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Abstract—Randomized (dithered) quantization is a method ca-
pable of achieving white reconstruction error independent of the
source. Dithered quantizers have traditionally been considered
within their natural setting of uniform quantization. In this
paper we extend conventional dithered quantization to nonuni-
form quantization, via a subterfage: dithering is performed
in the companded domain. Closed form necessary conditions
for optimality of the compressor and expander mappings are
derived for both fixed and variable rate randomized quantization.
Numerically, mappings are optimized by iteratively imposing
these necessary conditions. The framework is extended to in-
clude an explicit constraint that deterministic or randomized
quantizers yield reconstruction error that is uncorrelated with
the source. Surprising theoretical results show direct and simple
connection between the optimal constrained quantizers and their
unconstrained counterparts. Numerical results for the Gaussian
source provide strong evidence that the proposed constrained
randomized quantizer outperforms the conventional dithered
quantizer, as well as the constrained deterministic quantizer.
Moreover, the proposed constrained quantizer renders the re-
construction error nearly white. In the second part of the
paper, we investigate whether uncorrelated reconstruction error
requires random coding to achieve asymptotic optimality. We
show that for a Gaussian source, the optimal vector quantizer
of asymptotically high dimension whose quantization error is
uncorrelated with the source, is indeed random. Thus, random
encoding in this setting of rate-distortion theory, is not merely a
tool to characterize performance bounds, but a required property
of quantizers that approach such bounds.

Index Terms—Source coding, dithered quantization, subtrac-
tive dithering, compander, quantizer design, analog mappings.

I. INTRODUCTION

Dithered quantization is a randomized quantization method
introduced in [1]. A central motivation for dithered quantiza-
tion is its ability to yield quantization error that is independent
of the source, which can be achieved if certain conditions,
determined by Schuchman, are met [2]. Traditionally, dithered
quantization has been studied in the framework where the
quantizer is uniform (with step size ∆) and the dither signal is
uniformly distributed over (−∆

2 ,
∆
2 ), matched to the quantizer

interval as shown in Figure 1. A uniformly distributed dither
signal is added before quantization and the same dither signal
is subtracted from the quantized value at the decoder side.
Note that only subtractive dithering is considered in this paper.
In the variable rate case, the quantized values are entropy
coded, conditioned on the dither signal. Randomized (dithered)
quantizers have been studied in the past due to important
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properties that differentiate them from deterministic quantiz-
ers, and were employed to characterize rate-distortion bounds
for universal compression [3], [4]. Zamir and Feder provide
extensive studies of the properties of dithered quantizers [5],
[6].

Beyond its theoretical significance, randomized quantiza-
tion is of practical interest. Many filter/system optimization
problems in practical compression settings, such as the “rate-
distortion optimal filterbank design” problem [7], or low rate
filter optimization for DPCM compression of Gaussian auto-
regressive processes [8], assume quantization noise that is
independent of (or uncorrrelated with) the source. Although
this assumption is satisfied at asymptotically high rates [9],
such systems are mostly useful for very low rate applications.
For example, in [8], it is stated that the assumptions made
in the paper are not satisfied by deterministic quantizers,
and that dithered quantizers satisfy the assumptions exactly.
However, conventional (uniform) dithered quantization suffers
from suboptimal compression performance. Hence, a quantizer
that mostly satisfies the assumptions, but at minimal cost in
performance degradation, would have considerable impact on
many such applications.

In this paper, we consider a generalization to enable ef-
fective dithering of nonuniform quantizers. To the best of
our knowledge, this paper is the first attempt (other than our
preliminary work in [10], [11]) to consider dithered quantiza-
tion in a nonuniform quantization framework. One immediate
problem with nonuniform dithered quantization is how to
apply dithering to unequal quantization intervals. In traditional
dithered quantization, the dither signal is matched to the
uniform quantization interval while maintaining independence
of the source, but it is not clear how to match the generic dither
to varying quantization intervals. As a remedy to this problem,
we propose dithering in the companded domain. We derive
the closed form necessary conditions for optimality of the
compressor and expander mappings for both fixed and variable
rate randomized quantization. We numerically optimize the
mappings by iteratively imposing these necessary conditions.

However, the resulting (unconstrained randomized) quan-
tizer does not render reconstruction error orthogonal to the
source. Therefore, we extend the framework to include an ex-
plicit such constraint. Surprising theoretical results show direct
and simple connections between the optimally constrained ran-
dom quantizers and their unconstrained counterparts. We note
in passing that the nonuniform dithered quantizer subsumes the
conventional uniform dithered quantizer as an extreme special
case.

For the variable rate case, the proposed nonuniform dithered
quantizer is expected to outperform the conventional dithered
quantizer, most significantly at low rates where the optimal
variable rate (entropy coded) quantizer is often far from
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⊕Source
X ∼ fX(x)

Dither
Z ∼ U(−∆/2,∆/2)

Uniform Quantizer
Q(·) ⊕

−Z

Reconstruction
X̂ = X + N

Fig. 1. The basic structure of dithered quantization

uniform. We observe that a deterministic quantizer cannot
render the quantization noise independent of the source but can
make it uncorrelated with the source. We hence also present an
alternative deterministic quantizer that provides quantization
noise uncorrelated with the source. We derive the optimality
conditions of such constrained quantizers, for both fixed and
variable rate quantization, and compare their rate-distortion
performance to that of randomized quantizers.

Dithered quantization offers an interesting theoretical twist.
Randomized quantization is an instance of the random en-
coding principle used to elegantly prove the achievability of
coding bounds in rate distortion theory [12]. However, to
actually achieve those bounds, a random encoding scheme
is not necessary, as they can be approached by a sequence
of deterministic quantizers of increasing block length. In the
second part of the paper, we investigate the settings under
which randomized quantization is asymptotically necessary. A
trivial example involves requiring source-independent quan-
tization error. It is obvious that the reconstruction (hence
quantization error) is a deterministic function of the source
when the quantizer is deterministic [9], while conventional
dithered quantization produces quantization error that is in-
dependent of the source. Although a deterministic quantizer
can never render the quantization error independent of the
source, it can produce quantization error uncorrelated with the
source. A natural question is whether the rate distortion bound,
subject to the uncorrelated error constraint, can be achieved
(asymptotically) with a deterministic quantizer.

The paper is organized as follows: In Section III, we
present the proposed nonuniform randomized quantizers, along
with its extension to constrained randomized quantizer that
renders the quantization error orthogonal to the source. In
Section IV, we derive the necessary conditions of optimality
for the deterministic quantizer that generates reconstruction
error uncorrelated with the source. In Section V, we study
the asymptotic (in quantizer dimension) results, and show that
for a Gaussian source optimal constrained quantizer must be
randomized. Experimental results that compare the proposed
quantizers to the conventional dithered quantizer are presented
in Section VI. We discuss the obtained results and summarize
the contributions in Section VII.

II. REVIEW OF DITHERED QUANTIZATION

A. Notation and Preliminaries

In general, lowercase letters (e.g., x) denote scalars, bold-
face lowercase (e.g., x) vectors, uppercase (e.g., U,X) ma-

trices and random variables, and boldface uppercase (e.g.,
X) random vectors. E[·], RX , and RXZ denote the expec-
tation, covariance of X and cross covariance of X and Z
respectively1. ∇ denotes the gradient. N (µ,K) denotes the
Gaussian random vector with mean µ and covariance matrix
K.

The entropy of a discrete random vector source X ∈ RK
taking values in X is

H(X) = −
∑
x∈X

P (X = x) logP (X = x) (1)

where logarithm is base 2 to measure it in bits. The differential
entropy of a continuous random variable X with probability
density function fX(x) is

h(X) = −
ˆ
fX(x) log fx(x)dx (2)

The divergence between two densities fX and gX , is given by

D(fX ||gX) =

ˆ
fX(x) log

fX(x)

gX(x)
dx (3)

The divergence definition above can be extended to conditional
densities. For joint densities, fXY and gXY the conditional di-
vergence D(fX|Y ||gX|Y ) is defined as the divergence between
the conditional distributions fX|Y and gX|Y averaged over the
density fY (y):

D(fX|Y ||gX|Y )=

ˆ
fY(y)

ˆ
fX|Y (x, y) log

fX|Y (x, y)

gX|Y (x, y)
dxdy

(4)
The mutual information between two random variables X

and Y with marginal densities fX(x) and fY (y) and a joint
density fXY (x,y) is given by

I(X,Y ) =

ˆ ˆ
fX,Y (x,y) log

fX,Y (x, y)

fX(x)fY (y)
dxdy (5)

Zero-mean vectors x ∈ RK and y ∈ RM are said to be
uncorrelated if they are orthogonal:

E[yxT ] = 0 (6)

where the right hand size is M ×K matrix of zeros.

1We assume zero mean random variables. This assumption is not necessary,
but it considerably simplifies the notation. Therefore, it is kept throughout the
paper.
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Compressor
g(x) ⊕Source

X ∼ fX(x) ⊕ Reconstruction
X̂

Uniform Quantizer
Q(·)

Y

−Z

Expander
w(y)

Dither
Z ∼ U(−∆/2,∆/2)

Fig. 2. The proposed nonuniform dithered quantizer

B. Dithered Quantization

A quantizer is defined by a set of reconstruction points
and a partition. The partition P = {Pi} associated with a
quantizer is a collection of disjoint regions whose union covers
RK . The reconstruction points R = {ri} are typically chosen
to minimize a distortion measure. The vector quantizer is a
mapping QK : RK → RK that maps every vector X ∈ RK
into the reconstruction point that is associated with the cell
containing X , i.e.

QK(X) = ri if X ∈ Pi (7)

While our theoretical results are general, for a vector quan-
tizer of arbitrary dimensions, for presentation simplicity, we
will primarily focus on scalar quantization in the treatment of
numerical optimization of nonuniform dithered quantizer and
for experimental results. The nonuniform dithered quantization
approach is directly extendable to vector quantization by
replacing the companded domain uniform quantizer with a
lattice quantizer, although at the cost of significantly more
challenging numerical optimization.

The scalar uniform quantizer, with reconstructions
{0,±∆,±2∆, ...,±T∆}, is a mapping Q : R→ R such that

Q(x) = i∆ for i∆−∆/2 < x ≤ i∆ + ∆/2 (8)

In fixed rate quantization, the range parameter T is determined
by the rate Rf

Rf = log(2T + 1) (9)

while in variable rate quantization T need not, in principle,
be finite and we will assume T → ∞. In this case, uniform
quantization is followed by lossless source encoding (entropy
coder).

Let dither Z be a random variable, distributed uniformly
on the interval (−∆/2,∆/2). Then, conventional dithered
quantizer approximates the source X by

X̂ = Q(X + Z)− Z (10)

It can be shown that the reconstruction error of this quan-
tizer (denoted N ) is independent of the source value X = x,
i.e., N = X̂ − X = Q(X + Z) − Z − X is independent
of X and uniformly distributed over (−∆/2,∆/2) for all X .
Contrast that with a deterministic quantizer, whose error is
completely determined by the source value [9].

We note that for this property to hold, the quantizer should
span the support of the source density i.e., there should
be no overload distortion. While this is often the case for
variable rate quantization, for fixed rate overload distortion
is inevitable if the source has unbounded support such as a

Gaussian source. For practical purposes though, it is common
to assume that the source has finite support and we also
follow this assumption in our analysis of fixed rate randomized
quantization: the quantization error of conventional (uniform)
dithered quantization is assumed to be independent of the
source.

The realization of the dither random variable Z is available
to both the encoder and the decoder. Thus, assuming an
optimal entropy coder, the rate of the variable rate quantizer
tend to the conditional entropy of the reconstruction given the
dither, i.e.,

Rv = H(X̂|Z) = H(Q(X + Z)|Z) (11)

In [5], it was shown that the following holds:

H(Q(X + Z)|Z) = h(X +N)− log ∆ (12)

We will use (12) in the rate calculations of the variable rate
(entropy coded) randomized quantization.

III. NONUNIFORM DITHERED QUANTIZER

The main idea is to circumvent the main difficulty due to
unequal quantization intervals by performing uniform dithered
quantization in the companded domain (see Figure 2). The
source X is transformed through compressor g(·) before
undergoing dithered uniform quantization. At the decoder
side, the dither is subtracted to obtain Y . Since we perform
uniform dithered quantization in the companded domain, it is
easy to show that Y = g(X) + N , where N is uniformly
distributed over (−∆/2,∆/2) and independent of the source.
The reconstruction is obtained by applying the expander
X̂ = w(Y ). The objective is to find the optimal compressor
and expander mappings g(·), w(·) that minimize the expected
distortion under the rate constraint. The MSE distortion can
be written as:

D =

ˆ ˆ
[x− w(g(x) + n)]2fX(x)fN (n)dxdn (13)

where fN (n) is uniform over (−∆/2,∆/2). Interestingly, this
problem bears some similarity to the joint source channel
mapping problem where the optimal analog encoding and
decoding mappings are studied [13]. In our setting, the quan-
tization error is analogous to the channel noise and the rate
constraint in variable rate quantization plays a role similar
to that of the power constraint. Similar to [13], we develop
an iterative procedure that enforces the necessary conditions
for optimality of the mappings. Note that the conventional
(uniform) dithered quantizer is a special case employing the
trivial identity mappings, i.e., g(x)=w(x)=x,∀x.
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A. Optimal Expander

The conditional expectation w(y) = E{X|Y = y} minimizes
MSE between the source and the estimate. Hence, the optimal
expander w is

w(y) =

γ+́

γ−

xfX(x)dx

γ+́

γ−

fX(x)dx

(14)

where for fixed rate γ+ = min{g−1(∆T ), g−1(y+∆/2)} and
γ− = max{g−1(−∆T ), g−1(y − ∆/2)}, while for variable
rate γ+ = g−1(y + ∆/2) and γ− = g−1(y −∆/2).

Note: We restrict the discussion to regular quantizers
throughout this paper, hence g(·) is monotonically increasing.

B. Optimal Compressor

Unlike the expander, the optimal compressor cannot be writ-
ten in closed form. However, a necessary optimality condition
can be obtained by setting the functional derivative of the cost
to zero. Thus, a locally optimal compressor g(·), for a given
expander w(·), requires that the functional derivative of the
total cost, J , along the direction of any variation function η(·)
vanishes [14], i.e.,

∇J =
∂

∂ε

∣∣∣∣
ε=0

J [g(x) + εη(x)] = 0, ∀x ∈ R (15)

for all admissible perturbation functions η(·).
1) Fixed rate: For fixed rate, we have granular distortion,

denoted Dg , and overload distortion, denoted Dol. Note that
we must account for the overload distortion here, as this
constrains g(x) from growing unboundedly in the iterations
of the proposed algorithm. Since the rate is fixed, the total
cost is identical to the distortion, i.e., Jf = Dg + Dol where
Dg and Dol are:

Dg=
1

∆

∆/2ˆ

−∆/2

g−1(∆T )ˆ

g−1(−∆T )

[x− w(g(x) + n)]2fX(x)dxdn (16)

Dol=
1

∆

∆/2ˆ

−∆/2


g−1(−∆T )ˆ

−∞

[x− w(−T∆ + n)]2fX(x)dx

+

∞̂

g−1(∆T )

[x− w(T∆ + n)]2fX(x)dx

 dn (17)

2) Variable rate: The rate is obtained via (12) and (12),
which require the distribution of Y = g(X) +N :

fY (y) =
1

∆

[
FX(g−1(y + ∆/2))−FX(g−1(y −∆/2))

]
(18)

where FX(x) is the cumulative distribution function of X .
The rate is then evaluated as

Rv = h(Y )− log ∆ (19)

The total cost for variable rate quantization is Jv = D + λR
where λ is the Lagrangian parameter that is adjusted to obtain
the desired rate.

C. Design Algorithm

The basic idea is to iteratively alternate between enforcing
the individual necessary conditions for optimality, thereby
successively decreasing the total cost. Iterations are performed
until the algorithm reaches a stationary point. Solving for
the optimal expander is straightforward since the expander
is expressed in closed form as a functional of the known
quantities, g(·), fX(·). Since the compressor condition is not
in closed form, we perform steepest descent, i.e., move in
the direction of the functional derivative of the total cost with
respect to the compressor mapping g. By design, the total cost
decreases monotonically as the algorithm proceeds iteratively.
The compressor mapping is updated according to (20), where
i is the iteration index, ∇J [g(·)] is the directional derivative
and µ is the step size.

gi+1(x) = gi(x)− µ∇J [g] (20)

Note that there is no guarantee that an iterative descent
algorithm of this type will converge to the globally optimal
solution. The algorithm will converge to a local minimum
and hence, initial conditions are important in such greedy
optimizations. A low complexity approach to mitigate the poor
local minima problem, is to embed within the solution the
“noisy channel relaxation” method of [15], [16]. We initialize
the compressor mapping with random initial conditions and
run the algorithm for a very low rate (large value for the
Lagrangian parameter λ). Then, we gradually increase the
rate (decrease λ) while tracking the minimum. Note that local
minima problem is more pronounced at multi-dimensional op-
timizations, which hence requires more powerful non-convex
optimization tools such as deterministic annealing [17]. In
our design and experiments, we focus on scalar compressor
and expander and we did not observe significant local minima
problems.

IV. RECONSTRUCTION ERROR UNCORRELATED WITH THE
SOURCE

In this section, we propose two quantization schemes (one
deterministic, one randomized) that satisfy the constraint that
reconstruction error be uncorrelated with the source.

A. Constrained Deterministic Quantizer

A deterministic quantizer cannot yield quantization noise
independent of the source [9]. However, it is possible to render
the quantization noise uncorrelated with the source. An early
prior work along this line appeared in [18], where a uniform
quantizer is converted to a quantizer whose quantization noise
is uncorrelated with the source, by adjusting the reconstruction
points. In this section, we derive the optimal (nonuniform in
general) deterministic quantizer which is constrained to give
quantization error uncorrelated with the source.

Let ri and r̂i be the reconstruction points and Pi and P̂i
represent the ith quantization region, for the constrained (i.e.,
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whose quantization error is uncorrelated with the source) and
unconstrained MSE optimal quantizer, respectively. Also, let
pi and p̂i denote the probability of X falling into the ith cell
of these respective quantizers.

Theorem 1 Pi = P̂i and ri = Cr̂i,∀i where

C = RX

(
M∑
i=1

pir̂ir̂
T
i

)−1

.

Proof: We start with the fixed rate analysis. Let M
denote the number of quantization cells. The distortion can
be expressed as

D =

M∑
i=1

ˆ

x∈Pi

(x− ri)T (x− ri)fX(x) dx (21)

and the “uncorrelatedness” constraint may be stated via the
orthogonality principle

M∑
i=1

ˆ

x∈Pi

x(x− ri)T fX(x) dx = 0 (22)

Note further that (22) can be written as:
M∑
i=1

ril
T
i = RX where li =

ˆ

x∈Pi

xfX(x) dx (23)

The constrained problem of minimizing D subject to
M∑
i=1

ril
T
i = RX is equivalent to the unconstrained minimiza-

tion of Lagrangian J :

J = D +

K∑
k=1

γ(k)T

[
RX(k)−

M∑
i=1

rili(k)

]
(24)

where γ = [γ(1) γ(2)... ,γ(K)] denotes the K×K multiplier
Lagrangian matrix, RX(k) denotes the kth column of RX and
li(k) denotes the kth element of li. By setting ∇riJ = 0, we
obtain the condition:

∇riJ = −2lTi + 2pir
T
i −

K∑
k=1

γ(k)T li(k) = 0 (25)

Noting that
∑K
k=1 γ(k)T li(k) = lTi γ,we obtain ri = 1

pi
Cli

where C is a constant M×M matrix. C is found by plugging
this into (23):

C = RX

(
M∑
i=1

1

pi
lil
T
i

)−1

(26)

Note that li/pi is the MSE optimal reconstruction of an un-
constrained quantizer that shares the same decision boundary
with the constrained one, Pi. Plugging (26) into (21) and after
some algebraic manipulations, we obtain:

D =
σ2
X

σ2
X −D∗

D∗ (27)

where D∗ is the distortion associated with the quantizer given
by Pi and with corresponding optimal reconstruction points

li/pi. (27) implies that D achieves its minimum whenever
D∗ is minimized. Hence,

Pi = P̂i ⇒ li = pir̂i (28)

Plugging (28) into (26), we obtain the result. The proof
for variable rate follows similar lines, with the only mod-
ification that we now have to account for the rate term

R =
M∑
i=1

pi log pi. The uncorrelatedness constraint is identical

to the one in fixed rate, hence the overall Lagrangian cost can
be expressed as:

J = D +

M∑
k=1

γ(k)T

[
RX(k)−

M∑
i=1

rili(k)

]
+ λ

M∑
i=1

pi log pi

(29)
By setting ∇riJ = 0 and following the same steps, we obtain:

ri =
1

pi
RX

(
M∑
i=1

1

pi
lil
T
i

)−1

li (30)

Note that (27) holds due to (30) and the optimal unconstrained
quantizer achieves the minimum distortion D∗ subject to
the rate constraint. This indicates that the constrained and
unconstrained quantizers have identical pi and hence Pi = P̂i
which implies li = pir̂i. Plugging li = pir̂i into (30), we
obtain the desired result.

B. Constrained Randomized Quantizer

Due to the effect of companding, the nonuniform random-
ized quantizer we derived in Section III does not guaran-
tee reconstruction error uncorrelated with the source even
though it builds on the (conventional) dithered quantizer whose
quantization error is independent of the source. We therefore
explicitly constrain the randomized quantizer to generate un-
correlated reconstruction error, by adding a penalty term to
the total cost function. The Lagrangian parameter λc ≥ 0 is
set to ensure E{xw(g(x) + n)} = E{x2}.

Jc = J + λcE[x2 − xw(g(x) + n)] (31)

where J = Jv in the case of variable rate and J = Jf
for fixed rate. We find the necessary conditions of optimality
of constrained compressor and expander mappings at fixed
and variable rate, by setting the functional derivative of the
total cost (Jc) to zero. Surprisingly, the optimally constrained
compressor mapping remains unchanged (compared to the
unconstrained optimal compressor) and the only modification
of the optimally constrained expander mapping is simple
scaling. We state this result in the following theorem.

Theorem 2 Let g and w be the compressor and expander
mappings of the unconstrained optimal randomized quantizer.
Let gc and wc denote the optimal mappings subject to the
constraint that the reconstruction error be uncorrelated with
the source. Then,

gc(x) = g(x), wc(y) = (1− λc)w(y) (32)

where λc is the Lagrangian multiplier of (31).
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Note that this result applies to both fixed and variable rate.
Proof: The optimal expander is no longer the standard

conditional expectation, since it is impacted by the constraint.
By setting

∂

∂ε

∣∣∣∣
ε=0

Jc [w(y) + εη(y)] = 0 (33)

we obtain the optimal expander in closed form as wc(y) =
(1 − λc)w(y). The update rule for gc(x) can be derived
similarly. Setting

∂

∂ε

∣∣∣∣
ε=0

Jc [g(x) + εη(x)] = 0 (34)

and plugging wc(y) = (1 − λc)w(y) yields, after straightfor-
ward algebra, gc(x) = g(x).

V. ASYMPTOTIC ANALYSIS

A. Rate-Distortion Functions

To quantify theoretically how much a source2 can be
compressed under the independent/uncorrelated reconstruction
error constraint, we define two rate-distortion functions in
which we respectively constrain the reconstructions error to
be i) uncorrelated with the source RU (D), and ii) independent
of the source RI(D).

Assume that we have source X with density fX(·) that pro-
duces the independent identically distributed (i.i.d.) sequence
X1, X2, .., Xn denoted as Xn. Similarly, let X̂1, X̂2, .., X̂n

be the reconstruction sequence, denoted as X̂n. Let Sn =
Xn − X̂n be the i.i.d. sequence of reconstruction errors with
marginal density fS(·). Let fXS(x, s) denote joint distribution
of X and S and d(Xn, X̂n) denote the distortion measure
between sequences Xn and X̂n defined as

d(Xn, X̂n) =
1

n

n∑
i=1

d(Xi, X̂i) (35)

Let us recall the classical rate-distortion result in information
theory:

Rate-distortion Theorem: (eg. [12]) Let R(D) be the in-
fimum of all achievable rates R with average distortion
E[d(Xn, Xn + Sn)] ≤ D as n→∞. Then,

R(D) = inf
S:E[d(X,X+S)]≤D

I(X;X + S) (36)

We next focus on our problem: let RU (D) be the infimum
of all achievable rates R with average distortion

lim
n→∞

E[d(Xn, Xn + Sn)] ≤ D (37)

subject to the constraint

E[XiSi] = 0, i = 1, 2, .., n (38)

as n→∞. Similarly, let RI(D) be the infimum of all achiev-
able rates R with average distortion E[d(Xn, Xn+Sn)] ≤ D
subject to the constraint Si is independent of Xi for all i,

2The notation in this section is limited to scalar sources for simplicity, it
is trivial to extend the results to vector sources albeit with more complicated
notation.

as n→∞. Then, we have the following result characteriz-
ing the fundamental limits of source compression under the
constraints that reconstruction error is uncorrelated with or
independent of the source.

Theorem 3

RU (D) = inf
S:E[d(X,X+S)]≤D

E[XS]=0

I(X;X + S) (39)

RI(D) = inf
S:E[d(X,X+S)]≤D

D(fXS(X,S)||fX(X)fS(S))=0

I(X;X + S) (40)

Proof: Consider the distortion measures

dU (x, x+ s) = d(x, x+ s) + β||xs|| (41)

dI(x, x+ s) = d(x, x+ s) + β log
fXS(x, s)

fX(x)fS(s)
(42)

for some β > 0.
We next consider the rate-distortion functions (denoted

R∗U (D) and R∗I(D)) associated with these distortion measures.
By replacing d with dU and dI in the standard rate-distortion
functions, we obtain the following expressions:

R∗U (D) = inf
S:E[dU (X,X+S)]≤D

I(X;X + S) (43)

R∗I(D) = inf
S:E[dI(X,X+S)]≤D

I(X;X + S) (44)

We note that the achievability and the converse proofs are
straightforward extensions of the standard achievability and
the converse proofs for regular rate distortion function.

We next consider the distortion measures dU and dI and
associated rate-distortion functions R∗U (D) and R∗I(D) when
β → ∞. As β → ∞, E[dU (Xn, Xn + Sn)] ≤ D implies
E[d(Xn, Xn + Sn)] ≤ D while E[XiSi] → 0 for all i.
Similarly, as β → ∞, E[dI(X

n, Xn + Sn)] ≤ D implies
E[d(Xn, Xn +Sn)] ≤ D under the constraint that Xi and Si
are asymptotically independent for all i. Hence, as β → ∞,
the distortion measures under consideration satisfy the respec-
tive requirements of uncorrelatedness or independence, i.e.,
RU (D) = R∗U (D) and RI(D) = R∗I(D).

Hence, (39) and (40) are indeed the information theoretical
characterization of the limits of encoding a source with un-
correlated and independent reconstruction error respectively.

B. Gaussian Vector Source with MSE Distortion

In this section, we examine a special case where the source
is vector Gaussian and the distortion measure is squared error.
We start with an auxiliary lemma without proof (see eg. [12]
for the proof).

Lemma 1 ( [12]) Let S ∼ fS and SG ∼ fSG
be random

vectors in RKwith the same covariance matrix RS . If SG ∼
N (0, RS) then

ESG
[log(fSG

(S))] = ES [log(fSG
(S))] (45)

where ESG
and ES denote the expectations with respect to

fSG
and fS respectively.
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Let us present a key lemma regarding the mutual informa-
tion of two correlated random vectors constrained to have a
fixed cross covariance matrix.

Lemma 2 Let X ∼ N (0, RX) and SG ∼ N (0, RS) be
jointly Gaussian random vectors in RK . Let S ∈ RK and
SG have the same covariance matrix, RS and the same cross
covariance matrix with X , RSX . Then,

I(X,X + S) ≥ I(X,X + SG) (46)

with equality if and only if S ∼ N (0, RS).

Proof: Consider γ = I(X,X +S)− I(X,X + SG).
Plugging the expressions, we obtain:

γ = h(X|SG +X)− h(X|S +X) (47)

Noting that h(X|SG +X) = h(SG|SG +X) and h(X|S+
X) = h(S|S + X) and plugging Y = X + S and Y G =
X + SG, we obtain:

γ = h(SG|Y G)− h(S|Y ) = (48)ˆˆ{
fS,Y (s,y)log fS|Y (s,y)−fSG,YG

(s,y)log fSG|YG
(s,y)

}
dsdy

(49)

Using Lemma 1 and the fact that the joint distribution fSG,YG

is Gaussian:

=

ˆˆ
fS,Y (s,y)

[
log fS|Y (s,y)−log fSG|YG

(s,y)
]
dsdy

(50)

=

ˆ
fY (y)

ˆ
fS|Y (s,y) log

fS|Y (s,y)

fSG|YG
(s,y)

dsdy (51)

=D(fS|Y , fSG|YG
) (52)

D ≥ 0 with equality if and only if S ∼ N (0, RS).

Next, we present our main result on this topic:

Theorem 4 For a Gaussian vector source X ∈ RK and MSE
distortion d(x, x̂) = (x− x̂)T (x− x̂), the following holds:

RI(D) = RU (D) (53)

Proof: Generally, RI(D) ≥ RU (D), since independent
reconstruction error is also uncorrelated. Note that the uncor-
related error constraint dictates RSX = 0 and the distortion
constraint is Tr(RS) = D. Lemma 2 states that under these
constraints, for a Gaussian source, Gaussian reconstruction er-
ror minimizes the mutual information between the source and
the reconstruction, i.e., I(XG,XG+S) achieves its minimum
when S ∼ N (0, RS). Then, XG and S are uncorrelated and
jointly Gaussian and are, thereby, also independent.

We next pose the question: Are there cases where the best
possible vector quantizer at asymptotically high dimension that
renders the reconstruction error uncorrelated with the source,
is necessarily a randomized one? The next corollary answers
in the affirmative, as is proved by the Gaussian case.

Corollary 1 For a Gaussian source, at asymptotically high
quantizer dimension, the quantizer that achieves minimum
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Fig. 3. Performance comparison in terms of SNR versus rate for fixed rate
quantization.

distortion subject to the uncorrelated error constraint is nec-
essarily a randomized one.

Proof: From Theorem 4, the reconstruction error for the
Gaussian source subject to the uncorrelated error constraint
is independent of the source. No deterministic quantizer can
render the quantization noise independent from the source by
definition; hence, the optimal quantizer is a randomized one.

Note that our results hold only asymptotically, it is still an
open question whether or not they hold at finite dimensions.
The numerical results in the next section support the thesis
that randomized quantizers are better at finite dimensions.

VI. EXPERIMENTAL RESULTS

In this section, we numerically compare the proposed quan-
tizers to the conventional (uniform) dithered quantizer and
to the optimal quantizer, for a standard unit variance scalar
Gaussian source. We implemented the proposed quantizers
by numerically calculating the derived integrals. For that
purpose, we sampled the distribution on a uniform grid. We
also imposed bounded support (−3 to 3) i.e., we numerically
neglected the tails of the Gaussian. In this paper, we proposed
three quantizers:

Quantizer 1: Unconstrained randomized quantizer. This
quantizer does not render the reconstruction error uncorrelated
with the source.

Quantizer 2: Constrained randomized quantizer which ren-
ders the quantization error uncorrelated with the source.

Quantizer 3: Constrained deterministic quantizer which
renders the quantization error uncorrelated with the source.

Figures 3 and 4 demonstrate the performance comparisons
among quantizers for fixed and variable rates respectively.
Note that for both fixed and variable rate, the optimal random-
ized quantizer performs very close to the optimal quantizer.
However, it does not provide the statistical benefits of the other
quantizers.
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Fig. 4. Performance comparison in terms of SNR versus rate for variable
rate quantization.

Note that for fixed rate, conventional (uniform) dithered
quantization suffers significantly from the suboptimality of
having equal quantization intervals irrespective of the rate
region. However, at variable rate, the difference between the
proposed and conventional dithered quantizer diminish at high
rates, while at low rates the difference is quite significant.
This is theoretically expected since at high rates, the optimal
variable rate quantizer is very close to uniform, hence there
is not much to gain from using a non-linear compressor-
expander.

For both fixed and variable rate, the constrained randomized
quantizer outperforms its deterministic counterpart, while both
of them perform significantly better than the conventional
dithered quantizer. Both of the proposed quantizers render
quantization error uncorrelated with the source with low
performance degradation while the dithered uniform quantizer
renders error independent of the source but (depending on the
rate) at significant distortion penalty.

An additional benefit of the proposed random quantizers
pertains to the correlation of the reconstruction errors when
correlated sources are quantized. The conventional dithered
quantizer renders quantization error independent of the source
hence, when two correlated sources are quantized with a
dithered quantizer, the reconstruction errors are uncorrelated.
For deterministic quantizers (Quantizer 3 and the optimal
quantizer), the reconstruction error is a deterministic function
of the source hence, intuitively randomized quantizers are
expected to have lower reconstruction error correlation. Fig-
ures 5 and 6 demonstrate the correlation of the reconstruction
error for different values of source correlation for a bivari-
ate Gaussian source for fixed and variable rate quantization
respectively. These numerical results illustrate this intuitive
conclusion: randomization is significantly useful in decreasing
the correlations of reconstruction errors. Specifically, the con-
strained randomized quantizer (Quantizer 2) yields extremely
low error correlation, very close to that of the conventional
dithered quantization. This property is particularly useful in
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Fig. 5. Correlation of the reconstruction error versus source correlation for
fixed rate quantization at rate R = 2bits/sample.
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Fig. 6. Correlation of the reconstruction error versus source correlation for
variable rate quantization at rate R = 1.4 bits/sample.

practical applications such as image-video compression where
white reconstruction error is preferred due to audio-visual
considerations, see eg. deblocking filters commonly used in
video coding [19]. Also note that, the unconstrained random-
ized quantizer (Quantizer 1) significantly decreases the error
correlation compared to the optimal quantizer, with negligible
sacrifice in rate distortion performance. Hence, this statistical
benefit of randomization comes with no significant penalty.

Numerical comparisons show that the proposed quantization
schemes can significantly impact the design of compression
systems such as [7], [8] where quantization error is assumed
to be uncorrelated with the source. Note that the constrained
randomized quantization satisfies this assumption exactly and
significantly outperforms the conventional dithered quantiza-
tion, which has been presented in such prior work as the viable
option to satisfy these assumptions. In fact, as an alternative
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to the conventional dithered quantization that satisfies these
assumptions at the considerable performance cost, we derived
additional quantization schemes that satisfy those assumptions:
constrained deterministic quantization and constrained nonuni-
form random quantization. We also derived an unconstrained
randomized quantizer, which performs almost as well as the
optimal (deterministic) quantizer, yet offers perceptual benefits
typical to dithered quantization.

While it is difficult to prove, in general, the strict superi-
ority of these new quantizers over the conventional dithered
quantizer, we numerically show it, for both fixed and variable
rate quantizers, in Figures 3 and 4. Moreover, the numerical
results motivate a theoretical proposition: The optimal vector
quantizer that renders the reconstruction error orthogonal
to the source is necessarily randomized. While we proved
this result at asymptotically high dimensions, it remains a
conjecture at finite dimensions, based on the numerical results
in this section.

VII. DISCUSSION

In this paper, we proposed a nonuniform randomized quan-
tizer where dithering is performed in the companded domain
to circumvent the problem of matching the dither range to
varying quantization intervals. The optimal compressor and
expander mappings that minimize the mean square error are
found via a novel numerical method. Also, we discovered
the connections between the optimal quantizer and the one
whose reconstruction error is constrained to be orthogonal
to the source, for both deterministic and randomized quan-
tization. The proposed constrained randomized quantization
outperforms conventional dithered quantization and also the
constrained deterministic quantizer proposed in this paper,
while still satisfying the requirement that the reconstruction
error be uncorrelated with the source. Moreover, the proposed
randomized quantizers significantly reduce the correlations
across reconstruction errors when correlated sources, i.e.,
sources with memory, are quantized. We also showed that
at asymptotically high dimensions, the MSE optimal vector
quantizer designed for a vector Gaussian source, which renders
the reconstruction error uncorrelated with the source, must be
a randomized quantizer. As future work, we will investigate
the applicability of this result to a broader class of sources
where random encoding is not merely a tool to derive rate-
distortion bounds, but a necessary element in practical systems
approaching such bounds.
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