
1

Filter Design with Secrecy Constraints:

The MIMO Gaussian Wiretap Channel
Hugo Reboredo*, Student Member, IEEE, João Xavier, Member, IEEE,

and Miguel R. D. Rodrigues, Member, IEEE

Abstract

This paper considers the problem of filter design with secrecy constraints, where two legitimate parties

(Alice and Bob) communicate in the presence of an eavesdropper (Eve), over a Gaussian multiple-input-

multiple-output (MIMO) wiretap channel. This problem involves designing, subject to a power constraint,

the transmit and the receive filters which minimize the mean-squared error (MSE) between the legitimate

parties whilst assuring that the eavesdropper MSE remains above a certain threshold. We consider a

general MIMO Gaussian wiretap scenario, where the legitimate receiver uses a linear Zero-Forcing (ZF)

filter and the eavesdropper receiver uses either a ZF or an optimal linear Wiener filter. We provide a

characterization of the optimal filter designs by demonstrating the convexity of the optimization problems.

We also provide generalizations of the filter designs from the scenario where the channel state is known

to all the parties to the scenario where there is uncertainty in the channel state. A set of numerical results

illustrates the performance of the novel filter designs, including the robustness to channel modeling errors.

In particular, we assess the efficacy of the designs in guaranteeing not only a certain MSE level at the

eavesdropper, but also in limiting the error probability at the eavesdropper. We also assess the impact of

the filter designs on the achievable secrecy rates. The penalty induced by the fact that the eavesdropper

This work was supported by Fundação para a Ciência e Tecnologia through the research project CMU-

PT/RNQ/0029/2009 and through the doctoral grant SFRH/BD/81543/2011. The work of J. Xavier is supported

by Fundação para a Ciência e a Tecnologia under Grant [PEst- OE/EEI/LA0009/2011] and Grant CMU-

PT/SIA/0026/2009.

H. Reboredo is with the Instituto de Telecomunicações and the Dept. de Ciência de Computadores da Faculdade

de Ciências da Universidade do Porto, Portugal (email: hugoreboredo@dcc.fc.up.pt).
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may use the optimal non-linear receive filter rather than the optimal linear one is also explored in the

paper.

Index Terms

Filter Design, Physical-Layer Security, Secrecy, Wiretap, MIMO, ZF, Wiener, MSE, Mutual Infor-

mation, Error Probability

I. INTRODUCTION

The issues of privacy and security in wireless communication networks have taken on an increasingly

important role as these networks continue to flourish worldwide. Traditionally, security is viewed as an

independent feature with little or no relation to the remaining data communication tasks and, therefore,

state-of-the-art cryptographic algorithms are insensitive to the physical nature of the wireless medium.

However, there has been more recently a renewed interest on physical-layer security which, motivated

by advances on information-theoretic security, calls for the use of physical-layer techniques exploiting the

inherent randomness of the communications medium to guarantee both reliable communication between

two legitimate parties as well as secure communication in the presence of eavesdroppers.

The basis of information-theoretic security, which builds upon Shannon’s notion of perfect secrecy [1],

was laid by Wyner [2] and by Csiszár and Körner [3] who proved in seminal papers that there exist channel

codes guaranteeing both robustness to transmission errors and a certain degree of data confidentiality.

In particular, Wyner considered the wiretap channel where two legitimate users communicate in the

presence of an eavesdropper. Wyner characterized the rate-equivocation region of the wiretap channel

and its secrecy capacity. Ever since, the computation of the secrecy capacity of a range of communications

channels has been an important research topic [4].

For example, in [5] the authors considered a scenario where both the main and the eavesdropper

channels are additive white Gaussian noise (AWGN) channels. They showed that the secrecy capacity of

such so-called Gaussian wiretap channel is equal to the difference between the main and the eavesdropper

channel capacities and, therefore, confidential communications require the Gaussian main channel to have

a better signal-to-noise ratio (SNR) than the Gaussian eavesdropper channel.

Motivated by the emerging wireless applications, the evaluation of the secrecy capacity of wireless

fading channels with single or multiple antennas at the transmitters, receivers and/or eavesdroppers has

also attracted considerable attention as well.

Space-time signal processing techniques for secure communications over wireless links were introduced

in [6]. The outage secrecy capacity of slow fading channels was characterized in [7], where it was shown
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that fading alone could guarantee information-theoretic security, even when the eavesdropper average

SNR is higher that the legitimate receiver average SNR. In turn, the ergodic secrecy capacity of fading

channels was independently characterized in [8], [9] and [10]. In [11] Parada and Blahut considered

the secrecy capacity of several degraded fading channels. The characterization of the secrecy capacity of

multiple-input-multiple-output (MIMO) channels, which represent a model for multiple-antenna channels,

can be found in [12], [13], [14] and [15]. The computation of optimal power allocation policies and

input covariances for the MIMO Gaussian wiretap channel are covered in [16] and [17], respectively.

Another key aspect in the MIMO wiretap problem is the availability of channel state information (CSI).

This problem is addressed in various works under different CSI assumptions. When the CSI about the

various channels is assumed to be known to all the parties, several secrecy capacity achieving schemes,

based on optimal beamforming designs that leverage the general singular value decomposition (GSVD)

of the main and eavesdropper channel matrices, have been proposed (e.g. [15] and [18]). When the CSI

about the eavesdropper channel is assumed to be limited or not available, artificial noise schemes have

been proposed instead [19], [20], where a fraction of the total power is used for reliable communication

between the legitimate transmitter and the legitimate receiver and the remaining fraction of the total

power is used to jam the eavesdropper. For example, the authors in [21] and [22], set up a problem

whose objective is to determine the minimum transmit power necessary to guarantee a certain quality of

service (QoS) between the legitimate transmitter and the legitimate receiver – the remaining power out

of the total power budget is then used to jam the eavesdropper using artificial noise type of techniques.

One key advantage of artificial noise transmission relates to the fact that the eavesdropper channel

knowledge is not required. Nonetheless, the idea of transmitting artificial noise in the null space of the

main channel in order to degrade the eavesdropper channel has also its limitations. On the one hand, there

is an inherent trade-off between data rate and the ability to impair the eavesdropper [19], so that one may

not take full advantage of the spatial multiplexing ability of MIMO systems. On the other hand, if the

null space of the main channel overlaps considerably with the null space of the eavesdropper channel,

the artificial noise approach might lead to limited gains in security.

This paper, at the heart of the novelty of the contribution, addresses the physical-layer security

problem from the estimation-theoretic rather than the information-theoretic viewpoint. We consider the

problem of filter design with secrecy constraints in the classical MIMO wiretap scenario consisting of

two legitimate parties that communicate in the presence of an eavesdropper, where the objective is to

conceive transmit and receive filters that, subject to a power constraint, minimize the mean-squared

error (MSE) between the legitimate parties whilst assuring that the eavesdropper MSE remains above
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a certain threshold. Interestingly, this class of problems, which differs from previous approaches in

physical-layer security in the literature (see, e.g., [15], [18], [19], [21] and [22]), represents a natural

generalization of filter design without secrecy constraints for point-to-point communications systems

(e.g., [23], [24], [25], [26], [27], [28]).

One notable merit of this approach, in contrast to the information-theoretic work that relies on non-

constructive random-coding arguments to demonstrate that there exist secrecy capacity achieving codes,

is that it leads to realizable designs which can be easily implemented in practical systems. Instead,

practical secrecy capacity achieving code designs are known only in some scenarios, which include: i)

the main channel is noiseless and the eavesdropper channel is a binary erasure channel [29], [30]; ii)

both channels are binary input symmetric discrete memoryless channels (DMC) and the eavesdropper

channel is degraded with respect to the main channel – where polar codes are used [31], [32]; and iii)

the eavesdropper is constrained combinatorially [33].

Nonetheless, it is relevant to pause to reflect on the operational relevance of this new metric, in view

of the fact that it is the norm, in the information-theoretic security literature, to use equivocation rather

than MSE to measure security. In fact, the use of the MSE in lieu of equivocation does not guarantee

perfect information-theoretic security in the sense of [1], [2] and [3]. We view the design of the filters

based on the MSE criteria as a means to provide additional confusion in a communications system.

The rationale of the new design approach is then based on the fact that some applications require a MSE

below a certain level to function properly, so that this approach would impair further the performance of

the eavesdropper by imposing a threshold on its MSE level. Note also that the bit error rate (BER), which

is a very important figure of merit in a communications system, is typically monotonically increasing

with the MSE, so that a threshold on the MSE may also translate into a threshold in the BER.

One particular scenario that suits this design approach relates to wireless broadcasting where a ser-

vice provider provides different services, e.g. different video streams, to different users/subscribers (see

Figure 1). Here, the service provider (the legitimate transmitter) needs to guarantee that a user that has

subscribed to the service (the legitimate receiver) has access to a high quality version of the video stream

whereas a user that has not subscribed to the service (the so-called eavesdropper) has only access to

a very poor quality version of the video stream. The use of a distortion metric, such as the MSE or

the BER, instead of equivocation, is then entirely appropriate for this class of applications, offering an

alternative to the cryptographic methods used by Content Access (CA) systems [34], [35], [36].

It turns out thus that the filter design with secrecy constraints problem is to be understood broadly

as a filter design problem with distortion constraints. However, in order to connect this work with the
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large body of work of physical- and information-theoretic security whose overarching aim is to impair

the eavesdropper, we – in a somewhat abusive use of language – use the notion secrecy rather than

distortion.

This paper is structured as follows: Section II defines the problem. Section III considers the design

of the transmit filter when ZF filters are used at both the legitimate and the eavesdropper receivers. In

turn, Section IV considers the design of the transmit filter when the eavesdropper uses an optimal linear

filter while the legitimate receiver is restricted to the use of a ZF receive filter. Section V provides some

generalizations of the problem of filter design with secrecy constraints, from the scenario where the state

of the channels is known exactly to all the parties (i.e., the legitimate transmitter, the legitimate receiver

and the eavesdropper) to the scenario where there is uncertainty in the channel state. Section VI shows

various numerical results to illustrate the impact of the filter designs on both the reliability and security

criteria, evaluating, not only the MSE, but also the bit error rate and the achievable secrecy rates yielded

by the designs. The main contributions of the manuscript are summarized in Section VII.

A. Notation

We use the following notation: boldface upper-case letters denote matrices or column vectors (X) and

italics denote scalars (x); the context defines whether the quantities are deterministic or random. The

notation M � 0 is used to denote a positive definite matrix and M � 0 denotes a positive semidefinite

matrix. The symbol I represents the identity matrix. The operators ‖ · ‖2, tr {·} and ∇ represent the

l2-norm, the trace operator and the gradient operator, respectively. The operators (·)† and (·)+ denote the

Hermitian transpose operator and the Pseudo-Inverse operator, respectively. The operator E (·) represents

the expectation. CN (µ,Σ) denotes a circularly symmetric complex Gaussian random vector with mean

µ and covariance Σ.

II. PROBLEM STATEMENT

We consider a communications scenario where a legitimate user, say Alice, communicates with another

legitimate user, say Bob, in the presence of an eavesdropper, Eve (see Figure 2).

Bob and Eve observe the output of the MIMO channels given, respectively, by:

YM = HMHTX + NM (1)

YE = HEHTX + NE (2)
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where YM ∈ CnM and YE ∈ CnE are the vectors of receive symbols, X ∈ Cm is the vector of

independent, zero-mean and unit-variance transmit symbols, and NM ∈ CnM and NE ∈ CnE are

circularly symmetric complex Gaussian random vector with zero mean and identity covariance matrix1.

The nM ×m matrix HM and the nE ×m matrix HE contain the deterministic gains from each main

and eavesdropper channel input to each main and eavesdropper channel output, respectively. The m×m

matrix HT represents Alice’s transmit filter.

We assume that HMHT and HEHT are full column rank, which implies that nM ≥ m and nE ≥ m.

This is necessary to guarantee the existence of some solutions. We further assume that, in a realistic

scenario, the channel matrices HM and HE are not a multiple of each other. We also assume that

the channel state is known by all the parties, i.e. Alice, Bob and Eve have perfect knowledge about

the channel matrices HM and HE . This is often a common assumption in the physical layer security

literature (see e.g. [7] and [38]). The assumption that the legitimate receiver knows the state of the main

channel and the eavesdropper receiver knows the state of the wiretap channel is realistic, because the

receivers can always estimate the channels in slow fading conditions. The assumption that the transmitter

knows the state of the main channel and, more importantly, the wiretap channel or that the legitimate

receiver knows the state of the wiretap channel and the eavesdropper knows the state of the main channel

can be justified in wireless networks where the eavesdropper is another network active user (e.g. in the

scenario of Figure 1). In particular, in time division duplex (TDD) environments Alice can estimate the

state of Bob’s and Eve’s channels and inform the receivers accordingly. However, we will also generalize

the framework to incorporate possible channel uncertainties in the sequel.

Bob’s and Eve’s estimate of the vector of input symbols are, respectively, given by:

X̂M = HRMYM (3)

X̂E = HREYE (4)

where the m×nM matrix HRM and the m×nE matrix HRE represent Bob’s and Eve’s receive filters,

respectively.

In this setting, we take, as a performance metric, the MSE between the estimate of the input vector

1The models in (1) and in (2) follow from the more general models ỸM = H̃MHT X + ÑM and ỸE = H̃EHT X + ÑE , respectively,

where ÑM and ÑE are circularly symmetric complex Gaussian random vectors with mean E
(
ÑM

)
= 0 and E

(
ÑE

)
= 0, and

covariance matrices E
(
ÑM Ñ†M

)
= ΣNM

and E
(
ÑEÑ†E

)
= ΣNE

, respectively, by using pre-whitening filters i.e., YM = Σ
−1/2
NM

ỸM

= Σ
−1/2
NM

H̃MHT X + Σ
−1/2
NM

ÑM = HMHT X + NM and YE = HEHT X + NE . These transformations are information lossless [37].
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X̂ and the true input vector X given by:

MSE = E
[
‖X− X̂‖2

]
(5)

The objective is to design, for specific receive filter choices, the transmit filter that solves the opti-

mization problem:

minMSEM = E
[
‖X− X̂M‖2

]
(6)

subject to the security constraint:

MSEE = E
[
‖X− X̂E‖2

]
≥ γ (7)

where γ represents an MSE threshold, and to the total power constraint:

tr
{

HTH†T

}
≤ Pavg (8)

where Pavg represents the available power.

We restrict our attention to two specific design scenarios: i) the situation where both the legitimate

receiver and the eavesdropper receiver are constrained to obey ZF constraints; and ii) the situation where

the legitimate receiver uses a ZF filter whereas the eavesdropper receiver uses the optimal linear Wiener

filter. For these receiver filter choices, the optimization problem in (6) – (8) is convex thus enabling the

characterization of optimal designs; for other receiver filter choices, and to the best of our knowledge,

the optimization problem in (6) – (8) is only convex for special scenarios, e.g. the degraded parallel

Gaussian wiretap channel, or the degraded MIMO wiretap channel (see [39] and [40])2.

We recognize that our formulation assumes the so-called eavesdropper to perform a certain linear

action whereas the traditional information-theoretic formulation – in view of the fact that it is based on

the equivocation metric – does not assume the eavesdropper to perform any specific operation. However,

in the scenario where the eavesdropper is another user of the network as in Figure 1, it seems appropriate

to assume a certain action by this user. We also recognize the fact that a more sophisticated eavesdropper

would possibly leverage nonlinear techniques to estimate the information. This issue is also discussed in

the sequel.

2We prove the convexity of the filter design with secrecy constraints optimization problem by using the change of variables Z =
(
HT H†T

)−1
.

This change of variables leads to convex objective functions as well as convex feasible regions when both the legitimate receiver and the

eavesdropper receiver use ZF filters (see (17), (18) and (19)) and when the legitimate receiver uses a ZF filter but the eavesdropper receiver

uses a Wiener filter (see (43), (44) and (45)). However, such a change of variables does not lead immediately to a convex optimization problem

when both the legitimate receiver and the eavesdropper receiver adopt the Wiener filter (the feasible region is still convex but the objective

function is concave rather than convex). Thus – with the exception of [39] and [40] – it is not entirely clear whether other change of variables

lead to a convex optimization problem in such a case.
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It is also important to note that, and in contrast to the artificial noise approach in [19], [20], [21], [22]

and [41], our filter design approach does not impose a limitation on the ability of transmitting information

along all the dimensions that the MIMO channel has to offer and, therefore, we can expect to achieve

higher data rates. However, by imposing a threshold on the eavesdropper MSE we may also naturally

constraint the performance of the main channel.

III. ZERO FORCING FILTERS AT THE RECEIVERS

We now consider the scenario where both the legitimate receiver and the eavesdropper receiver use

ZF filters, thus obeying the ZF constraints given by:

HRMHMHT = I (9)

HREHEHT = I (10)

The rationale for including the ZF constraints in (9) and (10) is to eliminate crosstalk between the various

streams (e.g. [42]). Note also that the performance of ZF linear receivers is equivalent to that of optimal

Wiener linear receivers in the regime of high SNR. Yet, one may still argue that a eavesdropper will

always adopt the optimal linear receive filter (or the optimal non-linear receive filter), rather than the

sub-optimal ZF receive filter. These particular cases will be addressed in Sections IV and VII.

A. Optimal Receive Filters

Let us consider the design of the receive filters. Bob uses the receive filter that, for any fixed transmit

filter HT , minimizes:

MSEM = E
[
‖X− X̂M‖2

]
= E

[
‖X−HRMYM‖2

]
(11)

subject to the ZF constraint in (9) and Eve uses the receive filter that, for any fixed transmit filter HT ,

minimizes:

MSEE = E
[
‖X− X̂E‖2

]
= E

[
‖X−HREYE‖2

]
(12)

subject to the ZF constraint in (10).

In particular, the receive filters, which follow immediately from (9) and (10), are given by [37]:

H∗RM
= (HMHT )

+ =
(
H†TH†MHMHT

)−1
H†TH†M (13)

H∗RE
= (HEHT )

+ =
(
H†TH†EHEHT

)−1
H†TH†E (14)
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The MSEs in the main and eavesdropper channels, upon substituting (13) and (14) in (11) and (12),

respectively, are then given by:

MSEM = E
[
‖X−H∗RM

YM‖2
]
= tr

{(
H†TH†MHMHT

)−1}
(15)

MSEE = E
[
‖X−H∗RE

YE‖2
]
= tr

{(
H†TH†EHEHT

)−1}
(16)

B. Optimal Transmit Filter

In view of (15) and (16), the form of the optimal transmit filter corresponds to the solution of the

optimization problem:

min
HT

tr

{(
H†TH†MHMHT

)−1}
(17)

subject to the constraints:

tr

{(
H†TH†EHEHT

)−1}
≥ γ (18)

tr
{

HTH†T

}
≤ Pavg (19)

and HTH†T � 0 (Note that HTH†T � 0, because HMHT and HEHT are full column rank by

assumption). Note that – due to the channel knowledge assumptions – the legitimate transmitter, the

legitimate receiver and the eavesdropper can all set up this optimization problem in order to determine

the transmit filter and hence the receive filters via (13) and (14).

It is now possible to reduce this optimization problem to a standard convex optimization problem by

adopting the change of variables Z =
(
HTH†T

)−1
, thereby paving the way to the characterization of

the optimal transmit filter.

The following Theorem, which stems directly from the Karush-Kuhn-Tucker optimality conditions [43],

defines the form of the optimal transmit filter.

Theorem 1: Assume that the legitimate transmitter, the legitimate receiver and the eavesdropper know

the exact channel matrices HM and HE . Assume also that the legitimate receiver and the eavesdropper

receiver use ZF filters. Then, an optimal transmit filter that solves the optimization problem in (17) –
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(19) is, without loss of generality, given by:

H∗T =



√
Pavg

tr

{
(H†MHM)

− 1
2

} (H†MHM

)− 1

4

,

tr

{
(H†MHM)

− 1
2

}
Pavg

tr

{(
H†EHE

)−1 (
H†MHM

) 1

2

}
> γ

√
Pavg

tr

{[
[H†MHM ]

−1−ν[H†EHE]
−1
] 1

2

} [[H†MHM

]−1
− ν

[
H†EHE

]−1] 1

4

,

tr

{
(H†MHM)

− 1
2

}
Pavg

tr

{(
H†EHE

)−1 (
H†MHM

) 1

2

}
≤ γ

where the value of the Lagrange multiplier ν is such that:

tr

{(
H†EHE

)−1((
H†MHM

)−1
− ν

(
H†EHE

)−1)−1/2}
×

× tr

{((
H†MHM

)−1
− ν

(
H†EHE

)−1)1/2
}

= γ · Pavg (20)

Note that the right multiplication of the transmit filter in Theorem 1 by any unitary matrix produces

another optimal filter.

Proof: By considering the change of variables Z =
(
HTH†T

)−1
it is possible to rewrite the

optimization problem in (17) – (19) as follows:

min
Z

tr

{(
H†MHM

)−1
Z

}
(21)

subject to the constraints tr

{(
H†EHE

)−1
Z

}
≥ γ, tr

{
Z−1

}
≤ Pavg, and Z � 0. Note that this

represents a standard convex optimization problem, so that the solution follows directly from the Karush-

Kuhn-Tucker optimality conditions [43].

The Lagrangian of the optimization problem is given by:

L (Z, ν, µ)= tr

{(
H†MHM

)−1
Z

}
+ ν

(
γ − tr

{(
H†EHE

)−1
Z

})
+ µ

(
tr
{
Z−1

}
− Pavg

)
(22)

where ν and µ are the Lagrange multipliers associated with the problem constraints. The Karush-Kuhn-

Tucker optimality conditions are given by:

∇ZL (Z, ν, µ) =
(
H†MHM

)−1
− ν

(
H†EHE

)−1
− µZ−2 = 0 (23)
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ν

[
tr

{(
H†EHE

)−1
Z

}
− γ
]
= 0, ν ≥ 0 (24)

µ
[
Pavg − tr

{
Z−1

}]
= 0, µ ≥ 0 (25)

and Z � 0, tr
{(

H†EHE

)−1
Z

}
≥ γ, tr

{
Z−1

}
≤ Pavg.

The Karush-Kuhn-Tucker optimality conditions reveal that the solution of this problem exhibits two

distinct regimes only: i) the regime where the secrecy constraint is not active (ν = 0); and ii) the regime

where the secrecy constraint is met with equality (ν > 0)3.

When ν = 0, then (23) reduces to: (
H†MHM

)−1
− µZ−2 = 0 (26)

and the optimal solution is given by:

Z∗ =

tr

{(
H†MHM

)−1/2}
Pavg

(
H†MHM

)1/2
(27)

This solution is valid if and only if:

tr

{(
H†MHM

)−1/2}
Pavg

tr

{(
H†EHE

)−1 (
H†MHM

)1/2}
> γ (28)

On the other hand, when ν > 0, then (23) reduces to:(
H†MHM

)−1
− ν

(
H†EHE

)−1
− µZ−2 = 0 (29)

and the optimal solution is given by:

Z∗ =

tr

{[(
H†MHM

)−1
− ν

(
H†EHE

)−1] 1

2

}
Pavg

[(
H†MHM

)−1
− ν

(
H†EHE

)−1]− 1

2

(30)

This solution is valid if and only if:

tr

{(
H†MHM

)−1/2}
Pavg

tr

{(
H†EHE

)−1 (
H†MHM

)1/2}
≤ γ (31)

3In each case the power constraint is met with equality i.e., µ > 0. Note that a scenario where the µ = 0 would require either the channel

matrices to be a multiple of each other (ν > 0 and µ = 0), or H†MHM = 0 (ν = 0 and µ = 0).
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Note that the optimal transmit filter obeys a simple operational interpretation. In the regime where the

secrecy constraint is inactive, i.e.:

tr

{(
H†MHM

)−1/2}
Pavg

tr

{(
H†EHE

)−1 (
H†MHM

)1/2}
> γ (32)

which typically occurs for low available powers, the filter performs two simple operations: i) conversion of

the main channel (i.e. H†MHM ) into a set of parallel independent channels whose power gains correspond

to the eigenvalues of the matrix H†MHM ; and ii) power allocation, by dividing the total power inversely

proportionally to the power gains of the set of parallel channels. This solution corresponds to the solution

in [37].

In contrast, in the regime where the secrecy constraint is active, i.e.:

tr

{(
H†MHM

)−1/2}
Pavg

tr

{(
H†EHE

)−1 (
H†MHM

)1/2}
≤ γ (33)

which typically occurs for high available powers, the filter can be seen to perform the operations: i)

conversion of an equivalent channel (i.e.
(
H†MHM

)−1
−ν
(
H†EHE

)−1
) into a set of parallel independent

channels whose power gains correspond to the eigenvalues of the matrix
(
H†MHM

)−1
− ν

(
H†EHE

)−1
and; ii) power allocation, by dividing the total power inversely proportionally to the power gains of the

set of parallel channels. This result, which is based on the equivalent channels (rather than on the main

channel), immediately generalizes the result in [37].

Note also that, in the scenario where both receivers use ZF filters the power constraint is always active,

i.e. the transmitter uses all the available power. We will observe in the sequel that this is not the case in

other scenarios.

C. Computational Procedure

The computation of the optimal transmit filter embodied in Theorem 1 requires finding the solution of

the non-linear equation in (20), in order to determine the value of the Lagrange multiplier ν. We shall

now put forth a simpler procedure to design the optimal transmit filter and hence the receive filters via

(13) and (14), based on the dual of the optimization problem.

Consider again the Lagrangian of the optimization problem in (22). Consider also the dual function of

the optimization problem in (21):

L (ν, µ)= inf
Z�0

L (Z, ν, µ) (34)
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where ν ≥ 0 and µ ≥ 0. It is straightforward to show that the dual function reduces to:

L (ν, µ) =


2
√
µ tr

{((
H†MHM

)−1
− ν

(
H†EHE

)−1) 1

2

}
− µPavg + νγ,((

H†MHM

)−1
− ν

(
H†EHE

)−1)
≥ 0

−∞, otherwise

The dual problem of the optimization problem in (21) is now given by:

max
µ,ν

2
√
µ tr

{((
H†MHM

)−1
− ν

(
H†EHE

)−1) 1

2

}
− µPavg + νγ (35)

subject to ν ≥ 0, µ ≥ 0 and
((

H†MHM

)−1
− ν

(
H†EHE

)−1)
� 0. We can now employ a two step

procedure to express the solution of this optimization problem: i) optimization over µ for a fixed ν; ii)

optimization over ν for the optimal µ. It is straightforward to show that the optimal value of µ, for a

fixed ν, is given by:

µ =
1

Pavg
2

(
tr

{((
H†MHM

)−1
− ν

(
H†EHE

)−1) 1

2

})2

(36)

Consequently, the dual optimization problem reduces to:

max
ν

1

Pavg

(
tr

{((
H†MHM

)−1
− ν

(
H†EHE

)−1) 1

2

})2

+ νγ (37)

subject to ν ≥ 0 and
((

H†MHM

)−1
− ν

(
H†EHE

)−1)
� 0 or, equivalently:

max
ν

1

Pavg

(
tr

{((
H†MHM

)−1
− ν

(
H†EHE

)−1) 1

2

})2

+ νγ (38)

subject to:

0 ≤ ν ≤ λmin
((

H†EHE

) 1

2
(
H†MHM

)−1 (
H†EHE

) 1

2

)
(39)

This is due to the fact that the positive semidefinite constraint
((

H†MHM

)−1
− ν

(
H†EHE

)−1)
� 0

is equivalent to the constraint ν ≤ λmin

((
H†EHE

) 1

2
(
H†MHM

)−1 (
H†EHE

) 1

2

)
, where λmin (M)

denotes the minimum eigenvalue of the positive definite matrix M. The solution to the optimization

problem (38) – (39) can be computed in a straightforward manner using, for example, the bisection

method [44], which represents a much simpler procedure than any method that solves the non-linear

equation in (20).

The optimal values of µ in (36) and ν, which corresponds to the solution of (38) subject to (39) then

define the optimal transmit filter. In turn, the optimal transmit filter defines the ZF receive filters through

(13) and (14).
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IV. OPTIMAL LINEAR RECEIVE FILTER AT THE EAVESDROPPER

We now consider the scenario where the legitimate receiver uses a ZF filter, whilst the eavesdropper

receiver uses the optimal linear Wiener filter. This corresponds to a generalization of the previous scenario

where both the receivers are restricted to obey ZF constraints.

A. Optimal Linear Receive Filter Design

Let us consider the design of the eavesdropper optimal linear receive filter. Eve now uses the receive

filter that, for any fixed transmit filter HT , minimizes:

MSEE = E
[
‖X−HREYE‖2

]
(40)

This corresponds to the Wiener filter given by (see e.g. [45]):

H∗RE = H†TH†E

(
I + HEHTH†TH†E

)−1
(41)

In turn, the MSE in the eavesdropper channel, upon substituting (41) in (40), is given by:

MSEE = tr

{(
I + H†EHEHTH†T

)−1}
(42)

Note that the expressions for the legitimate receive filter and for the MSE in the the main channel are

already given in (13) and (15).

B. Optimal Transmit Filters

We now consider the design of the optimal linear transmit filter. This, in view of (15) and (42),

corresponds to the solution of the optimization problem given by:

min
HT

tr

{(
H†TH†MHMHT

)−1}
(43)

subject to the secrecy constraint:

tr

{(
I + H†EHEHTH†T

)−1}
≥ γ (44)

and to the power constraint:

tr
{

HTH†T

}
≤ Pavg (45)

with HTH†T � 0. Note that – due to the channel knowledge assumptions – the legitimate transmitter,

the legitimate receiver and the eavesdropper can also all set up this optimization problem to compute the

transmit filter and receive filters via (13) and (41).
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It is also possible to reduce this optimization problem to a standard convex optimization problem, by

adopting the change of variables Z =
(
HTH†T

)−1
together with the Woodbury matrix identity [46].

Thus, the optimization problem reduces to:

min
Z

tr

{(
H†MHM

)−1
Z

}
(46)

subject to the constraints:

tr {I} − tr

{(
H†EHE

)(
Z +

(
H†EHE

))−1}
≥ γ (47)

tr
{
Z−1

}
≤ Pavg (48)

and Z � 0. The solution follows from the Karush-Kuhn-Tucker optimality conditions given by:(
H†MHM

)−1
− ν

[(
Z +

(
H†EHE

))−1 (
H†EHE

)(
Z +

(
H†EHE

))−1]
− µZ−2 = 0 (49)

ν

{
tr {I} − tr

{(
H†EHE

)(
Z +

(
H†EHE

))−1}
− γ
}

= 0, ν ≥ 0 (50)

µ
[
Pavg − tr

{
Z−1

}]
= 0, µ ≥ 0 (51)

and Z � 0, tr {I}− tr

{(
H†EHE

)(
Z +

(
H†EHE

))−1}
≥ γ, tr

{
Z−1

}
≤ Pavg, where ν ans µ are the

Lagrange multipliers associated with the secrecy and power constraints, respectively.

It is clear from the Karush-Kuhn-Tucker conditions above that there are three operational regimes: i)

the scenario where the transmitter can use all the available power without violating the secrecy constraint,

so that the secrecy constraint is not active (ν = 0) and the power constraint is active (µ > 0); ii) the

scenario where both the secrecy and power constraints are active (ν > 0 and µ > 0); and iii) the scenario

where the transmitter cannot use all the available power without violating the secrecy constraint, so that

the secrecy constraint is active (ν > 0) and the power constraint is inactive (µ = 0). Note that this

situation differs from the previous scenario (with ZF filters at both receivers) where it was possible to

use all the power available without violating the secrecy constraint. The difference derives from the use

of a more powerful receive filter by the eavesdropper.

It is difficult to extract a characterization of the optimal filter design from the Karush-Kuhn-Tucker

optimality conditions above in the general scenario, even though the problem is convex. Consequently,

we concentrate on scenarios i) and iii) only.
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1) Power constraint active / secrecy constraint inactive: This situation arises typically in a regime of

low available power, due to the fact that the power, injected into the channel, is not enough to meet or

violate the secrecy constraint.

The following Theorem, which stems directly from the Karush-Kuhn-Tucker optimality conditions

above, defines the form of the optimal transmit filter, in such a regime.

Theorem 2: Assume that the legitimate transmitter, the legitimate receiver and the eavesdropper know

the exact channel matrices HM and HE . Assume also that the legitimate receiver uses a ZF filter whereas

the eavesdropper receiver uses the optimal linear Wiener filter. Then, an optimal transmit filter in the

scenario where the power constraint is active whilst the secrecy constrain is inactive is, without loss of

generality, given by:

H∗T = α
(
H†MHM

)− 1

4 (52)

where α =

√
Pavg

tr

{
(H†MHM)

− 1
2

} .

Note that the right multiplication of the transmit filter in (52) by any unitary matrix produces another

optimal filter.

Proof: This Theorem follows from the Karush-Kuhn-Tucker conditions by using the fact that ν = 0,

so that we can rewrite (49) as follows:(
H†MHM

)−1
− µZ−2 = 0 (53)

Note that, as expected, this solution corresponds to the solution embodied in Theorem 1, when the

secrecy constraint is inactive.

2) Power constraint inactive / secrecy constraint active: This is a situation that typically arises in a

regime of high available power; in fact, the use of all the available power would immediately violate the

secrecy constraint.

The following Theorem, which also stems directly from the Karush-Kuhn-Tucker optimality conditions,

defines the form of the optimal transmit filter, in such a regime. In particular, we use the fact that there

exists a non-singular m×m matrix C that diagonalizes both H†MHM and H†EHE simultaneously [46],

i.e. C†H†EHEC = ΛE and C†H†MHMC = ΛM , where ΛM and ΛE are m × m positive definite

diagonal matrices, with diagonal elements λMi
, i = 1, 2, . . . ,m and λEi

, i = 1, 2, . . . ,m, respectively.
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Theorem 3: Assume that the legitimate transmitter, the legitimate receiver and the eavesdropper know

the exact channel matrices HM and HE . Assume also that the legitimate receiver uses a ZF filter whereas

the eavesdropper receiver uses the optimal linear Wiener filter. Then, an optimal transmit filter in the

scenario where the power constraint is inactive whilst the secrecy constrain is active is, without loss of

generality, given by:

H∗T = C
(
αΛ

1

2

MΛ
1

2

E −ΛE

)− 1

2

(54)

where α =
tr

{
Λ

1
2
EΛ
− 1

2
M

}
tr{I}−γ .

Note that the right multiplication of the transmit filter in (54) by any unitary matrix produces another

optimal filter.

Proof: This Theorem also follows from the Karush-Kuhn-Tucker conditions by using the fact that

µ = 0, so that we can rewrite (49) as follows:(
H†MHM

)−1
− ν

[(
Z +

(
H†EHE

))−1 (
H†EHE

)(
Z +

(
H†EHE

))−1]
= 0 (55)

or equivalently:

Λ−1M − ν
[(

C†ZC + ΛE

)−1
ΛE

(
C†ZC + ΛE

)−1]
= 0 (56)

3) Interpretation: It is interesting to contrast the operational principle of the optimal transmit filter

design when the secrecy constraint is inactive (in Theorem 2) to that when the secrecy constraint is active

(in Theorem 3).

In the regime where the power constraint is active and the secrecy constraint is inactive, the optimal

transmit filter decomposes the MIMO main channel into a set of parallel channels using an orthonormal

transformation that does not affect the transmit power. The optimal transmit filter then weighs the

individual subchannels, such that the power constraint is met with equality. The optimal weights depend

only on the eigenvalues of the matrix H†MHM .

In the regime where the power constraint is inactive and the secrecy constraint is active, the optimal

transmit filter decomposes simultaneously the MIMO main channel and the MIMO eavesdropper channel

into a set of parallel channels using an in general non-orthonormal transformation. Note that, even though

such a transformation may affect the transmit power, this is not a concern in this regime. The optimal

transmit filter then weighs the individual subchannels further, such that the secrecy constraint is met with



18

equality. Interestingly, the optimal weights now depend on the generalized eigenvalues of the matrices

H†MHM and H†EHE .

It is also interesting to contrast the transmit filter design when the eavesdropper employs a ZF filter

(in Theorem 1) to that when the eavesdropper employs a Wiener filter. In the ZF case, when the secrecy

constraint is active, the transmit filter uses an orthonormal transformation to decompose an equivalent

channel in view of the fact that the power constraint is always active. In the Wiener case, when the

secrecy constraint is active, the transmit filter uses a non-singular matrix to decompose simultaneously

both channels.

C. A Note on the Validity of the Operational Regimes

It is now relevant to establish conditions, which are a function of the system parameters, that identify

the exact regions of validity of the operational regimes unveiled in the previous subsection.

1) Power constraint active / secrecy constraint inactive: To identify the validity of this regime we

minimize the objective function in (43), subject to the power constraint in (45) only. Note that this

constitutes a relaxation of the original optimization problem so the solution of this new optimization

problem can never lead to a worse MSE than the solution of the original problem. In turn, this solution

is also a solution of the original optimization problem provided that it does not violate the secrecy

constraint.

It is easy to show that this regime is valid if, for a fixed set of system parameters, Pavg, γ, HM and

HE , the following condition holds:

tr {I} − tr

{
H†EHE

[(
H∗TH∗†T

)−1
+ H†EHE

]−1}
≥ γ (57)

where H∗T corresponds to the design embodied in Theorem 2 given by:

H∗T =

√√√√√ Pavg

tr

{(
H†MHM

)− 1

2

} (H†MHM

)− 1

4 (58)

Note that (57) and (58) can be used to determine a threshold secrecy constraint, γmaxreg1
, below which

we operate under this regime, or equivalently, a threshold power constraint, PavgmaxR1
, below which we

operate under this same regime. The threshold secrecy constraint is given by:

γmaxreg1
= tr {I} − tr

H†EHE

 tr
{(

H†MHM

)− 1

2

}
Pavg

(
H†MHM

) 1

2

+ H†EHE


−1 (59)
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2) Power constraint inactive / secrecy constraint active: To identify the validity of this regime we now

minimize the objective function in (43), subject to the secrecy constraint in (44) only. This also constitutes

a relaxation of the original optimization problem so the solution of this new optimization problem can

never lead to a worse MSE than the solution of the original problem. Moreover, this solution is also a

solution of the original optimization problem provided that it does not violate the power constraint.

It is also straightforward to show that this regime is valid if, for a fixed set of system parameters,

Pavg, γ, HM and HE , the following condition holds:

tr
{

H∗TH∗†T

}
≤ Pavg (60)

where H∗T corresponds to the design embodied in Theorem 3, given by:

H∗T = C

 tr
{

Λ
1

2

EΛ
− 1

2

M

}
tr {I} − γ

Λ
1

2

MΛ
1

2

E −ΛE


− 1

2

(61)

Similarly to the previous case, (60) and (61) can be used to determine a threshold secrecy constraint,

γminreg3
, above which we operate under this regime, or equivalently, a threshold power constraint,

PavgminR3
, above which we operate in the same regime. The threshold power constraint is given by:

PavgminR3
= tr

C

 tr
{

Λ
1

2

EΛ
− 1

2

M

}
tr {I} − γ

Λ
1

2

MΛ
1

2

E −ΛE


−1

C†

 (62)

V. GENERALIZATIONS

It is also of interest to generalize the filter design problem to scenarios that involve some degree of

channel uncertainty. We consider two cases:

1) The legitimate receiver knows the exact state of the main channel and the statistics of the eaves-

dropper channel, the eavesdropper receiver knows the exact state of the eavesdropper channel and

the statistics of the main channel, and the transmitter knows only the statistics of the main and

eavesdropper channels;

2) The legitimate receiver knows the exact state of the main channel and the statistics of the eaves-

dropper channel, the eavesdropper receiver knows the exact state of the eavesdropper channel and

the statistics of the main channel, and the transmitter knows the exact state of both channels.

These scenarios arise naturally in the ”secure” video broadcasting model depicted in Figure 1, where

both receivers – even though they may have subscribed to different services – are active users of the

network: in case 1), it is assumed that the receivers convey information about the statistics of their own
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channels to the transmitter via a feedback path (this information is then relayed to the other receivers); in

case 2), it is assumed that the receivers convey information about the exact state of their own channels to

the transmitter also via a feedback path (this information is not relayed to the other receivers though)4.

In addition, these scenarios can also be used to capture some of the uncertainty about the state of the

eavesdropper channel leading to filter designs with considerable operational significance.

We also comment on more efficient mechanisms to use the available resources, due to the fact that

some of the solutions unveiled earlier have demonstrated that the transmitter does not always use all the

available power in order to meet the security constraints.

The ensuing formulations are based on the assumption that the so-called eavesdropper adopts a linear

receiver. Once again, the implications of the use, by the eavesdropper, of a non-linear rather than linear

estimator are also discussed in the Section VI.

A. Scenario 1

A possible formulation of the filter design problem when the receivers know the exact state of their own

channels and the distribution of the other channels, whereas the transmitter knows only the distribution

of the channels, is given by:

min
HT

MSEM = EHM ,HE
{MSEM (HM ,HE)} (63)

subject to the security constraint:

MSEE = EHM ,HE
{MSEE (HM ,HE)} ≥ γ (64)

and the total power constraint:

tr
{

HTH†T

}
≤ Pavg (65)

where MSEM is the expected value, with respect to HM and HE , of the MSE in the main channel

for fixed channel matrices HM and HE , i.e. MSEM (HM ,HE), and MSEE is the expected value, with

respect to HM and HE , of the MSE in the eavesdropper channel for fixed channel matrices HM and

HE , i.e. MSEE (HM ,HE).

By assuming that the legitimate receiver uses a ZF filter and the eavesdropper uses either a ZF filter

or a Wiener filter, then the optimization problem reduces to:

4Note that the transmitter may also be able to capture an estimate of the statistics of the channels or the state of the channels in time division

duplex (TDD) environments.
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min
HT

EHM

{
tr

{(
H†TH†MHMHT

)−1}}
(66)

subject to:

tr
{

HTH†T

}
≤ Pavg (67)

and:

EHE

{
tr

{(
H†TH†EHEHT

)−1}}
≥ γ (68)

or:

EHE

{
tr

{(
I + H†EHEHTH†T

)−1}}
≥ γ (69)

depending on whether it is assumed that the eavesdropper adopts a ZF or a Wiener filter, respectively.

The significance of this formulation relates to the fact that the legitimate transmitter, the legitimate

receiver and the eavesdropper receiver all have the necessary information to set up this optimization

problem in order to conceive the transmit filter and therefore the receive filters via (13) and (14) or (41),

respectively. In addition, as long as the legitimate transmitter and the legitimate receiver agree to use

this formulation to perform the legitimate transmit and receive filter designs, there is no incentive for the

eavesdropper to adopt any other formulation beyond this one to design its own filter.

In particular, assume that the legitimate transmitter and the legitimate receiver adopt the formulation

based on the use of a Wiener filter by the eavesdropper. If the eavesdropper adopted another linear filter,

the average value of the MSE of the eavesdropper channel would still be above γ in view of the optimality

of the Wiener filter.

In contrast, assume that the legitimate transmitter and the legitimate receiver adopt the formulation

based on the use of a ZF filter by the eavesdropper. In the regime of high available power, and once again

if the eavesdropper used another linear filter, then the average value of the MSE of the eavesdropper

channel would still be above γ in view of the fact that the performance of a ZF filter approaches that

of a Wiener filter in such a regime. In the regime of low available power, if the eavesdropper used a

Wiener filter instead, then the average value of the eavesdropper MSE could be evidently below γ. This

concern can be bypassed by operating at high enough available powers.

B. Scenario 2

A formulation of the filter design problem when the receivers know the exact state of their own channels

and the distribution of the other channels, where as the transmitter knows the exact state of the channels,

is given by:
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min
HT

MSEM (HM ,HE) (70)

subject to the security constraint:

MSEE = EHM ,HE
{MSEE (HM ,HE)} ≥ γ (71)

and the total power constraint:

tr
{

HTH†T

}
≤ Pavg (72)

By assuming once again that the legitimate receiver uses a ZF filter and the eavesdropper uses either

a ZF filter or a Wiener filter, then the optimization problem reduces to:

min
HT

tr

{(
H†TH†MHMHT

)−1}
(73)

subject to:

tr
{

HTH†T

}
≤ Pavg (74)

and:

EHE

{
tr

{(
H†TH†EHEHT

)−1}}
≥ γ (75)

or:

EHE

{
tr

{(
I + H†EHEHTH†T

)−1}}
≥ γ (76)

depending on whether it is assumed that the eavesdropper adopts a ZF or a Wiener filter, respectively.

Note now that the legitimate transmitter and the legitimate receiver can also set up this optimization

problem in order to determine the transmit filter and therefore the legitimate receive filter via (13). In

contrast, the eavesdropper – in view of the absence of knowledge of the legitimate receiver channel

– cannot set up this optimization problem, so it is bound to use a mismatched filter. In view of the

previous rationale, as long as the eavesdropper uses a linear filter and independently of whether the

legitimate parties use the ZF or Wiener based formulation, we can thus argue that in the regime of high

available power the average value of the eavesdropper MSE is always above γ whereas in the regime of

low available power the average value of the eavesdropper MSE can in principle be below γ, e.g. in the

extremely unlikely event that the linear filter chosen (perhaps randomly) by the eavesdropper corresponds

to the Wiener filter, but the legitimate parties assume that the eavesdropper uses a ZF rather than a Wiener

filter in the design formulation.

Note also that this formulation does not explore the transmitter knowledge about the exact state of

the eavesdropper channel per se. It is not clear whether or not such knowledge can be exploited in an

operational meaningful way.
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C. Towards the solution of the new formulations

These problems appear to be difficult to solve in general in view of the expectation operations in (63)

– (64) in scenario 1 and in (71) in scenario 2. However, it is possible to conceive a solution for the

formulations that are based on the use of a ZF filter by the eavesdropper.

By adopting the change of variables Z =
(
HTH†T

)−1
the optimization problem in (63), (64) and (65)

reduces to:

min
Z

tr

{
EHM

{(
H†MHM

)−1}
Z

}
(77)

subject to:

tr

{
EHE

{(
H†EHE

)−1}
Z

}
≥ γ (78)

and:

tr
{
Z−1

}
≤ Pavg (79)

and HTH†T � 0, whereas the optimization problem in (70), (71) and (72) reduces to:

min
Z

tr

{(
H†MHM

)−1
Z

}
(80)

subject to:

tr

{
EHE

{(
H†EHE

)−1}
Z

}
≥ γ (81)

and:

tr
{
Z−1

}
≤ Pavg (82)

The availability, when HM is such that its nM rows are independent CN (0,ΣM ) circularly sym-

metric complex Gaussian random vectors and when HE is such that its nE rows are also independent

CN (0,ΣE) circularly symmetric complex Gaussian random vectors, of closed form expressions for

E
{(

H†MHM

)−1}
and E

{(
H†EHE

)−1}
, which are given by [47]:

EHM

{(
H†MHM

)−1}
=

1

nM −m− 1
Σ−1M , for nM −m− 1 > 0 (83)

and

EHE

{(
H†EHE

)−1}
=

1

nE −m− 1
Σ−1E , for nE −m− 1 > 0 (84)

enable us to solve the optimization problem using the previous techniques [47].

The availability of closed for expressions for EHM

{(
H†MHM

)−1}
and EHE

{(
H†EHE

)−1}
when

HM and HE follow more general distributions would allow us to solve the optimization problem in other

scenarios too.
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D. A discussion about effective use of resources

Another relevant aspect relates to the fact that some of the filter designs are such that the transmitter

does not use the entire available power budget in order to meet the secrecy constraint (see Section IV).

One could thus argue that there is not an effective use of the available resources.

There are various possible generalizations to address this issue:

1) Enter artificial noise: Artificial noise is an effective approach to provide some degree of distortion

at the eavesdropper ( [19], [20], [21] and [22]), so it is interesting to reflect whether it might be possible

to integrate elements of the filter design approach with elements of the artificial noise paradigm whereby

the fraction of the unused power is also explored to further jam the eavesdropper.

In general, it is not possible to integrate directly the artificial noise approach with our filter design

approach because the transmitter does not signal over the null space of the main channel.

However, it is possible to conceive more elaborate scenarios that involve the use of an additional friendly

jammer that shares the available power budget with the transmitter. This jammer is also constrained to

convey artificial noise over the null space of the MIMO channel that links the jammer to the legitimate

receiver.

The action of the jammer – which adds additional noise to the eavesdropper channel – translates

into a new eavesdropper channel between the transmitter and the eavesdropper receiver incorporating

the effect of the artificial noise, that replaces the original eavesdropper channel. Therefore, one can

pose immediately an optimization problem akin to the previous filter design with secrecy constraints

optimization problems that – in addition to involve the design of the transmit filter – also involves the

determination of the fraction of power to be used by the legitimate transmitter and the fraction of power

to be used by the friendly jammer subject to the available power budget. The determination of the solution

of this optimization problem entails the extra level of complexity associated with how to share the power

budget though.

2) Enter the time and frequency dimension: Another approach that points towards a more efficient

use of the resource relates to scenarios where one leverages the variability of the channel in the time

domain (as in MIMO wireless channels) or in the frequency domain (as in MIMO-OFDM channels) in

conjunction with available power constraints that operate along the multiple dimensions, i.e. long-term

– rather than short-term – power constraints (e.g. [48], [49] and [50]). As an example, by assuming that

all the parties know the state of the various time and/or frequency channels, it is possible to put forth
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the optimization problems:

min
HT (i), i=1,··· ,n

1

n

n∑
i=1

MSEM (HM (i),HE(i)) (85)

subject to:
1

n

n∑
i=1

MSEE (HM (i),HE(i)) ≥ γ (86)

and:

tr
{

HT (i)HT (i)
†
}
≤ Pavg, i = 1, · · · , n (87)

assuming a short-term power constraint, or:

1

n

n∑
i=1

tr
{

HT (i)HT (i)
†
}
≤ Pavg (88)

assuming a long-term power constraint, where HT (i) is the transmit filter at time/frequency i and

HM (i) and HE(i) contain the gains from each main and eavesdropper channel input to each main

and eavesdropper channel output, respectively, at time/frequency i.

The use of the long-term power constraint – instead of the short-term one – now offers the means to

distribute the available power more efficiently over the time or frequency dimensions in order to obtain

a better performance. Note that the short-term power constraint filter design problem can leverage the

previous techniques (see Sections III and IV); on the other hand, the long-term power constraint problem

may require more sophisticated techniques.

VI. NUMERICAL RESULTS

We now present a set of numerical results in order to provide further insight into the problem of

filter design with secrecy constraints. In particular, we present the performance of the filter designs in

the presence of perfect and imperfect channel knowledge, as well as in the presence of eavesdroppers

that adopt non-linear rather than linear estimation. We also present the impact of the filter designs on

other relevant metrics, that include the error probability and achievable secrecy rates. We consider for

simplicity a 2×2 MIMO Gaussian wiretap channel where the main channel and the eavesdropper channel

matrices are, respectively, given by:

HM =

4 −1

1 2

 , HE =

2 −1

1 1


This constitutes a degraded scenario because H†MHM � H†EHE , therefore, in general the MSE in the

eavesdropper channel will be higher than the one in the main channel.
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A. Performance of the Filter Designs in the Presence of Perfect Channel Knowledge

We first consider the scenario where the channels are known perfectly by all the nodes – as assumed

in Theorems 1, 2 and 3 – in order to test the performance of our designs. Figure 3 depicts the MSEs

in the main and in the eavesdropper channels and the input power to the channels vs. the secrecy

constraint for Pavg = 1 when ZF filters are used at both the receivers. The solution clearly depicts the

two operational regimes unveiled in Theorem 1: i) the regime where the power constraint is active but the

security constraint is inactive (for smaller values of γ); and ii) the regime where the power and security

constraints are active and met with equality (for larger values of γ). Figure 3 also depicts the MSEs in

the main and in the eavesdropper channels and the input power to the channels vs. the secrecy constraint

for Pavg = 1 when the optimal linear Wiener filters are used at both receivers, in order to provide further

insight.5 Surprisingly, in the relevant regime of large γ, the use of ZF filters rather than Wiener filters

leads to a better MSE in the main channel without the violation of the security constraint. This is due

to the fact that – via the use of ZF filters in lieu of the Wiener ones – the transmitter can use all of the

available power in such a scenario, in order to drive the MSE to a lower value.

Figure 4 now shows the values of the MSEs in the main and in the eavesdropper channels and the

injected power into the channels vs. the secrecy constraint for Pavg = 1, when the eavesdropper uses the

optimal linear filter instead. The solution exhibits the three operational regimes characterized in Section

IV-B. Below γmaxreg1
, the optimal transmit filter, which is given by Theorem 2, minimizes the MSE in

the main channel subject to the power constraint only. We can indeed verify that the available power

is not sufficient to meet or violate the secrecy constraint. In-between γmaxreg1
and γminreg3

,the transmit

filter6 minimizes the MSE in the main channel while meeting the power and the secrecy constraint with

equality. Above γminreg3
, the optimal transmit filter, which is given by Theorem 3, minimizes the MSE

in the main channel subject to the secrecy constraint only. Note that it is not possible to use all the

available power, otherwise the secrecy constraint would be violated. This power restriction results in a

much higher MSE in the main channel than in the eavesdropper channel for large values of γ because

as the injected power tends to zero the MSE that results from the ZF receiver grows very rapidly.

Finally, in view of the fact that we have motivated the filter design problem with secrecy constraints

problems in scenarios where a provider seeks to guarantee that users that have subscribed to a service

5To the best of our knowledge, the problem of filter design with secrecy constraints when Wiener filters are used at both receivers is not a

convex in general. Therefore, an approximate solution has been determined through numerical methods.

6The solution in this regime, which has not been derived, was obtained through numerical methods.
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have a reasonable quality of service, whereas users that did not do not experience such quality of service,

it is relevant to understand whether or not there are circumstances where the MSE in the main channel

can in fact be higher than the MSE in the eavesdropper channel.

In the presence of channel degradedness the main channel MSE can be higher than the eavesdropper

channel MSE for low available power Pavg for a fixed target γ when the legitimate receiver uses a ZF

filter and the eavesdropper receiver uses the Wiener filter. However, with the increase in the available

power the performance of the ZF filter approaches that of the Wiener filter, so that – in view of channel

degradedness - the main channel MSE eventually becomes lower than the eavesdropper channel MSE.

In contrast, in the absence of channel degradedness the main channel MSE can be higher than the

eavesdropper channel MSE when both the legitimate receiver and the eavesdropper receiver use ZF filters

or when the legitimate receiver uses a ZF filter and the eavesdropper receiver uses the Wiener one. This

aspect is highlighted for a scenario where HM =
[
4 −1
1 2

]
and HE =

[
3.5 −1
1 3

]
in Figure 5 – note that

MSE of the eavesdropper obeys the secrecy constraint though.

However, with the emergence of MIMO-OFDM systems in a variety of wireless standards, it is possible

conceive approaches that bypass the absence of degradedness. For example, one can in principle select

sets of sub-carriers whose MIMO channels obey the degradedness property in order to assure that the

MSE in the main channel is significantly lower than the MSE in the eavesdropper channel.

B. Performance of the Filter Designs in the Presence of Imperfect Channel Knowledge

We now consider the scenario where the channels are only known imperfectly by the nodes in order

to test the robustness of the designs embodied in Theorems 1, 2 and 3. In particular, we assume that the

nodes have only access to an estimate of the main channel H̃M = HM +ΦM , where HM represents the

true main channel matrix and ΦM models the main channel estimation error (with i.i.d. elements that

follow a Gaussian distribution with mean zero and variance σ2M ), as well as access to an estimate of the

eavesdropper channel H̃E = HE +ΦE , where HE represents the true eavesdropper channel matrix and

ΦE models the eavesdropper channel estimation error (also with i.i.d. elements that follow a Gaussian

distribution with mean zero and variance σ2E). We also assume, for simplicity, that all the nodes have

access to exactly the same estimates of the main and eavesdropper channel. The transmit and receive

filters are designed based on the estimate of the channels rather than the true channels, via Theorems 1,

2 and 3.

Figures 6 and 7 depict the MSEs in the main and eavesdropper channels (averaged over 2000 realiza-

tions of the matrices that model the channel estimation errors) vs. the secrecy constraint for Pavg=1, for
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the scenario where the legitimate and eavesdropper receivers use ZF filters and the scenario where the

legitimate receiver uses a ZF filter but the eavesdropper uses a Wiener filter, respectively.

We observe that channel modelling errors have an impact on the MSE of the main channel and – of

particular relevance – on the MSE of the eavesdropper channel. The higher the deviation of the channel

estimate from the true channel, which is modelled by the variances σ2M and σ2E , the higher the deviation

of the new MSEs from the original ones.

However, we also observe that the filter designs exhibit a certain degree of robustness. In the scenario

where the eavesdropper uses the Wiener filter, the corresponding MSE appears to be reasonably robust

to the channel modelling errors. In contrast, in the scenario where the eavesdropper uses a ZF filter, the

corresponding MSE is more sensitive to the channel modelling errors.

In general, for low to moderate channel estimation errors, the filter designs still guarantee that the

secrecy constraint is not violated for a reasonable large set of γ.

C. Linear vs. Nonlinear Estimation

It is also relevant to consider the situation where the eavesdropper is not restricted to choose a linear

filter. One could in principle argue that the eavesdropper (even if another user of a network as in Figure 1)

could use the optimal nonlinear receive filter, instead of the optimal linear one, to process the information

in order to derive a lower MSE. This involves using a conditional mean estimator (CME), that delivers

the estimate given by:

X̂E = E {X | YE} =∫
x PX (X = x) PYE |X (YE | X = x) dx∫
PX (X = x) PYE |X (YE | X = x) dx

(89)

where PX (X) is the probability density function of the input and PYE |X (YE | X) is the conditional

probability density function of the eavesdropper receive vector YE given the input vector X.

We thus assess the performance penalty incurred by the use of a conditional mean estimator by the

eavesdropper, but the transmitter designs its filter based on the assumption that the eavesdropper uses the

optimal linear filter. We study scenarios where the elements of the input vector X are either BPSK or

16-PAM. Figure 8 shows the values of the MSEs in the main and in the eavesdropper channels and the

injected power into the channels vs. the secrecy constraint for Pavg = 1. We can observe that designing

the transmit filters based on the assumption that the eavesdropper is using an optimal linear receive

filter results, as expected, in a lower eavesdropper MSE, when the input is not Gaussian (note that for

Gaussian signals the conditional mean estimator is, in fact, linear). However, and interestingly, in regimes
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of greatest operational interest of large γ, the penalty that we pay by assuming that the eavesdropper uses

an optimal linear filter rather than the optimal non-linear one vanishes, so that the eavesdropper does not

have any real advantage in using the considerably more complex conditional mean estimator. This is due

to the fact that the power injected in the channel approaches zero as the values of γ increases, in order

to meet the secrecy constraint.

D. Impact of the Filter Designs on Other Metrics

It is also of interest to assess the impact of the filter designs on other metrics of operational relevance,

including the Bit Error Rate (BER) in the main and eavesdropper channels as well as achievable secrecy

rates.

Figure 9 and 10 depict the Bit Error Rates (BER) of the main and the eavesdropper channels for the

scenarios where i) ZF filters are used at both receivers and ii) a ZF receiver is used at the legitimate

receiver and a Wiener filter is used at the eavesdropper receiver, respectively. These BER results are

obtained through Monte Carlo simulations, assuming that the transmitter uses BPSK modulation and that

the receiver uses a simple slicer to detect the information at the filters output. We can observe that by

imposing a constraint on the MSE of the eavesdropper we also restrict the BER of the eavesdropper to be

above a certain threshold. The resulting BER in the main channel, though, is also slightly degraded due

to the secrecy restriction. We can also observe that the BERs that we can achieve when both receivers

use ZF filters are lower than those when the legitimate receiver uses a ZF filter and the eavesdropper

uses a Wiener filter (cf. Figures 9 and 10). We argue that this seemingly counterintuitive behavior is due

to the fact that in the scenario where the eavesdropper uses a Wiener filter instead of the ZF one, the

transmitter cannot use all the available power.

Finally, Figure 11 compares the achievable secrecy rates yielded by our filter designs to the secrecy

capacity of the MIMO Gaussian wiretap channel, which is given in [15]. It is clear that the filter designs

result in a loss of secrecy rate, which is more pronounced at high than at low available power levels,

both for scenarios where the eavesdropper uses a ZF filter as well as scenarios where the eavesdropper

uses a Wiener filter.

However, we note that our designs can be immediately realized in practice in order to impair the

eavesdropper. In contrast, practical secrecy capacity achieving codes, which are known only for some

special channels, have to be developed in order to achieve the secrecy capacity of the MIMO Gaussian

wiretap channel.
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VII. CONCLUSION

We have considered the problem of filter design with secrecy constraints in the classical wiretap

scenario, where the objective is to conceive, subject to a power constraint, transmit and receive filters

that minimize the MSE between the legitimate parties whilst guaranteeing that the eavesdropper MSE

remains above a certain threshold.

In particular, we have provided characterizations of the form of the receive and transmit filters for

MIMO Gaussian channels, considering the situation where both receivers use Zero-Forcing filters or the

eavesdropper uses a Wiener filter. We have also provided efficient computational procedures to design

the optimal transmit and receive filters.

In particular, we have shown that the transmit filter designs are resilient to channel modeling errors as

well as to the use of more powerful nonlinear receive filters, rather than the optimal linear Wiener filter,

by the eavesdropper. We have also shown that the designs limit not only the eavesdropper MSE but also

the error probability.

We have also provided a framework to generalize this filter design problem from the scenario where

all parties are assumed to know the exact state of the channel to scenarios where there is some channel

uncertainty. This generalization is applicable not only to wireless systems subject to various channel state

information regimes as well as to systems where there is uncertainty about the state of the eavesdropper

channel. The generalization of the designs to cases where both receivers use optimal linear Wiener filters

appear to be open in general.
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Figure 1. A possible application scenario of the problem of filter design with secrecy constraints: ”Secure” video broadcasting.
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Figure 3. Main and eavesdropper channel MSEs vs. secrecy constraint and input power vs. secrecy constraint, for the optimal

transmit filter design and either ZF filters at both receivers or Wiener filters at both the receivers (Pavg = 1).
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Figure 4. Main and eavesdropper channel MSEs vs. secrecy constraint and input power vs. secrecy constraint, for the optimal

transmit filter design with a ZF filter at the legitimate receiver and a Wiener filter at the eavesdropper receiver (Pavg = 1).
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Figure 6. Main and eavesdropper channel average MSEs vs. secrecy constraint, in the presence of channel error estimation,

for the optimal transmit filter design with ZF filter at both receivers (Pavg = 1).
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Figure 7. Main and eavesdropper channel average MSEs vs. secrecy constraint, in the presence of channel error estimation,

for the optimal transmit filter design with a ZF filter at the legitimate receiver and a Wiener filter at the eavesdropper receiver

(Pavg = 1).
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Figure 8. Main and eavesdropper channel MSEs vs. secrecy constraint and input power vs. secrecy constraint, for the transmit

filter design based on the use of a ZF filter at the legitimate receiver and a Wiener filter at the eavesdropper (Pavg = 1).

MSEE(Wiener) corresponds to the eavesdropper MSE associated with the linear Wiener filter. MSEE(CME− BPSK) cor-

responds to the eavesdropper MSE associated with the CME for BPSK inputs. MSEE(CME− 16PAM) corresponds to the

eavesdropper MSE associated with the CME for 16PAM inputs.
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Figure 9. Bit error rate vs. available power for the scenario where both receivers use ZF filters (γ = 0.5).
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Figure 10. Bit error rate vs. available power for the scenario where the legitimate receiver uses a ZF filter and the eavesdropper

receiver uses the optimal linear filter (γ = 0.5).
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Figure 11. Secrecy capacity of the MIMO Gaussian wiretap channel vs. available power and achievable secrecy rate vs. available

power, for the optimal transmit filter design with ZF filters at both receivers and Wiener filters at the eavesdropper receiver

(γ = 0.5).


	I Introduction
	I-A Notation

	II Problem Statement
	III Zero Forcing Filters at the Receivers
	III-A Optimal Receive Filters
	III-B Optimal Transmit Filter
	III-C Computational Procedure

	IV Optimal Linear Receive Filter at the Eavesdropper
	IV-A Optimal Linear Receive Filter Design
	IV-B Optimal Transmit Filters
	IV-B1 Power constraint active / secrecy constraint inactive
	IV-B2 Power constraint inactive / secrecy constraint active
	IV-B3 Interpretation

	IV-C A Note on the Validity of the Operational Regimes
	IV-C1 Power constraint active / secrecy constraint inactive
	IV-C2 Power constraint inactive / secrecy constraint active


	V Generalizations
	V-A Scenario 1
	V-B Scenario 2
	V-C Towards the solution of the new formulations
	V-D A discussion about effective use of resources
	V-D1 Enter artificial noise
	V-D2 Enter the time and frequency dimension


	VI Numerical Results
	VI-A Performance of the Filter Designs in the Presence of Perfect Channel Knowledge
	VI-B Performance of the Filter Designs in the Presence of Imperfect Channel Knowledge
	VI-C Linear vs. Nonlinear Estimation
	VI-D Impact of the Filter Designs on Other Metrics

	VII Conclusion
	References

