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D-ADMM: A Communication-Efficient Distributed Algorithm
For Separable Optimization

João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, and Markus Püschel

Abstract—We propose a distributed algorithm, named Distributed
Alternating Direction Method of Multipliers (D-ADMM), for solving
separable optimization problems in networks of interconnected nodes
or agents. In a separable optimization problem there is a private cost
function and a private constraint set at each node. The goal is to minimize
the sum of all the cost functions, constraining the solutionto be in the
intersection of all the constraint sets. D-ADMM is proven to converge
when the network is bipartite or when all the functions are strongly
convex, although in practice, convergence is observed evenwhen these
conditions are not met. We use D-ADMM to solve the following problems
from signal processing and control: average consensus, compressed
sensing, and support vector machines. Our simulations showthat D-
ADMM requires less communications than state-of-the-art algorithms
to achieve a given accuracy level. Algorithms with low communication
requirements are important, for example, in sensor networks, where
sensors are typically battery-operated and communicatingis the most
energy consuming operation.

Index Terms—Distributed algorithms, alternating direction method of
multipliers, sensor networks.

I. I NTRODUCTION

In this paper, we propose a distributed algorithm for solving
separable optimization problems:

minimize
x

f1(x) + f2(x) + · · ·+ fP (x)

subject to x ∈ X1 ∩X2 ∩ · · · ∩XP ,
(1)

wherex ∈ R
n is the global optimization variable, andx⋆ will denote

any solution of (1). As illustrated in Fig. 1, we associate a network
of P nodes with problem (1), where only nodep has access to its
private cost functionfp and to its private setXp. Each node can only
communicate with its neighbors, but all of them have to solve(1) in
a cooperative way. We call any method that solves (1) withoutusing
a central node and without aggregating data at any specific location
a distributed algorithm.

Contributions. The goal of this paper is twofold: to show that the
recent distributed algorithm proposed in [1] for a specific problem
called Basis Pursuit can be generalized to solve the class (1); and
to show that, for many problems of interest, the resulting algorithm
requires usually significant less communications than prior distributed
algorithms to achieve a given solution accuracy. This also includes
algorithms that were specifically designed for a particularproblem
and are not applicable to the entire problem class (1). Algorithms
with low communication cost are relevant, for example, in sensor
networks where communication is often the most energy-consuming
task and the nodes rely on batteries [2], [3].
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Figure 1. Network withP = 10 nodes. Nodep only knowsfp andXp,
but cooperates with its neighbors in order to solve (1).

Formal problem statement. Given a network withP nodes, we
associate eachfp andXp in (1) with the pth node of the network.
We make the following assumptions:

Assumptions.

1) Each fp : Rn −→ R is a convex function over R
n, and each

set Xp is closed and convex.
2) Problem (1) is solvable.
3) The network is connected and it does not vary with time.
4) A coloring scheme of the network is available.

Assumption 2) implies that (1) has at least one solutionx⋆. In
Assumption 3), a network is connected if there is a path between
every pair of nodes. Finally, in Assumption 4), a coloring scheme
is an assignment of numbers to the nodes of the network such that
no adjacent nodes have the same number. These numbers are usually
called colors, and they will be used to set up our distributedalgorithm.
Note that, in wireless scenarios, coloring schemes are often used in
Media Access Control (MAC) protocols to determine the nodes’ order
of communication.

Under the previous assumptions, we solve the following problem:
given a network, design a distributed algorithm that solves (1). By
“distributed” we mean there is no notion of a central or special node
and each node communicates only with its neighbors; also, only
node p has access tofp or Xp at any time during or before the
algorithm.

Our solution for this problem relies on theAlternating Direction
Method of Multipliers (ADMM), which has become very popular in
recent years; see [4] for a survey. Specifically, we use an extended
version of ADMM, whose proof of convergence was recently estab-
lished in [5]. This result will also guarantee the convergence of our
algorithm for some problems of interest.

Related work. Gradient and subgradient methods, including incre-
mental versions, are long known to yield distributed algorithms (in
the sense defined before); see, e.g., [6], [7], [8]. Advantages of these
methods are computational simplicity at each node and theoretical
robustness guarantees. However, they generally require too many
iterations (and hence communications) to converge.

Augmented Lagrangian methods have also been used for dis-

http://arxiv.org/abs/1202.2805v2


2

tributed optimization, e.g., [9], [10], [11]. They consistof two loops:
an outer loop updating the dual variables, and an inner loop updating
the primal variables. The most common outer loop algorithm is the
gradient method, yielding the method of multipliers. For the inner
loop, common choices are Gauss-Seidel and Jacobi methods.

The Alternating Direction Method of Multipliers (ADMM) [4]is
an augmented Lagrangian-based algorithm that consists of only one
loop. ADMM is not directly applicable to (1): one has to reformulate
that problem first. Possible reformulations were addressedin [12]
and [13], yielding algorithms that require two and one communication
steps per ADMM iteration, respectively. Other work that explores
these algorithms for particular instances of (1) include [14], [15],
[16], [17], [18]. The algorithm we propose is also based on ADMM
(on an extended version), but applied to a different reformulation
of (1). Our simulations show that the proposed algorithm requires
less communications than any of the previous approaches.

All the above algorithms solve (1) in a distributed way. There are,
however, other algorithms that solve (1), but are not distributed in
our sense. For example, the algorithm in [4, §7.2] solves (1), but it
requires an all-to-all communication in each iteration; this can only
be accomplished in networks that are fully connected or thathave a
central node. In contrast, our algorithm and the ones described above
are distributed and can run on any connected network topology.

II. A LGORITHM DERIVATION

To derive the algorithm, we reformulate (1) to make ADMM
applicable. As mentioned before, several reformulations are possible:
ours takes advantage of node coloring. First we introduce some
notation.

Network notation. Networks are represented as undirected
graphsG = (V, E), whereV = {1, 2, . . . , P} is the set of nodes
andE ⊆ V × V is the set of edges. The cardinality of these sets is
represented respectively byP andE. An edge is represented by(i, j),
with i < j, and (i, j) ∈ E means that nodesi and j can exchange
data with each other. We define the neighborhoodNp of a nodep as
the set of nodes connected to nodep, but excluding it; the cardinality
of this set,Dp := |Np|, is the degree of nodep.

Coloring. We assume the network is given together with a coloring
scheme ofC colors. The set of nodes that have colorc will be denoted
with Cc, for c = 1, . . . , C, and its cardinality withCc = |Cc|. Note
that {Cc}

C
c=1 partitionsV.

Problem manipulations. Without loss of generality, assume the
nodes are ordered such that the firstC1 nodes have color1, the
next C2 nodes have color2, and so on, i.e.,C1 = {1, 2, . . . , C1},
C2 = {C1+1, C1 +2, . . . , C1 +C2}, . . . . We decouple problem (1)
by assigning copies of the global variablex to each node and then
constrain all copies to be equal. Letxp ∈ R

n denote the copy held
by nodep. As in [13], we constrain all copies to be equal in an
edge-based way, and rewrite (1) as

minimize
x̄=(x1,...,xP )

f1(x1) + f2(x2) + · · ·+ fP (xP )

subject to xp ∈ Xp , p = 1, . . . , P
xi = xj , (i, j) ∈ E ,

(2)

where x̄ = (x1, . . . , xP ) ∈ (Rn)P is the optimization variable.
Problem (2) is no longer coupled by a global variable, as (1),but
instead by the new equationsxi = xj , for all the pairs(i, j) ∈ E .
These equations enforce all copies to be equal since the network is
connected (cf. Assumption 3)). Note that these constraintscan be
written more compactly as(B⊤ ⊗ In)x̄ = 0, whereB ∈ R

P×E

is the node arc-incidence matrix of the graph,In is the identity
matrix in R

n, and⊗ is the Kronecker product. Each column ofB
is associated with an edge(i, j) ∈ E and has1 and −1 in the

ith and jth entry, respectively; the remaining entries are zeros.
Our numbering assumption induces a natural partition ofB as
[

B⊤
1 B⊤

2 · · · B⊤
C

]⊤
, where the columns ofB⊤

c are associated to
the nodes with colorc. We partitionx̄ similarly: x̄ = (x̄1, . . . , x̄C),
where x̄c ∈ (Rn)Cc collects the copies of all nodes with colorc.
This enables rewriting (2) as

minimize
x̄1,...,x̄C

∑C

c=1

∑

p∈Cc
fp(xp)

subject to x̄c ∈ X̄c , c = 1, . . . , C
∑C

c=1(B
⊤
c ⊗ In)x̄c = 0 ,

(3)

where X̄c :=
∏

p∈Cc
Xp. Problem (3) can be solved with the

Extended ADMM, explained next.
Extended ADMM. The Extended ADMM is a natural generaliza-

tion of theAlternating Direction Method of Multipliers (ADMM) [5].
Given C functionsgc, C setsXc, andC matricesAc, all with the
same number of rows, the extended ADMM solves

minimize
x1,...,xC

∑C

c=1 gc(xc)

subject to xc ∈ Xc , c = 1, . . . , C
∑C

c=1 Acxc = 0 ,

(4)

wherex := (x1, . . . , xC) is the optimization variable. The extended
ADMM consists of iterating onk:

xk+1
1 = argmin

x1∈X1

Lρ(x1, x
k
2 , . . . , x

k
P ;λ

k) (5)

xk+1
2 = argmin

x2∈X2

Lρ(x
k+1
1 , x2, x

k
3 , . . . , x

k
C ;λ

k) (6)

...

xk+1
C = argmin

xC∈XC

Lρ(x
k+1
1 , xk+1

2 , . . . , xk+1
C−1, xC ;λ

k) (7)

λk+1 = λk + ρ
C
∑

c=1

Acx
k+1
c , (8)

whereLρ(x;λ) =
∑C

c=1

(

gc(xc)+λ⊤Acxc

)

+ ρ

2

∥

∥

∑C

c=1 Acxc

∥

∥

2
is

the augmented Lagrangian of (4),λ is the dual variable, andρ is
a positive parameter. WhenC = 2, (5)-(8) becomes the ordinary
ADMM and it converges under very mild assumptions. WhenC > 2,
there is only a known proof of convergence when all the functionsgc
are strongly convex [5]. In particular, the following theorem holds.

Theorem 1 ([19], [5]). Let gc : R
nc −→ R be a convex function

over R
nc , Xc ⊆ R

nc a closed convex set, and Ac an m×nc matrix,
for c = 1, . . . , C. Assume (4) is solvable and that either

1) C = 2 and each Ac has full column-rank,
2) or C ≥ 2 and each fc is strongly convex.

Then, the sequence {(xk
1 , . . . , x

k
C , λ

k)} generated by (5)-(8) con-
verges to (x⋆

1, . . . , x
⋆
C , λ

⋆), where (x⋆
1, . . . , x

⋆
C) solves (4) and λ⋆

solves the dual problem of (4): maxλ G1(λ) + · · · + GC(λ),
where Gc(λ) = infxc∈Xc(gc(xc) + λ⊤Acxc), for c = 1, . . . , C.

A proof for case1) can be found in [19], which generalizes the
proofs of [9], [4]. A proof for case2) can be found in [5]. It is
believed that (5)-(8) still converges whenC > 2 and eachAc has full
column-rank, i.e., that the generalization of Theorem 1 under case1)
still holds [1], [5], [20]. Recently, [21] proved that if we replaceρ
in (8) by a small constant, the resulting algorithm converges linearly.

Applying the extended ADMM. We now apply the extended
ADMM to problem (3), which has the format of (4). We start
by showing that thecth optimization problem in (5)-(7) yieldsCc

optimization problems that can be solved in parallel. For example,
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x̄1 = (x1, . . . , xC1
) is updated as

x̄k+1
1 = argmin

x̄1∈X̄1

∑

p∈C1

fp(xp)+λk⊤
A1x̄1+

ρ

2

∥

∥

∥
A1x̄1+

C
∑

c=2

Acx̄
k
c

∥

∥

∥

2

,

(9)
whereA1 = B⊤

1 ⊗ In. The last term in (9) can be written as

ρ

2
x̄⊤
1 A

⊤
1 A1x̄1 + ρ x̄⊤

1

C
∑

c=2

A⊤
1 Acx̄

k
c +

ρ

2

∥

∥

∥

C
∑

c=2

Acx̄
k
c

∥

∥

∥

2

. (10)

In the first term,A⊤
1 A1 = B1B

⊤
1 ⊗ In, whereB1B

⊤
1 is a diagonal

block of the graph Laplacian. Since the nodes with color1 are not
neighbors between themselves,B1B

⊤
1 will be a diagonal matrix,

with the degrees of the respective nodes in the diagonal. This means
x̄⊤
1 A

⊤
1 A1x̄1 =

∑

p∈C1
Dp‖xp‖

2. Similarly, in the second term,
A⊤

1 Ac = B1B
⊤
c ⊗ In, whereB1B

⊤
c corresponds to an off-diagonal

block of the Laplacian matrix. Fori 6= j, the ijth entry of the Lapla-
cian matrix contains−1 if nodes i and j are neighbors, and0 oth-
erwise. This implies̄x⊤

1

∑C

c=2 A
⊤
1 Acx̄

k
c = −

∑

p∈C1

∑

j∈Np
x⊤
p x

k
j .

Finally, the last term of (10) does not depend onx̄1 and can be
ignored from the optimization problem. Thus, (9) simplifiesto

x̄k+1
1 = argmin

x̄1∈X̄1

∑

p∈C1

fp(xp)+
(

γk
p −ρ

∑

j∈Np

xk
j

)⊤

xp+
ρDp

2
‖xp‖

2,

(11)
where γk

p :=
∑

j∈Np
λk
pj comes from the second term in (9):

((B1 ⊗ In)λ
k)⊤x̄1 =

∑

p∈C1

∑

j∈Np
λk
pj

⊤
xp. We decomposedλ

edge-wise:λ = (. . . , λij , . . .), whereλij is defined fori < j and
associated to the constraintxi = xj in (2). It is now clear that (11)
decomposes intoC1 problems that can be solved in parallel. For
the other colors, we can apply a similar reasoning, but we must be
careful definingγk

p , due to the nodes’ relative numbering. Its general
definition is γk

p :=
∑

j∈Np
sign(j − p)λk

pj , where sign(a) = 1,
if a ≥ 0, and sign(a) = −1, otherwise. Note that we extended the
definition of λij for i > j such thatλij := λji. Algorithm 1 shows
the resulting algorithm, namedDistributed-ADMM, or D-ADMM.

Algorithm 1 D-ADMM

Initialization: for all p ∈ V , setγ1
p = x1

p = 0 andk = 1
1: repeat
2: for c = 1, . . . , C do
3: for all p ∈ Cc [in parallel] do

vkp = γk
p − ρ

∑

j∈Np

j<p

xk+1
j − ρ

∑

j∈Np

j>p

xk
j

4: and find

xk+1
p = argmin fp(xp) + vkp

⊤
xp +

Dpρ

2
‖xp‖2

s.t. xp ∈ Xp

5: Sendxk+1
p to Np

6: end for
7: end for
8: for all p ∈ V [in parallel] do

γk+1
p = γk

p + ρ
∑

j∈Np
(xk+1

p − xk+1
j )

9: end for
10: k ← k + 1
11: until some stopping criterion is met

In Algorithm 1, the edge-wise dual variablesλij were totally
replaced by the node-wise dual variablesγp. This is because the
problem in step 4 depends only onγk

p and not on the individual
λk
ij ’s. The update forγp in step 8 stems from replacingλk+1

ij =

λk
ij + sign(j − i)(xk+1

i − xk+1
j ) in the definition ofγk+1

p .

Algorithm 1 is asynchronous in the sense that nodes operate in
a color-based order, with nodes with the same color operating in
parallel. Since nodes with the same color are not neighbors,we would
apparently need some kind of coordination to execute the algorithm.
Actually, such coordination is not needed provided each node knows
its own color and the colors of its neighbors. In fact, as soonas nodep
has receivedxk+1

j from all its neighbors with lower colors, nodep
can “work,” since step 4 (and subsequently step 5) can be performed.
In conclusion, knowing its own and its neighbors’ colors provides an
automatic coordination mechanism. Regarding the convergence of D-
ADMM, we have:

Corollary 1. Let Assumptions 1) - 4) hold. Then, Algorithm 1 pro-
duces a sequence (xk

1 , . . . , x
k
P ) convergent to (x⋆, . . . , x⋆), where x⋆

solves (1), whenever 1) the network is bipartite, or 2) each fp is
strongly convex.

Proof: The proof is based on showing that the conditions of
Theorem 1 are satisfied. First, note that Assumptions 1) and 2)
and the equivalence between (1) and (3) imply that problem (3)
is solvable, that each function

∑

p∈Cc
fp(xp) is convex overRn,

and that each set̄Xc is closed and convex. Now, we will see that
Assumption 3) implies that eachB⊤

c ⊗ In has full column-rank.
Note that it is sufficient to prove thatB⊤

c has full column-rank. If,
on the other hand, we prove thatBcB

⊤
c has full rank, then the result

follows because rank(BcB
⊤
c ) = rank(B⊤

c ). Note thatBcB
⊤
c is a

diagonal matrix, where the diagonal contains the degrees ofthe nodes
belonging to the subnetwork composed by the nodes inCc. Since no
node has degree0 (cf. Assumption 3)),BcB

⊤
c has full rank.

Finally, note that a bipartite network can be colored with just two
colors. In that case, condition1) of Theorem 1 is satisfied together
with the remaining conditions, which ensures the convergence of
Algorithm 1. When the network is non-bipartite and eachfp is
strongly convex, we are in case2) of Theorem 1, which again ensures
the convergence of Algorithm 1.

III. A PPLICATIONS

We will now see how some important optimization problems can
be recast as (1). These reformulations, except the one for LASSO,
are not new: see [13], [14], [16], [15]. Therefore, we refer to these
references for the details of solving the optimization problem in step 4
of Algorithm 1. We note that in all the problems, except in consensus,
none of the functionsfp is strongly convex. Therefore, D-ADMM
is only guaranteed to converge under condition1) of Corollary 1.
Nevertheless, in section IV, we will see that in practice D-ADMM,
not only converges for all these problems, but also outperforms
previous work in terms of the number of communications, including
the ADMM-based algorithms [13], [12], [16].

Consensus.Consensus is a fundamental problem in networks [18],
[22]. Given a network withP nodes, nodep generates a number,
sayθp, and the goal is to compute the averageθ⋆ = (1/P )

∑P

p=1 θp
at every node. Consensus can be cast as [7], [18]:

minimize
x

1

2

P
∑

p=1

(x− θp)
2 ,

which is clearly an unconstrained version of (1), withfp(x) =
(1/2)(x− θp)

2; thus, it can be solved with D-ADMM. In this case,
the problem of step 4 of Algorithm 1 has a closed-form solution:
xk+1
p = (θp − vkp )/(1 +Dpρ).
Sparse solutions of linear systems.Finding sparse solutions of

linear systems is important in many areas, including statistics, com-
pressed sensing, and cognitive radio [23], [14]. A common approach
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Row Partition Column Partition

Figure 2. Row partition and column partition ofA into P blocks. A block
in the row (resp. column) partition is a set of rows (resp. columns).

to tackle this problem is by solving LASSO [23] or BPDN [24],
respectively,

LASSO: minimize
x

‖x‖1

subject to ‖Ax− b‖ ≤ σ ,

(12)

BPDN: minimize
x

‖Ax− b‖2 + β‖x‖1 , (13)

where the matrixA ∈ R
m×n, the vector b ∈ R

m, and the
parametersσ, β > 0 are given. LASSO first appeared in [23] to
denote a related problem, although the problem in (12) is known
by the same name. We solve LASSO and BPDN in two different
scenarios, visualized in Fig. 2:row partition (resp.column partition),
where each node stores a block of rows (resp. columns) ofA. While
in the row partition vectorb is partitioned similarly toA, in the
column partition we assume all nodes know the full vectorb.

We propose solving LASSO with a column partition and BPDN
with a row partition. The reverse cases, i.e., LASSO with a row
partition and BPDN with a column partition, cannot be trivially recast
as (1). However, in our previous work [1], we solved Basis Pursuit
(i.e., LASSO withσ = 0) for both the row and the column partition.

LASSO: column partition. AssumeA is partitioned by columns,
and thepth block is only known at nodep. Also, assume vectorb,
parameterσ, and the number of nodesP are available at all nodes.
LASSO in this scenario cannot be directly recast as (1): we will have
to do it through duality. However, only solving the ordinarydual of
LASSO will not allow us to recover a primal solution afterwards,
since its objective is not strictly convex. We thus start by regularizing
LASSO, making it strictly convex:

minimize
x

‖x‖1 +
δ
2
‖x‖2

subject to ‖Ax− b‖ ≤ σ ,
(14)

whereδ > 0 is small enough. This regularization is inspired by [25],
which establishes exact regularization conditions. By exact, we mean
there exists̄δ > 0 such that the solution of (14) is always a LASSO
solution, for δ ≤ δ̄. One of these conditions is that the objective is
linear and the constraint set is the intersection of a linearsystem with
a closed polyhedral cone. Although LASSO can be recast as

minimize
x,t,u,v

1⊤n t

subject to ‖u‖ ≤ v
u = Ax− b , v = σ
x ≤ t , −x ≤ t ,

(15)

where 1n ∈ R
n is the vector of ones, the closed convex cone

{(u, v) : ‖u‖ ≤ v} is not polyhedral; thus, there is not a proof of
exact regularization for (15). However, experimental results in [25]
suggest that exact regularization might occur for non-polyhedral
cones. In the simulations discussed in the next section, we solved (14)
always withδ = 10−2 and the corresponding solutions never differed
more than0.5% from the “true” solution of LASSO.

We now introduce a variabley ∈ R
m in (14) and rewrite it as:

minimize
x,y

∑P

p=1(‖xp‖1 +
δ
2
‖xp‖

2)

subject to ‖y‖ ≤ σ

y =
∑P

p=1 Apxp − b .

(16)

If we only dualize the last constraint of (16), we get the dualproblem
of minimizing

∑P

p=1 gp(λ), where gp(λ) := 1
P
(b⊤λ + σ‖λ‖) −

infxp(‖xp‖1 + (A⊤
p λ)

⊤xp + δ
2
‖xp‖

2) is the function associated to
nodep. This problem is clearly an unconstrained version of (1).

BPDN: row partition. In BPDN,A andb are partitioned by rows,
with the blocksAp andbp stored at nodep. In this scenario, BPDN
can be readily rewritten as

minimize
x

P
∑

p=1

(

‖Apx− bp‖
2 +

β

P
‖x‖1

)

, (17)

which is an unconstrained version of (1): just makefp(x) := ‖Apx−
bp‖

2 + β

P
‖x‖1.

Distributed support vector machines.A Support Vector Machine
is an optimization problem that arises in machine learning in the
context of classification and regression [26, Ch.7]. While there are
several possible formulations for an SVM, here we solve [26,§7.1.1]

minimize
s,r,ξ

1
2
‖s‖2 + β 1⊤Kξ

subject to yk (s
⊤xk − r) ≥ 1− ξk , k = 1, . . . ,K

ξ ≥ 0 ,

(18)

where the parameterβ > 0 and the pairs(xk, yk), k = 1, . . . ,K,
are given. Each pointxk belongs to one of two classes:yk = 1
or yk = −1. The goal in solving (18) is to find an hyperplane{x ∈
R

n : s⊤x = r} that best separates the two classes. The optimization
variables in (18) ares ∈ R

n, the vector orthogonal to the hyperplane,
r ∈ R, the hyperplane offset, andξ ∈ R

K , the vector of slack
variables. We assume thatK is divisible by the number of nodesP ,
and that each node knowsm := K/P pairs of points(xk, yk).
The resulting problem can be formulated as an unconstrainedversion
of (1) by setting

fp(s, r) = inf
ξ̄p

1
2P

‖s‖2 + β 1⊤mξ̄p

s.t. Yp (Xps− r1m) ≥ 1m − ξ̄p
ξ̄p ≥ 0 ,

where Yp is a diagonal matrix with theyk ’s corresponding to
nodep in the diagonal, andXp is anm × n matrix with each row
containingx⊤

k . Note that the size of the variable to be transmitted
among the nodes isn + 1, corresponding to the size of the global
variable(s, r): the variables̄ξp are internal to each node.

IV. SIMULATION RESULTS

This section shows simulation results of D-ADMM and related
algorithms solving the problems presented in the previous section.
We focus on the ADMM-based algorithms [12] and [13], since these
are the best among the distributed algorithms for (1). We start by
discussing the performance measure.

Performance measure: communication steps.We say that a
Communication Step (CS) has occurred when all the nodes have
transmitted a vector of sizen to its neighbors. All the algorithms we
consider here, including D-ADMM, consist of one iterative loop. One
iteration of D-ADMM, as well as of [13], corresponds to one CS; one
iteration of [12] corresponds to two CSs, since each node transmits
two vectors of sizen per iteration. The number of CSs is proportional
to the number of total communications. Thus, in a wireless scenario,
the smaller the number of CSs, the lower the energy consumption.
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Figure 3. Results of the simulations for (a) consensus, (b) LASSO, (c) BPDN, and (d) SVM.

Table I
NETWORK MODELS

Network Model (parameters) # Colors

1 Erdős-Rényi (0.12) 5
2 Watts-Strogatz (4, 0.4) 4
3 Barabasi (2) 3
4 Geometric (0.23) 10
5 Lattice (5× 10) 2

Note, however, that the CS measure does not take into accountthe
computational complexity at each node. (Actually, D-ADMM,and
the algorithms in [12], [13] have similar computational complexities.)
Also, this measure is not necessarily related with execution time. In
fact, while D-ADMM requires less CSs than competing algorithms
(as we will see), it may be slower than some of them. The reasonis
because D-ADMM is asynchronous, while all the other algorithms
are synchronous. Scenarios allowing synchronous transmissions are,
however, limited to very controlled environments, such as computer
clusters or super-computers, where approaches like [4, §7.2] would
probably be more appropriate than distributed algorithms.On the
other hand, in wireless networks, the single fact that one node cannot
transmit and receive messages at the same time forces synchronous
algorithms to operate asynchronously.

Experimental setup. We generated5 networks withP = 50
nodes according to the models of Table I; see [1] for a description
of these models. Table I also gives the number of colors for each
network. The results of our simulations are in Fig. 3, where each
plot depicts the number of CSs as a function of the network. Having
computed the solutionx⋆ of (1) beforehand and in a centralized way,
each algorithm stopped whenever‖xk − x⋆‖/‖x⋆‖ ≤ ǫ, or when a
maximum number ofM CSs were reached. In the case of consensus,
BPDN, and SVM,xk denotes the estimate ofx⋆ at an arbitrary
node; in the case of LASSO, it represents the global estimateof the
network, since each node only estimates some components ofx⋆.
We used the following values for the pair(ǫ,M): (10−4, 103) for
consensus,(5× 10−3, 103) for LASSO,(10−4, 2× 103) for BPDN,
and(10−3, 103) for SVM. Since the problem in step 4 of Algorithm 1
does not have a closed-form solution for all the applications we
consider, except for consensus, it has to be solved iteratively in each
of the algorithms we compare. To make a fair comparison in terms
of CSs, we thus use the same solver in all the algorithms, i.e., the
problem in step 4 of Algorithm 1 is solved with the same precision
in all the algorithms we compare.

It is known that the parameterρ affects strongly the performance
of ADMM-based algorithms. Hence, to make a fair comparison,we
ran each (ADMM-based) algorithm for several values ofρ and chose
always the best result, i.e., the smaller number of CSs. The values
for ρ were taken from the set{10−4, 10−310−210−1, 1, 10, 102}.

Consensus.For the consensus problem, we generated eachθp

randomly from a Gaussian distribution:θp
i.i.d.
∼ N (10, 104). Fig. 3(a)

shows the results for D-ADMM, the ADMM-based algorithms [12],
[13], and the algorithm [22], which is considered to be the fastest
consensus algorithm [18]. Note that [22] was designed for consensus
only and cannot be easily generalized to solve (1). Fig. 3(a)shows
that D-ADMM has a performance very similar to that of [22].

LASSO and BPDN.The matrixA for the problems LASSO and
BPDN was taken from problem902 of the Sparco toolbox [27]. The
vector b was generated asb = As + n, wheres is a sparse vector
and n is Gaussian noise. We choseσ = 0.1 and β = 0.3 for the
noise parameters, andδ = 10−2 for the approximation parameter in
LASSO. The results of these experiments for LASSO and BPDN are
shown, respectively, in Figs. 3(b) and 3(c). Additionally,we show
the performance of Algorithm3 of [16], which is an ADMM-based
algorithm specifically designed to solve BPDN. This algorithm has
the advantage of requiring much simpler computations at each node,
but in our simulations it achieved the maximum number of CSs in
all but the last two networks. In both LASSO and BPDN, D-ADMM
was always the algorithm requiring fewer CSs to converge.

SVM. For the SVM problem (18), we used data from [28], namely
two overlapping sets of points from the Iris dataset. The parameterβ
was always set to1. In this case, the algorithm from [12] achieved
always the maximum number of CSs and thus is not represented in
Fig. 3(d), which shows the simulation results. Again, we seethat D-
ADMM was the algorithm requiring the smallest number of CSs to
converge.

V. CONCLUSIONS

We proposed an algorithm for solving separable problems in
networks, in a distributed way. Each node has a private cost and a
private constraint set, but all nodes cooperate to solve theoptimization
problem that minimizes the sum of all costs and that has the
intersection of all sets as a constraint. Our algorithm hinges on a
coloring scheme of the network, according to which the nodesoperate
asynchronously. This results in an algorithm with fewer communica-
tion requirements than previous algorithms, as shown experimentally
for several problems. Although we proved the convergence ofthe
algorithm, it still remains an open question to explain theoretically
why the algorithm is more efficient than previous algorithms.
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