQGH + I|, and Q = E{xxH} is the input covariance matrix.

In [9], the above secret communication problem was analyzed under the matrix power-covariance

constraint, defined as

Q � S (3)

where S is a positive semi-definite matrix. An explicit expression for the secrecy capacity under (3) was

obtained via applying the generalized eigenvalue decomposition to the following two positive definite

matrices

(S
1

2 HHHS
1

2 + I , S
1

2 GHGS
1

2 + I) (4)

In particular, there exists an invertible generalized eigenvector matrix C such that [14]

CH
[
S

1

2 GHGS
1

2 + I
]

C = I (5)

CH
[
S

1

2 HHHS
1

2 + I
]

C = Λ (6)

where Λ = diag{λ1, ..., λnt
} is a positive definite diagonal matrix and λ1, ..., λnt

represent the generalized

eigenvalues. Without loss of generality, we assume the eigenvalues are ordered as

λ1 ≥ ... ≥ λb > 1 ≥ λb+1 ≥ ... ≥ λnt
> 0

so that a total of b (0 ≤ b ≤ nt) are greater than 1. Hence, we can write Λ as

Λ =

 Λ1 0
¯

0
¯

Λ2

 (7)

where Λ1 = diag{λ1, ..., λb} and Λ2 = diag{λb+1, ..., λnt
}. We can partition C similarly:

C = [C1 C2] (8)

where C1 is the nt× b submatrix representing the generalized eigenvectors corresponding to {λ1, ..., λb}

and C2 is the nt × (nt − b) submatrix representing the generalized eigenvectors corresponding to

{λb+1, ..., λnt
}. Using the above notation, the secrecy capacity of the MIMO wiretap channel under

the matrix power constraint (3) can be expressed as [9], [13, Theorem 3]:
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Corollary 1. Under the matrix power constraint (3), the secrecy capacity of the MIMO Gaussian wiretap

channel is given by

Csec(S) =

b∑
i=1

log λi = log |Λ1| (9)

where the optimal input covariance matrix Q∗S that maximizes (2) and attains (9) is given by

Q∗S = S
1

2 C

 (CH
1 C1)−1 0

¯
0
¯

0
¯

CHS
1

2 . (10)

Remark 1. From (5) and (6), one can easily confirm that if HHH � GHG, then for any S � 0
¯

we

have Λ � I. In other words, in this case the pencil in (4) has no generalized eigenvalue bigger than 1.

Thus, Csec(S) = 0 for any S � 0
¯
.

In this paper, we consider the secrecy capacity problem in (2) under the average power constraint:

Tr(E{xxH}) = Tr(Q) ≤ Pt. (11)

For this constraint, no computable secrecy capacity expression has been derived to date for the general

MIMO case. In principle, one would have to find the secrecy capacity through an exhaustive search over

the set {S : S � 0
¯
,Tr(S) ≤ P} [10, Lemma 1], [13]:

Csec(Pt) = max
S�0

¯
,Tr(S)=Pt

Csec(S) . (12)

where for any given semidefinite S, Csec(S) should be computed as given by (9).

In the next section, we investigate the rank of the optimal input covariance matrix Q∗ that attains

Csec(Pt). Next, in Section IV, we obtain the optimal Q∗ under the average power constraint for the case

that Q∗ is full-rank.

III. RANK PROPERTY OF THE OPTIMAL SOLUTION UNDER AN AVERAGE POWER CONSTRAINT

First, we note that the problem under Tr(Q) ≤ Pt is equivalent to that under Tr(Q) = Pt [3], [5]1.

Also note that in (12), this implies that we have Tr(S) = Pt instead of Tr(S) ≤ Pt.

We are interested in finding the optimal Ŝ which maximizes the problem (12). Let us assume that

we have found the optimal Ŝ. Consequently, from (10), the optimal input covariance matrix that attains

1For this statement, and also for the following results in the paper, we exclude the special case HHH � GHG for which

the Csec is trivially 0 for any S � 0
¯
, and consequently for any Pt, as pointed out in Remark 1.
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Csec(Pt) is given by

Q∗ = Ŝ
1

2 Ĉ

 (ĈH
1 Ĉ1)−1 0

¯
0
¯

0
¯

 ĈH Ŝ
1

2 , (13)

where Ĉ and Ĉ1 have respectively the same definitions as those of C and C1, given by (5)-(8), but here

for the pencil (Ŝ
1

2 HHHŜ
1

2 + I , Ŝ
1

2 GHGŜ
1

2 + I). Note that Q∗ can be rewritten as

Q∗ = Ŝ
1

2

[
Ĉ1 Ĉ2

] (ĈH
1 Ĉ1)−1 0

¯
0
¯

0
¯

 ĈH
1

ĈH
2

 Ŝ
1

2

= Ŝ
1

2 Ĉ1(ĈH
1 Ĉ1)−1ĈH

1 Ŝ
1

2

= Ŝ
1

2 PĈ1
Ŝ

1

2 (14)

where PĈ1
= Ĉ1(ĈH

1 Ĉ1)−1ĈH
1 is the projection matrix onto the space of Ĉ1. Moreover, let P⊥

Ĉ1

=

I−PĈ1
be the projection onto the space orthogonal to Ĉ1. We have

Tr(Q∗) = Tr(Ŝ
1

2 PĈ1
Ŝ

1

2 )

= Tr(Ŝ PĈ1
) (15)

= Tr(Ŝ PĈ1
PĈ1

) (16)

= Tr(PĈ1
Ŝ PĈ1

) (17)

where (15) comes from the fact that Tr(AB) = Tr(BA), and (16) is because PĈ1
= PĈ1

PĈ1
. Similarly

we have

Tr(Ŝ) = Tr
(

(PĈ1
+ P⊥

Ĉ1
) Ŝ (PĈ1

+ P⊥
Ĉ1

)
)

= Tr(PĈ1
Ŝ PĈ1

) + Tr(P⊥
Ĉ1

Ŝ P⊥
Ĉ1

) (18)

= Tr(Q∗
Ŝ

) + Tr(P⊥
Ĉ1

Ŝ P⊥
Ĉ1

) (19)

where (19) results from (17).

Lemma 1. For the optimal Ŝ, we have span{Ĉ1} = span{Ŝ}.

Proof: : The proof is obtained using (19), and by noting that for the optimal Ŝ we must have

Tr(Ŝ) = Tr(Q∗) = Pt. This means that we must have Tr(P⊥
Ĉ1

Ŝ P⊥
Ĉ1

) = 0, or equivalently P⊥
Ĉ1

Ŝ = 0
¯
,

which completes the proof.

Using Lemma 1 in (14) we have

Q∗ = Ŝ. (20)
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The following lemma reveals another property of the optimal input covariance matrix under the average

power constraint.

Lemma 2. For the optimal Ŝ, i.e. Q∗, the pencil (Ŝ
1

2 HHHŜ
1

2 + I , Ŝ
1

2 GHGŜ
1

2 + I) has no generalized

eigenvalue less than one:

ĈH
[
Ŝ

1

2 HHHŜ
1

2 + I
]

Ĉ =

 Λ̂1 0
¯

0
¯

I

 (21)

ĈH
[
Ŝ

1

2 GHGŜ
1

2 + I
]

Ĉ =

 I 0
¯

0
¯

I

 (22)

where Λ̂2 = I corresponds to the generalized eigenvalues equal to one.

Proof: We note that any vector which lies in the null space of Ŝ can be a generalized eigenvector

of the pencil (Ŝ
1

2 HHHŜ
1

2 + I , Ŝ
1

2 GHGŜ
1

2 + I), with a generalized eigenvalue equal to 1. Such

vectors span the null space of Ŝ, i.e., span{Ĉ2} = span{Ŝ}⊥. On the other hand, from Lemma 1,

span{Ĉ1} = span{Ŝ}. Thus for the optimal Ŝ, all generalized eigenvectors of the pencil (Ŝ
1

2 HHHŜ
1

2 +

I , Ŝ
1

2 GHGŜ
1

2 + I) correspond to generalized eigenvalues either bigger than or equal to 1.

Let b denote number of generalized eigenvalues of the pencil (Ŝ
1

2 HHHŜ
1

2 + I , Ŝ
1

2 GHGŜ
1

2 + I)

that are strictly bigger than 1, where again Ŝ = Q∗ represents the optimal input covariance matrix that

attains the secrecy capacity under the average power constraint given by (11). From Lemma 1, we have

rank(Q∗) = rank(Ĉ1) = b.

Theorem 1. For the optimal Q∗ we have

rank(Q∗) ≤ m (23)

where m is the number of positive eigenvalues of the matrix HHH−GHG.

Proof: Subtracting (22) from (21), a straightforward computation yields

Ŝ
1

2

[
HHH−GHG

]
Ŝ

1

2 = Ĉ−H

 Λ̂1 − I 0
¯

0
¯

0
¯

 Ĉ−1 � 0
¯
. (24)

From (24), we note that Ŝ
1

2

[
HHH−GHG

]
Ŝ

1

2 � 0
¯
, from which it follows that rank(Q∗) ≤ m.

Remark 2. From Theorem 1, one can easily confirm that the optimal Q∗ can be full rank only in the case

that m = nt, i.e. HHH � GHG. For all other scenarios, the optimal Q∗ will be low rank. The authors
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of [3], [5] use the Karush-Kuhn-Tucker (KKT) conditions on problem (2) to make a similar statement,

but they do not show what the rank of the optimal Q∗ will be.

The following lemma will be used for the computations in the next section.

Lemma 3. For the case of HHH � GHG, for any nt×nt matrix S � 0
¯
, all the generalized eigenvalues

of the pencil (S
1

2 HHHS
1

2 + I , S
1

2 GHGS
1

2 + I) are strictly bigger than 1, i.e. Λ � I, iff S is full rank,

i.e. S � 0
¯
.

Proof: The claim is easily proved by considering the rank of both sides of (24).

IV. CHARACTERIZATION OF THE OPTIMAL FULL-RANK SOLUTION

In this section, we characterize the secrecy capacity under the average power constraint for a particular

class of MIMO Gaussian wiretap channel where the optimal solution Q∗ is full rank. While necessary

conditions for a full-rank Q∗ were characterized in the previous section, here we derive sufficient

conditions as well.

We begin by rewriting problem (2) here:

Csec(Pt) = max
Q�0

¯
, Tr(Q)=Pt

log |HQHH + I| − log |GQGH + I| . (25)

The Lagrangian associated with this problem is given by

L = log |HQHH + I| − log |GQGH + I| − µ(Tr(Q)− Pt) + Tr(MQ) (26)

where µ > 0 and M � 0
¯

are the Lagrange multipliers. The optimal Q∗ must satisfy the following KKT

conditions:

HH(HQ∗HH + I)−1H−GH(GQ∗GH + I)−1G = µI−M (27)

µ(Tr(Q∗)− Pt) = 0 (28)

Q∗M = MQ∗ = 0
¯
. (29)

Using the matrix inversion lemma [14], (27) can be written as

(HHHQ∗ + I)−1HHH−GHG(Q∗GHG + I)−1 = µI−M . (30)

Left multiplication by (HHHQ∗ + I) and right multiplication by (Q∗GHG + I) of both sides of (30)

yields

HHH−GHG = µ (HHHQ∗ + I) (Q∗GHG + I)−M (31)

= µ (GHGQ∗ + I) (Q∗HHH + I)−M , (32)
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where in obtaining (31) we have used the KKT condition (29), and Eq. (32) comes from the fact that (31)

is Hermitian.

We are considering problem (25) for the case that HHH − GHG is strictly positive definite, i.e.

HHH � GHG, since this is the necessary condition for having a full rank optimal Q∗. As we characterize

the full rank Q∗, the sufficient conditions are revealed as well.

Remark 3. By following exactly the same steps as in the proof of [3, Proposition 5], one can easily

show that for the case of HHH � GHG, the optimization problem (25) is convex2 in Q.

Thus for the case of interest, the KKT conditions (28), (29) and (31) are necessary and sufficient

conditions for the optimality of Q∗. In other words, any Q � 0
¯

that satisfies those conditions is an

optimal solution for the problem (25). By the KKT condition (29), a full rank Q∗ follows that M = 0
¯
.

Thus, (31) and (32) simplify to

HHH−GHG = µ (HHHQ∗ + I) (Q∗GHG + I) (33)

= µ (GHGQ∗ + I) (Q∗HHH + I) . (34)

Lemma 4. Let the diagonal matrix D and the unitary matrix Φs̄ respectively denote the eigenvalue and

eigenvector matrices of (S̄
1

2 GHGS̄
1

2 + I), where we set S̄ = (HHH−GHG)−1:

(S̄
1

2 GHGS̄
1

2 + I) = Φs̄ D ΦH
s̄ . (35)

Then we have

HHH = S̄−
1

2 Φs̄ D ΦH
s̄ S̄−

1

2 (36)

GHG = S̄−
1

2 Φs̄ (D− I) ΦH
s̄ S̄−

1

2 . (37)

Proof: Eq. (37) comes directly from (35). Please refer to Appendix A for details on obtaining (36).

Using (36) and (37) in (33), after some simplification we have

S̄−
1

2 Φs̄ ΦH
s̄ S̄−

1

2 = µ (S̄−
1

2 Φs̄ D ΦH
s̄ S̄−

1

2 Q∗ + I) (Q∗ S̄−
1

2 Φs̄ (D− I) ΦH
s̄ S̄−

1

2 + I)

= µ S̄−
1

2 Φs̄ (D ΦH
s̄ S̄−

1

2 Q∗ + ΦH
s̄ S̄

1

2 ) (Q∗ S̄−
1

2 Φs̄ (D− I) + S̄
1

2 Φs̄) ΦH
s̄ S̄−

1

2

= µ S̄−
1

2 Φs̄ (D W + I) ΦH
s̄ S̄Φs̄ (W(D− I) + I) ΦH

s̄ S̄−
1

2 , (38)

2In fact, the optimization problem (25) is convex in Q when HHH � GHG.
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where in (38) we defined

W = ΦH
s̄ S̄−

1

2 Q∗S̄−
1

2 Φs̄ . (39)

From (38), we get

I = µ (D W + I) ΦH
s̄ S̄Φs̄ (W(D− I) + I) . (40)

Let X � 0
¯

and Y � 0
¯

be two diagonal matrices, which will be defined soon. Left multiplication by

X and right multiplication by Y of both sides of (40) gives

XY = µ (XD W + X) ΦH
s̄ S̄Φs̄ (W(D− I)Y + Y) . (41)

We find X and Y by solving the following set of equations

XY = I

XD = (D− I)Y

(42)

which results in

X = Y−1 =
(
I−D−1

) 1

2 . (43)

Substituting (43) into (41), we have

I = µ (XD W + X) ΦH
s̄ S̄Φs̄

(
W DX + X−1

)
= µ

(
XD W DX + X2D

)
X−1D−1ΦH

s̄ S̄Φs̄D
−1X−1 (XD W DX + D)

= µ (XD W DX + (D− I)) X−1D−1ΦH
s̄ S̄Φs̄D

−1X−1 (XD W DX + D) . (44)

where we have used (43) in obtaining (44).

Using an approach similar to what we used to obtain (44) from (33), one can show that3

I = µ (XD W DX + D) X−1D−1ΦH
s̄ S̄Φs̄D

−1X−1 (XD W DX + (D− I)) . (45)

Define K as

K = XD W DX =
(
I−D−1

) 1

2 D W D
(
I−D−1

) 1

2 , (46)

where D and W are respectively given by (35) and (39). Moreover, let

Σ̄ = X−1D−1ΦH
s̄ S̄Φs̄D

−1X−1 =
(
I−D−1

)− 1

2 D−1ΦH
s̄ S̄Φs̄D

−1
(
I−D−1

)− 1

2 . (47)

3Clearly (45) is also trivially obtained from (44).
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Using (46) and (47) in (44) and (45), we have

I = µ (K + D) Σ̄ (K + (D− I))

= µ (K + (D− I)) Σ̄ (K + D) .

(48)

We note from (48) that

µ Σ̄ = (K + D)−1 (K + (D− I))−1 = (K + (D− I))−1 (K + D)−1 . (49)

This result implies that, for the optimal Q∗, (K + (D − I))−1, (K + D)−1 and Σ̄ commute and have

the same eigenvectors [14].

Denote the eigenvalue decomposition of Σ̄ as

Σ̄ = U Ω UH . (50)

Based on the argument made after (49), we have

K + (D− I) = U Λ1 UH

K + D = U Λ2 UH ,

(51)

where one can easily confirm that Λ2 = Λ1 + I. By replacing (50) and (51) in (48), and noting that

UHU = UUH = I, and that Λ1, Λ2 and Ω are all diagonal, we have

I = µUΛ1 Ω Λ2U
H = µΛ1 Ω Λ2 = µ (Λ2

1 + Λ1) Ω . (52)

Recall that the unknown parameters in (52) are the diagonal matrix Λ1 and the scalar µ > 0. Let λi1

and ωi denote the ith diagonal element of Λ1 and Ω, respectively. From (52), we can solve for λi1 and

obtain

λi1 =
1

2

(
−1 +

√
1 +

4

µωi

)
, (53)

where the Lagrange multiplier µ > 0 is chosen to satisfy the power constraint Tr(Q∗) = Pt, as will be

explained below.

Theorem 2. The optimal full-rank input covariance matrix that attains the secrecy capacity for the average

power constraint is given by

Q∗ = S̄
1

2 Φs̄

(
I−D−1

)− 1

2 D−1
(
UΛ1U

H + I−D
)
D−1

(
I−D−1

)− 1

2 ΦH
s̄ S̄

1

2 (54)

iff

• HHH−GHG � 0
¯
, and

October 18, 2012 DRAFT
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• for the given Pt,

UΛ1U
H � D− I (55)

where Λ1 is given by (53).

Proof: The proof is obtained by obtaining K from (51), and substituting it back into (46) and (39)

via straightforward computations.

To fully characterize Q∗, one must obtain the Lagrange multiplier µ > 0 such that Tr(Q∗) = Pt. As

(53) shows, Tr(Q∗) is monotonically decreasing with µ:

lim
µ→0

Tr(Q∗) =∞, and lim
µ→∞

Tr(Q∗) = −Tr(S̄
1

2 Φs̄D
−1ΦH

s̄ S̄
1

2 ) < 0 .

Thus for any transmit power Pt, there exists a Lagrange multiplier µ > 0 for which Tr(Q∗) = Pt. The

appropriate value of µ can be easily found using, for example, the bisection method.

Note that Theorem 2 also reveals the necessary and sufficient conditions for having a full rank optimal

Q∗. While for any transmit power Pt one can find a Lagrange multiplier µ > 0 for which Tr(Q∗) = Pt

and UΛ1U
H � 0

¯
, to have a full rank Q∗, (55) must be satisfied. Also recall from (74) that D− I � 0

¯
.

The flowchart in Fig. 1 summarizes the steps required to calculate the optimal full-rank Q∗ for the case

of HHH−GHG � 0
¯
.

Remark 4. By replacing Q∗ given by (54) into (25), the optimal input covariance matrix Q∗ given by

Theorem 2 attains the secrecy capacity

Csec(Pt) = log |Λ1| − log |Λ1 + I|+ log |D| − log |D− I|

= log |I− (Λ1 + I)−1|+ log |I + (D− I)−1| , (56)

where Λ1 and D are diagonal matrices, respectively given by (53) and (35). Note that while both log

terms in (56) return non-negative values, the first term depends on both the channels and the power Pt,

while the second term just depends on the channels (see Lemma 5).

In the following we show that for the case of HHH − GHG � 0
¯
, i.e. when at least one of the

eigenvalues of HHH−GHG is zero, there exists an equivalent wiretap channel with the same secrecy

capacity of the original wiretap channel. For this case, the secrecy capacity is characterized too.

Theorem 3. For the MIMO Gaussian wiretap channel defined by direct and cross channels H and G

respectively, with HHH−GHG � 0
¯
, there exists an equivalent wiretap channel with Heq and Geq such

that HH
eqHeq −GH

eqGeq � 0
¯
, and Csec(H,G, Pt) = Csec(Heq,Geq, Pt).
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H, G, Pt

Step 1: Create S̄

S̄ = (HHH−GHG)−1

Step 2: Calculate Φs̄ and D from (35)

[Φs̄ , D] = eig(S̄
1
2 GHGS̄

1
2 + I)

Step 3: Calculate Σ̄ from (47)

Σ̄ =
(
I−D−1

)− 1
2 D−1ΦH

s̄ S̄Φs̄D
−1

(
I−D−1

)− 1
2

Step 4: Calculate U and Ω from (50)

[U , Ω] = eig(Σ̄)

Step 5: Derive Λ1 from (53)

Λ1 = 1
2

(
−I + (I + 4

µ
Ω−1)

1
2

)
Step 6: Calculate Q∗ according to (54)

Q∗ = S̄
1
2 Φs̄D

−1
(
I−D−1

)− 1
2
(
UΛ1U

H + I−D
) (

I−D−1
)− 1

2 D−1ΦH
s̄ S̄

1
2

Step 7: Find µ

µ|Tr(Q∗)=Pt

Step 8: Check the validity of Q∗

UΛ1U
H � D − I

Fig. 1: Flowchart for obtaining the optimal full-rank Q∗.

Proof: Please refer to Appendix B for the proof and the characterization of the equivalent channels

Heq and Geq.

Although at this time a proof is unavailable, we conjecture that the secrecy capacity of any general

MIMO wiretap channel is given by an equivalent wiretap channel with Heq and Geq such that HH
eqH

H
eq−
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GH
eqGeq � 0

¯
, and Csec(H,G, Pt) = Csec(Heq,Geq, Pt). If one cannot find such an equivalent wiretap

channel, the secrecy capacity of the main channel is zero, i.e., Csec(H,G, Pt) = 0. Besides the case of

HHH −GHG � 0
¯
, the case for which the optimal input covariance matrix is rank 1 is another case

supporting this conjecture. For the rank 1 case, it is shown in [6] that the optimal input covariance matrix

is given by Q∗ = Pt uuH , where u is the normalized principal eigenvector corresponding to the largest

eigenvalue λ1 of the pencil (I+PtH
HH , I+PtG

HG). For this case, if λ1 > 1, the secrecy capacity is

Csec(H,G, Pt) = log(λ1), and the equivalent wiretap channel is defined such that hHeqheq = uHHHHu

and gHeqgeq = uHGHGu.

V. REMARKS REGARDING Q∗

This section discusses some interesting points regarding the optimal solution in (54). For the following

observations, one can assume when required that both conditions for a full-rank Q∗ given in Theorem

(2) are satisfied. Let γi, i = 1, · · · , nt, be the generalized eigenvalues of the pencil (HHH , GHG).

Then from the definition [15], γi = σ2
i , where σi is the ith generalized singular value of (H , G).

Lemma 5. The second term in the secrecy capacity expression (56) is only channel dependent and is

equal to
∑nt

i=1 log(σ2
i ).

Proof: From (72) we have:

HHH S̄
1

2 Φs̄ = S̄−
1

2 Φs̄ D

= GHG S̄
1

2 Φs̄ (D− I)−1 D (57)

= GHG S̄
1

2 Φs̄

(
I + (D− I)−1

)
,

where (57) comes from (73). Thus, from the definition [14], the generalized eigenvalue matrix of

(HHH , GHG) is
(
I + (D− I)−1

)
, which completes the proof.

Note that the definition of singular values here is slightly different from what is given in [4]. Here σi

may be∞, while this is not the case in [4]. More precisely, from (73) for the case of rank(G) = ne < nt,

nt − ne diagonal elements of D are equal to one, as mentioned in Remark 5. The σi corresponding to

di = 1 tends to ∞.

Lemma 6. In the high SNR scenario (Pt →∞) and for the case of rank(G) = nt, the asymptotic form

of the exact secrecy capacity (56) is simply given by

Csec = log |I + (D− I)−1| =
nt∑
i=1

log(σ2
i ) . (58)
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Proof: For Pt → ∞, the Lagrange parameter satisfies µ → 0, as mentioned after Theorem 2.

Moreover, for the case of rank(G) = nt, the matrix Σ̄ given by (47) will have finite-valued eigenvalues.

Thus as µ→ 0, the elements of the diagonal matrix Λ1, given by (53), go to∞ (λi1 →∞). Consequently,

the first log term in (56) disappears as Pt →∞.

It is also interesting to consider the optimal solution in (54) for the case that the eavesdropper’s channel

is very weak, e.g. G = 0
¯
. For this specific case, the wiretap channel simplifies to a point-to-point MIMO

Gaussian link, where the optimal input covariance matrix under the average power constraint is known

to be ΦH ( 1
µI−Λ−1

H )+ ΦH
H , and is found via the standard water-filling solution, where unitary ΦH and

diagonal ΛH are obtained from the eigenvalue decomposition HHH = ΦHΛHΦH
H .

Lemma 7. For the case of G = 0
¯
, the optimal solution in (54) simplifies to the conventional water-filling

solution, where

Q∗ = ΦH (µ−1I−Λ−1
H )+ ΦH

H . (59)

Proof: Using (72) and via simple calculations, we note that for any G, Eq. (54) can be rewritten as

Q∗ = S̄
1

2 Φs̄

(
I−D−1

)− 1

2 D−1 UΛ1U
H D−1

(
I−D−1

)− 1

2 ΦH
s̄ S̄

1

2 − (HHH)−1 . (60)

From (73), when G → 0
¯

then D → I. Next from (72), Φs̄ → ΦH . Using these facts in (47), and after

some straightforward calculations, we have Σ̄ → (D − I)−1D−1Λ−1
H = Ω, and U → I in (50). Using

these in (60), we have

Q∗ → ΦH(D− I)−1D−1Λ−1
H Λ1Φ

H
H − (HHH)−1

→ 1

2
ΦH(D− I)−1Λ−1

H

(
−I + (I +

4

µ
(D− I) ΛH)

1

2

)
ΦH
H − (HHH)−1

→ 1

µ
I− (HHH)−1 = ΦH (µ−1I−Λ−1

H )+ ΦH
H , (61)

where in obtaining (61) we used the fact that D→ I when G→ 0
¯
.

VI. NUMERICAL RESULTS

In the first example, we consider a MIMO wiretap channel with nt = ne = 2, nt = 3 and channel

matrices given by

H =


0.32− 0.52i 0.83 + 1.15i

0.51− 0.26i 0.06− 0.15i

−0.11 + 0.81i 0.29 + 0.68i

 , (62)
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Fig. 2: Secrecy Capacity versus Pt for nt = ne = 2 and nr = 3. Solid curve represents secrecy capacity

and dotted curve indicates the achievable secrecy rate using a rank-one input covariance matrix.

G =

 0.03− 0.70i −0.32− 0.32i

0.24− 0.11i 1.36 + 0.18i

 , (63)

which satisfy HHH −GHG � 0
¯
. Fig. 2 shows the secrecy capacity as a function of transmit power

Pt. For comparison, the figure also depicts the achievable secrecy rate using the input covariance matrix

Q = Pt uuH , which results to Rsec = log λ1, as shown in [4]-[6]. Note that in this example, the optimal

Q∗ is not full-rank for Pt < 2.8.

In Fig. 3 we consider another example of the case of HHH −GHG � 0
¯
, here with nt = ne = 3,

nt = 4 and channel matrices given by

H =


0.89 + 0.54i −0.06 + 0.60i 0.48− 1.11i

0.46 −0.44 + 0.80i −1.07 + 0.63i

1.40− 0.13i 0.17− 0.82i 0.59− 0.31i

0.43− 0.23i 0.03 + 1.35i 0.44− 0.07i

 , (64)
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Fig. 3: Secrecy Capacity versus Pt for nt = ne = 3 and nr = 4. Solid curve represents secrecy capacity

and dotted curve indicates the achievable secrecy rate using a rank-one input covariance matrix.

G =


0.46− 0.59i 0.24− 0.01i −0.37 + 0.15i

0.51− 0.63i 0.58 + 0.51i 0.86− 0.47i

0.17− 0.24i −0.83 + 0.51i 0.04− 0.64i

 . (65)

For this example, the optimal Q∗ is only full-rank for Pt > 0.5.

Finally in Fig. 4, we compare the standard point-to-point capacity without secrecy constraints with

the secrecy capacity given by (56). In this example, Pt = 20, direct channel H is given by (64) but

the cross channel G is assumed to satisfy GHG = αI, where α changes from 0 to 1.95 (note that

HHH−GHG � 0
¯

only for α ≤ 1.95). As predicted, the secrecy capacity achieved by the derived Q∗

in (54) approaches the standard capacity as G → 0
¯
. It is interesting to note that even for very small

values of α, the difference between the standard capacity and secrecy capacity is considerable.

VII. CONCLUSION

In this paper, we considered the rank property of the optimal input covariance matrix under the average

power constraint for a general MIMO Gaussian wiretap channel, where each node has an arbitrary number

of antennas. We obtained necessary and sufficient constraints on the MIMO wiretap channel parameters
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Fig. 4: Secrecy Capacity versus α for Pt = 20. Solid curve represents secrecy capacity and dashed curve

indicates the point to point capacity.

such that the optimal input covariance matrix is full-rank, and we presented a method for characterizing

the resulting covariance matrix as well.

APPENDIX A

PROOF OF LEMMA 4

Define S̄ = (HHH − GHG)−1 and apply the generalized eigenvalue decomposition on the pencil

(S̄
1

2 HHHS̄
1

2 + I , S̄
1

2 GHGS̄
1

2 + I) to obtain the invertible generalized eigenvector matrix C̄ and the

diagonal generalized eigenvalue matrix Λs̄ as

C̄H
[
S̄

1

2 HHHS̄
1

2 + I
]

C̄ = Λs̄ (66)

C̄H
[
S̄

1

2 GHGS̄
1

2 + I
]

C̄ = I . (67)

By subtracting (67) from (66), we have

C̄H C̄ = Λs̄ − I . (68)
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Note that from Lemma 3, we have Λs̄ − I � 0
¯
. Thus, C̄ must be of the form [14]

C̄ = Φs̄ (Λs̄ − I)
1

2 , (69)

where Φs̄ is an unknown unitary matrix. In the following, as we continue the proof, Φs̄ is also charac-

terized.

By replacing (69) in (66) and (67), it is revealed that the unitary matrix Φs̄ represents the common set

of eigenvectors for the matrices S̄
1

2 HHHS̄
1

2 + I and S̄
1

2 GHGS̄
1

2 + I, and thus both matrices commute.

In particular,

ΦH
s̄

[
S̄

1

2 HHHS̄
1

2 + I
]

Φs̄ = Λs̄(Λs̄ − I)−1 = I + (Λs̄ − I)−1 (70)

ΦH
s̄

[
S̄

1

2 GHGS̄
1

2 + I
]

Φs̄ = (Λs̄ − I)−1 . (71)

Defining D = (Λs̄ − I)−1, from (70)-(71) and via straightforward computation, we have

HHH = S̄−
1

2 Φs̄ D ΦH
s̄ S̄−

1

2 (72)

GHG = S̄−
1

2 Φs̄ (D− I) ΦH
s̄ S̄−

1

2 , (73)

which proves (36) and (37). Substituting (68) in (67), we also have

I = C̄H
[
S̄

1

2 GHGS̄
1

2 + I
]

C̄

= C̄H S̄
1

2 GHGS̄
1

2 C̄ + Λs̄ − I ,

or equivalently

2I−Λs̄ = C̄H S̄
1

2 GHGS̄
1

2 C̄.

Remark 5. Since C̄H S̄
1

2 GHGS̄
1

2 C̄ � 0
¯
, it results that 2I − Λs̄ � 0

¯
. Equivalently, by defining D =

(Λs̄ − I)−1 � 0
¯
, we have

I−D−1 � 0
¯

D− I � 0
¯
.

(74)

Note that from (73), if GHG � 0
¯
, then D−I � 0

¯
and vice versa. As we will observe in Theorem 2, to

have a full-rank optimal input covariance matrix Q∗, having a full-rank GHG is not required. While we

assume throughout the paper and without loss of generality that the diagonal matrix D− I is invertible,

for the case of rank deficient GHG one can follow the calculations in this paper assuming ε > 0 for

zero-diagonal elements of D− I and letting ε ↓ 0 at the end (see Lemma 7).
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APPENDIX B

PROOF OF THEOREM 3

We want to obtain Q∗d, the optimal input covariance matrix that attains the secrecy capacity for the

case of HHH −GHG � 0
¯
. We note that rank(HHH −GHG) = m < nt. Hence, from Theorems 1

and 2, Q∗d is rank-deficient.

The right hand side of (25) can be rewritten as

R(Q) = log |I + HHHQ| − log |I + GHGQ|

= log |(I + HHHQ) (I + GHGQ)−1|

= log |I + (HHH−GHG) Q (I + GHGQ)−1| , (75)

where Eq. (75) is obtained from the matrix inversion lemma [14] (I + A)−1 = I−A(I + A)−1. Let the

eigenvalue decomposition of HHH−GHG to be denoted as

HHH−GHG = Ψ

 Λm 0
¯

0
¯

0
¯

ΨH , (76)

where Λm � 0
¯

is a diagonal matrix of size m×m. Using (76) in (75), we have

R(Q) = log

∣∣∣∣∣∣I + Ψ

 Λm 0
¯

0
¯

0
¯

ΨH Q (I + GHGQ)−1

∣∣∣∣∣∣
= log

∣∣∣∣∣∣I +

 Λm 0
¯

0
¯

0
¯

ΨHQΨ(I + ΨHGHGΨ ΨHQΨ)−1

∣∣∣∣∣∣ , (77)

where in obtaining (77) we have used the facts that ΨHΨ = ΨΨH = I and |I + AB| = |I + BA|.

Define Q̄ = ΨHQΨ and Ḡ = GΨ, so that the optimization problem in (25) can be rewritten as

Csec(Pt) = max
Q̄�0

¯
, Tr(Q̄)=Pt

R(Q̄) ,

where

R(Q̄) = log

∣∣∣∣∣∣I +

 Λm 0
¯

0
¯

0
¯

 Q̄ (I + ḠHḠ Q̄)−1

∣∣∣∣∣∣ . (78)

From right-hand side of (78), we see that the optimal Q̄ is of the form

Q̄ =

 Q̄m 0
¯

0
¯

0
¯

 , (79)
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where Q̄m � 0
¯

is of size m×m. Write ḠHḠ as

ḠHḠ =

 J1 J2

JH2 J3

 (80)

where J1, J2 and J3 are of dimensions m×m, m× (nt −m) and (nt −m)× (nt −m), respectively.

By substituting (79) and (80) into (78), we obtain

R(Q̄) = log

∣∣∣∣∣∣∣I +

 ΛmQ̄m 0
¯

0
¯

0
¯

 I + J1Q̄m 0
¯

JH2 Q̄m I

−1
∣∣∣∣∣∣∣

= log

∣∣∣∣∣∣I +

 ΛmQ̄m 0
¯

0
¯

0
¯

 (I + J1Q̄m)−1 0
¯

−JH2 Q̄m(I + J1Q̄m)−1 I

∣∣∣∣∣∣
= log

∣∣∣∣∣∣I +

 ΛmQ̄m(I + J1Q̄m)−1 0
¯

0
¯

0
¯

∣∣∣∣∣∣
= log

∣∣∣∣∣∣
 I + ΛmQ̄m(I + J1Q̄m)−1 0

¯
0
¯

I

∣∣∣∣∣∣
= log

∣∣I + ΛmQ̄m(I + J1Q̄m)−1
∣∣

= log
∣∣I + (Λm + J1)Q̄m

∣∣− log
∣∣I + J1Q̄m

∣∣ = R(Q̄m). (81)

Using (81), the secrecy capacity is given by

Csec(Pt) = max
Q̄m�0

¯
, Tr(Q̄m)=Pt

R(Q̄m) . (82)

Problem (82) shows that the secrecy capacity of a wiretap channel with HHH−GHG � 0
¯

is equal

to the secrecy capacity of an equivalent wiretap channel with

HH
eqHeq = Λm + J1 (83)

GH
eqGeq = J1 , (84)

where Λm and J1 are respectively given by (76) and (80). It should also be noted that for the equivalent

channel, HH
eqHeq −GH

eqGeq = Λm � 0
¯
. Thus, the optimal Q̄∗m can be computed using Theorem 2, as

long as the equivalent channel satisfies the second condition in Theorem 2. Finally, by substituting Q̄∗m

back into (79) we obtain

Q∗d = Ψ

 Q̄∗m 0
¯

0
¯

0
¯

ΨH , (85)

which completes the proof.
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