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Abstract

Consider transceiver designs in a multiuser multi-input single-output (MISO) downlink channel,
where the users are to receive the same data stream simultaneously. This problem, known as physical-
layer multicasting, has drawn much interest. Presently, a popularized approach is transmit beamforming, in
which the beamforming optimization is handled by a rank-oneapproximation method called semidefinite
relaxation (SDR). SDR-based beamforming has been shown to be promising for a small or moderate
number of users. This paper describes two new transceiver strategies for physical-layer multicasting.
The first strategy, called stochastic beamforming (SBF), randomizes the beamformer in a per-symbol
time-varying manner, so that the rank-one approximation inSDR can be bypassed. We propose several
efficiently realizable SBF schemes, and prove that their multicast achievable rate gaps with respect to the
MISO multicast capacity must be no worse than0.8314 bits/s/Hz, irrespective of any other factors such as
the number of users. The use of channel coding and the assumption of sufficiently long code lengths play
a crucial role in achieving the above result. The second strategy combines transmit beamforming and the
Alamouti space-time code. The result is a rank-two generalization of SDR-based beamforming. We show
by analysis that this SDR-based beamformed Alamouti schemehas a better worst-case effective signal-
to-noise ratio (SNR) scaling, and hence a better multicast rate scaling, than SDR-based beamforming.
We further the work by combining SBF and the beamformed Alamouti scheme, wherein an improved
constant rate gap of0.39 bits/s/Hz is proven. Simulation results show that under a channel-coded, many-
user setting, the proposed multicast transceiver schemes yield significant SNR gains over SDR-based
beamforming at the same bit error rate level.

Index terms− physical-layer multicasting, multicast capacity, transmit beamforming, semidefinite re-
laxation, semidefinite programming

EDICS: MSP-CODR (MIMO precoder/decoder design), MSP-STCD (MIMOspace-time coding and
capacity), MSP-CAPC (MIMO capacity and performance)
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I. INTRODUCTION

In recent years, the explosive growth in the demand for various wireless data services has motivated

a vast amount of research on resource-efficient techniques for massive content delivery. One scenario

that has received significant attention is physical-layer multicasting, in which a base station broadcasts

common information to a prespecified group of users. For instance, in the long term evolution (LTE)

standard, a particular work item called multimedia broadcast multicast service (MBMS) [1] is being

actively considered as a preferred mass media streaming option.

The scenario of interest in this paper is that of physical-layer multicasting in multiuser multiple-input

single-output (MISO) downlink, assuming channel state information at the transmitter side (CSIT). A

central problem in this context is to develop efficient and physically realizable transceiver techniques.

Currently, a popularized approach is multicast beamforming, in which the physical-layer transmit strategy

is single-stream beamforming, and the beamformer is designed so that users can simultaneously receive

good quality of service (QoS). The idea of using beamformingas a transmit strategy for physical-

layer multicasting can be traced back to a 1998 paper by Narula et al. [2], although more appropriate

beamforming optimization formulations, namely, the QoS-constrained problem and the max-min-fair

problem, appeared later [3], [4]. As it turns out, both of these formulations are NP-hard in general [5],

[6]. To circumvent such intractability, a state of the art approach is semidefinite relaxation (SDR) [5].

The main observation behind this approach is that the beamforming problem can be reformulated as a

rank-one constrained semidefinite program (SDP). Thus, by dropping the non-convex rank constraint,

one obtains a convex and tractable SDR problem, whose solution can then be used to generate a rank-

one approximate solution to the original beamforming problem. The viability of SDR-based multicast

beamforming has been proven by both empirical evidence [5] and theoretical analysis [6], [7]. In fact,

SDR-based multicast beamforming has sparked much interestin the area, where we have seen the same

fundamental idea of SDR being applied to many different beamforming scenarios; see, e.g., the references

in [8]. In addition, we should note that the significance of multicast beamforming as demonstrated through

SDR has motivated the development of many other competing optimization methods [9]–[13].

While our main interest is in multicast transceiver designsunder CSIT, we should also briefly mention

the no-CSIT case. A common transmit strategy without CSIT isto transmit isotropically, which is called

the open-loop strategy in the literature and may physicallybe implemented by space-time coding [3].

Open-loop system capacity analyses have been considered in[7], [14]. The work [14] also considers

antenna subset selection for striking a balance between thefull CSIT and no CSIT settings. Moreover,
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in [15], a diagonally precoded extension of the space-time coding approach was proposed for the full

CSIT case.

A. Motivations and Contributions

The now popularized SDR-based multicast beamforming scheme has been shown to be capable of

providing accurate approximations in a variety of practical regimes, most notably, in the cases where there

is a small or moderate number of users. However, the analysesin [6] also reveal an inherent limitation,

namely, the SDR approximation accuracy may degrade as the number of users increases. The focus of

this work is to pursue alternative physical-layer multicasting strategies that can deliver good performance

even in the presence of large number of users. Our endeavor ismotivated from an information theoretic

perspective—the SDR solution under the max-min-fair formulation is equivalent to the optimal transmit

covariance of the multicast capacity [5], [7]. Hence, instead of extracting a rank-one approximate solution

from the SDR solution, which is the case in multicast beamforming, we consider altering the transmit

structure to embrace the non-rank-one nature of the multicast optimal transmit covariance (or the SDR

solution). Specifically, we propose two new physical-layerstrategies for multicasting in this paper.

1) Stochastic Beamforming:The first strategy, calledstochastic beamforming (SBF), is to employ a

per-symbol time variant, randomly generated, beamformer.The underlying intuition of SBF is to use

time-varying spatial randomizations to mimic the multicast capacity-optimal transmit covariance, thus

producing “rank-r beamforming” in avirtual manner for anyr ≥ 1. A distinguishing characteristic of

our SBF framework is that channel coding (which is usually present in practical systems) is utilized to

approach some kind of ergodic achievable rate metric. We will develop three efficiently and practically

implementable schemes under the SBF framework. Numerical simulations show that they can have

significant bit-error-rate (BER) performance gains over SDR-based beamforming. On the theoretical side,

we prove that the achievable rate gaps of the proposed SBF schemes with respect to (w.r.t.) the multicast

capacity must be no worse than0.8314 bits/s/Hz,irrespective of any factors such as the number of users.

From a practical viewpoint, this implies that even when there is a large number of users, SBF can still

perform reasonably well.

2) Alamouti-Assisted Rank-Two Beamforming:Our second strategy is to develop rank-2 generalizations

of beamforming, both fixed and stochastic, through the use ofthe Alamouti space-time code. To motivate

this strategy, we should first note that in the point-to-point multiple-input multiple-output (MIMO)

literature, there has been interest in combining beamforming and space-time coding (STC) to provide rank-

r beamforming; see, e.g., [16]–[18]. However, developing a combined beamforming and STC scheme is
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a scenario-dependent challenge, as evidenced in the above referenced work. The reason is that many

available space-time codes are designed for performance metrics in point-to-point CSIT-uninformed

scenarios, such as diversity order or diversity multiplexing tradeoff, and those merits do not always

carry forward to another MIMO scenario that has a different performance metric. In Section 4.2 of the

companion technical report [19], we provide simulation results that demonstrate a direct combination of

beamforming and STC based on intuition would lead to poor performance in the multicast scenario.

There is however an exception where beamformed STC designs can be tractable, namely, when the

class of orthogonal space-time block codes (OSTBCs) is used. OSTBCs are well known to be simple to

implement, and, more importantly, their performance can beeasily characterized by an explicit signal-to-

noise ratio (SNR) expression. Some representative point-to-point beamformed STC designs are, in fact,

based on OSTBCs [16]–[18]. On the other hand, one must note that full-rate OSTBCs do not exist for

dimensions higher than two [20].

In view of the above discussion, we will consider beamformedSTC based on the two-dimensional

full-rate OSTBC, that is, the well-known Alamouti space-time code. We first develop an SDR-based fixed

beamformed Alamouti scheme, which is a rank-two generalization of the previous (rank-one) SDR-based

beamforming framework. Our analysis shows that in terms of the effective worst-user SNR, the worst-case

approximation accuracy of the beamformed Alamouti scheme degrades only at a rate of
√
M , whereM is

the number of users. This is an improvement over the previousbeamforming scheme, where the provable

worst-case approximation accuracy degrades at the higher rate of M [6]. Next, we combine the SBF

strategy and the beamformed Alamouti scheme; that is, we produce virtually rank-r beamforming from

physically rank-two beamforming. By analysis, we show thatthe SBF Alamouti schemes have a worst-

case multicast achievable rate gap of0.39 bits/s/Hz, which is better than the previous0.8314 bits/s/Hz

bound for the SBF schemes. The SBF Alamouti schemes also yield the best coded BER performance by

simulations when compared to beamforming and other proposed schemes.

B. Related Works

We should mention some existing works that might seem related to SBF, and contrast the differences.

At first sight, using randomness in beamforming may remind one of the opportunistic beamforming

(OBF) technique [21]. However, OBF deals with user scheduling in a multiuser TDMA setting, which

is a very different scenario from multicasting. By closely examining OBF and SBF, one would find

that the ways randomness is used also have much difference: OBF is a per-frame randomized approach

without CSIT, while SBF is per-symbol random with CSIT. For asimilar reason, SBF is different from
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the randomized space-time coding approach for cooperativecommunication [22]—the latter is per-frame

random without CSIT, with an aim to harvest cooperative diversity. Moreover, it is interesting to note

that the philosophical possibility of randomizing the beamfomer was vaguely alluded to in a study

of the unicast scenario [23], although no further investigation was provided. In fact, the authors there

never needed to—they showed that in unicasting, SDR always has a rank-one solution, i.e., transmit

beamforming is sufficient in unicasting. However, this result does not apply to multicasting [5], [6].

In this study, the idea of utilizing channel coding, and the subsequent ergodic rate characterization for

multicasting, are new.

We should also describe related work on our fixed beamformed Alamouti scheme. As mentioned earlier,

the beamformed Alamouti structure, or, more generally, thebeamformed OSTBC structure, has previously

appeared in the point-to-point MIMO literature, e.g., [16]–[18]. Also, in the multicast scenario, there is

an early work [15] where the authors considered a diagonallyprecoded OSTBC scheme with per-antenna

power allocation (rather than beamforming). The issue thatis different in the present scenario is the

beamformer designs, where the restriction of rank-two beamforming for full-rate transmission results

in a multicast design optimization problem that is NP-hard.The significance of our development lies

not only in proposing a rank-two SDR framework for the beamformer design, but also in generalizing

the theoretical analysis of SDR-based beamforming in a non-trivial manner. In particular, we are able

to establish for the first time a worst-case performance bound for the NP-hard rank-two beamforming

problem. We should bring readers’ attention to the work [24], [25], wherein the authors independently

introduced the same Alamouti-assisted rank-two SDR idea atabout the same time when a preliminary

version of this work [26] was presented. What distinguishesour work is that we also provide performance

analysis of the resulting scheme.

C. Organization and Notations

The organization of this paper is as follows. In Section II weprovide the problem formulation and

review the SDR-based multicast beamforming scheme. The SBFframework is developed and described

in Section III. Section VI provides the simulation results,and the paper is concluded in Section VII.

Our notation is standard:CN is the set of all complexN -dimensional vectors;HN is the set of all

N×N complex Hermitian matrices;x ≥ 0 means thatx is elementwise non-negative;X � 0 means that

X is positive semidefinite;‖ · ‖ is the vector Euclidean norm;Tr(X), rank(X), λmax(X), andλ+
min(X)

stand for the trace, rank, the largest eigenvalue, and the smallest non-zero eigenvalue ofX, resp.;0 and

1 are the all-zero and all-one vectors, resp.;ei is a unit vector with the nonzero element at theith entry;
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Ir denotes ther-by-r identity matrix;E[·] is statistical expectation;CN (0,W) (resp.N (0,W)) is used

to denote the circularly symmetric complex Gaussian distribution (resp. the real Gaussian distribution)

with mean vector0 and covariance matrixW; andX ∼ Y means that the random variablesX andY

have the same distribution.

II. PROBLEM FORMULATION AND BACKGROUND REVIEW

This section describes the physical-layer multicasting problem formulation and gives a review of

multicast beamforming.

We consider a standard multicast scenario [7] where a base station transmits a common message toM

users under slow channel fading. To be specific, the base station is equipped withN transmit antennas,

while the users a single antenna. The channel of each user is assumed to be frequency flat and slow

faded in the sense that its coherence time is larger than the data frame or packet transmission period.

Under this setting, the signal model for one data frame transmission can be described by

yi(t) = hH
i x(t) + ni(t), t = 1, 2, . . . , T, (1)

whereyi(t) is the received signal of useri at time t (or tth channel use),T is the data frame length,

which is assumed to be large,hi ∈ CN is the channel from the base station to useri, x(t) ∈ CN denotes

the multi-antenna transmit signal, andni(t) ∼ CN (0, 1) is zero mean unit variance complex Gaussian

noise. We denote the transmit covariance byΣ = E[x(t)xH(t)].

The subject of interest is to provide good multicast rate performance for each frame transmission,

assuming knowledge ofh1, . . . ,hM , or channel state information at the transmitter (CSIT). From an

information theoretic perspective, it is known that the multicast capacity under model (1) and in the

presence of CSIT is given by

CMC(P ) = max
Σ∈HN

min
i=1,...,M

log(1 + hH
i Σhi)

s.t. Σ � 0, Tr(Σ) ≤ P,

(2)

whereP is the maximum allowable transmit power andlog(.) is natural logarithm (and thusCMC(P ) is

in units of nats/s/Hz) [7]. Note that we do not assume any physical-layer transmit structure onx(t) at

this point. By the change of variableΣ = PW, we can rewrite (2) as

CMC(P ) = log(1 + ρminP ),

where

ρi = Tr(W⋆hih
H
i ), ρmin = min

i=1,...,M
ρi, (3)

July 17, 2013 DRAFT



7

(MC) W⋆ = arg max
W∈HN

min
i=1,...,M

Tr(Whih
H
i )

s.t. Tr(W) ≤ 1, W � 0.

In particular, an optimal solutionΣ⋆ to (2) can be constructed from the optimal solutionW⋆ to (MC) via

Σ⋆ = PW⋆. Problem (MC) is an SDP, which is convex and polynomial-timesolvable [27]. Alternatively,

one may employ low-complexity heuristics specially designed for (MC); see, e.g., [11].

An important question is how physical-layer schemes shouldbe designed to practically approach the

information rate promised by the multicast capacityCMC(P ). From such a realizable transceiver design

viewpoint, there seems to have no report on a practical multicast capacity-achieving scheme that has

been successfully implemented and demonstrated in physical layer. Currently, a widely adopted scheme is

transmit beamforming, which is efficiently realizable but generally suboptimal.In transmit beamforming,

the transmit signalx(t) is constrained to take the form

x(t) =
√
Pws(t),

wherew ∈ CN is a transmit beamforming vector,P is again the maximum allowable transmit power,

and s(t) ∈ C is a stream of data symbols with unit power (i.e.,E[|s(t)|2] = 1). In beamforming, the

received signal in (1) reduces to a single-input single-output (SISO) modelyi(t) =
√
PhH

i ws(t)+ni(t),

and we can characterize the performance by the signal-to-noise ratios (SNRs) of the received symbols,

namely,SNRi = P |hH
i w|2, wherei = 1, . . . ,M . Consequently, the multicast beamforming problem can

be formulated as

max
‖w‖2≤1

CBF(w, P ), (4)

where

CBF(w, P ) = min
i=1,...,M

log(1 + PhH
i wwHhi)

represents the multicast achievable rate of a given beamformer w [5], [7]. Note that this rate can be

practically approached by applying an ideal channel code tos(t) 1. Now, it is known that Problem (4)

is equivalent to the max-min-fair (MMF) problem

(MMF) max
w∈CN , ‖w‖2≤1

min
i=1,...,M

|hH
i w|2,

1The common, tacit, understanding is that Turbo codes or low density parity check codes should provide near-ideal scalar

channel coding performance in practice.
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which is NP-hard in general [5], [6]2. To circumvent this intractability, an arguablyde factosolution is

to apply semidefinite relaxation (SDR) to approximate (MMF). In the SDR approach, one first substitute

W = wwH into (MMF) and use the equivalence

W = wwH ⇐⇒ W � 0 and rank(W) ≤ 1

to obtain the followingequivalentformulation of (MMF):

max
W∈HN

min
i=1,...,M

Tr(Whih
H
i )

s.t. Tr(W) ≤ 1, W � 0, rank(W) ≤ 1.

(5)

The rationale behind such a reformulation is that one can then drop the nonconvex rank constraint in (5)

to obtain a convex relaxation problem, viz.

(SDR) max
W∈HN

min
i=1,...,M

Tr(Whih
H
i )

s.t. Tr(W) ≤ 1, W � 0,

which is an SDP. Some rank-one approximation procedure is then used to convert the solution of (SDR)

to a rank-one, feasible, solution to (MMF); see [5], [8], [27] for details. It is interesting to note that (SDR)

and (MC) are exactly the same. Hence, the SDR approach essentially uses the multicast capacity-optimal

transmit covarianceW⋆ to find a good rank-one beamforming solution.

Empirically, it has been shown that SDR-based multicast beamforming offers good performance,

especially for a small to moderate number of users. In fact, theoretical results quantifying the extent

to which SDR can perform are available, and they are briefly summarized as follows. Let

SNRmin(W) = min
i=1,...,M

Tr(Whih
H
i ) (6)

denote the worst-user effective SNR associated withW, which appears in the objective functions of (5)

and (SDR). By noting that the optimal solutionW⋆ to (MC) is also optimal for (SDR), we have the

following:

Fact 1

(a) ( [29]) WhenM ≤ 3, there is a polynomial-time procedure that can generate from W⋆ an optimal

solution ŵ to (MMF). Also,ŵŵH is a solution to (MC).

2Note that the MMF problem was originally formulated from a QoS perspective [5], where the aim is to maximize the worst

user’s QoS under a power constraintE[‖x(t)‖2] ≤ P . The QoS commonly refers to the SNR defined here, although other

measures of QoS, such as the long-term average SNR [28], can also be considered.
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(b) ( [5], [6]) When M > 3, by using a Gaussian randomization procedure (which runs inrandomized

polynomial time), one can generate fromW⋆ a feasible solution̂w to (MMF) that satisfies

SNRmin(ŵŵH) ≥ SNRmin(W
⋆)

8M
=

ρmin

8M

with probability at least1/6. In particular, after L ≥ 1 independent runs of the randomization

procedure, one can boost this probability to at least1− (5/6)L.

Fact 1(a) states that the generally NP-hard (MMF) is equivalent to the convex, polynomial-time solvable

(SDR) when the number of usersM is no greater than3.3 Thus, in view of the equivalence of (SDR)

and (MC), we conclude thattransmit beamforming is guaranteed to be a multicast capacity-optimal

physical-layer strategy forM ≤ 3. As for Fact 1(b), it reflects how the performance of SDR-based

beamforming scales with the number of users in a worst case sense. Specifically, consider the achievable

rate gap of SDR-based beamforming relative to the multicastcapacity, i.e.,CMC(P )−CBF(ŵ, P ). From

the derivations above, one can readily deduce the followingbound forM > 3:

CMC(P )− CBF(ŵ, P ) ≤ log

(
1 + ρminP

1 + ρminP/(8M)

)

. (7)

Note that for largeP , the right-hand side of (7) is approximately equal tolog(8M), which implies that

SDR-based beamforming may suffer from a rate loss that increases logarithmically with the number of

users. Hence, the beamforming strategy is only effective when there are not too many users.

III. M ULTICAST STOCHASTIC BEAMFORMING

In view of the above mentioned drawbacks of beamforming, in this section we propose an alternative

physical-layer multicasting strategy based on stochasticbeamforming.

A. System Model

Consider the following transmit structure:

x(t) =
√
Pw(t)s(t), t = 1, 2, . . . , T, (8)

wherew(t) ∈ CN is a time-varying beamformer weight vector, and the other notations are the same

as those in the beamforming strategy discussed above. At each time t, w(t) is randomly generated

according to a common distributionD. To distinguish this random-in-time beamforming endeavorfrom

the conventional beamforming scheme, we will henceforth call the formerstochastic beamforming(SBF),

3As an aside, note that forM = 2, a closed-form solution to (MMF) can be derived [11].
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and the latterfixed beamforming. The SBF strategy is motivated by the observation that the transmit

covariance of (8) is given byE[x(t)xH(t)] = PE[w(t)wH(t)]. In particular, if we chooseD so that the

beamformer covariance and the multicast capacity-optimaltransmit covariance are equal, i.e.,

Ew(t)∼D[w(t)wH(t)] = W⋆,

then the SBF should have a better multicast performance thanthe fixed beamformer, especially when

W⋆ has high rank.

Let us now consider the receiver side. Substituting (8) into(1), the received SBF signals can be written

as

yi(t) =
√
PhH

i w(t)s(t) + ni(t), t = 1, 2, . . . , T. (9)

As seen in (9), each user has an instantaneous SNR given bySNRi(t) = P |hH
i w(t)|2, which fluctuates

in time. Hence, we apply channel coding (presumably ideal) across the symbols{s(t)}Tt=1 within the

data frame to “average out” the fluctuations caused by SBF. Interestingly, this receiver approach is the

same as how one uses channel coding in fast fading channels toexploit time diversity [30]. We assume

coherent reception, which means that all the users are assumed to knoww(t) deterministically (as well

ashi(t)). This can be made possible by having the transmitter sending the random seed for generating

w(t) and the multicast optimal transmit covarianceW⋆, either as part of the preamble of the transmitted

frame or via a feedback channel. We should also note that SBF receivers involve simple coherent symbol

reception (without inter-symbol interference) and channel decoding, and hence are as efficient as those

of fixed beamforming with channel coding.

The SBF system description is complete. Now, several natural questions arise: What distributionD
should we use to generate the random beamformer weights? Howcan we characterize the performance

of an SBF scheme? These aspects are considered in the subsequent subsections.

B. SBF Achievable Rate

We employ an achievable rate view to study the SBF strategy. For notational simplicity, we use the

random variablew to denote the randomly generated beamformer weight vectorw(t). Under the SBF

system model in (9), where channel coding is applied across{s(t)}Tt=1 with T sufficiently large, the

achievable rate of each user, say, useri, can be expressed as

CSBF,i(P ) = Ew∼D[log(1 + PhH
i wwHhi)], (10)

whereD denotes the (given) distribution for generatingw. We should mention that the capacity expression

in (10) is deduced in the same spirit as the ergodic capacities for fast fading channels without CSIT,
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as described or used frequently in the literature; see, e.g., [30], [31]. However, we should emphasize

that in this study, it is not the channelshi that are random, but the beamformerw. Moreover, studies

in fast fading channels have suggested that the rate (10) maypractically be approached by near-ideal

scalar channel codes; see, e.g., [30, p. 2627]. Based on (10), the multicast achievable rate of SBF can

be formulated as

CSBF(P ) = min
i=1,...,M

Ew∼D[log(1 + PhH
i wwHhi)]. (11)

Note thatD must satisfyEw∼D[‖w‖2] ≤ 1, so that the power constraintE[‖x(t)‖2] ≤ P holds.

Before we proceed, let us discuss the key underlying assumption behind the SBF achievable rate metric

above—thatT should be large. In practice, the frame lengthT is constrained by the coherence time of the

channels. As such, the rate metric above is more suitable forslow fading scenarios. In our simulations,

we found that the idea works well whenT is the same as that of the coded symbol length for a fixed

beamforming channel (or a standard scalar Gaussian channel), which is typically on the order of hundreds

in wireless standards.

To facilitate the SBF design and rate analysis, we first derive an alternative expression forCSBF(P ).

Set

ξi =
|hH

i w|2
ρi

, i = 1, . . . ,M (12)

(see (3) for the definition ofρi). Clearly, if D satisfies the capacity-optimal transmit covariance property

Ew∼D[wwH ] = W⋆, thenE[ξi] = 1. Then, we can rewrite (11) as

CSBF(P ) = min
i=1,...,M

Eξi [log(1 + ξiρiP )]. (13)

The above SBF rate characterization reveals that the SBF performance depends on the “fading” distribution

of ξi. The following properties can be derived for (13):

Fact 2 Suppose thatξ1, . . . , ξM are identically distributed. Letξ ∼ ξi for any i.

(a) The SBF multicast achievable rate(13) can be simplified toCSBF(P ) = Eξ[log(1 + ξρminP )].

(b) Suppose, in addition, thatE[ξi] = 1. Then, the functiongSBF : R+ → R+, where gSBF(P ) =

CMC(P )− CSBF(P ), is nondecreasing inP ≥ 0.

Fact 2(a) is simply a consequence of the monotonicity of the log function. For a proof of Fact 2(b), see

Appendix A.

July 17, 2013 DRAFT



12

C. The Gaussian SBF Scheme

Let us now turn our attention to the choice of the beamformer distributionD. The most desirable choice

of D would be that of maximizing the multicast achievable rate under the power constraint. However,

this may be too difficult to solve analytically. Hence, we seek simple, easy-to-generate, beamformer

randomizations that can yield provably good multicast rateperformance.

A simple way to generatew is to use the circularly symmetric complex Gaussian distribution:

w ∼ CN (0,W⋆). (14)

We will call the resulting SBF scheme theGaussian SBF scheme. Gaussian SBF aims at using a simple

beamformer generation to satisfy the optimal transmit covariance propertyE[wwH ] = W⋆. It can be

analytically shown that even such a simple beamformer randomization possesses desirable multicast

achievable rate properties. From (12), we see that for Gaussian SBF, everyξi follows an exponential

distribution with meanE[ξi] = 1. Therefore, the premises of Fact 2 are satisfied, and by Fact 2(a) we

can express the Gaussian SBF achievable rate as

CGauss
SBF (P ) =

∫ ∞

0
log(1 + tρminP )e−tdt. (15)

As it turns out, the expression in (15) is identical to that for the ergodic capacity of a scalar Rayleigh

channel, which is known to admit the explicit expression

CGauss
SBF (P ) = e1/(ρminP )E1(1/(ρminP )), (16)

whereE1(x) =
∫∞
1 t−1e−xtdt, x ≥ 0, is the exponential integral of the first order [32]. Now, we are

interested in extracting insight from the explicit rate expression (16)—how far away is (16) from the

multicast capacityCMC(P )? Towards that end, consider the achievable rate gap

gGaussSBF (P ) = CMC(P )− CGauss
SBF (P ).

We then have the following result:

Theorem 1 The achievable rate gap of the Gaussian SBF scheme satisfies

gGaussSBF (P ) ≤ γ = 0.5772 for all P ≥ 0.

Moreover, the bound is tight whenP → ∞.

Proof: By Fact 2(b),gGaussSBF (P ) is nondecreasing inP ≥ 0. Moreover, it can be shown thatlimP→∞ gGaussSBF (P ) =

γ; see Section 1.1 of the companion technical report [19]. Hence, we conclude thatgGaussSBF (P ) ≤ γ for

all P ≥ 0. �
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The implication of Theorem 1 is meaningful—the Gaussian SBFrateCGauss
SBF (P ) is at most0.8314 bits/s/Hz

(γ/ log(2) = 0.8314) away from the multicast capacityCMC(P ); otherwise it has the same scaling as the

multicast capacity,irrespective of the number of users. This is unlike the SDR-based fixed beamforming

scheme reviewed in Section II, where the rate gap may increase with the number of users; cf. (7).

D. The Elliptic SBF Scheme

As shown in the previous subsection, even with just a simple Gaussian SBF scheme, we can achieve

a rate that is within less than 1 bit/s/Hz of the multicast capacity. From a practical viewpoint, however,

the Gaussian SBF scheme has a drawback—its instantaneous beamformer power, which is given by

P‖w(t)‖2, can have a large spread. Indeed, since‖w‖2 is a chi-square random variable, the instantaneous

power can in principle take any non-negative values. Hence,while Gaussian SBF is interesting from a

fundamental viewpoint, where a theoretically provable rate gap of less than one bit w.r.t. the multicast

capacity can be established, it may not be desirable for practical implementation. To remedy this, we

consider an alternative SBF scheme, in which the beamformerweight is generated by

w =
LHα

‖α‖/√r
, α ∼ CN (0, Ir), (17)

wherer = rank(W⋆) andL ∈ Cr×N is a square root decomposition ofW⋆, i.e., LHL = W⋆. Note

that (17) is simply a Gaussian SBF normalized by the factor‖α‖/√r; cf. (14). Intuitively, such a

normalization serves to limit the instantaneous beamformer power. More precisely, sinceTr(W⋆) ≤ 1,

by the Courant-Fischer min-max theorem, we have‖w‖2 ∈ [rλ+
min(W

⋆), rλmax(W
⋆)] with probability

1. As it turns out, the random vectorw also satisfies the capacity-optimal transmit covariance property:

Fact 3 [33] The random vector in(17) follows an elliptic symmetric distribution with covariance matrix

E[wwH ] = W⋆.

Motivated by Fact 3, we shall call the resulting SBF scheme the elliptic SBF scheme. Now, just as in

the case of the Gaussian SBF scheme, we are interested in determining the achievable rate of the elliptic

SBF scheme. Towards that end, consider the non-negative random variables

ξi =
|hH

i LHα|2
ρi‖α‖2/r , i = 1, . . . ,M ; (18)

see (12). Naturally, we would like to use Fact 2 to characterize the elliptic SBF rate. However, this entails

understanding the distribution ofξi. Fortunately, as we shall see shortly, the distribution ofξi admits a

simple closed form expression. We begin with the following lemma, which generalizes [34, Lemma 1]

and whose proof can be found in Appendix B:

July 17, 2013 DRAFT



14

Lemma 1 Let u ∈ Cr be a fixed vector andα1, . . . ,αl ∼ CN (0, Ir) be independent random vectors.

Then, the CDF of the non-negative random variable

η(u) =

l∑

i=1

|uHαi|2
/

l∑

i=1

‖αi‖2

is given by

Pr(η(u) ≤ t) =







0 for t < 0,

1−Q(u, t) for 0 ≤ t ≤ ‖u‖2,

1 for t > ‖u‖2,
where

Q(u, t) = 1−
(

t

‖u‖2
)lr−1 lr−1∑

j=l(r−1)

(
lr − 1

j

)(‖u‖2 − t

t

)j

.

From (18), we see that if we takeu =
√

r/ρiLhi and l = 1 in Lemma 1, thenξi = η(u). In particular,

upon differentiating the corresponding CDF w.r.t.t and observing that‖u‖2 = r, we obtain the following:

Proposition 1 Consider the elliptic SBF scheme. The PDF ofξi, wherei = 1, . . . ,M , is given by

pξi(t) =

(

1− 1

r

)(

1− t

r

)r−2

for 0 ≤ t ≤ r, (19)

wherer = rank(W⋆).

Proposition 1 has two important implications. First, it shows that the random variablesξ1, . . . , ξM are

identically distributed, and hence by (19) and Fact 2(a) theelliptic SBF rate can be readily computed via

CEllip
SBF (P ) =

(

1− 1

r

)∫ r

0
log(1 + tρminP )

(

1− t

r

)r−2

dt.

Secondly, we haveE[ξi] = 1 by Fact 3. Hence, by Fact 2(b), the achievable rate gap of the elliptic SBF

scheme, which is given by

gEllipSBF (P ) = CMC(P )− CEllip
SBF (P ),

is nondecreasing inP ≥ 0.

To further understand the behavior ofgEllipSBF (P ), let us first derive an explicit formula forCEllip
SBF (P ).

Proposition 2 For anyP > 0,

CEllip
SBF (P ) =

(

1 +
1

rρminP

)r−1
[

log(1 + rρminP )−
r−1∑

k=1

1

k
−

r−1∑

k=1

(
r − 1

k

)
(−1)k

k(1 + rρminP )k

]

.
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The proof of Proposition 2 can be found in Section 1.2.1 of thecompanion technical report [19]. Armed

with this formula, we can establish the following result:

Theorem 2 The achievable rate gap of the elliptic SBF scheme satisfies

gEllipSBF (P ) ≤
r−1∑

k=1

1

k
− log(r) for all P ≥ 0.

Moreover, the bound is tight whenP → ∞.

Proof: We have already shown thatgEllipSBF (P ) is nondecreasing inP ≥ 0. Moreover, it can be shown that

limP→∞ gEllipSBF (P ) =
∑r−1

k=1
1
k − log(r); see Section 1.2.2 of the companion technical report [19]. Hence,

we conclude thatgEllipSBF (P ) ≤ γ for all P ≥ 0. �

Since the functionr 7→ ∑r−1
k=1

1
k − log(r) is nondecreasing and tends toγ as r → ∞ (see, e.g., [35,

Formula 0.131]), an important corollary of Theorem 2 is thatthe worst-case rate gap of the elliptic SBF

scheme is no worse than that of the Gaussian SBF scheme. For comparison, we compute the worst-case

rate gap of the elliptic SBF scheme for various values ofr and summarize the results in Table I.

TABLE I

THE WORST-CASE RATE GAP OF THE ELLIPTICSBFSCHEME

r 1 2 3 . . . ∞

rate gap in nats 0 0.3069 0.4014 . . . 0.5772

rate gap in bits 0 0.4428 0.5791 . . . 0.8327

E. The Bingham SBF Scheme

In the previous subsection, we have illustrated that a proper normalization of the Gaussian beamformer

randomization not only helps to limit the instantaneous beamformer power spread effects, but also

improves the multicast achievable rate. Now, let us consider another beamformer randomization

w =
LHα

‖LHα‖ , α ∼ CN (0, Ir). (20)

The motivation behind (20) is straightforward—we want‖w‖2 = 1, or in other words, zero instantaneous

beamformer power spread. Curiously, the kind of randomization in (20) has been studied in the statistics

literature—it is known thatw follows the Bingham distribution[36]. For that reason, we will call the

resulting SBF scheme theBingham SBF scheme.

Unlike the previous two SBF schemes, Bingham SBF may not satisfy the capacity-optimal transmit

covariance propertyE[wwH ] = W⋆. Moreover, the achievable rate analysis of Bingham SBF is different
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from that of Gaussian and elliptic SBF—a key component of thelatter is to derive the distribution ofξi in

(12), and this appears to be hard for Bingham SBF. We therefore resort to a different analysis approach.

Consider the following proposition, whose proof can be found in Appendix C:

Proposition 3 For the Bingham SBF scheme, the rate of useri can be expressed as

CBing
SBF,i(P ) = Ew[log(1 + P |hH

i w|2)]

= log(1 + ρiP ) + ϕ

(
µi

µT
i 1

)

− ϕ (λ) . (21)

Here,ϕ : Rr → R is given by

ϕ (d) = Eζ

[

log

(
r∑

k=1

dkζk

)]

, (22)

whereζ is a random vector with independent and identical (i.i.d.) unit-mean exponentially distributed

components,λ = (λ1, . . . , λr) contains the positive eigenvalues ofW⋆, andµi = (µi,1, . . . , µi,r) contains

the eigenvalues ofAi = L(IN + Phih
H
i )LH .

As it turns out, one can derive an explicit expression forϕ(d).

Proposition 4 Let ϕ be as in(22). Organized as

d = (d̃1, . . . , d̃1
︸ ︷︷ ︸

r1

, d̃2, . . . , d̃2
︸ ︷︷ ︸

r2

, . . . , d̃c, . . . , d̃c
︸ ︷︷ ︸

rc

),

wherec, r1, . . . , rc are such that
∑c

i=1 ri = r, and d̃i 6= d̃j for all i 6= j. Then, we have

ϕ (d) =

c∏

n=1

1

d̃rnn

c∑

k=1

rk∑

m=1

Ψk,m,r

(rk −m)!
(−1)(rk−m)θ(d̃k, rk −m),

wherer = (r1, r2, . . . , rc), i = (i1, i2, . . . , ic),

θ(d̃k, rk −m) = d̃
(rk−m+1)
k × (rk −m)! ×

(
rk−m∑

i=1

1

i
+ log(d̃k)− γ

)

,

Ψk,m,r = (−1)(rk−1) ×
∑

i∈Ωk,m

∏

j 6=k

(
ij + rj − 1

ij

)( 1

d̃j
− 1

d̃k

)−(ij+rj)
,

Ωk,m =






i ∈ Z

c :

c∑

j=1

ij = m− 1, ik = 0, ij ≥ 0 ∀j






.

The proof of Proposition 4 can be found in Section 2 of the companion technical report [19]. The idea

behind the proof of Proposition 3 is somewhat similar to thatin [37, Theorem 1], where the authors there

dealt with a different scenario (unicast). While Proposition 4 gives an explicit expression for (22), which

in turn provides a way of computing the Bingham SBF achievable rate efficiently (in contrast with Monte
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Carlo simulations), it is too complicated for the purpose ofextracting insights. This difficulty motivates

us to turn to the stochastic majorization technique for Bingham SBF rate gap characterization:

Fact 4 Considerϕ (d) = Eζ [log (
∑n

k=1 dkζk)], whereζ is a random vector with arbitrary i.i.d. com-

ponents.

(a) ( [38, Theorem 2.15, Example 2.2]) For anyd = (d1, . . . , dn) ≥ 0 with
∑n

k=1 dk = 1,

ϕ(e1) ≤ ϕ(d) ≤ ϕ
(
1
n1
)
.

(b) ( [39]) Suppose that everyξi follows a unit-mean exponential distribution. Then, we have

ϕ
(
1
n1
)
=

n−1∑

k=1

1

k
− log(n)− γ.

Applying Fact 4 to (21), we obtain

Ew[log(1 + P |hH
i w|2)] ≥ log(1 + ρiP ) + ϕ(e1)− ϕ

(
1
r1
)

≥ log(1 + ρiP ) + log(r)−
r−1∑

k=1

1

k
,

where the first inequality follows from Fact 4(a) and the observation that
∑r

k=1 λk = Tr(W⋆) = 1 (this

is implied by the structure of (MC)), and the second inequality is due to Fact 4(b). The derivations above

show that user-i’s Bingham rate is lower bounded bylog(1+ ρiP )+ log(r)−∑r−1
k=1

1
k , which lead us to

a neat conclusion:

Theorem 3 The achievable rate gapgBingSBF (P ) = CMC(P ) − CBing
SBF (P ) of the Bingham SBF scheme

satisfies

gBingSBF (P ) ≤
r−1∑

k=1

1

k
− log(r) for all P ≥ 0.

Surprisingly, the worst-case rate gap of the Bingham SBF scheme as proven above is exactly the same

as that of the elliptic SBF scheme (cf. Theorem 2). It followsthat the worst-case rate gap of the Bingham

SBF scheme is also no worse than that of the Gaussian SBF scheme.

F. Summary of the SBF Schemes

We now summarize the characteristics of our proposed SBF schemes in Table II. It can be seen

that all three schemes exhibit a multicast achievable rate gap that is no worse than0.8314 bits/s/Hz,

irrespective of any factors such as the number of users. In fact, the elliptic and Bingham SBF schemes

can perform better than0.8314 bits/s/Hz, depending on the transmit covariance rankr = rank(W⋆);
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see Table I. In terms of the instantaneous beamformer power spread effects, the Gaussian SBF scheme

is, by nature, the worst. The elliptic SBF scheme is better than the Gaussian SBF scheme, limiting the

instantaneous beamformer power to within[rλ+
min(W

⋆), rλmax(W
⋆)]. The Bingham SBF scheme has

zero instantaneous beamformer power spread. On the other hand, the Gaussian and elliptic SBF schemes

achieve the multicast capacity-optimal transmit covariance E[wwH ] = W⋆, while the Bingham SBF

scheme may not.

TABLE II

SUMMARY OF THE SBFSCHEMES

scheme generation

has MC-opt.

covariance

E[ww
H ] = W

⋆?

instantaneous

beamformer

power spread

worst-case rate gap

upper bound

Gaussian w ∼ CN (0,W⋆) yes large 0.8314 bits/s/Hz

elliptic

w =
L

H
α

‖α‖/√r
,

where α ∼ CN (0, Ir);

L ∈ C
r×N is a square

root factor ofW⋆; r =

rank(W⋆)

yes

better than Gaussian;

‖w‖2 ∈ [rλ+

min(W
⋆), rλmax(W

⋆)]

with probability 1

∑
r−1

k=1

1

k
− log(r)

log(2)

≤ 0.8314 bits/s/Hz;

optimal whenr = 1

Bingham
w =

L
H
α

‖LH
α‖ ,

whereα ∼ CN (0, Ir).

no zero;‖w‖2 = 1 same as elliptic

IV. M ULTICAST BEAMFORMED ALAMOUTI SPACE-TIME CODING

In this section, we describe our second physical-layer multicasting strategy—transmit beamformed

Alamouti space-time coding. Compared to SBF, which uses time randomizations to enable rank-r transmit

covariance structures, the beamformed Alamouti strategy adopts a rank-two transmit covariance structure

in a fixed or deterministic way. This will motivate a rank-twogeneralization of SDR.

A. System Model

We describe the system model for (fixed) beamformed Alamoutispace-time coding. Like the beam-

forming case, we aim at transmitting a stream of unit-power data symbols, denoted bys(t). The data

symbol streams(t) is parsed into blocks vias(n) = [ s(2n) s(2n+1) ]T . In block n, we transmits(n)
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by a transmit beamformed Alamouti space-time code:

X(n) = [ x(2n) x(2n + 1) ] =
√
PBC(s(n)). (23)

Here,B ∈ CN×2 is a transmit beamforming matrix andC : C2 → C2×2 is the Alamouti space-time

block code, i.e.,

C(s) =




s1 s2

−s∗2 s∗1



 .

From the basic model in (1), we have

yi(n) = [ yi(2n) yi(2n+ 1) ] =
√
PhH

i BC(s(n)) + ni(n), (24)

whereni(n) = [ ni(2n) ni(2n + 1) ]. Using a key property introduced by the special structure ofthe

Alamouti code (see, e.g., [40]), Eq. (24) can be turned into an equivalent SISO model, where each

symbol can be independently detected and useri’s SNR of the received symbols can be characterized by

SNRi = PhH
i BBHhi. Hence, for the beamformed Alamouti strategy, we can formulate the following

achievable rate problem:

max
B∈CN×2, Tr(BBH)≤1

CBF−ALAM(B, P ), (25)

where

CBF−ALAM(B, P ) = min
i=1,...,M

log(1 + PhH
i BBHhi).

Note that s(t) is assumed to be ideally channel-coded (just like in the beamforming case), and the

constraintTr(BBH) ≤ 1 is equivalent to the total power constraintE[‖X(n)‖2]/2 ≤ P . In the next

subsection, we will study how SDR can be employed to deal withthe above achievable rate optimization

problem.

B. A Generalization of SDR for the Fixed Beamformed AlamoutiStrategy

Our strategy for tackling (25) expands on the ideas used to reformulate the beamforming multicast

achievable rate problem (4) into a rank-constrained SDP; see Section II. To begin, observe that

W = BBH ⇐⇒ W � 0 and rank(W) ≤ 2.

Hence, Problem (25) can be equivalently formulated as

max
W∈HN

min
i=1,...,M

Tr(Whih
H
i )

s.t. Tr(W) ≤ 1, W � 0, rank(W) ≤ 2.
(26)
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At this point, it is worth noting that the achievable rate problem for the beamforming scheme (5) is a

restriction of that for the beamformed Alamouti scheme (26). This suggests that our proposed design

should have a performance no worse than that of the beamforming scheme. In fact, as we shall see

shortly, the worst-case performance gain can be quantified.

Now, upon removing the nonconvex rank constraint in (26), weobtain exactly the same convex

relaxation as that of the fixed beamforming problem discussed in Section II, namely, Problem (SDR). Let

W⋆ denote an optimal solution to (SDR). SinceW⋆ may not satisfyrank(W⋆) ≤ 2, we need to develop

a procedure that can generate fromW⋆ a feasible solution to (26). Moreover, since the generated solution

need not be optimal for (26) in general, we are interested in quantifying the approximation quality of

such a solution. To tackle these problems, we employ the SDR rank reduction theory (see, e.g., [29],

[41]). Let us begin with the following proposition:

Proposition 5 Suppose thatM ≤ 8. Then, there is a polynomial-time procedure that can generate from

W⋆ an optimal solutionB̂ to the fixed beamformed Alamouti problem(25).

Proposition 5 can be established using [5, Claim 2] and [29, Theorem 5.1] (see also [27] for an exposition

of the latter). It implies that the fixed beamformed Alamoutiproblem (25) can be optimally solved by

SDR for instances with8 users or less. By contrast, beamforming can guarantee the same result only

for 3 users or less; see Fact 1(a). Moreover, by the equivalence of(SDR) and (MC), we arrive at the

important conclusion thatfixed beamformed Alamouti space-time coding is a multicast capacity-optimal

transmit strategy when there are no more than8 users.

For the case whereM > 8, it may not be possible to generate an optimal solution to (25) from W⋆

in polynomial time, as Problem (25) is NP-hard. However, we can still generate a feasible solution to

(25) using the following Gaussian randomization procedure:

Algorithm 1 Gaussian Randomization Procedure for (25)
1: Input: an optimal solutionW⋆ to (SDR), number of randomizationsL ≥ 1

2: for j = 1 to L do

3: generate two independent random vectorsξ
j
1, ξ

j
2 ∼ CN (0,W⋆) and defineB̃j =

1√
2
[ ξj1 ξ

j
2
];

4: let B̂j = B̃j

/√

Tr(B̃jB̃
H
j )

5: end for

6: let j⋆ := argmaxj=1,...,L SNRmin(B̂jB̂
H
j ) (see (6) for the definition ofSNRmin(·))

7: Output: B̂ = B̂j⋆
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Algorithm 1 is a generalization of the Gaussian randomization procedure used for the SDR-based

beamforming scheme [5]. Regarding its worst-case approximation performance, we have the following

result, whose proof can be found in Appendix D:

Theorem 4 With probability at least1− (5/6)L, the solutionB̂ returned by Algorithm 1 satisfies

SNRmin(B̂B̂H) ≥ SNRmin(W
⋆)

12.22
√
M

=
ρmin

12.22
√
M

.

Theorem 4 has two important implications. First, with our fixed beamformed Alamouti scheme, the

provable gap between the worst-user SNR and the best achievable worst-user SNR scales only on the

order of
√
M . This is substantially better than the fixed beamforming case, where the provable gap scales

on the order ofM (cf. Fact 1(b)). Secondly, forM > 8, the achievable rate gap of the SDR-based fixed

beamformed Alamouti scheme relative to the multicast capacity is bounded above by

CMC(P )− CBF−ALAM(B̂, P ) ≤ log

(
1 + ρminP

1 + ρminP/(12.22
√
M)

)

,

which for largeP is approximately equal tolog(12.22
√
M). This is strictly better than that of the

SDR-based fixed beamforming scheme for allM > 8 (cf. (7) in Fact 1(b)).

Before we proceed, several remarks are in order.

Remark 1:The techniques we developed for proving Theorem 4 can be usedto obtain approximation

bounds for a fairly general class of rank constrained SDPs. As such, they generalize the techniques in [6],

which only apply to a certain class of rank-one constrained SDPs.

Remark 2:The approximation bound stated in Theorem 4 is only a worst-case bound. In practice, the

solution returned by Algorithm 1 can have a much better performance. This will be confirmed by our

simulation results; see Section VI.

Remark 3:In view of the development of the fixed beamformed Alamouti scheme, it is natural to ask

whether the techniques can be extended to deliver a “rank-n” beamforming scheme rather than just a

“rank-2” scheme as in the Alamouti case. Indeed, it is possible to extend the SDR techniques above to

generaln-dimensional orthogonal space-time bock codes (OSTBCs). However, full rate OSTBCs do not

exist for n > 2 [20], and the rate deduction (forn > 2) can significantly outweigh the gain obtained

from “rank-n” beamforming. For example, consider a fixed beamformed OSTBC for dimensionn = 3.

Since the maximal-rate OSTBC forn = 3 is 3/4 [20], the achievable rate should be formulated as

CBF−OSTBC(B, P ) = min
i=1,...,M

3

4
log
(
1 + PhH

i BBHhi

)
,
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whereB ∈ CN×3, with Tr(BBH ) ≤ 4/3. Our SDR analysis can be extended to show that the solution

B̂ ∈ CN×3 generated by a certain Gaussian randomization procedure will satisfy SNRmin(B̂B̂H) ≥
SNRmin(W

⋆)/O(M1/3) with high probability, which further improves upon the result in the beamformed

Alamouti case (cf. Theorem 4). However, this effective SNR gain can easily be compromised by the3/4

factor in the overall achievable rate, especially for largeP . The issue of having no full rate OSTBCs for

n > 2 makes the further development of beamformed OSTBCs unattractive.

V. COMBINING THE SBF AND ALAMOUTI STRATEGIES

In this section we present our last technical contribution,namely, to demonstrate how the two physical-

layer multicasting strategies proposed in the previous sections can be combined to yield SBF Alamouti

schemes, and to analyze the performance of the resulting schemes.

A. Main Results

The system model of the SBF Alamouti strategy is identical tothat of the fixed beamformed Almaouti

strategy in Section IV-A, except that the transmit space-time code blocks in (23) are changed to

X(n) =
√
PB(n)C(s(n)),

whereB(n) ∈ CN×2 is a random-in-block beamforming matrix. In other words, wetake the Alamouti

space-time structure while randomizing the beamforming matrix, just as in SBF. Following the same

derivations as in Section IV-A and adopting the SBF formulation in Section III, we can express the

multicast achievable rate of an SBF Alamouti scheme as

CSBF−ALAM(P ) = min
i=1,...,M

EB∼D[log(1 + PhH
i BBHhi)], (27)

and the corresponding achievable rate gap as

gSBF−ALAM(P ) = CMC(P )−CSBF−ALAM(P ).

Here,B ∈ CN×2 is a random matrix, andD denotes its corresponding beamformer matrix distribution,

which must satisfyEB∼D[Tr(BBH)] ≤ 1. The SBF Alamouti schemes to be proposed follow the same

spirit as the original SBF schemes. To describe them, letB = [ w1,w2 ], and denote

w̄ =




w1

w2



 , L̄ =
1√
2




L 0

0 L



 , ᾱ =




α1

α2



 ,

whereα1,α2 ∼ CN (0, Ir) are independent random vectors,r = rank(W⋆), andL ∈ Cr×N is a square

root decomposition ofW⋆ satisfyingLHL = W⋆. We propose the following three schemes:
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• Gaussian SBF Alamouti scheme:̄w = L̄Hᾱ;

• Elliptic SBF Alamouti scheme:w̄ = L̄Hᾱ/(‖ᾱ‖/
√
2r);

• Bingham SBF Alamouti scheme:̄w = L̄Hᾱ/‖L̄Hᾱ‖.

The Gaussian SBF Alamouti scheme satisfies the multicast capacity-optimal transmit covariance property

E[BBH ] = E[w1w
H
1 ] + E[w2w

H
2 ] = W⋆, as one can easily verify. The elliptic SBF Alamouti scheme

also satisfies this property, as implied by Fact 3. On the other hand, the Bingham SBF Alamouti scheme

may not satisfy the transmit covariance property. The following theorem summarizes our main results:

Theorem 5 The achievable rate gaps of the Gaussian, elliptic and Bingham SBF Alamouti schemes

satisfy

gGaussSBF−ALAM(P ) ≤ log(2) + γ − 1 = 0.2703,

gEllipSBF−ALAM(P ) ≤
2r−1∑

k=1

1

k
− log(r)− 1,

gBingSBF−ALAM(P ) ≤
2r−1∑

k=1

1

k
− log(r)− 1

for all P ≥ 0, respectively. For the Gaussian and elliptic cases, the bounds are tight whenP → ∞.

The proof of Theorem 5 will be provided in the next subsection. Similar to the analysis of the SBF

schemes, it can be shown that
∑2r−1

k=1
1
k − log(r) − 1 increases withr, and that

∑2r−1
k=1

1
k − log(r) − 1

approacheslog(2) + γ − 1 as r → ∞. This means that the worst-case rate gaps of the elliptic and

Bingham SBF Alamouti schemes are no worse than that of the Gaussian SBF Alamouti scheme, and

can be much better for smallerr. Table III shows the rate gap values of the elliptic and Bingham

SBF Alamouti schemes for variousr. Theorem 5 also provides the vital implication that the three SBF

Alamouti schemes narrow the worst-case rate loss down to0.39 bits/s/Hz (0.2703/ log(2) = 0.39), again,

irrespective of any factors.

TABLE III

THE WORST-CASE RATE GAP OF THE ELLIPTIC ANDBINGHAM SBF ALAMOUTI SCHEMES

r 1 2 3 . . . ∞

rate gap in nats 0 0.1402 0.1847 . . . 0.2703

rate gap in bits 0 0.2023 0.2665 . . . 0.39
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In preparation for the proof of Theorem 5, let us observe thatthe SBF Alamouti multicast achievable

rateCSBF−ALAM(P ) in (27) can be expressed as

CSBF−ALAM(P ) = min
i=1,...,M

Eξi [log(1 + ξiρiP )],

whereρi is defined in (3), and

ξi =
|hH

i w1|2 + |hH
i w2|2

ρi
, i = 1, . . . ,M. (28)

In particular, the distributions of the random variablesξ1, . . . , ξM will play an important role in our

analysis.

B. Proof of Theorem 5: The Gaussian Case

For the Gaussian SBF Alamouti scheme, it is routine to show that theξi’s in (28) follow a chi-square

distribution with unit mean and4 degrees of freedom. Thus, by Fact 2(a), we have

CGauss
SBF−ALAM(P ) = Eξ[log(1 + ξρminP )],

whereξ ∼ ξi for any i. Moreover, by Fact 2(b), the achievable rate gapgGaussSBF−ALAM(P ) = CMC(P ) −
CGauss
SBF−ALAM(P ) is nondecreasing inP ≥ 0. The claim for the Gaussian SBF Alamouti rate gap in

Theorem 5 now follows from the following proposition, whoseproof can be found in Section 3.1 of the

companion technical report [19]:

Proposition 6 For anyP > 0,

CGauss
SBF−ALAM(P ) =

(

1− 2

ρminP

)

e
2

ρminP E1

(
2

ρminP

)

+ 1.

Consequently, we have

lim
P→∞

gGaussSBF−ALAM(P ) = log(2) + γ − 1.

C. Proof of Theorem 5: The Elliptic Case

For the elliptic SBF Alamouti scheme, we compute

w̄ =

√
r

‖ᾱ‖




LHα1

LHα2



 .

Together with (28), this gives

ξi =
|(
√

r/ρiLhi)
Hα1|2 + |(

√

r/ρiLhi)
Hα2|2

‖α1‖2 + ‖α2‖2
. (29)
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In particular, if we takeu =
√

r/ρiLhi and l = 2 in Lemma 1, differentiate the corresponding CDF

w.r.t. t and observe that‖u‖2 = r, we obtain the following result:

Proposition 7 Consider the elliptic SBF Alamouti scheme. The PDF ofξi, wherei = 1, . . . ,M , is given

by

pξi(t) =
(2r − 1)(2r − 2)

r
· t
r

(

1− t

r

)2r−3

for 0 ≤ t ≤ r,

wherer = rank(W⋆).

Proposition 7 implies that theξi’s in (29) are identically distributed. Hence, by Fact 2(a),we have

CEllip
SBF−ALAM(P ) = Eξ[log(1 + ξρminP )], whereξ ∼ ξi for any i. Moreover, sinceE[ξi] = 1 for all i,

by Fact 2(b), the achievable rate gapgEllipSBF−ALAM(P ) = CMC(P ) − CEllip
SBF−ALAM(P ) is nondecreasing in

P ≥ 0. The claim for the elliptic SBF Alamouti rate gap in Theorem 5now follows from the following

proposition, whose proof can be found in Section 3.2 of the companion technical report [19]:

Proposition 8 For anyP > 0,

CEllip
SBF−ALAM(P )

= (2r − 1)

(

1 +
1

rρminP

)2r−2
[

log(1 + rρminP )−
2r−2∑

k=1

1

k
−

2r−2∑

k=1

(
2r − 2

k

)
(−1)k

k(1 + rρminP )k

]

− (2r − 2)

(

1 +
1

rρminP

)2r−1
[

log(1 + rρminP )−
2r−1∑

k=1

1

k
−

2r−1∑

k=1

(
2r − 1

k

)
(−1)k

k(1 + rρminP )k

]

.

Consequently, we have

lim
P→∞

gEllipSBF−ALAM(P ) =

2r−1∑

k=1

1

k
− log(r)− 1.

D. Proof of Theorem 5: The Bingham Case

By extending the proof of Proposition 3, we show that the Bingham SBF Alamouti rate of useri is

given by

CBing
SBF−ALAM,i(P ) = EB[log(1 + PhH

i BBHhi)]

= log(1 + ρiP ) + ϕ̄

(
µi

µT
i 1

)

− ϕ̄ (λ) , (30)

whereλ contains ther positive eigenvalues ofW⋆, µi contains the eigenvalues of the matrixAi =

L(IN + Phih
H
i )LH , andϕ̄ : Rr → R is defined by

ϕ̄ (d) = Eζ1,ζ2

[

log

(
r∑

k=1

dk
ζ1,k + ζ2,k

2

)]

. (31)
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Here, ζ1 and ζ2 are independent random vectors with i.i.d. unit-mean exponentially distributed com-

ponents. Note that the difference between the above resultsand Proposition 3 lies in (31). Although

it is possible to derive an explicit expression for (31) by applying the result in Proposition 4, such

an expression will be too complicated for analysis purposes. Thus, we turn to stochastic majorization

techniques to analyze the function̄ϕ. Using Fact 4, we deduce that

ϕ̄ (e1) ≤ ϕ̄ (d) ≤ ϕ̄
(
1
n1
)
,

ϕ̄
(
1
n1
)
=

2n−1∑

k=1

1

k
− log(2n)− γ (32)

for anyd = (d1, . . . , dn) ≥ 0 with
∑n

k=1 dk = 1. Note that (32) is obtained from the relation̄ϕ(1/n) =

ϕ([1T 1T ]T /2n). Applying the above inequalities to (30) yields

EB[log(1 + PhH
i BBHhi)] ≥ log(1 + ρiP ) + ϕ̄(e1)− ϕ̄

(
1
r1
)

= log(1 + ρiP ) + (1− log(2) − γ)−
(

2r−1∑

k=1

1

k
− log(2r)− γ

)

≥ log(1 + ρminP ) + log(r) + 1−
2r−1∑

k=1

1

k
.

SinceCMC(P ) = log(1+ρminP ), we conclude that the achievable rate gapgBingSBF−ALAM(P ) = CMC(P )−
CBing
SBF−ALAM(P ) satisfies

gBingSBF−ALAM(P ) ≤
2r−1∑

k=1

1

k
− log(r)− 1,

as desired.

VI. SIMULATION RESULTS

This section presents simulation results for the proposed multicast SBF schemes. Unless specified,

all the results to be shown were obtained from1, 000 trials of randomly generated channel realizations,

wherehi ∼ CN (0, IN ) for each trial. The SDR-based beamforming scheme, which will be benchmarked,

is implemented by the Gaussian randomization procedure (see [5, Table II, with “randC” generation])

with 30MN number of randomizations. For convenience, we shall refer to the SDR-based beamforming

scheme (resp. SDR-based beamformed Alamouti scheme) as “beamforming” (resp. “beamformed Alam-

outi”). To illustrate how good a scheme can utilize CSIT, we will also evaluate the multicast achievable

rate of the open-loop strategy, which is the multicast rate in (2) when the transmit covariance is fixed as

W = 1
N I [7], [14].
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A. Multicast Achievable Rate Performance

Fig. 1(a) plots the multicast achievable rates of the various schemes w.r.t. the powerP , when the

number of transmit antennas and users areN = 8 andM = 32, resp. Note that the rates shown are

averages of all the trials. One can see that the SBF schemes substantially outperform beamforming. In

fact, beamforming shows very little rate advantage over theopen-loop strategy in this many-user setting.

However, this is not the case with SBF. At this point, it should be added that in all the trials run, we found

64 times of havingrank(W⋆) = 2, 846 times ofrank(W⋆) = 3, and90 times ofrank(W⋆) = 4. Based

on our empirical observation, the performance difference between SBF and beamforming is attributed

to the higher rank instances. By examining Fig. 1(a) carefully, we see that the SBF rate gaps relative

to the multicast capacity are no greater than0.5 bits/s/Hz (under the tested range−2dB ≤ P ≤ 9dB),

which fall well within the0.8314 bits/s/Hz worst-case bound proven in Theorems 1-3. The elliptic and

Bingham SBF schemes yield very similar rate performance, and they perform better than the Gaussian

SBF. For the beamformed Alamouti scheme, its rate is lower than the SBF schemes forP ≤ 3dB, but

catches up asP increases. For the SBF Alamouti schemes, they exhibit similar rate performance behavior

compared to their SBF counterparts, but with improved rate values. In particular, upon a closer inspection

of Fig. 1(a), we see that the SBF Alamouti rate gaps are no greater than0.25 bits/s/Hz, which is well

within the 0.39 bits/s/Hz worst-case bound claimed in Theorem 5.

Fig. 1(b) plots the multicast rates w.r.t. the number of users M , when N = 8 and P = 3dB.

Beamforming is seen to provide good performance for smallM , say,M ≤ 11; numerically it is noted that

SDR has a higher chance to give rank-one solutions for smallM . However, we also see that the rate gap

of beamforming (relative to the multicast capacity) widensasM increases. In particular, beamforming

has no advantage over the open-loop strategy forM > 32. In comparison, the SBF rate gaps, with and

without Alamouti, are quite constant w.r.t.M , which agrees well with the constant rate gap result in

Theorems 1-3 and Theorem 5. They are also better than the open-loop multicast rate even forM = 64.

This demonstrates the superiority of the SBF strategy when there is a large number of users. Like

beamforming, the beamformed Alamouti scheme exhibits a rate gap widening effect asM increases.

Nevertheless, the beamformed Alamouti rate is much better than that of beamforming—in fact, the

former is seen to be better than all the SBF-based schemes forM ≤ 19.

B. Coded BER Performance

Next, we physically realize the various schemes and evaluate their bit error rates (BERs). The simulation

setting is the same as that in Fig. 1(a). All the schemes adopta rate-1/3 Turbo code with an information
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Fig. 1. Multicast achievable rates of the various multicastschemes.

length of960 bits—which is used in IEEE802.16e [42]—as the channel coding scheme (with10 decoding

iterations). The modulation is Gray-coded QPSK. There are totally 1440 symbols in one frame, i.e.,

T = 1440. We ran1, 000 independent data frames for each SNR point, so that the BER reliability level

is 10e−5. We evaluated the worst-user BERs, and the results are shownin Fig. 2(a). Note that in the

figure, “SISO bound” is not a real multicast simulation. It was obtained by running a single-user SISO

system with SNRρminP and with the same channel coding scheme. It is expected that even a multicast

capacity-achieving scheme, if it exists, should perform nobetter than the SISO bound. Thus, the latter

serves as a good BER baseline index. Fig. 2(a) demonstrates that the proposed schemes are much better

than beamforming, this time in BER. For example, fixing BER= 10e−5, the elliptic SBF Alamouti

scheme achieves an SNR gain of more than4.5dB relative to beamforming, and is less than0.5dB away

from the SISO bound. Also, the BER performance ranking of thevarious schemes appears to be quite

consistent with their achievable rate counterpart in Fig. 1(a). In Fig. 2(b) we show another result where

the number of usersM is reduced to16. Beamforming is seen to provide better BER performance in

comparison to the case ofM = 32, although SBF still performs better than beamforming. Moreover,

the beamformed Alamouti scheme now shows much improved performance. This demonstrates that the

beamformed Alamouti scheme can have competitive performance for smaller number of users.

In the previous simulation, we employ a relatively long frame length, namely,T = 1440, which may

be too long to some wireless scenarios. For example, in the LTE standard, the frame length may be

as small as168 symbols [43]. In this simulation, a shorter frame lengthT is considered. We employ
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Fig. 2. The worst-user BER performance of the various multicast schemes. QPSK; rate-1/3 Turbo code;T = 1440.

similar simulation settings as above, except that we now use16-QAM and a rate-1/2 Turbo code with

an information length of288 bits. The consequent frame length isT = 144. Also, 100 independent data

frames for each SNR point were run. The results, shown in Fig.3, illustrate that the performance of

the various proposed schemes are generally consistent compared to the previous large frame-length BER

simulations.
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Fig. 3. The worst-user BER performance of the various multicast schemes.M = 32; 16-QAM; rate-1/2 Turbo code;T = 144.

Before we close this section, we would like to draw the reader’s attention to the companion technical
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report [19], which contains more simulation comparisons.

VII. C ONCLUSION

In this paper we established several new physical-layer multicasting schemes using stochastic beam-

forming and beamformed Alamouti space-time coding. The proposed schemes are efficient to implement—

the receiver sides require only symbol-by-symbol receiverprocessing, followed by a standard channel

decoding operation. We characterized the performance of the proposed schemes by means of theoretical

analysis, and showed that the proposed schemes have provably better multicast achievable rate scaling than

the existing SDR-based multicast beamforming scheme w.r.t. the number of users. We also demonstrated

by simulations that the proposed schemes can outperform SDR-based beamforming quite significantly in

terms of BERs under channel-coded, many-user settings. As afuture direction, it would be interesting

to extend the present results to other scenarios.

APPENDIX

A. Proof of Fact 2(b)

By Fact 2(a), we havegSBF(P ) = log(1 + ρminP ) − Eξ[log(1 + ξρminP )]. Differentiating gSBF(P )

w.r.t. P yields

g′SBF(P ) =

(
1

1 + ρminP
− Eξ

[
ξ

1 + ρminPξ

])

ρmin. (33)

One can easily verify that for a fixedP ≥ 0, the functionξ 7→ ξ/(1 + ρminPξ) is concave inξ ≥ 0.

Upon applying Jensen’s inequality to (33) and using the factthatEξ[ξ] = 1, we get

g′SBF(P ) ≥
(

1

1 + ρminP
− Eξ[ξ]

1 + ρminPEξ[ξ]

)

ρmin = 0,

i.e., gSBF(P ) is nondecreasing inP ≥ 0.

B. Proof of Lemma 1

Since the distribution ofαi is rotationally invariant (i.e.,αi andUαi have the same distribution for

any fixed unitary matrixU), we may assume without loss thatu = (‖u‖, 0, . . . , 0). Then, for anyt ≥ 0,

we have

Pr(η(u) ≤ t) = Pr

(
l∑

i=1

‖u‖2|αi1|2 ≤ t

l∑

i=1

‖αi‖2
)

= Pr




(
‖u‖2 − t

)
l∑

i=1

|αi1|2 ≤ t

l∑

i=1

r∑

j=2

|αij |2


 .
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By definition,χ2
2l = 2

∑l
i=1 |αi1|2 andχ̃2

2l(r−1) = 2
∑l

i=1

∑r
j=2 |αij |2 are independent chi-square random

variables with2l and2l(r − 1) degrees of freedom, resp. It follows that

Pr(η(u) ≤ t) = Pr

(
χ̃2
2l(r−1)

χ2
2l

≥ ‖u‖2 − t

t

)

= Pr

(
χ̃2
2l(r−1)/2l(r − 1)

χ2
2l/2l

≥ ‖u‖2 − t

t(r − 1)

)

. (34)

Now, the non-negative random variable

F2l(r−1),2l =
χ̃2
2l(r−1)/2l(r − 1)

χ2
2l/2l

is known in the statistics literature as theF -random variable with(2l(r − 1), 2l) degrees of freedom,

whose CDF can be explicitly derived from its incomplete betafunction representation (see, e.g., [44,

Chapter 26]):

Pr(F2l(r−1),2l ≤ θ) =
1

((r − 1)θ + 1)lr−1

lr−1∑

j=l(r−1)

(
lr − 1

j

)

(r − 1)jθj, θ ≥ 0. (35)

The desired result then follows from (34) and (35).

C. Proof of Proposition 3

By substituting the Bingham SBF equation (20) into the individual user rate (10) and lettingAi =

L(IN + Phih
H
i )LH , the following rate expression is obtained:

Ew[log(1 + P |hH
i w|2)] = Eα[log(α

HAiα)]− Eα[log(α
HLLHα)], (36)

where, we recall,α ∼ CN (0, Ir). Consider the spectral decompositionsAi = UDUH and LLH =

QΛQH , whereU and Q are unitary, andD and Λ are diagonal whose diagonal elements are the

eigenvalues ofAi andLLH , resp. Letµi,1, . . . , µi,r be the diagonal elements ofD, andλ1, . . . , λr be

the diagonal elements ofΛ. By further lettingα′ = UHα ∼ CN (0, Ir) andα′′ = QHα ∼ CN (0, Ir),

we can rewrite (36) as

Ew[log(1 + P |hH
i w|2)]

= Eα′

[(
r∑

k=1

µi,k|α′
k|2
)]

− Eα′′

[(
r∑

k=1

λk|α′′
k|2
)]

= ϕ(µi)− ϕ(λ), (37)
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whereϕ has been defined in (22). One can then deduce fromW⋆ = LHL that λ1, . . . , λr are also the

positive eigenvalues ofW⋆. Since we have, in addition,Tr(W⋆) = 1 (as implied by the structure of

(MC)), we get

µT
i 1 = Tr(Ai) = Tr(L(IN + Phih

H
i )LH)

= Tr(W⋆(IN + Phih
H
i )) = 1 + Pρi. (38)

Upon substituting (38) into (37), we obtain the result claimed in Proposition 3.

D. Proof of Theorem 4

Consider a fixedj ∈ {1, . . . , L} in Algorithm 1 and letW̃ = B̃jB̃
H
j . The proof consists of four steps:

Step1: For anyµ ∈ CN , we haveµHξi ∼ CN (0,µHW⋆µ) and Tr(W̃µµH) = 1
2

∑2
i=1 |µHξi|2.

Hence, following [45, Proposition A5.5], for anyβ ∈ (0, 1),

Pr
(

Tr(W̃µµH) ≤ βTr(W⋆µµH)
)

≤ e2(1−β+ln β). (39)

Step2: LetW⋆ = UΛUH be the spectral decomposition ofW⋆. Observe that Tr(W̃) = 1
2

∑2
i=1 ||ξi||2 ∼

1
2

∑2
i=1 ||ηi||2, whereηi ∼ CN (0,Λ) andη1, η2 are independent. Moreover, we have1

2

∑2
i=1 ||ηi||2 =

1
2

∑N
j=1

∑2
i=1 |ηij |2, whereηij ∼ CN (0,Λjj), and{ηij} are independent. Thus, for anyα ∈ (1,∞),

Pr
(

Tr(W̃) ≥ αTr(W⋆)
)

= Pr




1

2

N∑

j=1

2∑

i=1

|ηij |2 ≥ α

N∑

j=1

Λjj





= Pr





N∑

j=1

Λjj

4∑

i=1

|η̃ij |2 ≥ α

N∑

j=1

Λjj



 ,

where η̃ij ∼ N (0, 1/4). Now, using the argument in the proof of [41, Proposition 2.1] (see the remark

after the proof of [41, Proposition 2.2]), we see that forα ≥ 4/3,

Pr
(

Tr(W̃) ≥ αTr(W⋆)
)

≤ e−
1

2
(α+4 ln 3

4
). (40)

Step3: By settingβ = (e
√
2.4M )−1 andα = 2 ln(2.4)− 4 ln(3/4) ≈ 2.902 in (39) and (40), resp., we

obtain

Pr
(

Tr(W̃hih
H
i ) ≤ βTr(W⋆hih

H
i )
)

≤ 1

2.4M
∀i, (41)

Pr
(

Tr(W̃) ≥ αTr(W⋆)
)

≤ 1

2.4
. (42)
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Consider now the events

E =
{

Tr(W̃hih
H
i ) ≥ βTr(W⋆hih

H
i ) for i = 1, . . . ,M

}
,

F =
{

Tr(W̃) ≤ αTr(W⋆)
}
.

Using (41), (42) and the union bound, we compute

Pr(E ∩ F ) ≥ 1

6
.

In particular, with probability at least1/6, we have

Tr(W̃hih
H
i )

Tr(W̃)
≥ β

α
· Tr(W⋆hih

H
i )

Tr(W⋆)
≥ Tr(W⋆hih

H
i )

12.22
√
M

for i = 1, . . . ,M (recall that Tr(W⋆) = 1).

Step4: The result in Step 3 and the union bound imply that the event
{

∃j :
Tr(hH

i B̃jB̃
H
j hi)

Tr(B̃jB̃
H
j )

≥ Tr(W⋆hih
H
i )

12.22
√
M

for i = 1, . . . ,M

}

occurs with probability at least1 − (5/6)L. This, together with the construction of̂B in Algorithm 1,

implies the desired result.
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