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Abstract

Consider transceiver designs in a multiuser multi-inpuigkd-output (MISO) downlink channel,
where the users are to receive the same data stream sinnusyneThis problem, known as physical-
layer multicasting, has drawn much interest. Presentlppalarized approach is transmit beamforming, in
which the beamforming optimization is handled by a rank-approximation method called semidefinite
relaxation (SDR). SDR-based beamforming has been showrm tprdmising for a small or moderate
number of users. This paper describes two new transceivaiegtes for physical-layer multicasting.
The first strategy, called stochastic beamforming (SBR)domizes the beamformer in a per-symbol
time-varying manner, so that the rank-one approximatioSIR can be bypassed. We propose several
efficiently realizable SBF schemes, and prove that theiticadt achievable rate gaps with respect to the
MISO multicast capacity must be no worse ttia®314 bits/s/Hz, irrespective of any other factors such as
the number of users. The use of channel coding and the assunopsufficiently long code lengths play
a crucial role in achieving the above result. The secondegfyacombines transmit beamforming and the
Alamouti space-time code. The result is a rank-two geneattin of SDR-based beamforming. We show
by analysis that this SDR-based beamformed Alamouti schHeasea better worst-case effective signal-
to-noise ratio (SNR) scaling, and hence a better multicatst scaling, than SDR-based beamforming.
We further the work by combining SBF and the beamformed Alatinscheme, wherein an improved
constant rate gap @f.39 bits/s/Hz is proven. Simulation results show that underanokel-coded, many-
user setting, the proposed multicast transceiver scheneds significant SNR gains over SDR-based
beamforming at the same bit error rate level.

Index terms— physical-layer multicasting, multicast capacity, traitsbeamforming, semidefinite re-
laxation, semidefinite programming
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. INTRODUCTION

In recent years, the explosive growth in the demand for variwireless data services has motivated
a vast amount of research on resource-efficient techniqureméssive content delivery. One scenario
that has received significant attention is physical-layeiticasting, in which a base station broadcasts
common information to a prespecified group of users. Forirt#, in the long term evolution (LTE)
standard, a particular work item called multimedia broaticaulticast service (MBMS)_[1] is being
actively considered as a preferred mass media streamimngnopt

The scenario of interest in this paper is that of physicadtanulticasting in multiuser multiple-input
single-output (MISO) downlink, assuming channel stat@rmfation at the transmitter side (CSIT). A
central problem in this context is to develop efficient anggitally realizable transceiver techniques.
Currently, a popularized approach is multicast beamfogmim which the physical-layer transmit strategy
is single-stream beamforming, and the beamformer is dedigo that users can simultaneously receive
good quality of service (QoS). The idea of using beamforméisga transmit strategy for physical-
layer multicasting can be traced back to a 1998 paper by Natual. [2], although more appropriate
beamforming optimization formulations, namely, the Qa®strained problem and the max-min-fair
problem, appeared later|[3],/[4]. As it turns out, both ofstdormulations are NP-hard in general [5],
[6]. To circumvent such intractability, a state of the arpegach is semidefinite relaxation (SDRY) [5].
The main observation behind this approach is that the beamtig problem can be reformulated as a
rank-one constrained semidefinite program (SDP). Thus, rbpping the non-convex rank constraint,
one obtains a convex and tractable SDR problem, whose @olatin then be used to generate a rank-
one approximate solution to the original beamforming peahl The viability of SDR-based multicast
beamforming has been proven by both empirical evidence rjfl] theoretical analysis [6]([7]. In fact,
SDR-based multicast beamforming has sparked much intierd¢isé area, where we have seen the same
fundamental idea of SDR being applied to many different deaming scenarios; see, e.g., the references
in [8]. In addition, we should note that the significance ofitisast beamforming as demonstrated through
SDR has motivated the development of many other competitighiation methods [9]-[13].

While our main interest is in multicast transceiver designder CSIT, we should also briefly mention
the no-CSIT case. A common transmit strategy without CSHb isansmit isotropically, which is called
the open-loop strategy in the literature and may physidadlyimplemented by space-time coding [3].
Open-loop system capacity analyses have been considedgd, ifi4]. The work [14] also considers

antenna subset selection for striking a balance betweefuth€SIT and no CSIT settings. Moreover,
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in [15], a diagonally precoded extension of the space-timding approach was proposed for the full

CSIT case.

A. Motivations and Contributions

The now popularized SDR-based multicast beamforming sehleas been shown to be capable of
providing accurate approximations in a variety of pradtregimes, most notably, in the cases where there
is a small or moderate number of users. However, the anaigd€} also reveal an inherent limitation,
namely, the SDR approximation accuracy may degrade as timberuof users increases. The focus of
this work is to pursue alternative physical-layer multioas strategies that can deliver good performance
even in the presence of large number of users. Our endeawootisated from an information theoretic
perspective—the SDR solution under the max-min-fair fdatian is equivalent to the optimal transmit
covariance of the multicast capacity [S]] [7]. Hence, iastef extracting a rank-one approximate solution
from the SDR solution, which is the case in multicast beamfng, we consider altering the transmit
structure to embrace the non-rank-one nature of the mstticgtimal transmit covariance (or the SDR
solution). Specifically, we propose two new physical-lagategies for multicasting in this paper.

1) Stochastic Beamformingfhe first strategy, calledtochastic beamforming (SBFp to employ a
per-symbol time variant, randomly generated, beamforifike underlying intuition of SBF is to use
time-varying spatial randomizations to mimic the multicaapacity-optimal transmit covariance, thus
producing “rankr beamforming” in avirtual manner for anyr > 1. A distinguishing characteristic of
our SBF framework is that channel coding (which is usuallgsent in practical systems) is utilized to
approach some kind of ergodic achievable rate metric. Wedeielop three efficiently and practically
implementable schemes under the SBF framework. Numerioallations show that they can have
significant bit-error-rate (BER) performance gains oveRaliased beamforming. On the theoretical side,
we prove that the achievable rate gaps of the proposed SB¥recshwith respect to (w.r.t.) the multicast
capacity must be no worse tharg314 bits/s/Hz,irrespective of any factors such as the number of users
From a practical viewpoint, this implies that even when ¢hisra large number of users, SBF can still
perform reasonably well.

2) Alamouti-Assisted Rank-Two Beamformi@ur second strategy is to develop rahgeneralizations
of beamforming, both fixed and stochastic, through the ughef\llamouti space-time code. To motivate
this strategy, we should first note that in the point-to-painultiple-input multiple-output (MIMO)
literature, there has been interest in combining beamfayrand space-time coding (STC) to provide rank-

r beamforming; see, e.gl, [16]-[18]. However, developingalsined beamforming and STC scheme is
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a scenario-dependent challenge, as evidenced in the abfarenced work. The reason is that many
available space-time codes are designed for performanddcsén point-to-point CSIT-uninformed
scenarios, such as diversity order or diversity multipigxiradeoff, and those merits do not always
carry forward to another MIMO scenario that has a differemtfgrmance metric. In Section 4.2 of the
companion technical repoit [19], we provide simulationuitssthat demonstrate a direct combination of
beamforming and STC based on intuition would lead to poofoperance in the multicast scenario.

There is however an exception where beamformed STC desmmbe tractable, namely, when the
class of orthogonal space-time block codes (OSTBCs) is.U38dBCs are well known to be simple to
implement, and, more importantly, their performance caedmsly characterized by an explicit signal-to-
noise ratio (SNR) expression. Some representative paiptint beamformed STC designs are, in fact,
based on OSTBC$ [16]-[18]. On the other hand, one must natefuali-rate OSTBCs do not exist for
dimensions higher than twé [R0].

In view of the above discussion, we will consider beamfornsddC based on the two-dimensional
full-rate OSTBC, that is, the well-known Alamouti spacewi code. We first develop an SDR-based fixed
beamformed Alamouti scheme, which is a rank-two generadizaf the previous (rank-one) SDR-based
beamforming framework. Our analysis shows that in termsiefeffective worst-user SNR, the worst-case
approximation accuracy of the beamformed Alamouti scheeggaties only at a rate of M, wherelM is
the number of users. This is an improvement over the pre\beasnforming scheme, where the provable
worst-case approximation accuracy degrades at the higherof // [6]. Next, we combine the SBF
strategy and the beamformed Alamouti scheme; that is, waugm virtually ranks beamforming from
physically rank-two beamforming. By analysis, we show et SBF Alamouti schemes have a worst-
case multicast achievable rate gap0df9 bits/s/Hz, which is better than the previo0$314 bits/s/Hz
bound for the SBF schemes. The SBF Alamouti schemes alsw tyielbest coded BER performance by

simulations when compared to beamforming and other prapsskemes.

B. Related Works

We should mention some existing works that might seem rblateSBF, and contrast the differences.
At first sight, using randomness in beamforming may remind oh the opportunistic beamforming
(OBF) techniquel[21]. However, OBF deals with user scheduih a multiuser TDMA setting, which
is a very different scenario from multicasting. By closelyamining OBF and SBF, one would find
that the ways randomness is used also have much differerigfe:i©Oa per-frame randomized approach

without CSIT, while SBF is per-symbol random with CSIT. Fosimilar reason, SBF is different from
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the randomized space-time coding approach for cooperatirrenunication[[22]—the latter is per-frame
random without CSIT, with an aim to harvest cooperative idiitg. Moreover, it is interesting to note
that the philosophical possibility of randomizing the béamer was vaguely alluded to in a study
of the unicast scenarid_[23], although no further investiawas provided. In fact, the authors there
never needed to—they showed that in unicasting, SDR alwagsahrank-one solution, i.e., transmit
beamforming is sufficient in unicasting. However, this tesloes not apply to multicastind I[5]1[6].
In this study, the idea of utilizing channel coding, and thibsequent ergodic rate characterization for
multicasting, are new.

We should also describe related work on our fixed beamfornaohduti scheme. As mentioned earlier,
the beamformed Alamouti structure, or, more generallybgs@mformed OSTBC structure, has previously
appeared in the point-to-point MIMO literature, e.q.,/[88]. Also, in the multicast scenario, there is
an early work[[15] where the authors considered a diagopatigoded OSTBC scheme with per-antenna
power allocation (rather than beamforming). The issue ihatifferent in the present scenario is the
beamformer designs, where the restriction of rank-two WBeamng for full-rate transmission results
in a multicast design optimization problem that is NP-harbe significance of our development lies
not only in proposing a rank-two SDR framework for the beamier design, but also in generalizing
the theoretical analysis of SDR-based beamforming in atrigial manner. In particular, we are able
to establish for the first time a worst-case performance ddon the NP-hard rank-two beamforming
problem. We should bring readers’ attention to the work [34%5], wherein the authors independently
introduced the same Alamouti-assisted rank-two SDR idegbatit the same time when a preliminary
version of this work([26] was presented. What distinguistieswork is that we also provide performance

analysis of the resulting scheme.

C. Organization and Notations

The organization of this paper is as follows. In Secfidn Il previde the problem formulation and
review the SDR-based multicast beamforming scheme. The fE&Birework is developed and described
in SectionIll. Sectiom MI provides the simulation resulisid the paper is concluded in SectionlVII.

Our notation is standardC® is the set of all complexV-dimensional vectorsHY is the set of all
N x N complex Hermitian matricesx > 0 means thak is elementwise non-negativk; = 0 means that
X is positive semidefinitef - || is the vector Euclidean normEr(X), rank(X), Amax(X), andf. (X)
stand for the trace, rank, the largest eigenvalue, and tlaleshnon-zero eigenvalue &, resp.;0 and

1 are the all-zero and all-one vectors, res.is a unit vector with the nonzero element at ttte entry;
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I, denotes the-by-r identity matrix; E[-] is statistical expectatiorf V' (0, W) (resp.N (0, W)) is used
to denote the circularly symmetric complex Gaussian dhistion (resp. the real Gaussian distribution)
with mean vectol and covariance matri¥; and X ~ Y means that the random variabl&s andY

have the same distribution.

Il. PROBLEM FORMULATION AND BACKGROUND REVIEW

This section describes the physical-layer multicastingbf@m formulation and gives a review of
multicast beamforming.

We consider a standard multicast scenario [7] where a basierstransmits a common message\fo
users under slow channel fading. To be specific, the badsersiatequipped withV transmit antennas,
while the users a single antenna. The channel of each usessisnad to be frequency flat and slow
faded in the sense that its coherence time is larger thandtee fthme or packet transmission period.

Under this setting, the signal model for one data frame téssion can be described by
yz(t) :thX(t)"i'ni(t)v t=1,2,...,T, (1)

wherey;(t) is the received signal of useérat timet (or ¢th channel use)]" is the data frame length,
which is assumed to be largh; € CV is the channel from the base station to uset(t) € C denotes
the multi-antenna transmit signal, ang(t) ~ CA/(0,1) is zero mean unit variance complex Gaussian
noise. We denote the transmit covariance3y= E[x(t)x (1)].

The subject of interest is to provide good multicast ratefquerance for each frame transmission,
assuming knowledge diy,...,hy;, or channel state information at the transmitter (CSITpnfran
information theoretic perspective, it is known that the ticakt capacity under moddll(1) and in the

presence of CSIT is given by

— ; Hy .
Cmc(P) = fax i log(1 + h;” Xh;) o

st. X =0, Tr(X) < P,
where P is the maximum allowable transmit power akg(.) is natural logarithm (and thuSyc(P) is
in units of nats/s/Hz) [7]. Note that we do not assume any ighydayer transmit structure or(t) at

this point. By the change of variable = PW, we can rewrite[(2) as
CMC(P) = IOg(l + pminP)7

where

Pi = Tr(W*hith)a Pmin = __min Pi; (3)

ey
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(MC) W* = arg max min Tr(Wh;h{T)
WeHN i=1,..M

st. Tr(W) <1, W = 0.
In particular, an optimal solutio®* to (2) can be constructed from the optimal solut\ft to (MC) via
¥* = PW*. Problem (MC) is an SDP, which is convex and polynomial-tsoé/able [27]. Alternatively,
one may employ low-complexity heuristics specially desigior (MC); see, e.g.[ [11].

An important question is how physical-layer schemes shoeldlesigned to practically approach the
information rate promised by the multicast capadityic(P). From such a realizable transceiver design
viewpoint, there seems to have no report on a practical oagti capacity-achieving scheme that has
been successfully implemented and demonstrated in phyayea. Currently, a widely adopted scheme is
transmit beamformingwhich is efficiently realizable but generally suboptimal transmit beamforming,

the transmit signak(¢) is constrained to take the form
x(t) = VPws(t),

wherew € CV is a transmit beamforming vectoP, is again the maximum allowable transmit power,
ands(t) € C is a stream of data symbols with unit power (i.E[/s(¢)|?] = 1). In beamforming, the
received signal in({1) reduces to a single-input singlgpou(SISO) model;(t) = v Phfws(t) +n;(t),
and we can characterize the performance by the signalitematios (SNRs) of the received symboals,
namely,SNR; = P|hFw|?, wherei = 1,..., M. Consequently, the multicast beamforming problem can
be formulated as

max Cgg(w, P), 4)

[wi2<1
where

Cgr(w, P) = min_ log(1 + PhfwwiTh;)

1=1,..

represents the multicast achievable rate of a given beamefow [5], [[7]. Note that this rate can be
practically approached by applying an ideal channel code(tt))El. Now, it is known that Problenil4)

is equivalent to the max-min-fair (MMF) problem

(MMF) max min |hw|?,
weCrN, ||w(2<1 =1,....M

The common, tacit, understanding is that Turbo codes or lemsitly parity check codes should provide near-ideal scalar

channel coding performance in practice.
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8

which is NP-hard in generd[l[S][I[B.] To circumvent this intractability, an arguabdie factosolution is
to apply semidefinite relaxation (SDR) to approximate (MMIR)the SDR approach, one first substitute

W = ww! into (MMF) and use the equivalence
W = ww = W > 0 andrank(W) <1

to obtain the followingequivalentformulation of (MMF):

max min Tr(Wh;h)
WeHN i=1,..M
()
st. Tr(W) <1, W >0, rankW) < 1.
The rationale behind such a reformulation is that one can thiep the nonconvex rank constraint i (5)

to obtain a convex relaxation problem, viz.

(SDR) max min Tr(Wh;h)
WEeHVN i=1,...,M

st. Tr(W) <1, W >0,
which is an SDP. Some rank-one approximation procedureeis tised to convert the solution of (SDR)
to a rank-one, feasible, solution to (MMF); seé [5], [8].[23" detalils. It is interesting to note that (SDR)
and (MC) are exactly the same. Hence, the SDR approach &dlsemses the multicast capacity-optimal
transmit covarianc@* to find a good rank-one beamforming solution.
Empirically, it has been shown that SDR-based multicastrifeaning offers good performance,
especially for a small to moderate number of users. In fampretical results quantifying the extent

to which SDR can perform are available, and they are briefigraarized as follows. Let

SNRuin(W) = min  Tr(Wh;hH) (6)

denote the worst-user effective SNR associated Withwhich appears in the objective functions of (5)
and (SDR). By noting that the optimal solutidvV* to (MC) is also optimal for (SDR), we have the

following:

Fact 1

(@) ([29]) When M < 3, there is a polynomial-time procedure that can generatenf* an optimal

A~

solutionw to (MMF). Also,ww* is a solution to (MC).

2Note that the MMF problem was originally formulated from aQperspective [5], where the aim is to maximize the worst
user's QoS under a power constraibf|x(t)||?] < P. The QoS commonly refers to the SNR defined here, althougér oth
measures of QoS, such as the long-term average SNR [28],lsa& considered.
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(b) ([Bl, [6]) When M > 3, by using a Gaussian randomization procedure (which runsaimdomized
polynomial time), one can generate frodi* a feasible solution¥ to (MMF) that satisfies
SN—Rmin(W*) _ Pmin
8M - 8M

with probability at leastl/6. In particular, after L > 1 independent runs of the randomization

SNR pin (Wwil) >

procedure, one can boost this probability to at least (5/6)%.

Fact1(a) states that the generally NP-hard (MMF) is eqgeiveb the convex, polynomial-time solvable
(SDR) when the number of usefd is no greater thaBH Thus, in view of the equivalence of (SDR)
and (MC), we conclude tharansmit beamforming is guaranteed to be a multicast cagamptimal
physical-layer strategy fol/ < 3. As for Fact[1(b), it reflects how the performance of SDR-based
beamforming scales with the number of users in a worst casses&pecifically, consider the achievable
rate gap of SDR-based beamforming relative to the multicagacity, i.e.Cyc(P) — Cgg(Ww, P). From

the derivations above, one can readily deduce the followimgnd for A/ > 3:

1+ PminP >
1+ pminP/(8M) )

Note that for largeP, the right-hand side of{7) is approximately equaldg(81), which implies that

Cc(P) — Care(, P) < log ( 7)

SDR-based beamforming may suffer from a rate loss that ase® logarithmically with the number of

users. Hence, the beamforming strategy is only effectivennthere are not too many users.

[1l. M ULTICAST STOCHASTIC BEAMFORMING

In view of the above mentioned drawbacks of beamforminghig $ection we propose an alternative

physical-layer multicasting strategy based on stoch&s@&mforming.

A. System Model

Consider the following transmit structure:
x(t) = VPw(t)s(t), t=1,2,...,T, (8)

wherew(t) € CV is a time-varying beamformer weight vector, and the othdatiuns are the same
as those in the beamforming strategy discussed above. At &@ae ¢, w(¢) is randomly generated
according to a common distributioR. To distinguish this random-in-time beamforming endedvom

the conventional beamforming scheme, we will henceforthtica formerstochastic beamformin@BF),

3As an aside, note that fat/ = 2, a closed-form solution to (MMF) can be derivéd][11].
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10

and the latterfixed beamformingThe SBF strategy is motivated by the observation that thestnit
covariance of[(8) is given bi[x(t)x" (t)] = PE[w(t)w! (¢)]. In particular, if we choos® so that the

beamformer covariance and the multicast capacity-opttraalsmit covariance are equal, i.e.,
Ew(pyp[w(t)w (t)] = W*,

then the SBF should have a better multicast performance ttearfixed beamformer, especially when
‘W~ has high rank.
Let us now consider the receiver side. Substitutidg (8) {@othe received SBF signals can be written
as
yi(t) = VPhIw(t)s(t) + ni(t), t=1,2,...,T. (9)

As seen in[(P), each user has an instantaneous SNR givéNRy(t) = P|h”w(t)|2, which fluctuates
in time. Hence, we apply channel coding (presumably ideaipss the symbolgs(¢)}L_; within the
data frame to “average out” the fluctuations caused by SBErdatingly, this receiver approach is the
same as how one uses channel coding in fast fading channeigkoit time diversity [[30]. We assume
coherent reception, which means that all the users are &sktorknoww (¢) deterministically (as well
ash;(t)). This can be made possible by having the transmitter sgritie random seed for generating
w(t) and the multicast optimal transmit covariaidd&", either as part of the preamble of the transmitted
frame or via a feedback channel. We should also note that 88&ivers involve simple coherent symbol
reception (without inter-symbol interference) and chamdezoding, and hence are as efficient as those
of fixed beamforming with channel coding.

The SBF system description is complete. Now, several natirestions arise: What distributio®
should we use to generate the random beamformer weights?ceowe characterize the performance

of an SBF scheme? These aspects are considered in the sebissgbsections.

B. SBF Achievable Rate

We employ an achievable rate view to study the SBF strategy.nBtational simplicity, we use the
random variablew to denote the randomly generated beamformer weight veefoy. Under the SBF
system model in[{9), where channel coding is applied acfe$g}’_, with T sufficiently large, the
achievable rate of each user, say, useran be expressed as

Csgri(P) = Eywpllog(l + Phffww'h;)), (10)

whereD denotes the (given) distribution for generatiweg\We should mention that the capacity expression

in (I0) is deduced in the same spirit as the ergodic capaditie fast fading channels without CSIT,
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11

as described or used frequently in the literature; see, 0], [31]. However, we should emphasize
that in this study, it is not the channdlg that are random, but the beamformer Moreover, studies
in fast fading channels have suggested that the fafe (10)preotically be approached by near-ideal
scalar channel codes; see, e.g.] [30, p. 2627]. Base_onttE)multicast achievable rate of SBF can
be formulated as

Csgr(P) = min  Eypllog(l + Phifwwh,)). (11)

i=1,...,M
Note thatD must satisfyE,,p|[||w]||?] < 1, so that the power constraifif||x(¢)||?] < P holds.

Before we proceed, let us discuss the key underlying assomip¢hind the SBF achievable rate metric
above—thaf” should be large. In practice, the frame len@tls constrained by the coherence time of the
channels. As such, the rate metric above is more suitablsléar fading scenarios. In our simulations,
we found that the idea works well whéh is the same as that of the coded symbol length for a fixed
beamforming channel (or a standard scalar Gaussian chamhéh is typically on the order of hundreds
in wireless standards.

To facilitate the SBF design and rate analysis, we first éeain alternative expression foksgg(P).

Set
&:Eﬁgﬁ,i:L“wM (12)
Pi
(see[(B) for the definition of;). Clearly, if D satisfies the capacity-optimal transmit covariance pityper

Ew~plww?] = W*, thenE[¢;] = 1. Then, we can rewritd (11) as

Csr(P) = min Ee[log(l +&piP)]. (13)

The above SBF rate characterization reveals that the SB&rpemnce depends on the “fading” distribution

of &;. The following properties can be derived far{13):

Fact 2 Suppose thafy, ..., &y are identically distributed. Lef ~ &; for any .

(a) The SBF multicast achievable ra@3) can be simplified t@'sgr(P) = E¢[log(1 + £pminP)]-

(b) Suppose, in addition, thak[¢;] = 1. Then, the functiorysgr : Ry — R, where gsgr(P) =
Cmc(P) — Csge(P), is nondecreasing i? > 0.

Fact[2(a) is simply a consequence of the monotonicity of digeflinction. For a proof of Fatf 2(b), see
Appendix[A.
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12

C. The Gaussian SBF Scheme

Let us now turn our attention to the choice of the beamfornmsridution D. The most desirable choice
of D would be that of maximizing the multicast achievable ratelarmthe power constraint. However,
this may be too difficult to solve analytically. Hence, we lsesimple, easy-to-generate, beamformer
randomizations that can yield provably good multicast pggformance.

A simple way to generate is to use the circularly symmetric complex Gaussian distidin:

w ~ CN(0, W*). (14)

We will call the resulting SBF scheme ti@aussian SBF schemé&saussian SBF aims at using a simple
beamformer generation to satisfy the optimal transmit danae propertyE[ww!] = W*. It can be
analytically shown that even such a simple beamformer naizhiion possesses desirable multicast
achievable rate properties. Froin](12), we see that for GausBF, every; follows an exponential
distribution with meanE[¢;] = 1. Therefore, the premises of Fddt 2 are satisfied, and by[Kagtwe

can express the Gaussian SBF achievable rate as
[ee]
CS3Ess(P) = / log(1 + tpminP)e tdt. (15)
0

As it turns out, the expression ib_(15) is identical to that lee ergodic capacity of a scalar Rayleigh

channel, which is known to admit the explicit expression
CSEE=(P) = /P By (1/(prmin P)), (16)

where Fy(z) = ff’o t~Ye=Ttdt, x > 0, is the exponential integral of the first ordér [32]. Now, we a
interested in extracting insight from the explicit rate mgsion [(I6)—how far away i (1L6) from the

multicast capacityCuc(P)? Towards that end, consider the achievable rate gap
9SBE*(P) = Cumc(P) — CSEE=(P).
We then have the following result:
Theorem 1 The achievable rate gap of the Gaussian SBF scheme satisfies
gS3ES(P) <y =0.5772  for all P> 0.
Moreover, the bound is tight whel — oco.

Proof: By Facl2(b)g$3e>*(P) is nondecreasing i® > 0. Moreover, it can be shown thktn p_, «, gS3E°(P) =
~; see Section 1.1 of the companion technical report [19].ddeme conclude thajscglﬁss(P) < ~ for
all P > 0. [ |
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The implication of Theoreifl 1 is meaningful—the Gaussian 8BECS3ES(P) is at mos0.8314 bits/s/Hz
(v/1og(2) = 0.8314) away from the multicast capacityyc(P); otherwise it has the same scaling as the
multicast capacityirrespective of the number of usefBhis is unlike the SDR-based fixed beamforming

scheme reviewed in Sectiéd Il, where the rate gap may inereé@s the number of users; cf1(7).

D. The Elliptic SBF Scheme

As shown in the previous subsection, even with just a sim@esSian SBF scheme, we can achieve
a rate that is within less than 1 bit/s/Hz of the multicastazaty. From a practical viewpoint, however,
the Gaussian SBF scheme has a drawback—its instantaneaaddomer power, which is given by
P|lw(t)||?, can have a large spread. Indeed, siee|? is a chi-square random variable, the instantaneous
power can in principle take any non-negative values. Hemtdle Gaussian SBF is interesting from a
fundamental viewpoint, where a theoretically provable rgap of less than one bit w.r.t. the multicast
capacity can be established, it may not be desirable fortipghdmplementation. To remedy this, we
consider an alternative SBF scheme, in which the beamfoweéght is generated by

Lo

w = W, o~ CN(O,IT), (17)

wherer = rank W*) andL. € C™*¥ is a square root decomposition *, i.e., LYL = W*. Note
that [17) is simply a Gaussian SBF normalized by the fagiafi//r; cf. (I4). Intuitively, such a
normalization serves to limit the instantaneous beamfonpegver. More precisely, sincér(W*) < 1,

by the Courant-Fischer min-max theorem, we haug|? € [rA!. (W*), rApnax(W*)] with probability

min

1. As it turns out, the random vectar also satisfies the capacity-optimal transmit covariano@gty:

Fact 3 [B3] The random vector iff17) follows an elliptic symmetric distribution with covariamenatrix

Efww] = W*,

Motivated by FaciB, we shall call the resulting SBF schengeetliptic SBF schemeNow, just as in
the case of the Gaussian SBF scheme, we are interested imateitg the achievable rate of the elliptic
SBF scheme. Towards that end, consider the non-negatidemanariables
b L"af?
S ol
see[(1R). Naturally, we would like to use Fatt 2 to charantettie elliptic SBF rate. However, this entails

i=1,...,M; (18)

understanding the distribution @f. Fortunately, as we shall see shortly, the distributiorf,oddmits a
simple closed form expression. We begin with the followieghina, which generalizes [34, Lemma 1]

and whose proof can be found in Appenfix B:
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Lemma 1 Letu € C" be a fixed vector andy,...,a; ~ CN(0,1,) be independent random vectors.

Then, the CDF of the non-negative random variable

! !
nw) = juaif? /3 evl?
i=1 i=1

is given by
0 for ¢t <0,
Pr(n(u) <t) =9 1—-Q(u,t) for 0 <t <|ul?
1 for ¢t > |lul|?,
where R _
t [ Ir—1 ul? -\’
awo-1- () 5 () ()
[[ull et j t
j=l(r—1)

From [I8), we see that if we take = /r/p;Lh; andl = 1 in Lemmall, thert; = n(u). In particular,

upon differentiating the corresponding CDF w.t.and observing thatu||? = r, we obtain the following:

Proposition 1 Consider the elliptic SBF scheme. The PDF{gfwherei = 1,..., M, is given by
1 ¢ r—2
pe,(t)=(1—-)(1—- for0<t<r, (19)

T T

wherer = rank(W™*).

Propositio L has two important implications. First, it glsathat the random variabl€s, ..., &, are

identically distributed, and hence Hy {19) and Hact 2(a)dlliptic SBF rate can be readily computed via
r r—2
cser) = (1-1) [Nog1-+tpmr) (1- 1) ar
0

r T
Secondly, we hav&[¢;] = 1 by FactB. Hence, by Fatt 2(b), the achievable rate gap oflliptice SBF
scheme, which is given by
gept(P) = Crc(P) — Cegl(P),

is nondecreasing i® > 0.

To further understand the behavior gihf (P), let us first derive an explicit formula f(ﬁ'SEE'yﬁ(P).

Proposition 2 For any P > 0,

SBF TpminP & Prmin P k k ]{7(1 + T‘pminp)k

=1 =1

=
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The proof of Propositiol2 can be found in Section 1.2.1 ofdbmpanion technical repoit [19]. Armed

with this formula, we can establish the following result:

Theorem 2 The achievable rate gap of the elliptic SBF scheme satisfies
1

\3
|

gshR(P) < “log(r)  forall P> 0.

~
Il
e

1
Moreover, the bound is tight whel — oco.

Proof: We have already shown thgggiﬁ(P) is nondecreasing i > 0. Moreover, it can be shown that
limp_00 gsge (P) = 30421 + — log(r); see Section 1.2.2 of the companion technical refiort [18hde,
we conclude thageht (P) < ~ for all P > 0. u
Since the function — 22;11 % — log(r) is nondecreasing and tends4oasr — oo (see, e.g., [35,
Formula 0.131]), an important corollary of Theoré 2 is ttet worst-case rate gap of the elliptic SBF
scheme is no worse than that of the Gaussian SBF scheme. fpadson, we compute the worst-case

rate gap of the elliptic SBF scheme for various values ahd summarize the results in Table |.

TABLE |

THE WORSTFCASE RATE GAP OF THE ELLIPTICSBFSCHEME

T 1 2 3 00
rate gap in nat§ 0 0.3069 | 0.4014 | ... | 0.5772
rate gap in bits 0 0.4428 | 0.5791 | ... | 0.8327

E. The Bingham SBF Scheme

In the previous subsection, we have illustrated that a propamalization of the Gaussian beamformer
randomization not only helps to limit the instantaneousniifieamer power spread effects, but also
improves the multicast achievable rate. Now, let us comsadether beamformer randomization

Lfa
w=———— «a~CN(0,]I,). (20)
[Lal S

The motivation behind(20) is straightforward—we wéut||?> = 1, or in other words, zero instantaneous
beamformer power spread. Curiously, the kind of randoriarah (20) has been studied in the statistics
literature—it is known thatw follows the Bingham distribution[36]. For that reason, we will call the
resulting SBF scheme tigingham SBF scheme

Unlike the previous two SBF schemes, Bingham SBF may nosfgatiie capacity-optimal transmit

covariance propertf[ww!’] = W*. Moreover, the achievable rate analysis of Bingham SBFffereit
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from that of Gaussian and elliptic SBF—a key component ofldtter is to derive the distribution &f in
(12), and this appears to be hard for Bingham SBF. We thexefesort to a different analysis approach.
Consider the following proposition, whose proof can be fbim Appendix(C:

Proposition 3 For the Bingham SBF scheme, the rate of usean be expressed as

cng",;{i(P) = Ey[log(1 + P/hXw|?)]

—tog(1-+piP) ¢ (27 ) ~ o ), @)
Here,p : R” — R is given by

p(d) =E¢

log (Z m)] : (22)

k=1
where ¢ is a random vector with independent and identical (i.i.dnjttmean exponentially distributed

components\ = (A, ..., A,) contains the positive eigenvaluesW*, andp; = (11, . - ., iti») CONtaINs

the eigenvalues aA; = L(Iy + Ph;hf )L,

As it turns out, one can derive an explicit expressiongéd ).

Proposition 4 Let ¢ be as in(22). Organized as

d=(di,....di,do,....do, ... de,... d.),

—_———
71 T2 Te
wherec, 71, ..., r. are such thatz?_ ri =r, andd; # d; for all i # j. Then, we have
C Tk \Pk 5
H iy Z Z (= 1),y — ),
N k=1m= 1
wherer = (r1,79,...,7rc), i = (i1,42,...,1c),

Te—Mm

7 F(ry—m 1 ~
0(dx, . —m) = dz(f s (g —m)! % (Z i + log(dy.) —'Y> ;

i=1

m— + 1 1\ —Gs+r;)
e 3 (53

1€Q m £k
Qg = iEZC:iij:m—l, i =0,i; >0 Vj
j=1
The proof of Propositionl4 can be found in Section 2 of the camign technical reporf [19]. The idea
behind the proof of Propositidd 3 is somewhat similar to thgB87, Theorem 1], where the authors there
dealt with a different scenario (unicast). While Propasifd gives an explicit expression far {22), which

in turn provides a way of computing the Bingham SBF achievaale efficiently (in contrast with Monte
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Carlo simulations), it is too complicated for the purposeerfracting insights. This difficulty motivates

us to turn to the stochastic majorization technique for Barg SBF rate gap characterization:

Fact 4 Considery (d) = E¢ [log (3" diCx)], Where¢ is a random vector with arbitrary i.i.d. com-

ponents.
(@) ([B8, Theorem 2.15, Example 2.2]) For amy= (d1,...,d,) > 0 with 3"}, d =1,
pler) < p(d) < ¢ (31).
(b) ([39]) Suppose that every; follows a unit-mean exponential distribution. Then, weéav

B

>
?’r|>—‘

Applying Fact4 to[(2ll), we obtain

Ey[log(1 + Plhfw[?)] > log(1 + p; P) + ¢(er) — ¢ (21)
r—1

> log(1+ piP) +1log(r) = >
k=1

where the first inequality follows from Falct 4(a) and the aliaton that) ", _; A, = Tr(W*) =1 (this

)

e

is implied by the structure of (MC)), and the second inedyadi due to Fadil4(b). The derivations above
show that usei’s Bingham rate is lower bounded byg(1 + p; P) + log(r) — 2;11 %, which lead us to

a neat conclusion:

Theorem 3 The achievable rate gapes(P) = Cwc(P) — Con#(P) of the Bingham SBF scheme

satisfies
r—1

i 1
gsBulsan(P) < e log(r) for all P > 0.
k=1

Surprisingly, the worst-case rate gap of the Bingham SBIemehas proven above is exactly the same
as that of the elliptic SBF scheme (cf. Theoriem 2). It follaWvat the worst-case rate gap of the Bingham

SBF scheme is also no worse than that of the Gaussian SBF schem

F. Summary of the SBF Schemes

We now summarize the characteristics of our proposed SBEnseh in Tabld]Il. It can be seen
that all three schemes exhibit a multicast achievable rage that is no worse thaf.8314 bits/s/Hz,
irrespective of any factors such as the number of udergact, the elliptic and Bingham SBF schemes

can perform better thaf.8314 bits/s/Hz, depending on the transmit covariance rank rank(W*);
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see Tabléll. In terms of the instantaneous beamformer popvend effects, the Gaussian SBF scheme
is, by nature, the worst. The elliptic SBF scheme is bettantthe Gaussian SBF scheme, limiting the
instantaneous beamformer power to within\!. (W*), rAna(W*)]. The Bingham SBF scheme has

zero instantaneous beamformer power spread. On the othdr tiee Gaussian and elliptic SBF schemes
achieve the multicast capacity-optimal transmit covaréaB[ww’] = W*, while the Bingham SBF

scheme may not.

TABLE Il

SUMMARY OF THE SBFSCHEMES

has MC-opt. instantaneous worst-case rate gap
scheme generation covariance beamformer
I . upper bound
Elww"”] = W*? power spread
Gaussian w ~ CN(0, W*) yes large 0.8314 bits/s/Hz
w — L« )
7H0¢||/\/;7 better than Gaussian; Z;i % ~log(r)
eliptic || where o ~ CN'(0.1,); yes 0l € AL (W), s (W) los(2)
L ecC*VNisa square < 0.8314 bits/s/Hz;
root factor of W*; r = with probability 1 optimal whenr = 1
rank(W*)
w — L«
Bingham L7 o)’ no zero; |lw||* = 1 same as elliptic
wherea ~ CN(0,1,.).

IV. MULTICAST BEAMFORMED ALAMOUTI SPACE-TIME CODING

In this section, we describe our second physical-layer ioagting strategy—transmit beamformed
Alamouti space-time coding. Compared to SBF, which uses temdomizations to enable rankransmit
covariance structures, the beamformed Alamouti stratelgpia a rank-two transmit covariance structure

in a fixed or deterministic way. This will motivate a rank-tgeneralization of SDR.

A. System Model

We describe the system model for (fixed) beamformed Alamspaice-time coding. Like the beam-
forming case, we aim at transmitting a stream of unit-poweadsymbols, denoted by(t). The data

symbol streans(t) is parsed into blocks via(n) = [ s(2n) s(2n +1) ]7. In block n, we transmits(n)
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by a transmit beamformed Alamouti space-time code:
X (n) = [ x(2n) x(2n + 1) | = VPBC(s(n)). (23)

Here,B € CV*2 is a transmit beamforming matrix ar@ : C?> — C2*2 is the Alamouti space-time

block code, i.e.,

From the basic model in}1), we have
yi(n) = [ :i(2n) y:(2n + 1) | = VPhIBC(s(n)) + ni(n), (24)

wheren;(n) = [ n;(2n) n;(2n + 1) |. Using a key property introduced by the special structuréhef
Alamouti code (see, e.g., [40]), Ed. {24) can be turned imoeguivalent SISO model, where each
symbol can be independently detected and use8BNR of the received symbols can be characterized by
SNR; = PhBB%h;,. Hence, for the beamformed Alamouti strategy, we can forteutae following
achievable rate problem:

Cgr_ B. P
eev g CBF aLam(B, P), (25)

where
Cer-atam(B, P) = min log(1+ Ph{'BB"hy).

i=1,...,

Note thats(¢) is assumed to be ideally channel-coded (just like in the Bbeening case), and the
constraintTr(BBY) < 1 is equivalent to the total power constraiif| X (n)||?]/2 < P. In the next
subsection, we will study how SDR can be employed to deal thithabove achievable rate optimization

problem.

B. A Generalization of SDR for the Fixed Beamformed AlamStritegy
Our strategy for tackling[(25) expands on the ideas used farmellate the beamforming multicast
achievable rate problerhl(4) into a rank-constrained SD@;Setiori ll. To begin, observe that

W =BB? = W >0 andrankW) < 2.

Hence, Problen{(25) can be equivalently formulated as
max min  Tr(Wh;h)
WecHY  i=1,...M (26)
st. Tr(W) <1, W = 0, rankW) < 2.
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At this point, it is worth noting that the achievable rate geam for the beamforming schemg (5) is a
restriction of that for the beamformed Alamouti scheind (Z8)is suggests that our proposed design
should have a performance no worse than that of the beamfgrsitheme. In fact, as we shall see
shortly, the worst-case performance gain can be quantified.

Now, upon removing the nonconvex rank constraint[in] (26), atain exactly the same convex
relaxation as that of the fixed beamforming problem disadigs&ectiori1l, namely, Problem (SDR). Let
W* denote an optimal solution to (SDR). Sin®é* may not satisfyrank(W*) < 2, we need to develop
a procedure that can generate frdW* a feasible solution td (26). Moreover, since the generatédisn
need not be optimal fof_(26) in general, we are interesteduiantifying the approximation quality of
such a solution. To tackle these problems, we employ the SR reduction theory (see, e.d., [29],

[41]]). Let us begin with the following proposition:

Proposition 5 Suppose thal/ < 8. Then, there is a polynomial-time procedure that can geteefi@m

W* an optimal solutionB to the fixed beamformed Alamouti probl¢BH).

PropositioriL.b can be established using [5, Claim 2] [2@0fem 5.1] (see alsb [27] for an exposition
of the latter). It implies that the fixed beamformed Alamaartoblem [25) can be optimally solved by
SDR for instances witt users or less. By contrast, beamforming can guarantee the sasult only
for 3 users or less; see Fddt 1(a). Moreover, by the equivalen¢8@R) and (MC), we arrive at the
important conclusion thdixed beamformed Alamouti space-time coding is a multicagacity-optimal
transmit strategy when there are no more thansers.

For the case wher@/ > 8, it may not be possible to generate an optimal solutiori fd {&sn W*
in polynomial time, as Probleni (R5) is NP-hard. However, \a@ still generate a feasible solution to

(25) using the following Gaussian randomization procedure

Algorithm 1 Gaussian Randomization Procedure (25)
1: Input: an optimal solutiorW™* to (SDR), number of randomizations > 1

2. for j=1to L do
3: generate two independent random vec@{r,sﬁ% ~ CN(0,W*) and definij = %[ 5{ gg l;

let Bj = Bj/q /TF(BJB;{)

5: end for

R

: let j* := argmax;—1,._ 1 SNRuin(B; B) (see [B) for the definition 0SNRuyi (-))
. Output: B = B;-

(o]

~
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Algorithm [I is a generalization of the Gaussian randomirafrocedure used for the SDR-based
beamforming schemé&|[5]. Regarding its worst-case appratkom performance, we have the following

result, whose proof can be found in Appendik D:

Theorem 4 With probability at leastl — (5/6)~, the solutionB returned by Algorithni]1 satisfies

NP DT NRmin W min
SNRyin (BB > > (Wr) __» :
12.22v/ M 12.22v/ M

Theorem[# has two important implications. First, with ouretixbeamformed Alamouti scheme, the

provable gap between the worst-user SNR and the best abléewarst-user SNR scales only on the
order ofy/ M. This is substantially better than the fixed beamformingcasere the provable gap scales
on the order ofM (cf. Fact1(b)). Secondly, fod/ > 8, the achievable rate gap of the SDR-based fixed

beamformed Alamouti scheme relative to the multicast cp@bounded above by
1+ pminP >
14 puminP/(12.22v/M) )’
which for large P is approximately equal tdog(12.22v/M). This is strictly better than that of the
SDR-based fixed beamforming scheme for &> 8 (cf. (@) in Fact1(b)).

Cwc(P) — Cer—aLam(B, P) < log <

Before we proceed, several remarks are in order.
Remark 1:The techniques we developed for proving Theofém 4 can be tesebtain approximation
bounds for a fairly general class of rank constrained SDBsu&h, they generalize the techniques In [6],
which only apply to a certain class of rank-one constrainB&®$
Remark 2:The approximation bound stated in Theorem 4 is only a wasedound. In practice, the
solution returned by Algorithril1 can have a much better perémce. This will be confirmed by our
simulation results; see SectibnlVI.
Remark 3:In view of the development of the fixed beamformed Alamoutiesue, it is natural to ask
whether the techniques can be extended to deliver a “rdrikeamforming scheme rather than just a
“rank-2" scheme as in the Alamouti case. Indeed, it is possible terekthe SDR techniques above to
generaln-dimensional orthogonal space-time bock codes (OSTBGCaydder, full rate OSTBCs do not
exist forn > 2 [20], and the rate deduction (for > 2) can significantly outweigh the gain obtained
from “rank-n” beamforming. For example, consider a fixed beamformed GSTd@ dimensionn = 3.

Since the maximal-rate OSTBC far= 3 is 3/4 [20], the achievable rate should be formulated as

Cor-ostac(B,P) = min “log (1 + PhY/BB"h;) .

i=1,...,
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whereB € CV>3, with Tr(BB¥) < 4/3. Our SDR analysis can be extended to show that the solution
B € CV*3 generated by a certain Gaussian randomization proceduiresatisfy SN—Rmin(BBH) >
SNRuin (W*)/O(M/3) with high probability, which further improves upon the risa the beamformed
Alamouti case (cf. Theorefd 4). However, this effective SNEhgcan easily be compromised by thet
factor in the overall achievable rate, especially for lafgeThe issue of having no full rate OSTBCs for

n > 2 makes the further development of beamformed OSTBCs untea

V. COMBINING THE SBFAND ALAMOUT!I STRATEGIES

In this section we present our last technical contributitamely, to demonstrate how the two physical-
layer multicasting strategies proposed in the previoui@ex can be combined to yield SBF Alamouti

schemes, and to analyze the performance of the resultirgrsh

A. Main Results

The system model of the SBF Alamouti strategy is identicahtd of the fixed beamformed Almaouti

strategy in Sectioh TV-A, except that the transmit spagetcode blocks in(23) are changed to
X (n) = VPB(n)C(s(n)),

whereB(n) € CV*2 is a random-in-block beamforming matrix. In other words, take the Alamouti
space-time structure while randomizing the beamformingrijgust as in SBF. Following the same
derivations as in Section IVAA and adopting the SBF formatatin Section[1ll, we can express the

multicast achievable rate of an SBF Alamouti scheme as

Csgr_aLam(P) = min [EBND[Iog(l + Phi BBh;)], (27)

i=1,...,M

and the corresponding achievable rate gap as

gsBF—ALAM(P) = Cmc(P) — Csgr—aLam(P).

Here, B ¢ CV*2 is a random matrix, an@® denotes its corresponding beamformer matrix distribytion
which must satisfyEg.p[Tr(BB™)] < 1. The SBF Alamouti schemes to be proposed follow the same

spirit as the original SBF schemes. To describe themBlet | wq, w, |, and denote
w1 _ 1 L O aq
w = , L=— , a= ,
w2 \/5 0 L (65}
whereay, as ~ CN(0,1,.) are independent random vectorss rank(W*), andL € C™*¥ is a square

root decomposition oW* satisfyingLL” L. = W*. We propose the following three schemes:
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« Gaussian SBF Alamouti schemes = L &;

« Elliptic SBF Alamouti schemew = L7 a/(||&l|/v/2r);

« Bingham SBF Alamouti scheman = L7 a/||L” &|.
The Gaussian SBF Alamouti scheme satisfies the multicasicdggptimal transmit covariance property
E[BB!] = E[w;w] + E[wowl] = W*, as one can easily verify. The elliptic SBF Alamouti scheme
also satisfies this property, as implied by Hact 3. On therdihad, the Bingham SBF Alamouti scheme

may not satisfy the transmit covariance property. The ¥alhg theorem summarizes our main results:

Theorem 5 The achievable rate gaps of the Gaussian, elliptic and BamglSBF Alamouti schemes

satisfy

)+~ —1=0.2703,

og(2
1
Z% log(r) — 1,

G
gSLg;LIi'S—SALAM( )

Ellip

9sgr_aLam(P) <
k=1
21
Bing P) < L 1
IsgF_aLam(P) < P og(r) —
k=1

for all P > 0, respectively. For the Gaussian and elliptic cases, thendsware tight whenP — oco.

The proof of Theoreni]5 will be provided in the next subsecti®milar to the analysis of the SBF

schemes, it can be shown that;" ' 1

—log(r) — 1 increases with, and thaty ;' 1 —log(r) — 1
approachedog(2) + v — 1 asr — oo. This means that the worst-case rate gaps of the elliptic and
Bingham SBF Alamouti schemes are no worse than that of thesskau SBF Alamouti scheme, and
can be much better for smaller Table[Ill shows the rate gap values of the elliptic and Bamgh
SBF Alamouti schemes for various Theoren{ b also provides the vital implication that the ¢h&BF
Alamouti schemes narrow the worst-case rate loss dovarBtbbits/s/Hz ().2703/ log(2) = 0.39), again,

irrespective of any factors.

TABLE 11l

THE WORSTFCASE RATE GAP OF THE ELLIPTIC ANDBINGHAM SBF ALAMOUTI SCHEMES

T 1 2 3 .. 00
rate gap in nats 0 0.1402 | 0.1847 | ... | 0.2703
rate gap in bits 0 0.2023 | 0.2665 | ... 0.39
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In preparation for the proof of Theorelm 5, let us observe thatSBF Alamouti multicast achievable

rate Csgr_aLam(P) in (27) can be expressed as

Cspr-atam(P) = min Eg [log(1+&piP)l,
wherep; is defined in[(B), and

b w; | + (b w,?
gi:‘zwl’:’le’, i=1,...,M. (28)

In particular, the distributions of the random variablgs. .., &y, will play an important role in our

analysis.

B. Proof of Theorerfl5: The Gaussian Case

For the Gaussian SBF Alamouti scheme, it is routine to shawtte¢;’s in (28) follow a chi-square

distribution with unit mean and degrees of freedom. Thus, by Fatt 2(a), we have
CSEE=aLam(P) = Eellog(1 + {pminP)],

where¢ ~ ¢; for any i. Moreover, by Facfl2(b), the achievable rate g&ps,  am(P) = Cmc(P) —
C&3us, am(P) is nondecreasing i® > 0. The claim for the Gaussian SBF Alamouti rate gap in
Theorentb now follows from the following proposition, whaseof can be found in Section 3.1 of the

companion technical repoit [19]:

Proposition 6 For any P > 0,

2 _2 2
CSauss P) = <1 — > ePminP F < > +1.
SBF ALAM( ) pminP 1 pminP

Consequently, we have

Plim 93 aLam(P) = log(2) + 7 — 1.
o0

C. Proof of Theorerhl5: The Elliptic Case

For the elliptic SBF Alamouti scheme, we compute

LH
w= Y|
RS
Together with [[ZB), this gives
g = 1V r/piLhy)"on |* + |(v/r/piLhy) " as|? (29)

e[ + [lez?
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In particular, if we takeu = \/r/p;Lh; andl = 2 in Lemmal[l, differentiate the corresponding CDF

w.r.t. t and observe thatu||? = r, we obtain the following result:

Proposition 7 Consider the elliptic SBF Alamouti scheme. The PDE;pfvherei = 1,..., M, is given
by

2 —1)(2r —2) t 2r=3
(2r )@ )-—<1—£> foro<t¢t<r,
T T

D, (t) = ,

wherer = rank(W™).

Proposition[ implies that the;’s in ([29) are identically distributed. Hence, by Fadt 2(af have
CenP aiam(P) = Eellog(1 + EpminP)], Whereé ~ & for anyi. Moreover, sinceE[¢;] = 1 for all 4,
by Fact{2(b), the achievable rate ggﬂsF aam(P) = Cuc(P) — C’SEE';E_ALAM(P) is nondecreasing in

P > 0. The claim for the elliptic SBF Alamouti rate gap in Theorehm&w follows from the following
proposition, whose proof can be found in Section 3.2 of themanion technical report [19]:

Proposition 8 For any P > 0,

Elli
C(SBI?—ALAM (P)

1 2r—9 2r—2 1 2r—2 27’ o 2 (_1)k
=2r—-1)(1 log(1 mint’ —
er=1) < " rpminP> [(’g( FrowmnP) =3 =3 (T ) k(L + 7pminP)F

k=1 k=1
1 2r—1 2r—1 1 2r—1 2% 1 (_1)k
—2r—=2)1(1 log(1 minP’) — - —
> )< +rpminP> log( FromP) =2 k:1< k >k<1+rpminP>k
Consequently, we have
2r—1
. Ellip B 1
Pll_l>noogSBF—ALAM(P) = 2 2 log(r) — 1.

D. Proof of Theoreril5: The Bingham Case

By extending the proof of Propositidd 3, we show that the Bang SBF Alamouti rate of useris
given by

Cgéan—ALAM,i(P) = Egllog(1 + Ph{’BB"h;)]

—log(1 + piP) + 90( e ) —en), (30)

mil
where A contains ther positive eigenvalues oW™*, u; contains the eigenvalues of the matd =
L(Iy + Ph;h)LH, andg : R” — R is defined by

P(d) = e, llog (Z dzfl’“—;@’“)] . (31)

k=1

July 17, 2013 DRAFT



26

Here, ¢; and ¢, are independent random vectors with i.i.d. unit-mean egptally distributed com-
ponents. Note that the difference between the above reanttsPropositio |3 lies i (31). Although
it is possible to derive an explicit expression férl(31) byplgmg the result in Propositiohl 4, such
an expression will be too complicated for analysis purpo3ésis, we turn to stochastic majorization
techniques to analyze the functigh Using Fact$4, we deduce that

@e1) <p(d) <@ (z1),
2n—

[y

1

7 ~log(2n) —v (32)
k=1

for anyd = (di,...,d,) > 0 with >";_, d;, = 1. Note that[(3R) is obtained from the relatigiil/n) =

o([1T 17]T /2n). Applying the above inequalities t6 (30) yields

?(31)

Bllog(1 + Phf’ BB"h;)] > log(1 + p:P) + ¢(e1) — @ (11)
1
= log(1 + p;P) + (1 — log(2 <kz_: L log(2r) 7)

—~ 1
> IOg(l + Pmin ) + 10g Z E
k=1

SinceCwmc(P) = log(1+ pminP), We conclude that the achievable rate @?@E_ALAM (P) = Cmc(P)—

ComE A am(P) satisfies
—~ 1
Bi
9spF—aLam( Z T log(r) — 1,
k=1
as desired.

VI. SIMULATION RESULTS

This section presents simulation results for the proposatficast SBF schemes. Unless specified,
all the results to be shown were obtained fran®00 trials of randomly generated channel realizations,
whereh; ~ CN(0,1y) for each trial. The SDR-based beamforming scheme, whidrbeibenchmarked,
is implemented by the Gaussian randomization procedue [GeTable Il, with ‘randC” generation])
with 30M N number of randomizations. For convenience, we shall reféheé SDR-based beamforming
scheme (resp. SDR-based beamformed Alamouti scheme) amfbeming” (resp. “beamformed Alam-
outi”). To illustrate how good a scheme can utilize CSIT, wid also evaluate the multicast achievable

rate of the open-loop strategy, which is the multicast rat@) when the transmit covariance is fixed as

W = 11 [7], [14].
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A. Multicast Achievable Rate Performance

Fig. [I(a) plots the multicast achievable rates of the varischemes w.r.t. the powed?, when the
number of transmit antennas and users &re= 8 and M = 32, resp. Note that the rates shown are
averages of all the trials. One can see that the SBF scherbstaatially outperform beamforming. In
fact, beamforming shows very little rate advantage overojen-loop strategy in this many-user setting.
However, this is not the case with SBF. At this point, it slibloé added that in all the trials run, we found
64 times of havingrank(W*) = 2, 846 times ofrank(W*) = 3, and90 times ofrank(W*) = 4. Based
on our empirical observation, the performance differenevben SBF and beamforming is attributed
to the higher rank instances. By examining Hi§j. 1(a) cakefwe see that the SBF rate gaps relative
to the multicast capacity are no greater thah bits/s/Hz (under the tested range€dB < P < 9dB),
which fall well within the 0.8314 bits/s/Hz worst-case bound proven in Theoréns 1-3. Thetielland
Bingham SBF schemes yield very similar rate performancd,thay perform better than the Gaussian
SBF. For the beamformed Alamouti scheme, its rate is lowan tihe SBF schemes fd? < 3dB, but
catches up a® increases. For the SBF Alamouti schemes, they exhibit aimate performance behavior
compared to their SBF counterparts, but with improved rataes. In particular, upon a closer inspection
of Fig.[d(a), we see that the SBF Alamoulti rate gaps are natgrélaan(.25 bits/s/Hz, which is well
within the 0.39 bits/s/Hz worst-case bound claimed in Theofém 5.

Fig. [I(b) plots the multicast rates w.r.t. the number of sisef, when N = 8 and P = 3dB.
Beamforming is seen to provide good performance for stalsay,M < 11; numerically it is noted that
SDR has a higher chance to give rank-one solutions for skdalHowever, we also see that the rate gap
of beamforming (relative to the multicast capacity) widexss\/ increases. In particular, beamforming
has no advantage over the open-loop strategyMor- 32. In comparison, the SBF rate gaps, with and
without Alamouti, are quite constant w.rd/, which agrees well with the constant rate gap result in
Theorem$ 1143 and Theordm 5. They are also better than thelopgmulticast rate even fai/ = 64.
This demonstrates the superiority of the SBF strategy winenetis a large number of users. Like
beamforming, the beamformed Alamouti scheme exhibits @ gaip widening effect ad/ increases.
Nevertheless, the beamformed Alamouti rate is much belt@n that of beamforming—in fact, the

former is seen to be better than all the SBF-based scheméd far19.

B. Coded BER Performance

Next, we physically realize the various schemes and evathair bit error rates (BERS). The simulation

setting is the same as that in Hig. 1(a). All the schemes alopte1 /3 Turbo code with an information
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Fig. 1. Multicast achievable rates of the various multicadtemes.

length of960 bits—which is used in IEER02.16e [42]—as the channel coding scheme (withdecoding
iterations). The modulation is Gray-coded QPSK. There atelly 1440 symbols in one frame, i.e.,
T = 1440. We ran1,000 independent data frames for each SNR point, so that the Bizabitigy level
is 10e—5. We evaluated the worst-user BERs, and the results are showiy. [2(a). Note that in the
figure, “SISO bound” is not a real multicast simulation. Itsmabtained by running a single-user SISO
system with SNRp,;, P and with the same channel coding scheme. It is expected tkata multicast
capacity-achieving scheme, if it exists, should performbetter than the SISO bound. Thus, the latter
serves as a good BER baseline index. Eig. 2(a) demonsttetethe proposed schemes are much better
than beamforming, this time in BER. For example, fixing BEROe—5, the elliptic SBF Alamouti
scheme achieves an SNR gain of more th&aiB relative to beamforming, and is less th&AdB away
from the SISO bound. Also, the BER performance ranking ofvaieous schemes appears to be quite
consistent with their achievable rate counterpart in E{@).1In Fig.[2(b) we show another result where
the number of userd/ is reduced tol6. Beamforming is seen to provide better BER performance in
comparison to the case dff = 32, although SBF still performs better than beamforming. Mess,
the beamformed Alamouti scheme now shows much improvedpeaince. This demonstrates that the
beamformed Alamouti scheme can have competitive perfoce&or smaller number of users.

In the previous simulation, we employ a relatively long fearength, namely7” = 1440, which may
be too long to some wireless scenarios. For example, in thHe d¢fBndard, the frame length may be

as small asl68 symbols [43]. In this simulation, a shorter frame lengthis considered. We employ
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Fig. 2. The worst-user BER performance of the various masticchemes. QPSK; ratg¢3 Turbo code;T" = 1440.

similar simulation settings as above, except that we nowl6s®@AM and a ratet/2 Turbo code with

an information length o288 bits. The consequent frame lengthZis= 144. Also, 100 independent data

frames for each SNR point were run. The results, shown in [Bigllustrate that the performance of

the various proposed schemes are generally consistentazethfo the previous large frame-length BER

simulations.

10

Worst-user BER (coded)

— SISO bound
--'BF via SDR
—&— Gaussian SBF
—*— elliptic SBF
—e— Bingham SBF
~+ BF Alamouti via SDR
- B8 - Gaussian SBF Alamouti
N - * ~elliptic SBF Alamoulti

‘N — © -Bingham SBF Alamouti

P(dB)

14

Fig. 3. The worst-user BER performance of the various mastischemes\/ = 32; 16-QAM,; rate-1/2 Turbo codeT" = 144.

Before we close this section, we would like to draw the readsttention to the companion technical
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report [19], which contains more simulation comparisons.

VIlI. CONCLUSION

In this paper we established several new physical-layeticasting schemes using stochastic beam-
forming and beamformed Alamouti space-time coding. Th@psed schemes are efficient to implement—
the receiver sides require only symbol-by-symbol recepueicessing, followed by a standard channel
decoding operation. We characterized the performanceeoptbposed schemes by means of theoretical
analysis, and showed that the proposed schemes have privedidr multicast achievable rate scaling than
the existing SDR-based multicast beamforming scheme whetnumber of users. We also demonstrated
by simulations that the proposed schemes can outperformi&3Bd beamforming quite significantly in
terms of BERs under channel-coded, many-user settings. #iguee direction, it would be interesting

to extend the present results to other scenarios.

APPENDIX
A. Proof of Fac{2(b)

By Fact[2(a), we havgsgr(P) = log(1 + pminP) — E¢[log(1 + £pminP)]. Differentiating gsgr (P)

w.r.t. P yields
1

4 P =——-E # min-
gSBF( ) <1 + pminP . |:1 + pminP§:|> P
One can easily verify that for a fixe®? > 0, the function{ — £/(1 + pmin P€) IS concave in§ > 0.

(33)

Upon applying Jensen’s inequality {0 {33) and using the flaatE.[¢] = 1, we get
1 Ee[¢] )
¢ P) > - 4 min = O,
gSBF( ) - <1 + PminP 1 + pminPEg[g] P
i.e., gsgr (P) is nondecreasing i > 0.

B. Proof of Lemm&ll

Since the distribution o#; is rotationally invariant (i.e.x; and Ua; have the same distribution for
any fixed unitary matriU), we may assume without loss that= (||ul|,0,...,0). Then, for anyt > 0,

we have

! !
Pr(n(u) <t) =Pr (Z Ju[?evit [* < tz ”aiH2>
=Pr | (|l - Z i < tzz Javis

=1 j=2

July 17, 2013 DRAFT



31

By definition,x2, = 23"}, o1 |? and;@l(r_l) =23 > i—o |eu;|* are independent chi-square random
variables with2/ and2i(r — 1) degrees of freedom, resp. It follows that

=2
Xoy(r— 2 _
Pr(n(u) <) =Pr< 20 - ol t)

X%z t

o (B2 =) a2t

Now, the non-negative random variable
)Z%l(r_l)/Zl(r -1)
X5,/21
is known in the statistics literature as ti#&érandom variable with(2/(r — 1),2l) degrees of freedom,

Foupr—1)21 =

whose CDF can be explicitly derived from its incomplete bfetaction representation (see, e.d.,1[44,

Chapter 26]):
Ir—1

1 Ir—1 ;o
Pr(FZI(r—l)Ql <90)= ((r—1)0 + 1)1 Z < . )(T — 107, 6>0. (35)
j=l(r—1)

The desired result then follows frorh (34) and](35).

C. Proof of Propositioi 13

By substituting the Bingham SBF equatidn(20) into the imimal user rate[(10) and lettind; =

L(Ix + Ph;h)LH| the following rate expression is obtained:
Ewllog(1 + Plhfw|?)] = Eqflog(a” A;a)] — Eqflog(@” LL o)), (36)

where, we recalla ~ CN(0,1,). Consider the spectral decompositioAs = UDU# and LL? =
QAQ", where U and Q are unitary, andD and A are diagonal whose diagonal elements are the
eigenvalues ofA; and LLY, resp. Letu; 1,..., i be the diagonal elements &F, and A,..., A, be
the diagonal elements of. By further lettinga’ = Ufa ~ CN(0,1,) anda”” = Q7 ~ CN(0,1,),

we can rewrite[(36) as

Eu[log(1 + Plh{fw[?)]

— B (Z m7k|a;|2>] — Ear [(Z Akla’ﬁz)]
k=1 k=1
= p(pi) — p(A), 37)

July 17, 2013 DRAFT



32

where ¢ has been defined ifiL{R2). One can then deduce Wim= L”L that \,,..., )\, are also the
positive eigenvalues oW*. Since we have, in additiorilr(W*) = 1 (as implied by the structure of
(MC)), we get

ul1l =Tr(A;) = Tr(L(Iy + Ph;hi)LY)
= Tr(W*(Iy + Ph;hi?)) =1+ Pp;. (38)

Upon substituting[(38) intd (37), we obtain the result cledhin Propositioh]3.

D. Proof of Theoreml4

Consider a fixegi € {1,...,L} in Algorithm[l and letW = B;B. The proof consists of four steps:
Stepl: For anypu € CV, we haveu!’¢; ~ CN(0, p" W*p) and T(Wup!?) = 1577 | |ulle|%.
Hence, following [[45, Proposition A5.5], for any € (0, 1),

Pr (TI’(VVuuH) < BTI’(W*uuH)> < 2(1=B+nf) (39)

Step2: Let W* = UAU be the spectral decomposition¥f*. Observe that TW) = 1 S &) ~
132 |Imil|?, wheren; ~ CA(0, A) andn, no are independent. Moreover, we hay& 7| [|n;]|> =
% Z;V:I Z?:1 |7i5

2, wheren,; ~ CN(0,A;;), and{n;;} are independent. Thus, for amye (1, c0),
Pr (Tr(VV) > aTr(W*))

1 N 2 N
2
=Pr 52; 1\?7:';’! >a) Aj
7j=11i=

=1

N 4 N
=Pr ZAij|ﬁij|22aZAjj 5
j=1 =1 j=1
where7j;; ~ N(0,1/4). Now, using the argument in the proof ¢f [41, Proposition] Zske the remark
after the proof of([41l, Proposition 2.2]), we see that for 4/3,

Pr (Tr(vV) > aTr(W*)> < emzlotind) (40)

Step3: By setting = (ev/2.4M)~! anda = 2In(2.4) — 41n(3/4) ~ 2.902 in (39) and [(4D), resp., we
obtain

Pr (Tr(VVhihf{ ) < BTr(W*h;h! )) < ﬁ Vi, (41)
Pr (Tr(VV) > aTr(W*)> < i. (42)
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Consider now the events
E = {Tr(Wh;h¥) > gTr(W*h;h¥) fori=1,..., M},
F={Tr(W) < aTr(W*)}.

Using [41), [42) and the union bound, we compute

Pr(ENF) >

[N

In particular, with probability at least/6, we have
Tr(Wh;h!") _ B Tr(W*hihf')  Tr(W*hihf")

™mW) —a  Tr(WH T 1222VM
fori=1,..., M (recall that T(W*) = 1).

Step4: The result in Step 3 and the union bound imply that the event
S Tr(h/'B;B!'h;) - Tr(W*h;h!T)
a Tr(B;B)  ~ 1222VM

forz‘:l,...,M}

occurs with probability at least — (5/6)%. This, together with the construction ® in Algorithm [T,

implies the desired result.
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