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Sum-Rate Maximization with Minimum Power

Consumption for MIMO DF Two-Way

Relaying: Part I - Relay Optimization
Jie Gao, Sergiy A. Vorobyov, Hai Jiang, Jianshu Zhang, and Martin Haardt

Abstract

The problem of power allocation is studied for a multiple-input multiple-output (MIMO) decode-and-forward

(DF) two-way relaying system consisting of two source nodesand one relay. It is shown that achieving maximum

sum-rate in such a system does not necessarily demand the consumption of all available power at the relay. Instead, the

maximum sum-rate can be achieved through efficient power allocation with minimum power consumption. Deriving

such power allocation, however, is nontrivial due to the fact that it generally leads to a nonconvex problem. In Part I of

this two-part paper, a sum-rate maximizing power allocation with minimum power consumption is found for MIMO

DF two-way relaying, in which the relay optimizes its own power allocation strategy given the power allocation

strategies of the source nodes. An algorithm is proposed forefficiently finding the optimal power allocation of the

relay based on the proposed idea of relative water-levels. The considered scenario features low complexity due to the

fact that the relay optimizes its power allocation without coordinating the source nodes. As a trade-off for the low

complexity, it is shown that there can be waste of power at thesource nodes because of no coordination between the

relay and the source nodes. Simulation results demonstratethe performance of the proposed algorithm and the effect

of asymmetry on the considered system.

I. I NTRODUCTION

Two-way relaying (TWR) has recently attracted significant interests [1]- [17]. Establishing bi-directional links

between one relay and two source nodes, the information exchange between the source nodes can be accomplished

in two time slots [1]. In the first time slot (first phase) the source nodes simultaneously transmit their messages to

the relay while in the second time slot (second phase) the relay forwards the messages to the destinations. The first

phase is called the multiple access (MA) phase while the second phase is the broadcasting (BC) phase of TWR.

Compared to conventional one-way relaying, which needs four time slots for the information exchange between the

source nodes, TWR can achieve a higher spectral efficiency [1].
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As the performance of TWR depends on the transmit strategiesof both the source nodes and the relay, optimizing

the transmit strategies such as power allocation and beamforming is one of the main research interests in TWR.

The transmit strategies of the relay and source nodes dependon the relaying scheme. Similar to one-way relaying,

the relaying scheme in TWR can be amplify-and-forward (AF),decode-and-forward (DF), etc., depending on the

manner that the received information is processed at the relay before it is forwarded to the destinations. In the AF

TWR scheme, the relay amplifies and broadcasts the signals received from the source nodes while it also amplifies

and forwards the noise at the relay. Sum-rate maximization for multiple-input multiple-output (MIMO) AF TWR in

which the relay and the source nodes all occupy multiple antennas is investigated in [2]- [4], while a mean square

error minimizing scheme for MIMO AF TWR is studied in [5]. ForMIMO AF relaying, low-complexity sub-optimal

solutions can be obtained through diagonalizing the MIMO channel based on the singular value decomposition (SVD)

or the generalized SVD (GSVD) and thereby transferring the problem of beamforming/precoding to the problem of

power allocation [3], [5]. Finding the optimal solution, onthe other hand, usually requires iterative algorithms with

high complexity [4], [5]. The main challenge in investigating AF TWR, especially AF MIMO TWR, is the strong

coupling between the transmit strategies of the source nodes and the relay due to noise propagation. As the result

of noise propagation, the optimization over the transmit strategies of the source nodes and the relay usually leads

to nonconvex problems. For example, the information rate ofthe communication in either direction is a nonconvex

function of the covariance/beamforming matrices of the sources and the relay [1].

Unlike AF relaying, DF relaying does not have the problem of noise propagation. As a result, DF TWR may

achieve a better performance than AF TWR, especially at low signal-to-noise ratios (SNRs), at the cost of higher

complexity. Moreover, optimizing the power allocation in DF relaying usually leads to convex problems (see for

example [6] and [7]). DF TWR has been studied in [8]- [15]. Theoptimal power allocation for DF TWR is studied

under a fairness constraint in [12]. The optimal time division between the MA and BC phases and the optimal

distribution of the relay’s power for achieving weighted sum-rate maximization are studied in [13]. While the above

two works assume a single antenna at both the sources and the relay, the case with multiple antennas at all nodes

is investigated in [14]- [15]. The achievable rate region and the optimal transmit strategies of both the source nodes

and the relay are studied in [14], where the relay’s optimal transmit strategy is found by two water-filling based

solutions coupled by the relay’s power limit. The authors of[15] specifically investigate the optimal transmit strategy

in the BC phase of the MIMO DF TWR. It is shown that there may exist different strategies that lead to the same

point in the rate region. Given that TWR can achieve a high spectral efficiency, it is of interest to optimize the

power allocation so that the TWR scheme achieves high spectral efficiency using minimum power consumption.

Unlike AF TWR, in which the sum-rate can always be increased when the relay has more transmission power, the

maximum sum-rate of DF TWR can be achieved without consumingall the available power at the relay. However,

finding the sum-rate maximizing power allocation with minimum power consumption is no longer a convex problem

in general. Part I of this two-part paper studies the problemof finding the optimal relay power allocation which

minimizes the relay power consumption among all relay powerallocations that achieve the maximum sum-rate

for the MIMO DF TWR given the power allocation of the source nodes. For brevity, this problem is called the
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sum-rate maximization with minimum (relay) power consumption. The considered scenario is referred to asrelay

optimization scenario. The objective of Part I of this two-part paper is to find the optimal power allocation strategy

of the relay in the relay optimization scenario.1 The contributions of this part are as follows.

First, we show that the considered problem of sum-rate maximization with minimum relay power consumption is

nonconvex. As the minimization of the relay power consumption is considered, the problem becomes more complex

and the method used for deriving the optimal relay power allocation strategy in [7] and [14] is no longer valid.

We first prove the sufficient and necessary condition for a relay power allocation to be optimal in the considered

relay optimization scenario. Then, based on this condition, we propose an efficient algorithm for finding the optimal

solution. The proposed algorithm can obtain the optimal relay power allocation in several steps without iterations,

i.e., low complexity is achieved.

Second, we show that while the relay optimization scenario has the advantage of low complexity, as a trade-off

it may lead to a waste of power at the source nodes because of the lack of coordination between the source nodes

and the relay. We analyze the solution of the relay optimization problem for different relay power limits and show

that a waste of power at the source nodes happens when the relay has a power limit less than a certain threshold

for each considered system configuration and the thresholdsare also given.

Third, the effect of asymmetry on the considered MIMO DF TWR is analyzed and demonstrated. It has been

observed in [16], [17] that the asymmetry on channel gain, relay’s location, etc., can cause a performance degradation

in single-input single-output (SISO) TWR. We extend this tothe MIMO case and show the effect of asymmetry in

power limits and number of antennas at the source nodes through analysis and simulations.

The rest of the paper is organized as follows. Section II gives the system model of this work. The relay optimization

problem is solved and the features of the solution are investigated in Section III. Simulation results are shown in

Section IV, and Section V concludes the paper. Section VI “Appendix” provides proofs for some lemmas and all

theorems.

II. SYSTEM MODEL

Consider a TWR with two source nodes and one relay, where source nodei (i = 1, 2) and the relay haveni

andnr antennas, respectively. In the MA phase, source nodei transmits signalWisi to the relay. HereWi is the

precoding matrix of source nodei andsi is the complex Gaussian information symbol vector of sourcenodei. The

elements ofsi, ∀i are independent and identically distributed with zero meanand unit variance.The channels from

source nodei to the relay and from the relay to source nodei are denoted asHir andHri, respectively. Receiver

channel state information is assumed at both the relay and the source nodes, i.e., source nodei knowsHri and the

relay knowsHir, ∀i. It is also assumed that the relay knowsHri, ∀i by using either channel reciprocity or channel

feedback. The received signal at the relay in the MA phase is

yr = H1rW1s1 +H2rW2s2 + nr (1)

1Some preliminary results were presented at a conference [18].

January 10, 2013 DRAFT



4

wherenr is the noise at the relay with covariance matrixσ2
r I in which I denotes the identity matrix. The maximum

transmission power of source nodei is limited toPmax
i . Define the transmit covariance matricesDi = WiW

H
i , ∀i,

in which (·)H stands for the conjugate transpose, and letD = [D1,D2]. Then the sum-rate of the MA phase is

bounded by [19]

Rma(D) = log

∣

∣

∣

∣

I+(H1rD1H
H
1r+H2rD2H

H
2r)(σ

2
r )

−1

∣

∣

∣

∣

(2)

where| · | denotes determinant. In the BC phase, the relay decodess1 ands2 from the received signal, re-encodes

messages using superposition coding and transmits the signal

xr = Tr2s1 +Tr1s2 (3)

whereTri is the nr × nj relay precoding matrix for relaying the signal from source node j to source nodei.2

The maximum transmission power of the relay is limited toPmax
r . Note that in addition to the above superposition

coding, the Exclusive-OR (XOR) based network coding is alsoused at the relay in the literature [20]- [22]. While

XOR based network coding may achieve a better performance than superposition coding, it relies on the symmetry

of the traffic from the two source nodes. The asymmetry in the traffic in the two directions can lead to a significant

degradation in the performance of XOR in TWR [21], [22]. As the general case of TWR is considered and there is

no guarantee of traffic symmetry, the approach of symbol-level superposition is assumed here at the relay as it is

considered in [1] and [13]. Moreover, for the MIMO case as considered in this work, the superposition scheme can

take advantage of the MIMO channels. In the superposition scheme, the relay uses separate beamformers for the

signals towards two directions, which guarantees that eachtransmitted signal is optimal (subject to the transmission

power constraints) given its MIMO channel. This cannot be achieved if the relay uses XOR based network coding.

The received signal at source nodei is

y′
i = Hrixr + ni (4)

whereni is the noise at source nodei with covariance matrixσ2
i I. With the knowledge ofHri andTrj , source

nodei subtracts the self-interferenceHriTrjsi from the received signal and the equivalent received signalat source

nodei is

yi = HriTrisj + ni. (5)

DefineBi = TriT
H
ri, ∀i and letB = [B1,B2]. The sum-rate of the considered DF TWR can be written as [1],

[13], [20]

Rtw(B,D) =
1

2
min{Rma(D), R(B,D)} (6)

where

R(B,D) = min{R̂r1(B1), R̄2r(D2)}

+min{R̂r2(B2), R̄1r(D1)}, (7)

2It is assumed as default throughout the paper that the user index i and j satisfy i 6= j.
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in which

R̄jr(Dj) = log |I+ (HjrDjH
H
jr)(σ

2
r )

−1|, (8)

and

R̂ri(Bi) = log |I+ (HriBiH
H
ri)(σ

2
i )

−1|. (9)

For brevity of presentation, we define the following sum-rate of the BC phase

Rbc(B) = R̂r1(B1) + R̂r2(B2) (10)

to represent the summation in the above equation hereafter.

For the relay optimization scenario considered here, the relay maximizes the sum-rate in (6) using minimum

transmission power given the power allocation strategies of the source nodes.3 Since the relay needs to knowW1

andW2 for decodings1 ands2, respectively, as well as for designingTr1 andTr2, the source nodes should send

their respective precoding matrices to the relay after theydecide their transmit strategies. Similarly, the relay should

also sendTr1 andTr2 to both source nodes.

Given the above system model, we next solve the relay optimization problem.

III. R ELAY OPTIMIZATION

In the relay optimization scenario, the relay and the sourcenodes do not coordinate in choosing their respec-

tive power allocation strategies. Instead, the relay aims at maximizingRtw(B,D) in (6) with minimum power

consumption after the source nodes decide their strategiesand inform the relay.

Denote the power allocation that the source nodes decide to use asD0 = [D0
1,D

0
2].

4 For maximizing the sum-rate

givenD0, the relay solves the following optimization problem5

max
B

Rtw(B,D0) (11a)

s.t. Tr{B1 +B2} ≤ Pmax
r . (11b)

The problem (11) is convex. However, in order to find the optimalB with minimum Tr{B1+B2} among all possible

B’s that achieve the same maximum of the objective function in(11), extra constraints need to be considered. Two

3The term ‘sum-rate’ by default meansRtw(B,D) when we do not specify it to be the sum-rate of the BC or MA phase.

4The source nodes may determine their power allocation strategies using different objectives. Note that different source node power allocation

strategies lead to different solutions of the relay optimization problem. However, the approach adopted for solving the relay optimization problem

is valid for arbitrary source node power allocation.

5The positive semi-definite constraintsDi � 0, ∀i and Bi � 0, ∀i are assumed as default and omitted for brevity in all formations of

optimization problems in this paper.
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necessary constraints6 are

R̂ri(Bi) ≤ R̄jr(D
0
j ), ∀i (12a)

R(B,D0) ≤ Rma(D0). (12b)

The constraint (12a) is necessary because, due to the expression of R(B,D) in (7), the power consumption

of the relay can be reduced without decreasing the sum-rateRtw(B,D) in (6) givenD0 by reducing Tr{Bi} if

R̂ri(Bi) > R̄jr(D
0
j ). Note that (12a) is not necessarily satisfied with equality at optimality. In fact, it can be shown

that (12a) should be satisfied with inequality for at least one i at optimality using subsequent results in Section III-B.

It can also be shown that (12a) can be satisfied with inequalities for bothi’s at optimality even if the relay has an

unlimited power budget. We stress that (12a) is not sufficient for obtaining the optimal solution. Other constraints

are also needed including (12b). The constraint (12b) is also necessary because if it is not satisfied givenD0, then

the power consumption of the relay can be reduced without decreasing the sum-rateRtw(B,D0) by decreasing

R(B,D0) so thatR(B,D0) = Rma(D0).

The constraints in (12) make the considered problem nonconvex. The objective in this section is to find an efficient

method of deriving the optimal power allocation of the relayin the considered scenario of relay optimization. It

is straightforward to see that the power allocation of the relay should be based on waterfilling for relaying the

signal in either direction regardless of how the relay distributes its power between relaying the signals in the two

directions. This is due to the fact that the BC phase is interference free since both source nodes are able to subtract

their self-interference. If the objective were to maximizeRbc(B) instead ofRtw(B,D0), the optimal strategy of

the relay could be found via a simple search. Indeed, in that case, we could find the optimal power allocation

of the relay and consequently the optimalB by searching for the optimal proportion that the relay distributes its

power between relaying the signals in the two directions. However, such approach is infeasible for the considered

problem. The reason is that first of all it is unknown what is the total power that the relay uses in the optimal

solution. As power efficiency is also considered, the relay may not use full power in its optimal strategy. Moreover,

from the expression ofRtw(B,D) in (6), it can be seen that the maximum achievableRtw(B,D0) also depends

on R̄1r(D
0
1), R̄2r(D

0
2), andRma(D0). Due to this dependence, the two constraints in (12) are necessary for the

considered problem of sum-rate maximization with minimum power consumption. However, these two constraints

are implicit in the sense that they are constraints on the rates instead of on the power allocation of the relay. Such

constraints offer no insight in finding the optimalB. In order to transform the above mentioned dependence of

Rtw(B,D0) on R̄1r(D
0
1), R̄2r(D

0
2), andRma(D0) into an explicit form, and to discover the insight behind the

constraints in (12), we next propose the idea of relative water-levels and develop a method based on this idea.

6These two necessary constraints are introduced here to showthat the considered relay optimization problem is nonconvex. For the sufficient

and necessary condition that a power allocation strategy isoptimal in terms of maximizing sum-rate with minimum power consumption, please

see Theorem 2.
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A. Relative water-levels

Denote the rank ofHri asrri and the singular value decomposition (SVD) ofHri asUriΩriV
H
ri. Assume that the

first rri diagonal elements ofΩri are non-zero, sorted in descending order and denoted asωri(1), . . . , ωri(rri), while

the lastmin{ni, nr}−rri diagonal elements are zeros. DefineIi = {1, . . . , rri}, ∀i andαi(k) = |ωri(k)|
2/σ2

i , ∀k ∈

Ii, ∀i. For a givenD = [D1,D2], defineµ1(D1), µ2(D2), andµma(D) such that

∑

k∈I2

log

(

1 +
( 1

µ1(D1)
α2(k)− 1

)+
)

= R̄1r(D1) (13a)

∑

k∈I1

log

(

1 +
( 1

µ2(D2)
α1(k)− 1

)+
)

= R̄2r(D2) (13b)

∑

i

∑

k∈Ii

log

(

1 +
( 1

µma(D)
αi(k)− 1

)+
)

= Rma(D) (13c)

where (·)+ stands for projection to the positive orthant. The physicalmeaning ofµi(Di) is that if waterfilling

is performed onωrj(k)’s, ∀k ∈ Ij using the water-level1/µi(Di), then the information rate of the transmission

from the relay to source nodej using the resulting waterfilling-based power allocation achieves preciselȳRir(Di).

The physical meaning ofµma(D) is that if waterfilling is performed onωri(k)’s, ∀k ∈ Ii, ∀i using the water-

level 1/µma(D), then the sum-rate of the transmission from the relay to the two source nodes using the resulting

waterfilling-based power allocation achieves preciselyRma(D). Note that1/µi(Di), ∀i and1/µm(D) are not the

actual water-levels for the MA or the BC phase. They are just relative water-levels introduced to transfer and

simplify the constraints in (12). Denote the actual water-levels used by the relay for relaying the signal from source

node j to source nodei as 1/λi, ∀i. With water-level1/λi, Bi can be given asBi = VriPri(λi)V
H
ri where

Pri(λi) = diag

(

(

1
λi

− 1
αi(1)

)+
, . . . ,

(

1
λi
− 1

αi(rri)

)+
, 0, . . . , 0

)

in which diag(·) stands for making a diagonal matrix

using the given elements,(·)+ stands for projection to the positive orthant, and0nr−rri stands for all-zero matrix of

size(nr−rri)×(nr−rri). The power allocated onωri(k) is pri(k) =
(

1/λi−1/αi(k)
)+

, ∀k ∈ Ii, ∀i. The resulting

rate R̂ri(Bi) is given by
∑

k∈Ii

log

(

1+
(

αi(k)/λi −1
)+
)

. Using µ1(D1), µ2(D2), andµma(D), the constraints in

(12a) can be rewritten as

λi ≥ µj(D
0
j ), ∀i (14a)

∑

i

∑

k∈Ii

log

(

1+
( 1

λi

αi(k)−1
)+
)

≤
∑

i

∑

k∈Ii

log

(

1+
( 1

µma(D0)
αi(k)−1

)+
)

. (14b)

Given (13a) and (13b), it is not difficult to see that (12a) is equivalent to (14a). Moreover, the equivalence between

(12b) and (14b) can be explained as follows. GivenD0 and (12b),Rtw(B,D0) in (11a) becomesR(B,D0)/2.

Given (12a), or equivalently (14a),R(B,D) in (7) with D = D0 becomesR̂r1(B1) + R̂r2(B2). Then, substituting

the left-hand side of (12b) witĥRr1(B1) + R̂r2(B2), i.e.,Rbc(B) in (10), and using (13c), the constraint (14b) is

obtained.

The procedure for the relay optimization can be summarized in the following three steps:

January 10, 2013 DRAFT
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1. Obtainµ1(D
0
1), µ2(D

0
2), andµma(D

0) from D0;

2. Determine the optimalλi;

3. ObtainPri(λi) andBi from λi.

The first and the third steps are straightforward given the definitions (13a)-(13c) and (??). Therefore, finding the

optimalλi, ∀i in the second step is the essential part to be dealt with laterin this section.

From hereon,µ1(D1), µ2(D2), andµma(D) are denoted asµ1, µ2 andµma, respectively, for brevity. The same

markers/superscripts onDi and/orD are used onµi and/orµma to represent the connection. For example,µi(D
0
i )

andµma(D̃) are briefly denoted asµ0
i and µ̃ma, respectively. The ratêRri(Bi) obtained using water-level1/λi is

also denoted aŝRri(λi).

B. Algorithm for relay optimization

Using the relative water-levelsµi, ∀i andµma, we can now develop the algorithm for relay optimization. Inorder

to do that, the following lemmas are presented.

Lemma 1: 1/µma < max{1/µ1, 1/µ2}.

Proof: The proof for Lemma 1 is straightforward. Using (13a)-(13c), it can be seen thatRma(D) ≥
∑

i

R̄ir(Di) if

1/µma ≥ max{1/µ1, 1/µ2}. However,given the definitions in (2) and (8), it can be seen thatRma(D) ≥
∑

i

R̄ir(Di)

is impossible [19]. Therefore,1/µma < max{1/µ1, 1/µ2}. �

Lemma 2: Assume that there exist{λi, λj} and {λ′
i, λ

′
j} such thatλ′

i < λi ≤ λj < λ′
j . If

∑

l

Tr{Prl(λl)} =
∑

l

Tr{Prl(λ
′
l)}, then

∑

l

R̂rl(λl) >
∑

l

R̂rl(λ
′
l) as long as1/λj > min

k
{1/αj(k)}.

Proof: See Subsection VI-A in Appendix. �

Lemma 2 states that, for any given{λ1, λ2} such that1/λ2 > min
k

{1/α2(k)} assumingλ1 ≤ λ2, decreasing

min{λ1, λ2} and increasingmax{λ1, λ2} while fixing the total power consumption leads to a smaller BCphase

sum-rate than that achieved by using{λ1, λ2}.

Lemma 3: Assume that there exist{λi, λj} and{λ′
i, λ

′
j} such thatλi < λj , λ′

i > λi andλ′
j > λj , and

R̂ri(λ
′
i) + R̂rj(λj) = R̂ri(λi) + R̂rj(λ

′
j) (15)

then as long asλ′
i ≤ λj , it holds true that

Tr{Pri(λ
′
i)}+ Tr{Prj(λj)} < Tr{Pri(λi)}+ Tr{Prj(λ

′
j)}. (16)

Proof: See Subsection VI-B in Appendix. �

Lemma 3 states that, for any given{λ1, λ2}, decreasingmin{λ1, λ2} and increasingmax{λ1, λ2} such that the

BC phase sum-rate is unchanged, the power consumption increases.

Theorem 1: The optimal solution of the considered relay optimizationproblem always satisfies the following

properties

min

{

1

λ1
,
1

λ2

}

= min

{

1

µ0
1

,
1

µ0
2

}

if λ1 6= λ2 (17a)

1

λ1
=

1

λ2
= min

{

1

µ0
ma

,
1

λ0

}

if λ1 = λ2 (17b)
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in which 1/λ0 is the water-level obtained by waterfillingPmax
r on ωri(k), ∀k ∈ Ii, ∀i.

Proof: See Subsection VI-C in Appendix. �

According to the proof of Theorem 1, it can be seen thatλ1 6= λ2 at optimality and consequently the equation

in (17a) holds when both of the following two conditions are satisfied: (i) the relay has sufficient power, i.e.,

1/λ0 > min{1/µ0
1, 1/µ

0
2}, and (ii) there is asymmetry betweenµ0

1 and µ0
2, i.e., min{1/µ0

1, 1/µ
0
2} < 1/µ0

ma <

max{1/µ0
1, 1/µ

0
2}. If either of the above two conditions is not satisfied,λ1 = λ2 at optimality and consequently

the equation in (17b) holds.

Theorem 2: The conditions (14a), (14b), (17a), and (17b) are sufficient and necessary to determine the optimal

{λ1, λ2} with minimum power consumption for the relay optimization problem among all{λ1, λ2}’s that maximize

the sum-rateRtw(B,D0).

Proof: See Subsection VI-D in Appendix. �

It should be noted that the power constraint (11b) is not always tight at optimality due to the constraints in (14a),

(14b) (or equivalently (12a), (12b)), (17a), and (17b). Each of (14a), (14b), (17a), and (17b) may refrain the relay

from using its full power at optimality. The reason can be found from the proofs of Theorems 1 and 2. Specifically,

(14a) and (17a) make sure that there is no superfluous power spent for relaying the signal in each direction while

(14b) and (17b) guarantee that the power consumption of the relay cannot be further reduced without reducing the

sum-rate.

Based on the above results in Theorem 1 and Theorem 2, the algorithm summarized in Table I is proposed to find

the optimal relay power allocation for the relay optimization problem. The algorithm can be briefly understood as

follows. Step 1 performs initial power allocation and obtains the initial water levelλ0. The water-levelsλi = λ0, ∀i

maximizeRbc(B) among all possible{λ1, λ2} combinations subject to the power limit of the relay. Step 2 checks if

min{R̂ri(Bi), R̄jr(Dj)} is upper-bounded bȳRjr(D
0
j ), ∀i. If R̂r1(λ

0
1) > R̄2r(D

0
2), the relay reduces its transmission

power allocated for relaying the signal from source node2 to source node1 so thatR̂r1(λ1) = R̄2r(D
0
2) in Step 3.

In the case that̂Rr1(λ1) is reduced in Step 3, in terms of increasingλ1, extra power becomes available for relaying

the signal from source node1 to source node2. Therefore, ifR̂r2(λ
0
2) < R̄1r(D

0
1), the remaining power of the

relay is allocated for relaying the signal from source node1 to source node2 at first in Step 4. Later in Step 4,

it is checked ifR̂r2(λ2) > R̄1r(D
0
1) under the new power allocation. If̂Rr2(λ2) > R̄1r(D

0
1) in Step 4, the relay

reduces its transmission power allocated for relaying the signal from source node1 to source node2 so that

R̂r2(λ2) = R̄1r(D
0
1) in Step 5. Steps 6 checks if̂Rr1(λ1) + R̂r2(λ2) ≤ Rma(D0). In the case that this constraint

is not satisfied, Step 6 or Step 7 revise the power allocation so thatR̂r1(λ1)+ R̂r2(λ2) = Rma(D0) and the power

consumption of the relay is minimized. The above procedure in the proposed algorithm, which terminates after

Step 6 or 7, is not iterative.

The following theorem regarding the proposed algorithm is in order.

Theorem 3: The water-levels obtained using the algorithm for relay optimization in Table I achieve the optimal

relay power allocation for the considered relay optimization problem of sum-rate maximization with minimum relay

power consumption.
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TABLE I: The algorithm for relay optimization.

1. Initial waterfilling: allocatePmax
r on ωri(k),∀k ∈ Ii, ∀i

using waterfilling. Denote the initial water level as1/λ0. Set

1/λ1 = 1/λ2 = 1/λ0. The power allocated onωri(k) is

pri(k) =
(

1/λi − 1/αi(k)
)+

,∀k ∈ Ii, ∀i.

2. Check if 1/λi ≤ 1/µ0
j for both i = 1, 2. If yes, proceed to

Step 6. Otherwise, assume that1/λ1 > 1/µ0
2
, proceed to Step 3.

3. Setλ1 = µ0
2. Check if1/λ2 < 1/µ0

1 . If not, proceed to Step 4.

Otherwise, proceed to Step 5.

4. Calculate P ′
r = Pmax

r −
∑

k∈I1

pr1(k). Allocate P ′
r on

ωr2(k)’s,∀k ∈ I2 via waterfilling. Obtain the water level1/λ2.

If 1/λ2 > 1/µ0
1
, proceed to Step 5. Otherwise, go to Step 6.

5. Setλ2 = µ0
1 and proceed to Step 6.

6. If 1/λi ≥ 1/µ0
ma, ∀i, set λi = µ0

ma,∀i. Check if 1/λi ≤

1/µ0
ma, ∀i. If yes, output λi,∀i and break. Otherwise, check

if
∑

i

R̂ri(λi) ≤ Rma(D0). If yes, outputλi,∀i and break.

Otherwise, proceed to Step 7.

7. Assuming thatλj < λi, find λ′
j such that|M+

rj | log λ
′
j =

∑

k∈M
+
rj

logαj(k) − Rma(D0) + R̄jr(D
0
j ), where prj(k) =

(

1/λ′
j − 1/αj (k)

)+
,∀k ∈ Ij , M+

rj = {k|prj(k) > 0} and

|M+

rj | is the cardinality of the setM+

rj . Setλj = λ′
j and output

λi andλj .

Proof: See Subsection VI-E in Appendix. �

Depending on the source node power allocation strategies and the power limit at the relay, different results can be

obtained at the output of the algorithm in Table I. Define the power thresholdsPma =
∑

i

∑

k∈Ii

(

1/µ0
ma−1/αi(k)

)+
,

Pl =
∑

i

∑

k∈Ii

(

1/max{µ0
1, µ

0
2}−1/αi(k)

)+
, Pt =

∑

i

∑

k∈Ii

(

1/µ0
i −1/αi(k)

)+
andPs =

∑

i

∑

k∈Ii

(

1/min{µ0
1, µ

0
2}−

1/αi(k)
)+

. Recall from Lemma 1 thatµ0
ma > min{µ0

1, µ
0
2}.

For the case thatµ0
ma ≥ max{µ0

1, µ
0
2}, the following subcases exit asPmax

r increases. IfPmax
r is small such that

Pmax
r < Pma, the algorithm proceeds through Steps 1-2-6 and

λi = λ0 > µ0
ma, ∀i (18a)

∑

i

Tr{Pri(λi)} = Pmax
r (18b)

at the output of the algorithm, while (14a) and (14b) are satisfied with inequality. Note that some power of the

source nodes is wasted in this subcase. Since the sum-rateRtw(B,D) is bounded byR̂r1(λ1)+ R̂r2(λ2) due to the

small power limit of the relay, the source nodes could use less power without reducingRtw(B,D) if there would

be coordination in the system. Indeed, if the source nodes could be coordinated to optimize their power allocation

as well, they only need to use the power of Tr{D†
1}+Tr{D†

2}, whereD† = [D†
1,D

†
2] is the optimal solution to the
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following problem

min
D

Tr{D1}+ Tr{D2} (19a)

s.t. Rma(D) ≥ R̂r1(λ
0) + R̂r2(λ

0) (19b)

R̄1r(D1) ≥ R̂r2(λ
0) (19c)

R̄2r(D2) ≥ R̂r1(λ
0). (19d)

It can be shown that Tr{D0
1}+ Tr{D0

2} > Tr{D†
1} + Tr{D†

2} in this subcase. Therefore, the power of Tr{D0
1}+

Tr{D0
2} − Tr{D†

1} − Tr{D†
2} is wasted at the source nodes because of the lack of coordination.

IncreasingPmax
r such thatPma ≤ Pmax

r ≤ Pl, the algorithm proceeds through Steps 1-2-6. IncreasingPmax
r

such thatPl < Pmax
r ≤ Pt, the algorithm proceeds through Steps 1-2-3-4-6. Further increasingPmax

r such that

Pt < Pmax
r ≤ Ps, the algorithm proceeds through Steps 1-2-3-4-5-6. Further increasingPmax

r such thatPmax
r > Ps,

the algorithm proceeds through Steps 1-2-3-5-6. In the above subcases, it holds that

λi = µ0
ma ≥ λ0, ∀i (20a)

∑

i

Tr{Pri(λi)} ≤ Pmax
r (20b)

at the output of the algorithm, while (14a) is satisfied with inequality for eachi such that1/µ0
i > 1/µ0

ma and (14b)

is satisfied with equality. For these subcases, the sum-rateRtw(B,D) is bounded byRma(D0) and there is no

waste of power at the source nodes.

For the case thatµ0
ma < max{µ0

1, µ
0
2}, it holds thatmin{µ0

1, µ
0
2} < µ0

ma < max{µ0
1, µ

0
2} according to Lemma 1.

Assume thatµ0
2 > µ0

1 and find λ̄2 such thatR̂r2(λ̄2) = Rma(D0) − R̄2r(D
0
2). Let λ̄1 = µ0

2 and defineP̄ma =
∑

i

∑

k∈Ii

(

1/λ̄i − 1/αi(k)
)+

. It can be seen from Lemma 3 that̄Pma > Pma. The following subcases appear as

Pmax
r increases. IfPmax

r is small such thatPmax
r < Pl, the algorithm proceeds through Steps 1-2-6 and

λi = λ0 > max{µ0
1, µ

0
2}, ∀i (21a)

∑

i

Tr{Pri(λi)} = Pmax
r (21b)

at the output of the algorithm, while (14a) and (14b) are satisfied with inequality. IncreasingPmax
r such that

Pl ≤ Pmax
r ≤ P̄ma, the algorithm proceeds through Steps 1-2-3-4-6 and

λ1 = µ0
2 ≥ λ0 (22a)

∑

i

Tr{Pri(λi)} = Pmax
r (22b)

at the output of the algorithm, while (14a) is satisfied with equality for i = 1 and inequality fori = 2. Note

that there is waste of power at the source nodes for the above two subcases as long asPmax
r < P̄ma because the

sum-rateRtw(B,D) is bounded byR̂r1(λ1) + R̂r2(λ2).

IncreasingPmax
r such thatP̄ma < Pmax

r ≤ Pt, the algorithm proceeds through Steps 1-2-3-4-6-7. Further

increasingPmax
r such thatPt < Pmax

r ≤ Ps, the algorithm proceeds through Steps 1-2-3-4-5-6-7. Further increasing
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(a) Pmax
r < Pma, µ0

ma ≥ max{µ0
1, µ

0
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1
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1

1

µ0
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1

λ0

1

µ0
ma

( 1

λ̄1
)

1

λ̄2

ωr1(1) ωr1(k) ωr1(rr1) ωr2(1) ωr2(k) ωr2(rr2)

(b) Pmax
r < P̄ma, µ0

ma < max{µ0
1, µ

0
2}

Fig. 1: Illustration ofµ0
1, µ0

2, µ0
ma, andλ0 for the scenario of relay optimization.

Pmax
r such thatPmax

r > Ps, the algorithm proceeds through Steps 1-2-3-5-6-7. In the subcases whenPmax
r ≥ P̄ma,

it holds that

λ1 = µ0
2 > λ0 (23a)

∑

i

Tr{Pri(λi)} ≤ Pmax
r (23b)

at the output of the algorithm, while (14a) is satisfied with equality for i = 1 and inequality fori = 2, and (14b)

is satisfied with equality. The optimalλ2 is found in Step 7 of the proposed algorithm. For these subcases, there

is no waste of power at the source nodes.

Two of the above subcases, one for the subcasePmax
r < Pma, µ

0
ma ≥ max{µ0

1, µ
0
2} and the other for the subcase

Pmax
r < P̄ma, µ

0
ma < max{µ0

1, µ
0
2}, are illustrated in Fig. 1.

From the above discussion, it can be seen that the algorithm in Table I obtains the optimal power allocation in

at most seven steps without iterations.

Recall that the sum-rate of DF TWR is bounded by both the sum-rate of the MA phase and the sum-rate of the

BC phase. In the scenario of relay optimization, the relay optimizes its power allocation which affects the sum-rate

of the BC phase. Since the relay may or may not use all its available power at optimality (i.e., for the optimal power

allocation), the sum-rate of the BC phase is not necessarilymaximized at optimality. Moreover, it is also possible

that the sum-rate of the BC phase at optimality is not even themaximum sum-rate of the BC phase that can be

achieved using the power consumed by the relay at optimality. We specify the termefficientto describe such optimal

power allocation of the relay that maximizes the BC phase sum-rateRbc(B) with the actually consumed power at

the relay. Thus, the relay’s power allocation is efficient ifit generates the maximum sum-rate for broadcasting the

messages of the source nodes given its power consumption. For example, when the relay uses all its available power

at optimality, the optimal power allocation of the relay is efficient if it maximizes the sum-rate of the BC phase,

and inefficient otherwise. When the relay uses the powerPr < Pmax
r at optimality, the optimal power allocation is

efficient if the achieved sum-rate of the BC phase is the maximum achievable sum-rate of the BC phase with power

consumptionPr, and inefficient otherwise. Then the following two conclusions can be drawn for the scenario of

relay optimization.
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First, the optimal relay power allocation in the scenario ofrelay optimization is always efficient for the case that

µ0
ma ≥ max{µ0

1, µ
0
2}. In such a case, it can be seen from (18a) and (20a) that1/λ1 = 1/λ2 at optimality regardless

of whether the relay uses all its available power. Therefore, the BC phase sum-rateRbc(B) is always maximized

given the relay’s power consumption in this case.However, the optimal relay power allocation is inefficient for the

case thatµ0
ma < max{µ0

1, µ
0
2} as long asPmax

r > Pl. Moreover, the larger the difference betweenmax{µ0
1, µ

0
2}

andµ0
ma in this case, the more inefficient the optimal relay power allocation becomes whenPmax

r > Pl. Given the

definitions (13a)-(13c) and Lemma 1, the case withµ0
ma < max{µ0

1, µ
0
2} indicates that one source node uses more

power, has more antennas and/or better channel condition compared to those of the other source node. Indeed, if

the power budget, number of antennas, and channel conditions are the same for the two source nodes, as an extreme

example, it leads toµ0
ma > µ0

1 = µ0
2. Therefore, it can be seen that the asymmetry between the power budget,

number of antennas, and/or channel conditions can degrade the relay power allocation efficiency in the scenario of

relay optimization.

Second, the considered scenario of relay optimization may result in the waste of power at the source nodes.

However, the relay never wastes any power. This is due to the fact that the relay is aware of the source node power

allocation strategies and optimizes its own power allocation based on them. As a result, it can use only part of the

available power if its power limitPmax
r is large. However, the relay power allocation strategy is unknown to the

source nodes when the source nodes decide their power allocation strategies. Therefore, the possibility of wasting

power in the relay optimization scenario can be viewed as thetradeoff for low complexity. Indeed, in the scenario

of relay optimization, there is no coordination between therelay and the source nodes. As a result, it is almost

impossible to achieve the maximum sum-rate with minimum total power consumption referred to as network-level

optimality. In order to achieve the network-level optimality, the scenario of network optimization, in which the relay

and the source nodes jointly maximize the sum-rate of the TWRwith minimum power consumption, is considered

in Part II of this two-part paper.

IV. SIMULATIONS

In this section, we provide simulation examples for some results presented earlier and demonstrate the proposed

algorithm for relay optimization in Table I. The general setup is as follows. The elements of the channelsHri and

Hir, ∀i are generated from complex Gaussian distribution with zeromean and unit covariance.The noise variances

σ2
i , ∀i andσ2

r are equal to each other and denoted uniformly asσ2. While the source node power allocation strategy

D0 can be arbitrary, we use for simulations theD0 that maximizes the MA phase sum-rateRma(D). The rates

Rma(D), R̄ir(Di), andR̂ri(Bi) are briefly denoted asRma, R̄ir andR̂ri, respectively, in the figures in this section.

Example 1: A demonstration of Lemma 2. It is assumed that the number of antennas at the relaynr is 8 while

source node 1 hasn1 = 6 antennas and source node 2 hasn2 = 5 antennas.Each curve in Fig. 2 shows the sum-rate

R̂r1 + R̂r2 versus the water-level1/λ1 for a given ratio ofPmax
r overσ2. In each curve, for each given1/λ1, the

relay consumes all the remaining power to maximize1/λ2. Therefore, the power consumption of the relay is fixed

and equalsPmax
r . For each curve,σ2 is different. The curve at the bottom corresponds to the ratio Pmax

r /σ2 equal
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Fig. 3: Illustration of relay optimization.

to 4 dB. For each time, when the ratio ofPmax
r overσ2 increases, a new curve of̂Rr1 + R̂r2 versus1/λ1, which

lies above the previous curve, is plotted. The curve at the top corresponds to the ratioPmax
r /σ2 equal to7 dB.

It can be seen from Fig. 2 that the sum-rateR̂r1 + R̂r2 is a nonconvex function of1/λ1. However,R̂r1 + R̂r2 is

non-decreasing in the interval from the minimum1/λ1 to the sum-rate maximizing1/λ1 and non-increasing from

the sum-rate maximizing1/λ1 to the maximum1/λ1. Note that1/λ1 = 1/λ2 = 1/λ0 when the BC phase sum-rate

is maximized. As a result, it can be seen that increasingmax{1/λ1, 1/λ2} and decreasingmin{1/λ1, 1/λ2} while

fixing the total power consumption leads to a smaller BC phasesum-rate for any given{1/λ1, 1/λ2}. Therefore,

Fig. 2 verifies the result presented in Lemma 2.

Example 2: The relay optimization problem.Fig. 3a compares the BC phase rates at optimality of the relay
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optimization problem, which considers power consumption minimization, with the BC phase rates at optimality of

the problem (11), which does not minimize the power consumption, under differentPmax
r . One channel realization

is shown. The specific setup for this simulation is as follows. The number of antennasn1, n2, andnr are set to

be 6, 5 and8, respectively.The power limits for the source nodes are set to bePmax
1 = Pmax

2 = 3 W. The noise

variance is normalized so thatσ2 = 1. The MA phase rates for this channel realization are 20.7 forRma(D0),

11.2 for R̄1r(D
0
1), and 11.0 forR̄2r(D

0
2). In Fig. 3a, R̂′

ri representsR̂ri(B
′
i), whereB′

i’s, ∀i are the optimal

solution (obtained using CVX [23]) to the problem (11) which does not minimize the power consumption, andR̂ri

representŝRri(Bi), whereBi’s, ∀i are the optimal solution to the relay optimization problem considering power

consumption minimization obtained using the algorithm in Table I. It can be seen from Fig. 3a thatR̂′
ri = R̂ri

when Pmax
r is small. The reason is that̂R′

ri is small whenPmax
r is below certain threshold. As a result, the

constraints in (12) are always satisfied and the solutions tothe problem (11) and the relay optimization problem

are the same. AsPmax
r increases,Rtw(B,D0) becomes larger and is finally bounded byRma(D0), while the

relay power consumption is not necessarily minimized in thesolution of the problem (11) which does not consider

power consumption minimization. This can be seen from the first subplot of Fig. 3b, which shows that the power

consumption in the solution derived using the proposed algorithm, denoted asP 2
r , saturates whenPmax

r ≥ 4.9 W,

while the power consumption in the solution to the problem (11) which does not consider power consumption

minimization, denoted asP 1
r , keeps increasing. As a result, as can be seen from the secondsubplot of Fig. 3b,

∑

i

R̂ri never exceedsRma(D0), while
∑

i

R̂′
ri grows beyondRma(D0) whenRtw(B,D0) is bounded byRma(D0).

Meanwhile, it can also be seen from the second subplot of Fig.3b that the maximum sum-ratesRtw(B,D0) for the

two compared solutions are the same, both of which equal to
∑

i

R̂′
ri =

∑

i

R̂ri when
∑

R̂′
ri ≤ Rma(D0) and equal

to Rma(D0) when
∑

R̂′
ri > Rma(D0). Thus, this example demonstrates that the proposed algorithm in Table I

achieves maximum sum-rate in the scenario of relay optimization with minimum power consumption.

Example 3: The effect of asymmetry. The specific setup for this example is as follows. The noise variance is

normalized so thatσ2 = 1. The number of antennas at the relay, i.e.,nr, is set to be6. The power limit of the relay,

i.e.,Pmax
r is set to be 3W. The total number of antennas at both source nodes is fixed such thatn1 +n2 = 6. The

total available power at both source nodes is also fixed such thatPmax
1 +Pmax

2 = 5 W. Given the above total number

of antennas and total available power at the source nodes, the relay optimization problem is solved for differentn1,

n2, Pmax
1 , andPmax

2 for 1000 channel realizations. The resulting average sum-rate and average power consumption

of the relay, and the percentage of efficient power allocation at optimality are plotted in Figs. 4a, 4b and 4c,

respectively, versus the difference between the number of antennas and the difference between the power limits

at the source nodes. From Fig. 4a, it can be seen that the sum-rate at optimality of the relay optimization is the

largest when there is no asymmetry in the number of antennas at the source nodes and no asymmetry or only

small asymmetry in the power limits of the source nodes. As the asymmetry becomes larger in either number of

antennas or power limits, the sum-rate at optimality of the relay optimization decreases. Therefore, it can be seen

from this figure that the asymmetry in the above aspects leadsto smaller sum-rate at optimality of the considered
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Fig. 4: Effect of asymmetry: the average sum-rate, average relay power consumption, and percentage of efficient

power allocation at optimality of relay optimization versus the difference between number of antennas and the

difference between power limits at the source nodes in 1000 channel realizations.

relay optimization problem. Relating Figs. 4b and 4c to Fig.4a, two more observations can be made. First, the

relay does not necessarily use all the available power for sum-rate maximization in the relay optimization scenario.

Second, the asymmetry in number of antennas and power limitsleads to low power allocation efficiency. It can be

seen from Fig. 4b that when one ofPmax
1 − Pmax

2 andn1 − n2 is positive while the other is negative, the relay

uses a part of its available power. However, the achieved sum-rate is smaller compared to the sum-rate in the case

whenPmax
1 − Pmax

2 = 0 andn1 − n2 = 0 (see Fig. 4a). In this situation, since the average power consumption

and the average sum-rate are both low, the percentage of efficient power allocation is larger than 0 but less than

the percentage whenPmax
1 − Pmax

2 = 0 and n1 − n2 = 0, as can be seen from Fig. 4c. WhenPmax
1 − Pmax

2

andn1 − n2 are both positive or both negative, the relay uses more powerthan the power used in the case when

Pmax
1 − Pmax

2 = 0 andn1 − n2 = 0 while the achieved sum-rate is smaller than that in the latter case. In this
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situation, since the average power consumption is high while the average sum-rate is low, the percentage of efficient

power allocation is very low, if not zero, as can be seen from Fig. 4c. The above facts become more obvious when

the asymmetry becomes larger. Therefore, it can be seen fromFigs. 4b and 4c that the asymmetry on the power

limits and the number of antennas can lead to low power allocation efficiency.

V. CONCLUSION

In Part I of this two-part paper, we have solved the problem ofsum-rate maximization with minimum power

consumption for MIMO DF TWR in the scenario of relay optimization. For finding the optimal solution, we have

proved the sufficient and necessary optimality condition for power allocation. Based on this condition, we have

proposed an algorithm to find the optimal solution. The proposed algorithm allows the relay to obtain its optimal

power allocation in several steps. We have shown that, as a trade-off for low complexity, there can be waste of power

at the source nodes in the relay optimization scenario because of the lack of coordination. We have also shown that

the asymmetry in the number of antennas and power limits at the source nodes can result in the degradation of the

sum-rate performance and the power allocation efficiency inMIMO DF TWR. Next, in Part II of this two-part paper,

we will investigate the scenario in which the relay and the source nodes jointly optimize their transmit strategies

to achieve the network-level optimality of sum-rate maximization with minimum total power consumption for the

MIMO DF TWR.

VI. A PPENDIX

A. Proof of Lemma 2

Lemma 2 is proved in two steps,i.e., Steps A and B. In Step A, we prove that
∑

l

R̂rl(λ
′
l) can be increased by

modifying the current power allocation on two specific subchannels. In Step B, we show that
∑

l

R̂rl(λ
′
l) may be

further increased.

Step A:
∑

l

R̂rl(λ
′
l) can be increased.Given the fact that

∑

l

Tr{Prl(λl)} =
∑

l

Tr{Prl(λ
′
l)}, it can be shown

that 1/λ′
i > min

k
{1/αi(k)} as long as1/λj > min

k
{1/αj(k)}. As a result, there existk1 and k2 such that

1/λ′
i > 1/αi(k1) and 1/λj > 1/αj(k2). Definef(pri(k1)) = log

(

1 + αi(k1)pri(k1)
)

+ log
(

1 + αj(k2)prj(k2)
)

whereprj(k2) = p−pri(k1) andp is a positive constant. It can be seen thatf(pri(k1)) is strictly concave inpri(k1) ∈

[0, p], ∀p > 0. Setp =
(

1/λ
′

j−1/αj(k2)
)+

+1/λ′
i−1/αi(k1). The optimal allocation of the powerp onαi(k1) and

αj(k2) that maximizesf(pri(k1)) is pri(k1) =
(

1/λopt(p)− 1/αi(k1)
)+

andprj(k2) =
(

1/λopt(p)− 1/αj(k2)
)+

whereλopt(p) is a function ofp and1/λopt(p) is the optimal water level. It can be shown that1/λopt(p) < 1/λ′
i.

There exist two cases, i.e.,1/λopt(p) ≤ 1/λi and1/λopt(p) > 1/λi. In the case when1/λopt(p) ≤ 1/λi, it follows

that
(

1/λopt(p)−1/αi(k1)
)+

≤
(

1/λi−1/αi(k1))
+ < 1/λ′

i−1/αi(k1). The power allocation onk1 andk2 using

λ′
i andλ′

j is

pri(k1) =

(

1

λ′
i

−
1

αi(k1)

)+

(24a)

prj(k2) =

(

1

λ′
j

−
1

αj(k2)

)+

. (24b)
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Sincef(pri(k1)) is strictly concave as mentioned above, it can be seen that the power allocation

pri(k1) =

(

1

λi

−
1

αi(k1)

)+

(25a)

prj(k2) =

(

1

λ′
j

−
1

αj(k2)

)+

+
1

λ′
i

−
1

αi(k1)
−

(

1

λi

−
1

αi(k1)

)+

(25b)

which reducespri(k1) and increasesprj(k2), both by1/λ′
i−1/αi(k1)−

(

1/λi−1/αi(k1)
)+

, yields higherf(pri(k1))

than the power allocation in (24).

Therefore, the sum-rate
∑

l

∑

k

log
(

1 + αl(k)prl(k)
)

achieved using (25) and

pri(k) =

(

1

λ′
i

−
1

αi(k)

)+

, ∀k ∈ Ii \ {k1} (26a)

prj(k) =

(

1

λ′
j

−
1

αj(k)

)+

, ∀k ∈ Ij \ {k2} (26b)

is larger than
∑

l

R̂rl(λ
′
l). This is the first step of increasing sum-rate. Moreover, it can be seen that there existsλ̃j

such that
1

λ′
j

<
1

λ̃j

<
1

λj

(27a)

Tr{Pri(λ
′
i)} −

(

1

λ′
i

−
1

αi(k1)

)+

+

(

1

λi

−
1

αi(k1)

)+

+ Tr{Prj(λ̃j)} =
∑

l

Tr{Prl(λ
′
l)} (27b)

and the power allocation

pri(k1) =

(

1

λi

−
1

αi(k)

)+

(28a)

pri(k) =

(

1

λ′
i

−
1

αi(k)

)+

, ∀k ∈ Ii \ {k1} (28b)

prj(k) =

(

1

λ̃j

−
1

αj(k)

)+

, ∀k ∈ Ij (28c)

which spreads the power1/λ′
i − 1/αi(k1) −

(

1/λi − 1/αi(k1)
)+

over αj(k)’s, ∀k ∈ Ij , achieves even higher

sum-rate than that achieved by the power allocation specified by (25) and (26). This is the second step of increasing

the sum-rate.

For the second case in which1/λi < 1/λopt(p) < 1/λ′
i, the following process is adopted. Similar to the two

steps of increasing the sum-rate in the first case, the sum-rate
∑

l

∑

k

log
(

1 + αl(k)prl(k)
)

increases after each of

the following two adjustments of power allocation. First, reducepri(k1) from 1/λ′
i − 1/αi(k1) to

(

1/λopt(p) −

1/αi(k1)
)+

. Then, spread the reduced power1/λ′
i − 1/αi(k1)−

(

1/λopt(p) − 1/αi(k1)
)+

overαj(k)’s , k ∈ Ij

by finding and using1/λ̃′
j which satisfies

Tr{Pri(λ
′
i)} −

(

1
λ′

i

− 1
αi(k1)

)+

+

(

1
λopt(p) −

1
αi(k1)

)+

+Tr{Prj(λ̃
′
j)} =

∑

l

Tr{Prl(λ
′
l)}. (29)
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After the adjustments, it is straightforward to see that thetotal power allocated onk1 and k2 is reduced from

p =
(

1/λ′
j−1/αj(k2)

)+
+1/λ′

i−1/αi(k1) to p̄ =
(

1/λ̃′
j−1/αj(k2)

)+
+
(

1/λopt(p)−1/αi(k1)
)+

. In consequence,

there exists a new optimal water level1/λopt(p̄) based on which the optimal allocation of the powerp̄, i.e.,pri(k1) =
(

1/λopt(p̄) − 1/αi(k1)
)+

and prj(k2) = 1/λopt(p̄) − 1/αj(k2), maximizesf(pri(k1)) when p in f(pri(k1)) is

substituted bȳp. Sincep̄ < p, it can be seen that1/λopt(p̄) < 1/λopt(p). Updatep and1/λopt(p) so thatp = p̄

and1/λopt(p) = 1/λopt(p̄). Then the above process of reducingpri(k1) to
(

1/λopt(p)− 1/αi(k1)
)+

, finding the

new 1/λ̃′
j and the new1/λopt(p) can be repeated until a).1/λopt(p) ≤ 1/λi or until b). 1/λopt(p) ≤ 1/αi(k1).

The former matches the condition for the first case discussedin the previous paragraph and therefore can be dealt

with in the same way as in the first case, which leads to (28). The latter implies that1/λi < 1/λopt(p) ≤ 1/αi(k1),

in which case the power allocation can also be equivalently written as (28). Note that during this process the

sum-rate
∑

l

∑

k

log
(

1 + αl(k)prl(k)
)

increases. Therefore, summarizing the above two cases of1/λopt(p) ≤ 1/λi

and1/λopt(p) > 1/λi, it is proved that the sum-rate can be increased by reducingpri(k1) from 1/λ′
i − 1/αi(k1)

to
(

1/λi − 1/αi(k1)
)+

and using the power allocation in (28).

Step B:
∑

l

R̂rl(λ
′
l) may be further increased.Keep the above selectedk2 unchanged. As long as there existsk

such thatpri(k) =
(

1/λ′
i− 1/αi(k1)

)+
andpri(k) > 0, this k can be selected ask1 and the procedure of reducing

pri(k1) from 1/λ′
i − 1/αi(k1) to

(

1/λi − 1/αi(k1)
)+

and spreading the reduced power overαj(k)’s, ∀k ∈ Ij as

specified in (28) can be performed. This process can be repeated until pri(k) =
(

1/λi − 1/αi(k)
)+

, ∀k ∈ {q ∈

Ii|
(

1/λ′
i − 1/αi(q)

)+
> 0} and pri(k) = 0, ∀k ∈ {q ∈ Ii|

(

1/λ′
i − 1/αi(q)

)+
= 0}. Note that the sum-rate

∑

l

∑

k

log
(

1 + αl(k)prl(k)
)

increases in the above process for every qualifyingk1. The resulting power allocation

on αi(k)’s, ∀k ∈ Ii is equivalent topri(k) =
(

1/λi − 1/αi(k)
)+

, ∀k ∈ Ii since
(

1/λi − 1/αi(k)
)+

= 0 if
(

1/λ′
i − 1/αi(k)

)+
= 0. From the procedure described in the previous paragraphes,the resulting power allocation

on αj(k)’s, ∀k ∈ Ij is prj(k) =
(

1/λ̃j − 1/αj(k)
)+

, ∀k. According to the power constraint
∑

l

Tr{Prl(λl)} =
∑

l

Tr{Prl(λ
′
l)} and the fact that the total power consumption is fixed at all time, it can be seen that1/λ̃j = 1/λj.

Summarizing the above two steps, Lemma 2 is proved. �

B. Proof of Lemma 3

Given thatλ′
i ≤ λj , we haveλi < λ′

i ≤ λj < λ′
j . According to Lemma 2, there exists̃λi < λ′

i such that

Tr{Pri(λ
′
i)}+ Tr{Prj(λj)}

= Tr{Pri(λ̃i)} + Tr{Prj(λ
′
j)} (30)

and

R̂ri(λ
′
i) + R̂rj(λj) > R̂ri(λ̃i) + R̂rj(λ

′
j). (31)

Therefore, given that

R̂ri(λ
′
i) + R̂rj(λj) = R̂ri(λi) + R̂rj(λ

′
j) (32)
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it is necessary that̃λi > λi. As a result, it leads to

Tr{Pri(λ
′
i)}+ Tr{Prj(λj)}

< Tr{Pri(λi)} + Tr{Prj(λ
′
j)}. (33)

Lemma 3 is thereby proved. �

C. Proof of Theorem 1

First we prove that the optimal water-levels must satisfy condition (17a). It can be seen that the maximum

Rtw(B,D) is achieved with minimum power consumption usingλ1 = λ2 = max{λ0, µ0
ma} whenmin{1/µ0

1, 1/µ
0
2} ≥

1/µma at the optimality. Therefore, it is necessary thatmin{1/µ0
1, 1/µ

0
2} < 1/µ0

ma given thatλ1 6= λ2 at optimality.

Let us consider the case whenmin{1/λ1, 1/λ2} = 1/λ1 < 1/λ2 at optimality. According to the constraint (14a), we

have that1/λ1 ≤ 1/µ0
2 at optimality. Similarly, it can be seen that1/λ2 ≤ 1/µ0

1 at optimality. Since1/λ1 < 1/λ2,

it leads to the result that1/λ1 ≤ 1/µ0
2 < 1/µ0

1 at optimality. Assuming thatmin{1/µ0
1, 1/µ

0
2} 6= 1/λ1 at optimality

when λ1 6= λ2, it infers that1/λ1 < 1/µ0
2 < 1/λ2. However, it can be seen that the power allocation using

1/λ1 < 1/µ0
2 < 1/λ2 does not provide the maximum achievableRtw(B,D) according to Lemma 2. Consequently,

the resulting power allocation is not optimal. It contradicts the assumption thatmin{1/µ0
1, 1/µ

0
2} 6= 1/λ1 at

optimality. Thus, the above assumption is invalid and it is necessary thatmin{1/µ0
1, 1/µ

0
2} = 1/λ1 at optimality

when λ1 6= λ2. Similarly, it can be proved thatmin{1/µ0
1, 1/µ

0
2} = 1/λ2 at optimality whenλ1 6= λ2 for the

case whenmin{1/λ1, 1/λ2} = 1/λ2 < 1/λ1. Therefore, it always holds true thatmin{ 1
λ1
, 1
λ2
} = min{ 1

µ0
1
, 1
µ0
2
} if

λ1 6= λ2.

Next we prove that the optimal water-levels must satisfy condition (17b). It is straightforward to see that

1/λ1 = 1/λ2 ≤ 1/λ0. Moreover, according to the constraints (14a) and (14b), itis not difficult to see that

1/λ1 = 1/λ2 ≤ min{1/µ0
1, 1/µ

0
2, 1/µ

0
ma} when1/λ1 = 1/λ2 at optimality. Indeed, if1/λ1 = 1/λ2 > 1/µ0

ma, then

(14b) cannot be satisfied. If1/λ1 = 1/λ2 > min{1/µ0
1, 1/µ

0
2}, then (14a) cannot be satisfied. Combining the above

two facts, we have1/λ1 = 1/λ2 ≤ min{1/µ0
1, 1/µ

0
2, 1/µ

0
ma, 1/λ

0} when1/λ1 = 1/λ2 at optimality. For the case

thatmin{1/µ0
1, 1/µ

0
2} ≥ 1/µ0

ma, the above constraint can be written as1/λ1 = 1/λ2 ≤ min{1/µ0
ma, 1/λ

0}. For this

case, it is straightforward to see that the achieved sum-rate is not maximized if1/λ1 = 1/λ2 < min{1/µ0
ma, 1/λ

0}.

Therefore, the optimal water-levels must satisfy condition (17b) whenmin{1/µ0
1, 1/µ

0
2} ≥ 1/µ0

ma given that

1/λ1 = 1/λ2. For the case whenmin{1/µ0
1, 1/µ

0
2} < 1/µ0

ma, it can be seen that1/λ0 ≤ min{1/µ0
1, 1/µ

0
2}

given that 1/λ1 = 1/λ2 at optimality. Otherwise, it can be shown that either of the following two results

must occur. If1/λ0 > min{1/µ0
1, 1/µ

0
2} and 1/λ1 = 1/λ2 ≤ min{1/µ0

1, 1/µ
0
2}, then the sum-rate can be

increased. If1/λ0 > min{1/µ0
1, 1/µ

0
2} and 1/λ1 = 1/λ2 ≥ min{1/µ0

1, 1/µ
0
2}, then the constraint (14a) cannot

be satisfied. Therefore, given that1/λ0 ≤ min{1/µ0
1, 1/µ

0
2} for the case whenmin{1/µ0

1, 1/µ
0
2} < 1/µ0

ma

and 1/λ1 = 1/λ2 at optimality, we have1/λ0 ≤ min{1/µ0
1, 1/µ

0
2} < 1/µ0

ma. Consequently, the constraint

1/λ1 = 1/λ2 ≤ min{1/µ0
1, 1/µ

0
2, 1/µ

0
ma, 1/λ

0} can be rewritten as1/λ1 = 1/λ2 ≤ 1/λ0 = min{1/µ0
ma, 1/λ

0}. It

is straightforward to see for this case that1/λ1 = 1/λ2 < 1/λ0 does not maximize the sum-rate. Therefore, it can
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also be concluded that1/λ1 = 1/λ2 = 1/λ0 = min{1/µ0
ma, 1/λ

0} whenmin{1/µ0
1, 1/µ

0
2} < 1/µ0

ma. Combining

the above two cases ofmin{1/µ0
1, 1/µ

0
2} ≥ 1/µ0

ma andmin{1/µ0
1, 1/µ

0
2} < 1/µ0

ma, it can be seen that the optimal

water-levels always satisfy condition (17b) given that1/λ1 = 1/λ2.

The above two parts complete the proof of Theorem 1. �

D. Proof of Theorem 2

The necessity of the constraints (14a) and (14b) is straightforward. It can be seen that the power consumption

can be reduced without reducing the sum-rateRtw(B,D) when these constraints are not satisfied. The necessity of

the constraints (17a) and (17b) is proved in Theorem 1 in Section VI-C. Therefore, we next prove the sufficiency

of the constraints (14a), (14b), (17a), and (17b).

We use proof by contradiction. Assume that the above constrains are not sufficient to determine the optimal

{λ1, λ2} with minimum power consumption among all{λ1, λ2}’s that maximize the sum-rateRtw(B,D). Then

there exists{λ†
1, λ

†
2} satisfying (14) and (17a)-(17b) that maximizes the sum-rate and does not minimize the power

consumption. Consequently, at least one of1/λ†
1 and1/λ†

2 can be reduced without reducingRtw(B,D). We consider

the following two cases. The first case is whenλ†
1 6= λ†

2 while the second case is whenλ†
1 = λ†

2. In the first case,

{λ†
1, λ

†
2} satisfies (17a) and it is straightforward to see that reducing min{1/λ†

1, 1/λ
†
2} is not optimal according to

Lemma 3. Reducingmax{1/λ†
1, 1/λ

†
2}, on the other hand, necessarily leads to the decrease ofRtw(B,D) given

that (14b) is satisfied. Therefore, reducing either of1/λ†
1 and1/λ†

2 results in the decrease of the sum-rate, which

contradicts the previous assumption. In the second case,{λ†
1, λ

†
2} satisfies (17b). According to Theorem 2, it is

necessary that1/λ†
1 = 1/λ†

2 = min{1/µ0
ma, 1/λ

0}. From Lemma 2, it can be seen that it is not optimal to reduce

only one of1/λ†
1 and1/λ†

2. Reducing both of1/λ†
1 and1/λ†

2, on the other hand, necessarily leads to the decrease of

Rtw(B,D) given that (14b) is satisfied. Therefore, it is impossible that there exists{λ†
1, λ

†
2} with λ†

1 = λ†
2, satisfying

(14) and (17b), that maximizes the sum-rate while the resulting power consumption can be reduced. Combining the

above two cases, it can be seen that the power consumption cannot be reduced given that the{λ†
1, λ

†
2} maximizes

the sum-rate subject to the relay power limit and satisfies (14) and (17a)-(17b). This contradicts the assumption

that the above constrains are not sufficient to determine theoptimal {λ1, λ2} with minimum power consumption

among all{λ1, λ2}’s that maximizeRtw(B,D). This completes the proof for Theorem 2. �

E. Proof of Theorem 3

The optimality of the pair{λ1, λ2} obtained using the algorithm in Table I is proved in three steps: A) Steps 2-5

of the algorithm in Table I find{λ1, λ2} that maximizesRbc(B,D0) with minimum power consumption subject

to the constraint in (11) and the constraint (14a). B) The pair {λ1, λ2} obtained from Steps 2-5 of the algorithm in

Table I needs to be modified to maximize the objective function in (11) with minimum power consumption. Step 6

of the algorithm in Table I deals with two cases in which{λ1, λ2} obtained from the previous steps can be simply

modified to obtain the optimal pair{λ1, λ2}. C) Step 7 of the algorithm in Table I deals with the remainingcase

which is more complicated and finds the corresponding optimal pair {λ1, λ2} in this case. It is not difficult to see
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that the constraint in (11) is always satisfied in any step of the proposed algorithm.It can also be seen that Steps 1,

2 and 6 ensure that (17b) is satisfied ifλ1 = λ2 at the output of the algorithm while Steps 3 to 5 ensure that (17a)

is satisfied ifλ1 6= λ2 at the output.Therefore, in the following we only consider the constraints (14a) and (14b),

which are equivalent to the constraints in (12).

A. Steps 2-5 find the pair{λ1, λ2} that maximizesR(B,D0) with minimum power consumption subject to the

constraint (14a). Note that the maximumR(B,D0) with minimum power consumption is achieved bŷRr1(λ1) +

R̂r2(λ2) for some specific{λ1, λ2} if (14a) is satisfied. Therefore, it is equivalent to finding the {λ1, λ2} that

maximizesR̂r1(λ1) + R̂r2(λ2) subject to (14a). The initial power allocation in Step 1 of the algorithm in Table I

using1/λ1 = 1/λ2 = 1/λ0 maximizesR̂r1(λ1) + R̂r2(λ2). Regarding the constraint (14a), the following cases are

possible.

A-1. λi ≥ µ0
j , ∀i. In this case, the constraint (14a) is satisfied and{λ0, λ0} is the desired{λ1, λ2}.

A-2. λi < µ0
j andλj ≥ µ0

i . In this case, the constraint (14a) is not satisfied fori. The relay power consumption

can be reduced without decreasingR(B,D0) by increasingλi until λi = µ0
j . Then,R(B,D0) can be increased by

decreasingλj until the relay power limit is reached or untilλj = µ0
i .

A-3. λi < µ0
j , ∀i. In this case, it is straightforward to see that the pair{λ1, λ2} that maximizesR(B,D0) with

minimum power consumption subject to the constraint (14a) satisfiesλi = µ0
j , ∀i.

The above three cases are determined in Step 2. Case A-1 is dealt with in Step 2 of the algorithm in Table I.

Case A-2 is dealt with in Steps 3 and 4. Case A-3 is dealt with inSteps 3 and 5.

B. Steps 6 and 7 of the algorithm in Table I find the optimal pair{λ1, λ2} that maximizes the objective function

in (11) with minimum power consumption. SinceRma(D0) < R̄1r(D
0
1) + R̄2r(D

0
2), it can be seen thatλi, ∀i

should either increase or remain the same in order to satisfythe constraint (14b) given that the constraint (14a) is

satisfied. Therefore, the optimal power allocation can be derived by increasingλ1 and/orλ2, if necessary, based on

the power allocation derived from Steps 1-5. Regarding the constraint (14b), the following cases are possible.

B-1. λi ≥ µ0
ma, ∀i or

(

λi ≥ µ0
ma, λj < µ0

ma and R̂r1(λ1) + R̂r2(λ2) ≤ Rma(D0)

)

. In this case, the constraint

(14b) is satisfied and the current{λ1, λ2} is optimal.

B-2. λi < µ0
ma, ∀i andR̂r1(λ1) + R̂r2(λ2) > Rma(D0). In this case, it is not difficult to see that it is optimal to

simply setλi = µ0
ma, ∀i.

B-3. λi > µ0
ma, λj < µ0

ma and R̂r1(λ1) + R̂r2(λ2) > Rma(D0).

Cases B-1 and B-2 are simple and dealt with in Step 6 of the algorithm in Table I. It can be shown that in these

two cases the constraints (14a) and (14b) are both necessaryand sufficient for finding the optimal power allocation

in terms of maximizing the sum-rate with minimum power consumption. Case B-3 is dealt with in Step 7. The

optimal strategy in Case B-3, as in Step 7 of the algorithm in Table I, is to increaseλj while keepingλi unchanged

until R̂r1(λ1) + R̂r2(λ2) = Rma(D0). In order to prove that this strategy is optimal, the following three points are

necessary and sufficient.

1. It is optimal to increasemin
i
{λi}.

2. λi = µ0
j if λi > µ0

ma andλj < µ0
ma.
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3. At optimality, the increasedλj , denoted asλ′
j , satisfiesλj < λ′

j < µ0
ma.

The first point states that it is optimal to increaseλj as long asλj < λi. The second point infers that it is not

optimal to decreaseλi. The third point infers thatλ′
j is always larger thanλi and therefore it is not optimal to

increaseλi at any time. The first point follows from Lemma 3. For the second point, assume thatλi > µ0
j . It follows

thatPmax
r is used up, i.e.,Pmax

r =
∑

l

∑

k

(

1/λl − 1/αl(k)
)+

. Otherwise, the equality in the constraint (14a) is not

achieved fori and the objective function in (11) can be increased by decreasing λi, which contradicts Steps 1-5

of the algorithm in Table I. Given thatλi > µ0
j and Pmax

r =
∑

l

∑

k

(

1/λl − 1/αl(k)
)+

, it can be proved that

1/λi ≥ 1/λj. Otherwise, the power allocation can be proved not optimal based on Lemma 2 because the objective

function in (11) is not maximized subject to the constraint (14a), which contradicts Steps 1-5 of the algorithm in

Table I. However, the conclusion that1/λi ≥ 1/λj contradicts Case B-3 in whichλi > µ0
ma, λj < µ0

ma. Thus, the

assumption thatλi > µ0
j is invalid. Sinceλi ≥ µ0

j at the output of Steps 1-5 of the algorithm in Table I, we have

λi = µ0
j . For the third point, assume thatλ′

j > µ0
ma. Then it follows thatR̂r1(λ1) + R̂r2(λ2) < Rma(D0) , which

is not optimal. Therefore,λ′
j < µ0

ma at optimality of Case B-3.

C. Finally, we prove thatλ′
j found in Step 7 of the algorithm in Table I for Case B-3 is optimal. The optimal

λ′
j for Case B-3 is the solution to the following optimization problem

min
1

λ′
j

(34a)

s.t. R̂ri(λi) + R̂rj(λ
′
j) = Rma(D0). (34b)

Using the definition thatpri(k) =
(

1/λi− 1/αi(k)
)+

andM+
ri = {k|pri(k) > 0}, the constraint in (34) is equal to

R̂ri(λi) +
∑

k∈M
+
rj

log
αj(k)

λ′
j

= Rma(D0). (35)

As previously proved,λi = µ0
j in Case B-3, which means that̂Rri(λi) = R̄jr(D

0
j ). Thus, the above equation can

be written as

∑

k∈M
+
rj

log
αj(k)

λ′
j

= Rma(D0)− R̄jr(D
0
j ). (36)

Therefore, the optimalλ′
j satisfies

|M+
rj| logλ

′
j =

∑

k∈M
+
rj

logαj(k)−Rma(D0) + R̄jr(D
0
j ) (37)

and the optimality of the water levelλ′
j found in Step 7 of the algorithm in Table I is proved.

The proof of Theorem 3 is thereby complete. �
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