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Abstract

We study a general framework for broadcast gossip algorithms which use companion variables
to solve the average consensus problem. Each node maintains an initial state and a companion
variable. Iterative updates are performed asynchronously whereby one random node broadcasts
its current state and companion variable and all other nodes receiving the broadcast update their
state and companion variable. We provide conditions under which this scheme is guaranteed
to converge to a consensus solution, where all nodes have the same limiting values, on any
strongly connected directed graph. Under stronger conditions, which are reasonable when the
underlying communication graph is undirected, we guarantee that the consensus value is equal
to the average, both in expectation and in the mean-squared sense. Our analysis uses tools
from non-negative matrix theory and perturbation theory. The perturbation results rely on
a parameter being sufficiently small. We characterize the allowable upper bound as well as
the optimal setting for the perturbation parameter as a function of the network topology, and
this allows us to characterize the worst-case rate of convergence. Simulations illustrate that, in
comparison to existing broadcast gossip algorithms, the approaches proposed in this paper have
the advantage that they simultaneously can be guaranteed to converge to the average consensus
and they converge in a small number of broadcasts.

1 Introduction

Gossip algorithms are an attractive solution for information processing in applications such as
distributed signal processing [1], networked control [2], and multi-robot systems [3]. They are
attractive because they require little infrastructure; nodes iteratively pass messages with their
immediate neighbors in a network until they reach a consensus on the solution. Consequently,
there is little overhead associated with forming and maintaining specialized routes, and there are
no bottlenecks or single points of failure.

Broadcast gossip algorithms, introduced in [4–6], are especially attractive for use in wireless net-
works. Unlike the majority of existing gossip algorithms, where messages are either asynchronously
exchanged between pairs of nodes or where nodes synchronously exchange and process messages
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with all of their neighbors, in broadcast gossip algorithms nodes asynchronously broadcast a mes-
sage and the message contents are immediately processed by all neighbors receiving it. By exploit-
ing the broadcast nature of wireless communications, broadcast gossip algorithms are more efficient
(they converge after fewer transmissions) than other gossip algorithms [6]. However, previously pro-
posed broadcast gossip algorithms either converge to a consensus on a random solution [6], which
may not be acceptable in practical applications, or they do not have theoretical guarantees [7].

In this article we propose and analyze a family of broadcast gossip algorithms for strongly
connected directed graphs. If the network is symmetric (undirected) or if nodes know their out-
degree, these algorithms are guaranteed to converge to the average consensus both in expectation
and in the mean-squared sense. In more general settings, the algorithms are still guaranteed to
converge to a specific solution which is a convex combination of the initial values at all nodes in
the network (but not necessarily the average). We give a precise characterization of this solution in
terms of the algorithm parameters. Our analysis combines tools and techniques from non-negative
matrix theory and matrix perturbation theory. Along these lines, we derive an upper bound on
the perturbation parameter under which convergence is guaranteed, and we derive an expression
for the optimal value of the perturbation parameter.

1.1 Related Work

Broadcast gossip algorithms (BGAs) are introduced in the series of papers by Aysal et al. [4–6].
The BGAs proposed there involve nodes asynchronously transmitting a scalar-valued message, and
each time a node receives a message from its neighbors it performs an update by forming a convex
combination of the received value with their own previous value. Then, when it is a given node’s
turn to broadcast next (as determined by a random timer, in the asynchronous model [8, 9]), the
node broadcasts its current value. In [4–6] it is shown that, when executed over an undirected
graph (i.e., one with symmetric links) such an algorithm converges to a consensus solution almost
surely. The updates of this algorithm are linear and can be expressed as a random, time-varying
matrix acting on the vector containing the state values at each node. Unlike conventional pairwise or
synchronous gossip algorithms, the matrices in [4–6] corresponding to the update when a particular
node transmits cannot be viewed as the transition matrix of a reversible Markov chain, and so the
average is not preserved from iteration to iteration. Consequently, although the consensus value is
equal to the average of the initial values at every node in expectation, for any particular sample
path (where the randomness is in the sequence determining the order in which nodes broadcast)
the consensus value is randomly distributed about the average of their initial values but is not
precisely equal to it.

Subsequent recent work [10] investigates related BGAs, demonstrating that their convergence
properties are robust even when the broadcasts from different nodes may interfere at a receiver.
A broadcast-based algorithm has also been proposed for solving distributed convex optimization
problems [11].

A modified BGA is proposed by Franceschelli et al. [7, 12], where nodes maintain a companion
(or surplus) variable in addition to the state variable they seek to average. By careful accounting
of both the companion and state variables, a conservation principle is established, and simulation
results suggest that the algorithm with companion variables converges to the average consensus
for all sample paths, not just in expectation. However, no proof of convergence or theoretical
convergence rate analysis is available for the algorithm of [7, 12].

Recent work of Cai and Ishii [13, 14] analyzes related distributed averaging algorithms on di-
rected graphs that use companion variables. The two types of algorithms analyzed in [13, 14]
involve asynchronous pairwise updates and synchronous updates. They make use of tools from
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matrix perturbation theory, and the work in the present article can be seen as generalizing the
results in [13,14] for broadcast gossip updates.

1.2 Contributions and Paper Organization

The contributions of this article are as follows. In Section 2 we propose a general framework for
broadcast gossip algorithms over directed graphs using companion variables. For this framework
we determine conditions on the algorithm parameters under which convergence to a consensus is
guaranteed both in expectation (in Section 3) and in the mean squared sense (in Section 4).

We then consider two specific instances of the general framework in Sections 5 and 6. In one
instance, which we refer to as unbiased broadcast gossip algorithms (cf. Section 5), the consensus
value is guaranteed to be the average of the initial values. In the other instance (biased broadcast
gossip algorithms, Sec. 6), the consensus value is no longer the average of the initial values, but it
depends on the stationary distribution of a Markov chain associated with the algorithm parameters.
The unbiased algorithm requires that each node be aware of its out-degree, the number of nodes
that receive its broadcasts. This is a reasonable assumption in networks where connectivity is
symmetric, but it may not be reasonable in networks with directed edges. In particular, if there are
directed edges, then there is no immediate feedback link, making it more challenging for a node to
identify the out-neighbors that receive its broadcasts. This motivates further study of the biased
BGAs, which are more practical in such scenarios because they do not require that nodes know
their out-degree.

Our analysis of the general framework makes use of tools from matrix perturbation theory. In
particular, the way in which the information in the companion variables is incorporated back into the
main state variables depends on a parameter which can be viewed as controlling the extent to which
a baseline linear system is perturbed. For sufficiently small values of the perturbation parameter,
the algorithm is guaranteed to converge. In Section 7 we determine a tight upper bound on the
allowable values for the perturbation parameter for biased broadcast gossip algorithms. This bound
constitutes an improvement over previous bounds along these lines because it explicitly takes into
account the structure of the graph through spectral properties of a corresponding graph Laplacian
matrix. In addition to determining this bound, we identify a topology-dependent optimal value
for the perturbation parameter in Section 8, and we obtain an expression for the resulting second
largest eigenvalue which governs the worst-case rate of convergence.

Simulation results, reported in Section 9, demonstrate that the proposed broadcast gossip algo-
rithms fare well compared to the existing algorithms [6, 7]. The algorithm of [6] converges quickly
but can converge to a consensus value which is very far from the average. The algorithm of [7]
converges to the average consensus but requires significantly more iterations than the algorithm
of [6]. The algorithms proposed here converge quickly and they can be made to converge to the
average consensus. We conclude in Section 10.

1.3 Notation

Before proceeding, we summarize some of the notation used in this article. Let x ∈ Rn be a n-
dimensional column vector. The Euclidean norm of x is denoted by ‖x‖2. Let A be a n×n matrix
with real-valued entries. Let [A]i,j denote the entry in the ith row and jth column of A; we also
write Ai,j when there is no ambiguity. The ∞-norm of A is given by ‖A‖∞ = maxi

∑n
j=1 |Ai,j |,

the largest absolute row sum, and the 1-norm of A is give by ‖A‖1 = maxj
∑n

i=1 |Ai,j |, the largest
absolute column sum. The spectral radius of A is the largest modulus of an eigenvalue of A and
is denoted by ρ(A) = maxi=1,...,n |λi(A)|, where λ1(A), . . . , λn(A) are the eigenvalues of A. For the
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vector x ∈ Rn, let diag(x) denote a n×n diagonal matrix with [diag(x)]i,i = xi. For a n×n matrix
A, let diag(A) denote a n-dimensional column vector with [diag(A)]i = Ai,i.

2 Framework for Broadcast Gossip Algorithms

2.1 Network Model

Let G = (V, E) be a directed graph which represents the network connectivity, where V = {1, . . . , n}
is the set of nodes and E ⊆ V ×V is the set of directed edges. The network contains a directed edge
(i, j) ∈ E if and only if node i receives messages transmitted by node j. LetN+

i = {j ∈ V : (i, j) ∈ E}
and N−i = {k ∈ V : (k, i) ∈ E} denote the set of in-neighbors and out-neighbors, respectively, of
node i. For the rest of this paper we make the following assumption.

Assumption 1. The graph G is strongly connected; i.e., for any pair of nodes i, j ∈ V, there exists
a sequence of nodes i = i0, i1, i2, . . . , im = j such that (i`−1, i`) ∈ E for all ` = 1, . . . ,m.

2.2 Distributed Averaging

The goal of any broadcast gossip algorithm is to accomplish distributed averaging. Each node i ∈ V
initially has a value, xi(0) ∈ R, and the goal is for all nodes to compute the average, 1

n

∑n
i=1 xi(0).

In general, distributed averaging algorithms seek to achieve consensus on the average while only
allowing messages to be passed between neighboring nodes, as defined by the communication graph
G. In broadcast gossip algorithms we make the following additional restrictions. Each node has a
unique id, which corresponds to its index in the set {1, . . . , n}. When a node transmits a message,
the message is received by all of its out-neighbors. The receiving nodes may know the id of the
transmitter, but the transmitter will not, in general, know the ids of the receivers. Equivalently,
each node knows the ids of its in-neighbors but not its out-neighbors.

2.3 Asynchronous Time Model

Following [6], we adopt the standard asynchronous time model [9]. Each node runs a clock which
ticks according to an independent rate 1/n Poisson process. When node k’s clock ticks it initiates
a broadcast gossip update, the details of which are described in the subsection that follows. Since
the clocks at each node are independent, this model is equivalent to running a single, global Poisson
clock which ticks at rate 1, and assigning each tick uniformly and independently to one node in V.
In the sequel we use the variable t ∈ {1, 2, . . . } to index the ticks of this global Poisson clock. Each
global clock tick corresponds to one update or iteration.

2.4 Broadcast Gossip Updates

Similar to previous broadcast gossip algorithms with companion variables [7, 13], every node i
maintains two variables, xi(t) and yi(t). The first variable, xi(t), is the estimate of the average at
node i after t iterations, and it is initialized to xi(0), the same initial value from Sec. 2.2. The second
variable, yi(t), is the companion variable at node i after t iterations, and it is initialized to yi(0) = 0.
The companion variables (called “surplus” variables in [14]), play the role of compensating for
asymmetric updates made to xi(t), and if they are updated carefully, the companion variables can
be used to ensure that consensus is achieved on the average.

When a node’s clock ticks, it initiates an update by broadcasting its current state and companion
value. Suppose that the t + 1st global clock tick occurs at node k. Then k broadcasts the values

4



xk(t) and yk(t), and all nodes j ∈ N−k which receive this information set

xj(t+ 1) = (1− aj,k)xj(t) + aj,kxk(t) + εd
(k)
j yj(t) (1)

yj(t+ 1) = aj,k(xj(t)− xk(t)) + (1− εd(k)j )yj(t) + bj,kyk(t), (2)

where the values of the algorithm parameters aj,k, bj,k, d
(k)
j , and ε > 0 will be specified below. The

transmitting node k sets

xk(t+ 1) = xk(t) (3)

yk(t+ 1) = 0, (4)

and all other nodes i /∈ k ∪N−k keep

xi(t+ 1) = xi(t) (5)

yi(t+ 1) = yi(t). (6)

Note that the nodes need not be aware of the global clock index t to implement this protocol; they
can simply update two local registers (one for xi and one for yi) when they either broadcast a
message or receive a broadcast. Below we continue to keep track of the global clock index for the
purposes of analysis.

Different choices of the parameters aj,k, bj,k, d
(k)
j , and ε lead to different broadcast gossip

algorithms with different properties; we will examine two particular choices of interest in Sections 5
and 6. Note that the seminal broadcast gossip algorithm of [6] is recovered by setting ε = 0 and
aj,k = γ for all (j, k) ∈ E . The broadcast gossip algorithm of [7] does not directly fit the form
considered here, since in [7], the receiving nodes also use yk(t) to calculate xj(t+ 1).

The broadcast gossip updates (1)–(6) are linear, and below we will use tools from linear algebra,
spectral graph theory, and matrix perturbation theory to analyze their convergence properties. To
this end, we introduce some additional notation. Let A and B be n × n matrices with entries
[A]i,j = ai,j and [B]i,j = bi,j , respectively, satisfying{

0 < ai,j ≤ 1 if (i, j) ∈ E
ai,j = 0 if (i, j) /∈ E ,

(7)

and {
0 < bi,j ≤ 1 if (i, j) ∈ E
bi,j = 0 if (i, j) /∈ E .

(8)

The matrices are graph-conformant in the sense that they have non-zero entries in locations corre-
sponding to the edges of G.

We write ek ∈ Rn for the kth canonical vector—the vector with all entries equal to 0 except for
the kth entry, which is equal to 1. We also write 1 (respectively 0) for a n-dimensional vector with
all entries equal to 1 (respectively 0).

Define Ak = Aeke
T
k and Bk = Beke

T
k . One can verify that Bk is a n×n matrix, the kth column

of Bk is identical to that of B, and all other entries of Bk are zero (and similar properties hold for
Ak in relation to A). It also follows directly from the definitions of Ak and Bk that A =

∑
k∈V Ak

and B =
∑

k∈V Bk.
The matrices A and B can be viewed as weighted adjacency matrices of the graph G (possibly

assigning different weights to each edge). From this view, the matrices Ak and Bk correspond to
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weighted adjacency matrices of a graph Gk obtained from G by eliminating all edges except those
of the form (i, k) for some i ∈ V, i.e., by retaining only those edges emanating from k. Thus, Gk
represents the graph of active edges when node k transmits.

Finally, with this view of Ak as a weighted adjacency matrix on Gk, let Lk = diag(Ak1) − Ak
denote the corresponding (directed) graph Laplacian. It follows from the definition of Lk that

Lk1 = 0. It also follows from the definition of Ak that
∑

k∈V Lk = diag(A1)−A def
= L, where L is

the Laplacian corresponding to the graph with weighted adjacency matrix A.

The remaining algorithm parameters to discuss are d
(k)
j and ε. Let d(k) ∈ [0, 1]n denote a vector

with values satisfying {
d
(k)
j > 0 if (j, k) ∈ E
d(k) = 0 if (j, k) /∈ E ,

(9)

and let Dk = diag(d(k)) denote a diagonal matrix with [Dk]i,i = d
(k)
i . The positive weights εd

(k)
j

determine the amount of j’s own surplus it injects into an update of xj(t + 1) when j receives a
broadcast from node k. The parameter ε > 0 will be treated as a perturbation parameter in our
analysis below, and through this analysis we will obtain: 1) an upper bound on how large ε can
be made while still ensuring convergence, as well as 2) an indication of how ε affects the rate of
convergence.

Define the 2n× 2n matrix Wk to be

Wk =

[
I − Lk εDk

Lk Sk − εDk

]
, (10)

where Sk = I− ekeTk +Bk. The general broadcast gossip updates (1)–(6) can be compactly written
as [

x(t+ 1)
y(t+ 1)

]
= W (t)

[
x(t)
y(t)

]
, (11)

where W (t) is a random matrix with W (t) = Wk when node k transmits at iteration t. In the
asynchronous time model, the random matrices W (t), t = 1, . . . , are independent and identically
distributed, and W (t) = Wk with probability 1/n for all k ∈ V.

3 Convergence in Expectation

Next, we focus on identifying properties that the parameters ai,j , bi,j , d
(k)
j , and ε must satisfy

in order to guarantee that the iterations (11) converge in expectation. Since Lk contains some
negative entries, Wk is not nonnegative, and so standard results from nonnegative matrix analysis
and the study of Markov chains are not sufficient to guarantee convergence in expectation. Our
approach will make use of a combination of techniques from the theory of nonnegative matrices
and perturbation theory.

Taking the conditional expectation of (11) with respect to the random node that broadcasts at
each iteration, given the initial values x(0) and y(0), we obtain

E

([
x(t+ 1)
y(t+ 1)

] ∣∣∣∣∣
[
x(0)
y(0)

])
= E

(
t∏

t′=0

W (t′)

)[
x(0)
y(0)

]
(12)

= W
t+1
[
x(0)
y(0)

]
, (13)
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where W = 1
n

∑
k∈VWk. One can verify that Wk[1

T 0T ]T = [1T 0T ]T for all k ∈ V since Lk1 = 0,
and so [1T 0T ]T is also a right eigenvector of W corresponding to the eigenvalue 1. The main result
of this section is the following.

Theorem 1. In addition to the constraints (7), (8), and (9) imposed on the algorithm parameters
above, suppose that ‖B‖∞ ≤ 1 or ‖B‖1 ≤ 1. Then under the assumption that G is strongly connected
(Assumption 1), there exists a value η > 0 such that if ε ∈ (0, η], then 1 is a simple eigenvalue of W
with corresponding left eigenvector [wT1 wT2 ]T normalized such that [wT1 wT2 ][1T 0T ]T = wT1 1 = 1,
and

lim
t→∞

E

([
x(t)
y(t)

] ∣∣∣∣∣
[
x(0)
y(0)

])
=

[(
wT1 x(0)

)
1

0

]
. (14)

Remark 1. As a consequence of Theorem 1, the broadcast gossip updates (1)–(6) will converge
to the average consensus if and only if w1 = 1

n1. From the expression for W derived below (see
eqn. (15)), it turns out that this is only possible if w2 = 1

n1 and 1TB = 1T .

The rest of this section is devoted to the proof of Theorem 1.

3.1 Preliminaries and The Plan

From (10), we find that the expected update matrix W has the form

W =

[
I − L 0

L S

]
︸ ︷︷ ︸

def
=W0

+ε

[
0 D

0 −D

]
︸ ︷︷ ︸

def
=E

, (15)

where, recalling that L = diag(A1) − A is the Laplacian of the graph with weighted adjacency
matrix A, we have

L =
1

n

∑
k∈V

Lk =
1

n
L (16)

D =
1

n

∑
k∈V

Dk = diag

(∑
k∈V

d(k)

)
(17)

S =
1

n

∑
k∈V

Sk =

(
1− 1

n

)
I +

1

n
B. (18)

Using the expression (15) for W , one can verify the statement made in Remark 1 above.
From (15), it is evident that W , can be viewed as a perturbed version of the matrix W0. The

proof of Theorem 1 involves first characterizing the eigenvalues of W0 using concepts from the
theory of nonnegative matrices. Then results from perturbation theory can be used to determine
the eigenvalues of W as a function of ε and the eigenvalues of W0 and E. Before proceeding, we
briefly review background material from nonnegative matrix theory and perturbation theory.

3.2 Background

Recall that a matrix F is called nonnegative if all of its entries are greater than or equal to zero. A
square nonnegative matrix F is primitive if there exists a positive integer k such that all entries of
F k are strictly positive. If F corresponds to the weighted adjacency matrix of a strongly connected
graph, then it is irreducible and thus primitive [15].

Next we recall some definitions and results from perturbation theory [16].
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Lemma 1 ( [16] Sec. 2.4). Suppose that a matrix F (ε) is continuously differentiable (entry-wise)
with respect to the perturbation parameter ε. Then the eigenvalues of F (ε) are continuous functions
of ε.

An eigenvalue of F (ε) is called stable if it does not depend on ε. An eigenvalue of F (ε) is called
semi-simple if its algebraic multiplicity is equal to its geometric multiplicity.

Lemma 2 ( [16] Sec. 2.8). Suppose that F (ε) = F0 +εE. Let λ0 be a semi-simple double eigenvalue
of W0 with corresponding left eigenvectors u1 and u2 and right eigenvectors v1 and v2 normalized
such that uT1 v1 = 1 and uT2 v2 = 1. Then, for ε > 0, the eigenvalue λ0 bifurcates into two distinct
eigenvalues λ0,1(ε) and λ0,2(ε) of F (ε). The bifurcation is given in the form of the power series

λ0,1(ε) = λ0 + ελ′ + o(ε) (19)

λ0,2(ε) = λ0 + ελ′′ + o(ε), (20)

where λ′ and λ′′ are the eigenvalues of the 2× 2 matrix,[
uT1Ev1 uT1Ev2
uT2Ev1 uT2Ev2

]
. (21)

3.3 Eigenvalues of W0

In order to apply the perturbation results mentioned above, we need to first identify the eigenvalues
of W0. Observe, from (15), that W0 is block diagonal, and so the eigenvalues of W0 are the collective
eigenvalues of I − L and S.

Lemma 3. The matrix I − L is primitive, its largest eigenvalue is 1, and all other eigenvalues of
I − L have moduli strictly less than 1.

Proof. Recall that ai,j ∈ [0, 1] according to the constraints (7), and so I−L is a square non-negative
matrix. Moreover, all diagonal elements of I−L are strictly positive. Since G is strongly connected,
it follows that I − L is irreducible, and combining these facts gives that I − L is primitive. Since
I −L is primitive and (I −L)1 = 1, we have ρ(I −L) ≥ 1. Also, its spectral radius is bounded by
ρ(I − L) ≤ ‖I − L‖∞ = 1. Thus its largest eigenvalue is 1 and, according to the Perron-Frobenius
Theorem [17], all other eigenvalues of I − L are strictly less than 1.

Based on Lemma 3 we know that W0 has at least one eigenvalue equal to 1. Next we need to
determine the eigenvalues of S = (1 − 1

n)I + 1
nB. If λi(B) is an eigenvalue of B, then λi(S) =

1− 1
n + 1

nλi(B) is an eigenvalue of S, and so the real task is to characterize the eigenvalues of B. If
all eigenvalues of B have magnitude less than 1, then all eigenvalues of S are also less than 1, and
so 1 is a simple eigenvalue of W0. On the other hand, if 1 is an eigenvalue of B then it is also an
eigenvalue of S, in which case 1 is a multiple eigenvalue of W0.

Under the assumptions of Theorem 1 we have that ‖B‖∞ ≤ 1 or ‖B‖1 ≤ 1. Since ρ(B) ≤
min{‖B‖∞, ‖B‖1}, it follows that the largest eigenvalue of B is no larger than 1. Moreover, it
follows from Assumption 1 and (8) that B corresponds to the weighted adjacency matrix of a
strongly connected digraph, and hence B is primitive. Thus, S = (1 − 1

n)I + 1
nB is also primitive

and its diagonal entries are all positive. Then, from the Perron-Frobenius Theorem, the largest
eigenvalue λ1(B) of B is simple and all other eigenvalues of B have magnitude strictly less than
λ1(B).

It turns out that under the condition ‖B‖∞ ≤ 1 or ‖B‖1 ≤ 1 there are two possible cases:
either λ1(S) < 1 or λ1(S) = 1. These cases are captured by the two following lemmas.
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Lemma 4. Suppose that B is either row stochastic, column stochastic, or doubly stochastic. Then
1 is a simple eigenvalue of S and all other eigenvalues of S have moduli strictly less than 1.

Lemma 4 follows from standard arguments in the theory of nonnegative matrices [15,17].

Lemma 5. Suppose that either

max
j

n∑
i=1

bi,j ≤ 1 and min
j

n∑
i=1

bi,j < 1, (22)

or

max
i

n∑
j=1

bi,j ≤ 1 and min
i

n∑
j=1

bi,j < 1. (23)

Then the modulus of the largest eigenvalue of S is strictly less than 1.

Proof. We will prove the lemma for the case where (22) holds; the proof for the other case follows

by a similar argument where S is replaced with S
T

. If maxj
∑n

i=1 bi,j < 1 then the claim follows
since

ρ(S) ≤ ‖S‖1 = 1− 1

n
+

1

n
max
j

n∑
i=1

bi,j < 1. (24)

If

min
j

n∑
i=1

bi,j < max
j

n∑
i=1

bi,j = 1, (25)

then suppose, to arrive at a contradiction, that ρ(S) = 1. Let u denote the right eigenvector of S
for which Su = u, and let u be normalized such that 1Tu = 1. Then Bu = u also, and summing
over the entries of u we find that

n∑
i=1

ui =

n∑
i=1

 n∑
j=1

bi,juj

 (26)

=
n∑
j=1

(
n∑
i=1

bi,j

)
uj (27)

<
n∑
j=1

uj , (28)

where the inequality follows from the assumption (25). Since this is a contradiction, it must be
true that all eigenvalues of S are strictly less than 1 when either (22) or (23) holds.

To summarize, in this subsection we have shown that 1 is an eigenvalue of W0 with multiplicity
at least 1. If B is sub-stochastic (i.e., if elements of some rows and columns sum to a value less
than 1), then 1 is a simple eigenvalue of W0. On the other hand if B is a (row-, column-, or doubly)
stochastic matrix, then 1 is an eigenvalue of W0 with multiplicity 2. In the next subsection we
apply tools from perturbation theory to characterize the eigenvalues of W .
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3.4 Perturbation Analysis

The proof that the broadcast gossip iterations converge in expectation hinges on showing that 1 is a
simple eigenvalue of W with appropriate corresponding eigenvectors. When 1 is a simple eigenvalue
of W then the analysis is straightforward.

Proposition 1. Suppose that either of the conditions (22) or (23) of Lemma 5 hold. Then there
exists a number η > 0 such that if ε ∈ (0, η] then 1 is a simple eigenvalue of the matrix W = W0+εE
in (15) and the moduli of all other eigenvalues of W are strictly less than 1.

Proof. From the discussion in Section 3.3, we know that the eigenvalues of W are the collective
eigenvalues of W0 and S. Under the conditions of the proposition, Lemmas 3 and 5 provide that 1
is a simple eigenvalue of W0 and the moduli of all other eigenvalues of W0 are strictly less than 1.
Observe that W = W0 + εE depends on ε in a continuous manner, and so the eigenvalues of W are
continuous functions of the perturbation parameter ε. Therefore, there exists η > 0 so that 1 is a
simple eigenvalue of W and the moduli of all other eigenvalues of W are strictly less than 1 when
ε ∈ (0, η].

When 1 is a double eigenvalue of W we arrive at the same conclusion, but the proof requires a
bit more effort.

Proposition 2. Suppose that B is either row stochastic, column stochastic, or doubly stochastic.
Then there exists a number η > 0 such that if ε ∈ (0, η] then 1 is a simple eigenvalue of the matrix
W and the moduli of all other eigenvalues of W are strictly less than 1.

Proof. The proof follows from a generalization of an argument in [14]. Under the conditions of
the proposition, Lemmas 3 and 4 provide that 1 is an eigenvalue of W0 with multiplicity 2. One
can verify that 1 is a semi-simple eigenvalue of W0 since there exist two linearly independent right
eigenvectors u1 and u2, with corresponding linearly independent left eigenvectors v1 and v2. These
eigenvectors are given by

u1 =

[
0
1

wT q
q

]
, u2 =

[
1
−1
wT q

q

]
, v1 =

[
w
w

]
, v2 =

[
p
0

]
, (29)

where w is the eigenvector of S satisfying wTS = wT and wT1 = 1, and where p and q are the left
and right eigenvectors of I −L corresponding to the eigenvalue 1, normalized so that pT1 = 1 and
1T q = 1. Note that these eigenvectors exist as a consequence of Lemmas 3 and 4. One can verify
that

vT1 u1 = vT2 u2 = 1, vT1 u2 = vT2 u1 = 0. (30)

Also note that all entries of the vectors w, p, and q are positive since I − L and S are primitive
matrices.

Applying Lemma 2 with these values, we find that the semi-simple eigenvalue 1 bifurcates into
two eigenvalues

λ1,1(ε) = 1 + ελ′ + o(ε) (31)

λ1,2(ε) = 1 + ελ′′ + o(ε), (32)

where λ′ and λ′′ are the eigenvalues of the matrix[
vT1 Eu1 vT1 Eu2
vT2 Eu1 vT2 Eu2

]
=

[
0 0

1
wT q

pTDq −1
wT q

pTDq

]
. (33)
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Thus, we have λ′ = 0. Also, since p, q, w, and the diagonal entries of D are all strictly positive,
we have λ′′ = −1

wT q
pTDq < 0. It follows that λ1,1 = 1 is the stable eigenvalue of W corresponding

to the right eigenvector [1T 0T ]T . Moreover, for sufficiently small ε, we have λ1,2(ε) < 1 since
dλ1,2(ε)/dε|ε=0 = λ′′ < 0. Therefore, there must exist a positive constant η1 so that |λ1,2(ε)| <
|λ1,1(ε)| when ε ∈ (0, η1]. In addition. the eigenvalues of W are continuous functions of ε, so the
moduli of λ1,1(ε) = λ1(W ) and λ1,2(ε) = λ2(W ) will dominate the moduli of all other eigenvalues of
W provided that ε > 0 is sufficiently small; i.e., there exists an η2 > 0 such that maxi 6=1,2 |λi(W )| < 1
when ε ∈ (0, η2]. Therefore, when ε ∈ (0,min{η1, η2}], then 1 is a simple eigenvalue of W and the
moduli of all other eigenvalues are strictly less than 1.

We are now ready to complete the proof of Theorem 1.

3.5 Proof of Theorem 1

Suppose that 1 is a simple eigenvalue of a matrix W and the moduli of all other eigenvalues are
strictly less than 1. Let u and v denote the left and right eigenvectors of W corresponding to the
eigenvalue 1, normalized so that uT v = 1. Then it is known [14,18] that limt→∞W

t
= uvT .

From Propositions 1 and 2 we know that, under the conditions of Theorem 1, 1 is a simple eigen-
value of W with corresponding right eigenvector [1T 0T ]T , and the moduli of all other eigenvalues
of W are strictly less than 1. Let [wT1 wT2 ]T be the left eigenvector of W satisfying

[wT1 wT2 ]W = [wT1 wT2 ], (34)

normalized such that [wT1 wT2 ][1T 0T ]T = 1. Then the expected broadcast gossip updates (13)
converge to a limit

lim
t→∞

E

([
x(t)
y(t)

] ∣∣∣∣∣
[
x(0)
y(0)

])
= lim

t→∞
W

t
[
x(0)
y(0)

]
(35)

=

[
1
0

]
[wT1 wT2 ]

[
x(0)
y(0)

]
(36)

=
(
wT1 x(0)

) [1
0

]
, (37)

where the last line follows since y(0) = 0. This completes the proof of Theorem 1.

4 Convergence in the Second Moment

The previous section dealt with convergence in expectation. Next we present a general condition
for convergence in the second moment of the broadcast gossip algorithm described in Section 2.

Theorem 2. Suppose that B is a (row-, column-, or doubly) stochastic matrix. Let v ∈ Rn be the
vector satisfying vTB = vT normalized such that vT1 = 1. The sequence of vectors {x(t), y(t)}∞t=1

generated by the broadcast gossip updates (1)–(6) satisfy

lim
t→∞

E

[∥∥∥∥[x(t)
y(t)

]
−
[
(vTx(0))1

0

]∥∥∥∥2
2

∣∣∣∣∣
[
x(0)
y(0)

]]
= 0 (38)

if and only if

ρ

(
E[W (t)⊗W (t)]−

([
1
0

]
⊗
[
1
0

])([
v
v

]
⊗
[
v
v

])T)
< 1. (39)
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Remark 2. Theorem 2 can be viewed as generalizing the convergence conditions for linear iterations
described in [18,19] to update matrices which have the form (10).

Proof. We first prove that (39) implies (38). Let z(t) = [x(t)T y(t)T ]T and define the error vector
m(t) = z(t)− Jz(0), where

J =

[
1
0

] [
vT vT

]
. (40)

Observe that WkJ = J for all k ∈ V, since Lk1 = 0, and therefore m(t + 1) = W (t)m(t). Let
M(t) = m(t)m(t)T . Then M(t+1) = W (t)M(t)W (t)T . Construct a vector m̃(t) ∈ R4n2

by stacking
the elements of M(t) column-wise, and observe that

E[m̃(t)|m̃(0)] =
t−1∏
s=0

E[W (s)⊗W (s)] m̃(0) (41)

= E[W (1)⊗W (1)]t m̃(0), (42)

since the matrices W (t) are independent and identically distributed.
Under the assumption that vTB = vT , one can verify that [vT vT ]E[W (t)] = [vT vT ]. Note that

such a vector exists since B is primitive∗ and either row or column stochastic (by assumption).
We have also seen that E[W (t)][1T 0T ]T = [1T 0T ]T . It follows that ([vT vT ]T ⊗ [vT vT ]T ) and
([1T 0T ]T ⊗ [1T 0T ]T ) are the left and right eigenvectors of E[W (t) ⊗W (t)] corresponding to the
eigenvalue 1. If assumption (39) holds, then we have

lim
t→∞

E[m̃(t)|m̃(0)] =

([
1
0

]
⊗
[
1
0

])([
v
v

]
⊗
[
v
v

])T
m̃(0) (43)

= 0, (44)

where the last equality follows because v is orthogonal to m(0) and hence the vector ([vT vT ]T ⊗
[vT vT ]T ) is orthogonal to m̃(0).

Observe that (44) implies that E[mi(t)
2]→ 0 for all i, and therefore

E
[
m(t)Tm(t)

∣∣m(0)
]

=
2n∑
i=1

E[mi(t)
2]→ 0, (45)

which gives us (38).
Next, to see that (38) implies (39), observe that if (38) holds then it must be true that

E[mi(t)
2]→ 0 for all i = 1, . . . , 2n. By the Cauchy-Schwarz inequality, we have

E[mi(t)mj(t)]
2 ≤ E[mi(t)

2] · E[mj(t)
2]→ 0. (46)

Therefore, each entry in the matrix E[m(t)m(t)T ] tends to 0 as t→∞, independent of m(0), which
implies that (39) must hold.

5 Unbiased Broadcast Gossip

This section proposes a particular choice of values for the parameters aj,k, bj,k, and d
(k)
j , corre-

sponding to a particular family of broadcast gossip algorithms. For the choice considered in this

∗To see why, recall that G is strongly connected (Assumption 1).
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section, we guarantee that the broadcast gossip updates (1)–(6) converge to the average consensus.
For this reason we refer to these as unbiased broadcast gossip algorithms (UBGA).

Recall that N−j denotes the set of out-neighbors of node j and N+
j denotes the in-neighbors of

node j. Let |N | denote the cardinality of the set N . Let δ−j = |N−j | denote the out-degree of node

j, and let δ+j = |N+
j | denote its in-degree.

Unbiased broadcast gossip algorithms are obtained by setting

d
(k)
j =

{
1/δ+j if j ∈ N−k
0 otherwise

(47)

Bj,k =

{
1/δ−k if j ∈ N−k
0 otherwise,

(48)

and taking Aj,k to be any values which satisfy the constraints (7). In order to implement such a
protocol, each node j ∈ N−k that receives messages from k needs to know δ−k , the out-degree of
the broadcasting node k. If k knows its out-degree (i.e., the number of neighbors that receive its
broadcasts) then this can be accomplished by having k broadcast the value of δ−k to all nodes in
N−k . If G is undirected†, as is assumed in [6], then δ−k = δ+k , and so it is reasonable for k to know
its out-degree. On the other hand, in a general directed graph it may be difficult or impractical
for k to know its out degree since k may not receive messages directly from all nodes j ∈ N−k . In
Section 6 below we describe and analyze an alternative algorithm which does not require knowledge
of δ−k , but for which we are not guaranteed to achieve consensus on the average. First we discuss
theoretical convergence guarantees for UBGA.

First, note that for ε sufficiently small, UBGA asymptotically converges in expectation to the
average consensus in the sense that E[x(t)] → 1

n11
Tx(0) and E[y(t)] → 0. To see why, observe

that for the choice of parameters given in (48) we have 1TB = 1T . Therefore, by Theorem 1 (see
also Remark 1), there exists an η > 0 such that UBGA converges in expectation to the average
consensus for ε ∈ (0, η]. It turns out that UBGA also converges to the average consensus solution
in the mean-squared sense.

Proposition 3. Let the parameters d
(k)
j and Bj,k be chosen as in (47) and (48), and take v = 1

n1.
Then there exists a constant η > 0 such that if ε ∈ (0, η] then (39) holds, and so

lim
t→∞

E

[∥∥∥∥[x(t)
y(t)

]
−
[
1
n

(
1Tx(0)

)
1

0

]∥∥∥∥2
2

∣∣∣∣∣
[
x(0)
y(0)

]]
= 0. (49)

Proof. To prove the theorem, we need to show that there exists an η > 0 such that (39) holds.
Convergence in the second moment then follows from Theorem 2.

To show that (39) holds for sufficiently small ε, we use a perturbation argument similar to one
in [14]. Since (I − E[Lk])1 = 1, the matrix I − E[Lk] has 1 as an eigenvalue with right eigenvector
1. It follows that there exists a corresponding left eigenvector w satisfying wT (I − E[Lk]) = wT

and wT1 = 1, and all entries of w are positive. Consequently, the following four equalities hold:

E[(I − Lk)⊗ (I − Lk)] (1⊗ 1) = (1⊗ 1) (50)

(w ⊗ 1)T E[(I − Lk)⊗ Sk] = (w ⊗ 1)T (51)

(1⊗ w)T E[Sk ⊗ (I − Lk)] = (1⊗ w)T (52)

(1⊗ 1)T E[Sk ⊗ Sk] = (1⊗ 1)T . (53)

†I.e., (i, j) ∈ E if and only if (j, i) ∈ E
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Thus, the four matrices E[(I − Lk)⊗ (I − Lk)], E[(I − Lk)⊗ Sk], E[Sk ⊗ (I − Lk)], and E[Sk ⊗ Sk]
have eigenvalue 1. These matrices are all non-negative and irreducible under the constraints (7)
and since G is strongly connected. Moreover, since the corresponding eigenvectors (1⊗1), (w⊗1)T ,
(1 ⊗ w)T , and (1 ⊗ 1)T are all positive, it follows from the Perron-Frobenius Theorem that 1 is
the largest eigenvalue of the four matrices above, and all other eigenvalues have moduli strictly less
than 1.

In order to apply a perturbation argument to analyze the eigenvalues of E[W (t)⊗W (t)], let us
write Wk = Mk + εFk with

Mk =

[
I − Lk 0
Lk Sk

]
(54)

Fk =

[
0 Dk

0 −Dk

]
. (55)

Similarly, we have W (t) = M(t) + εF (t), with M(t) and F (t) being random matrices drawn from
the collection {(Mk, Fk)} depending on which node k broadcasts at iteration t. In the following we
omit the dependence on t to simplify notation. With the above definitions, we have E[W ⊗W ] =
E[M ⊗M ] + εE[M ⊗ F + F ⊗M + F ⊗ εF ]. There is a 2n× 2n permutation matrix P such that

P TE[W ⊗W ]P = M̂ + εF̂ where

M̂ = E


(I − L)⊗ (I − L) 0 0 0

(I − L)⊗ L (I − L)⊗ S 0 0
L⊗ (I − L) 0 S ⊗ (I − L) 0
L⊗ L L⊗ S S ⊗ L S ⊗ S

 (56)

F̂ = E


0 (I − L)⊗D D ⊗ (I − L) D ⊗ εD
0 −(I − L)⊗D D ⊗ L D ⊗ (S − εD)
0 L⊗D −D ⊗ (I − L) (S − εD)⊗D
0 −L⊗D −D ⊗ L −S ⊗D −D ⊗ S +D ⊗ εD

 . (57)

Since 1 is a simple eigenvalue of each of the matrices E[(I−L)⊗(I−L)], E[(I−L)⊗S], E[S⊗(I−L)],
and E[S ⊗ S], and all other eigenvalues of these matrices have moduli less than 1, we find that 1 is

a semi-simple eigenvalue of M̂ with multiplicity 4, and all other eigenvalues of M̂ are strictly less
than 1.

We will use a perturbation argument to show that for sufficiently small ε > 0, the largest
eigenvalue of M̂ + εF̂ is 1 and 1 is a simple eigenvalue. Our argument is based on a generalization
of Lemma 2 that addresses bifurcation of a quadruple semi-simple eigenvalues rather than double
semi-simple eigenvalues [16].

Let λ̂i(ε), i = 1, . . . , 4 denote the four bifurcating eigenvalues of M̂ + εF̂ . Similar to Lemma 2,
we have λ̂i(ε) = 1 + εξi + o(ε), where ξi, i = 1, . . . , 4 are four eigenvalues of the matrix of similar
structure to (21). Solving for ξ1, . . . , ξ4, we find that the derivatives of the eigenvalues λ̂i(ε) with
respect to ε are given by

dλ̂1(ε)

dε
= 0 (58)

dλ̂2(ε)

dε
=
dλ̂3(ε)

dε
= −NvT1 E[D]v2 < 0 (59)

dλ̂4(ε)

dε
= −2NvT1 E[D]v2 < 0, (60)
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where v1 is the positive left eigenvector of I − L normalized such that vT1 = 1, and v2 is the
positive right eigenvector of S normalized so that 1T v2 = 1. Similar as in Lemma 2 (see [16]), it
follows that there exists a real number η > 0 such that the matrix E[W ⊗W ] has only one simple
eigenvalue 1, and the moduli of all other eigenvalues are smaller than 1 when ε ∈ (0, η]. Thus, (39)
holds, and convergence in the second moment follows from Theorem 2.

6 Biased Broadcast Gossip

The previous section proposed UBGA, a broadcast gossip algorithm which provably converges to
the average consensus in both expectation and in the mean-squared sense. UBGA is practical in
situations when the network can be guaranteed to be undirected, or when nodes otherwise know
their out-degree. For instance, one could enforce that only symmetric links are used by having
each node broadcast its set of in-neighbors and then only updating using messages from neighbors
for which the neighborhood relationship is symmetric. However, this may be undesirable in some
applications, and so in this section we consider an alternative family of broadcast gossip algorithms.
These algorithms are no longer guaranteed to converge to an average consensus, and so we refer to
them as biased broadcast gossip algorithms (BBGAs). However, we still guarantee convergence in
expectation and in the mean-squared sense to a characterizable value which depends on the initial
state at each node and the structure of the network.

Biased broadcast gossip algorithms are obtained by setting

d
(k)
j =

{
1/δ+j if j ∈ N−k
0 otherwise

(61)

Bj,k =

{
1/δ+j if j ∈ N−k
0 otherwise,

(62)

and taking Aj,k to be any values which satisfy the constraints (7). To implement such a scheme we
only require that each node has knowledge of its in-neighbors, which is reasonable in the broadcast
setting.

Observe that, for the choice of parameters just specified, both I −Lk and S are row-stochastic
matrices. Let v be such that vTB = vT and vT1 = 1. Thus, the entries of v satisfy vk =∑

j∈N−k
vj/δ

+
j , and all entries of v are positive. Such an eigenvector exists since B is also row-

stochastic. One can verify that vTSk = vT also holds, and so vTS = vT . In general, we do not
have v = 1

n1 unless δ+j = δ−j for all j and δ+j = δ+i for all i 6= j. Therefore convergence to the
average consensus can no longer be guaranteed in general. However, we still obtain convergence
in expectation to a (non-average) consensus, via Theorem 1, and we can also show that BBGA
converges in the second moment.

Proposition 4. Let the parameters d
(k)
j and Bj,k be chosen as in (61) and (62). There exists

η > 0 such that if ε ∈ (0, η] then (39) holds and so (38) also holds with v being the vector such that
vTB = vT and vT1 = 1.

Proof. To prove the claim we show that (39) holds and then invoke Theorem 2. We use an argument
similar to that used in the proof of Proposition 3. Since (I − Lk)1, Sk1 = 1, and vTSk = vT , the
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following four equalities hold:

E[(I − Lk)⊗ (I − Lk)](1⊗ 1) = (1⊗ 1) (63)

E[(I − Lk)⊗ Sk](1⊗ 1) = (1⊗ 1) (64)

E[Sk ⊗ (I − Lk)](1⊗ 1) = (1⊗ 1) (65)

(vT ⊗ vT )E[Sk ⊗ Sk] = (vT ⊗ vT ). (66)

Since the eigenvectors above are all positive, it follows that 1 is the largest eigenvalue of each of
the four matrices E[(I − Lk)⊗ (I − Lk)], E[(I − Lk)⊗ Sk], E[Sk ⊗ (I − Lk)], and E[Sk ⊗ Sk].

Similar to the proof of Proposition 3, we find that M̂ has largest eigenvalue 1 with multiplicity
4, and all the moduli of all other eigenvalues are strictly smaller than 1. Let λ1(ε), . . . , λ4(ε) denote
the four corresponding eigenvalues of E[W ⊗W ]. In this case, we can solve for the eigenvalues and
again take their derivatives to find that

dλ̂1(ε)

dε
= 0 (67)

dλ̂2(ε)

dε
=
dλ̂3(ε)

dε
= −vT1 E[D]1 < 0 (68)

dλ̂4(ε)

dε
= −2vT1 E[D]1 < 0, (69)

where v1 satisfies vT1 E[I − Lk] = vT1 and vT1 1 = 1. Thus, there exists a positive scalar η > 0
such that 1 is a simple eigenvalue of E[W ⊗W ] and all other eigenvalues are strictly less than 1
when ε ∈ (0, η]. Subsequently, (39) holds, and convergence in the second moment follows from
Theorem 2.

7 Upper Bound on η

So far we have demonstrated that there exist broadcast gossip algorithms of the form described
in Section 2 which are guaranteed to converge when the parameter ε is chosen to be sufficiently
small. In this section we derive bounds on η which can be used as practical guidelines for setting
this parameter. Previous results suggest that, in general, one must take η = Θ(n−n), which is
extremely conservative [14,20,21]. The bounds in this section make use of the specific structure of
W (t) to obtain tighter, more useful bounds.

We begin with a simple observation related to the expected BBGA update matrix.

Lemma 6. For updates using the BBGA parameters and for sufficiently small ε > 0, the second
largest eigenvalue of W is 1− ε/n.

Proof. One can verify that, for BBGA, W [1T 0T ]T = [1T 0T ]T and W [1T −1T ]T = (1−ε/n)[1T −
1T ]T . Thus, 1 and 1 − ε/n are eigenvalues of W . According to Lemma 1, the eigenvalues of W
are continuous functions of ε. If 1 or 1 − ε/n are not eigenvalues stemming from the semi-simple
double eigenvalue 1 of W0, then we obtain a contradiction as ε → 0. Therefore, 1 − ε/n must be
the second largest eigenvalue of W for sufficiently small ε.

In order to provide a tight characterization of the upper bound η on the perturbation parameter,
we need to make more specific assumptions about the values of the weights aj,k. Previously, we only
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assumed that they satisfy the constraints (7). For the remainder of the article, unless otherwise
stated, we assume that

aj,k =

{
1/δ+j if j ∈ N−k
0 otherwise.

(70)

In this case, for BBGA, we have S = I − L.
Let ξi denote the eigenvalues of the graph Laplacian L = diag(A1) − A sorted by increasing

real part [22], where n is counted with multiplicity; i.e., 0 = Re(ξ1) ≤ Re(ξ2) ≤ · · · ≤ Re(ξn) ≤ 2.
Note that this last inequality holds because ρ(L) ≤ ‖L‖∞ = 2, and the real part of ξk for any k
is nonnegative because L is diagonally dominant. We have the following lemma characterizing the
eigenvalues of W for BBGA.

Lemma 7. For BBGA, the 2n eigenvalues of W are

λk,1 = 1− 1

n
ξk −

ε

2n
− 1

n

√
εξk +

ε2

4
for k = 1, . . . , n, (71)

λk,2 = 1− 1

n
ξk −

ε

2n
+

1

n

√
εξk +

ε2

4
for k = 1, . . . , n. (72)

Proof. Observe that (61) implies D = 1
nI for BBGA. The characteristic polynomial of W is

det(λI −W ) = det

([
(λ− 1)I + 1

nL − ε
nI

− 1
nL (λ− 1 + ε

n)I + 1
nL

])
(73)

= det
([

(λ− 1)
(
λ− 1 + ε

n

)
I + 2(λ−1)

n L+ 1
n2L

2
])
, (74)

where the last inequality follows since the matrices I and L, as well as any linear combination of
them, are commutative. The zeros of the characteristic polynomial of W thus correspond to zero
eigenvalues of the matrix

U = (λ− 1)
(
λ− 1 +

ε

n

)
I +

2(λ− 1)

n
L+

1

n2
L2. (75)

According to the spectral mapping theorem [15], for any eigenvalue ξi of the matrix L, the matrix

U has a corresponding eigenvalue (λ−1)(λ−1− ε
n)+ 2(λ−1)

n ξi+
1
n2 ξ

2
i . Therefore, given an eigenvalue

λk of W , there must exist an eigenvalue ξj of L such that

(λk − 1)
(
λk − 1 +

ε

n

)
+

2(λk − 1)

n
ξj +

1

n2
ξ2j = 0. (76)

According to Lemma 1, λk is a continuous function of ε, and so as ε → 0, λk is an eigenvalue of
W0. For the particular choice of parameters made above, we have that I − L = S. Since ξk is
an eigenvalue of L, we have that 1 − 1

nξk is an eigenvalue of I − L = S = I − 1
nL. Thus, in the

continuous limit as ε → 0, we have that λk = 1 − 1
nξk is an eigenvalue of W . Taking ε = 0 and

substituting for λk in (76), we find that (ξj − ξk)2 = 0, which implies that j = k. In this case, (76)
can be simplified to

(λk − 1)
(
λk − 1 +

ε

n

)
+

2(λk − 1)

n
ξk +

1

n2
ξ2k = 0. (77)

Solving for the roots of these quadratic polynomials in λk proves the claim.
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We have already seen that L has an eigenvalue λ1 = 0. From Lemma 7, we again find that
λ1,1 = 1−ε/n and λ1,2 = 1 are eigenvalues of W . If all eigenvalues of L are real, then all eigenvalues
of W are also real. In this case, we can use the monotonic ordering of eigenvalues to determine an
upper bound η on ε to ensure that BBGA converges in expectation. We restrict to the case where
all eigenvalues of L are real. When L has some complex eigenvalues monotonicity is no longer
preserved making it difficult to determine a reasonable bound. The main result of this section is
as follows.

Proposition 5. Consider BBGA updates and suppose that all eigenvalues of L are real. Then
BBGA converges in expectation when 0 ≤ ε ≤ 2n+ξ2n/(2n)−2ξn, where ξn is the largest eigenvalue
of L.

The proof of Proposition 5 relies on two intermediate lemmas.

Lemma 8. For BBGA updates, if all eigenvalues of L are real, then there is one stable eigenvalue
λ1,2 = 1. All other eigenvalues λk,1 are strictly decreasing functions of ε, and all eigenvalues λk,2
are strictly increasing functions of ε.

Proof. To prove the claim, differentiate (71) and (72) with respect to ε:

dλk,1
dε

= − 1

2n

(
1 +

2ξk + ε√
4εξk + ε2

)
(78)

≤ − 1

2n

(
1 +

2ξk + ε√
(2ξk + ε)2

)
(79)

= − 1

n
(80)

< 0, (81)

and

dλk,2
dε

= − 1

2n

(
1− 2ξk + ε√

4εξk + ε2

)
(82)

≥ − 1

2n

(
1− 2ξk − ε√

(2ξk + ε)2

)
(83)

= 0. (84)

Note that equality holds in (83) if and only if ξk = 0.

Lemma 9. For BBGA updates, If all eigenvalues of L are real, then the eigenvalues λk,1 and λk,2
are monotonic decreasing functions of ξk.

Proof. It is clear from (71) that λk,1 is a monotonic decreasing function of ξk. For λk,2 and for
fixed ε > 0, observe that

dλk,2
dξk

= − 1

n
+

1

n
√

4ξk/ε+ 1
≤ 0, (85)

where the inequality follows since ξk ≥ 0. Therefore, λk,2 is also a monotonic decreasing function
of ξk.
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Proof of Proposition 5. Under the assumption that the eigenvalues of L are nonnegative real num-
bers, we have

ε

2
≤
√
εξk +

ε2

4
≤
√(

ξk +
ε

2

)2
=
ε

2
+ ξk. (86)

Substituting (86) into (71) and (72), we get

1− ε

n
− 2ξk

n
≤ λk,1 ≤ 1− ε

n
− ξk
n
, (87)

1− ξk
n
≤ λk,2 ≤ 1, (88)

where the equalities hold if and only if k = 1 with corresponding ξk = 0. From these expressions,
it is clear that λ1,2 = 1 is a simple eigenvalue of W and all other eigenvalues are strictly smaller
than 1 since 0 ≤ ξk ≤ 2 and ε > 0. Furthermore, convergence is guaranteed when all eigenvalues
are strictly larger than −1. For a given ξk, observe that λk,1 ≤ λk,2. In addition, from Lemma 9,
we have that λk,1 is a monotonic decreasing function of ξk. Therefore, λk,2 ≥ λk,1 ≥ λn,1 for all
k = 1, . . . , n. Thus, we focus on determining conditions under which λn,1 > −1. According to
Lemma 8, λn,1 is a strictly decreasing function of ε. If there exists η such that λn,1 = −1 when
ε = η, then λn,1 > −1 when ε < η. Solving (71) for λn,1 = −1 we obtain

η = 2n+
ξ2n
2n
− 2ξn, (89)

which completes the proof.

Remark 3. In general, the value of ξn depends on the network topology, and it may not be easy
to determine a precise value of ξn. A more practical guideline is to take ε ∈

(
0, 2n(n− 1)2

)
. To see

why this is reasonable, differentiate (89) with respect to ξn:

dη

dξn
=
ξn
n
− 2 ≤ 2

n
− 2 ≤ 0. (90)

Therefore, η is a monotonic decreasing function of ξn, and η thus satisfies 2
n(n− 1)2 ≤ η ≤ 2n since

0 ≤ ξn ≤ 2. If the perturbation parameter ε is not larger than 2
n(n− 1)2 then BBGA is guaranteed

to converge in expectation.

Note that, from Remark 3, the upper bound η is not smaller than 1. In the following section we
investigate what value of ε leads to the fastest convergence. We find that we typically seek values
of ε less than 1, and so this upper bound will suffice.

Although the guidelines derived above are for BBGA, in extensive simulations we have observed
that the maximal value of ε under which UBGA still converges is typically no different than that for
BBGA for a given graph. Therefore, the guidelines derived above can be also used as approximate
guidelines for setting the parameters of UBGA.

8 Optimal Perturbation Parameter

In the previous section we determined an upper bound on the perturbation parameter ε under
which convergence in expectation is guaranteed. This can be viewed as a sort of stability result.
In this section we investigate what value of the perturbation parameter leads to the fastest rate of
convergence. It is well known that the worst-case rate of convergence of systems of the form (13)
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is governed by the second largest eigenvalue of W . In the previous section we saw that, for BBGA,
this second largest eigenvalue is 1 − ε/n if the perturbation parameter ε > 0 is sufficiently small,
and this eigenvalue is a monotonic decreasing function of ε. At the same time, other eigenvalues
of W are monotonic increasing, and so it follows that the optimal value of ε is the one where the
modulus of 1− ε/n first coincides with the modulus of another eigenvalue of W .

Theorem 3. Consider the expected update matrix W corresponding to BBGA, and suppose that
all eigenvalues of the Laplacian L = diag(A1)−A are real. For networks with at least three nodes,
the modulus of the second largest eigenvalue of W is minimized when the perturbation parameter is
equal to ε∗ = ξ2/2, where ξ2 is the second largest eigenvalue of the graph Laplacian L. In this case,
the second largest eigenvalue of W is 1− ξ2/(2n). When n = 2, the second largest eigenvalue of W
is minimized by ε∗ = 2−

√
2.

Proof. According to Lemma 8, for a fixed ε > 0, the eigenvalues of W satisfy

1− ε/n = λ1,1 ≥ λ2,1 ≥ · · · ≥ λn,1, (91)

and
1 = λ1,2 ≥ λ2,2 ≥ · · · ≥ λn,2. (92)

We also have monotonicity of the respective eigenvalues as a function of ε from Lemma 9. Because
the eigenvalues are continuous functions of ε, it follows that there are two points of interest where
the second largest eigenvalue (in modulus) may switch from being λ1,1 = 1 − ε/n. These are the
points ε1 where λ1,1(ε1) = λ2,2(ε1) and ε2 where λ1,1(ε2) = −λn,1(ε2). To complete the proof we
can solve for these two values of and then determine that ε∗ = min{ε1, ε2}.

Solving λ1,1(ε1) = λ2,2(ε2), we have ε1 = ξ2/2 and the corresponding eigenvalue of W is 1 −
ξ2/(2n).

To solve λ1,1(ε2) = −λn,1(ε2), observe that

ε2 =
3n− ξn −

√
n2 + 2nξn − ξ2n
2

(93)

≥
3n− ξn −

√
(n+ ξn)2

2
(94)

= n− ξn. (95)

Since 0 ≤ ξn ≤ 2, it must be that ε2 > 1 if n ≥ 3, from which we find that ε2 > ε1 since ξ2/2 < 1.
Therefore, the optimal perturbation parameter is ε∗ = ε1 = ξ2/2 when n ≥ 3. If n = 2, then there
is only one non-zero eigenvalue of the weighted Laplacian matrix L and it is equal to 2. In this
case, ε2 = 2−

√
2 < 1 = ε1, so the optimal perturbation parameter is ε∗ = 2−

√
2.

Remark 4. Note that since the modulus of the second largest eigenvalue of W satisfies |λ1,1(ε∗)| =
λ1,1(ε

∗) < λ1,1(0) < 1, we see that BBGA is guaranteed to converge in expectation for this setting.

The above analysis focused on the case where the eigenvalues of L are assumed to be real. In
extensive simulations, we have observed that this is the case whenever G is undirected, regardless
of whether the edge weights are symmetric. For digraphs, the eigenvalues ξi of L are generally
complex numbers, so a monotonicity property such as that obtained in Lemma 9 is no longer
readily available. Below we analyze the optimal value of the perturbation parameter on random
digraphs via simulation. We find that ε̃ = Re(ξ2)/2 is a good guideline for directed graphs.
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Figure 1: An example for undirected graphs with 16 nodes

Figure 2: Number of broadcasts to converge with respect to ε for simulations on the graph shown
in Fig. 1.

8.1 Undirected Graphs

Consider an undirected graph as illustrated in Figure 1 with 16 nodes distributed uniformly in
the unit square. Nodes are connected if the Euclidean distance between them is no more than√

2 log n/n so that the graph G is connected with probability at least 1 − 1/n2 [23, 24]; this is
the standard random geometric graph model. For the graph shown in Fig. 1, the second smallest
eigenvalue of weighted Laplacian matrix L for BBGA is ξ2 = 0.5335 so the optimal perturbation
parameter for BBGA is ε∗ = ξ2/2 = 0.2668.

Figure 2 shows the number of broadcasts to achieve consensus as a function of ε. Each point
is an average over 100 trials, and we sweep over values of ε from 0.02 to 1 in increments of 0.02.
The initial values of all nodes are independent and uniformly distributed between 0 and 1. Recall
the error vector m(t) defined in the proof of Theorem 2. We declare that consensus is achieved
at the first iteration t where ‖m(t)−m(t− 1)‖2 ≤ 10−5. Here we compare four broadcasts gossip
algorithms. For BBGA we use the weights aj,k as defined in (70). The three versions of UBGA
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Figure 3: An example for digraphs with 16 nodes. The gray lines denote undirected edges and lines
with one arrow denote directed edges.

have different choices of weights aj,k; they are

aj,k =


0.5 if j ∈ N−k for UBGA-1,

1/δ+j if j ∈ N−k for UBGA-2,

1/δ−j if j ∈ N−k for UBGA-3,

0 if j /∈ N−k .

(96)

Observe that the fastest convergence for BBGA occurs near ε = 0.26, which matches the value
predicted by Proposition 3. Also observe that all three versions of UBGA have larger optimal
perturbation parameter than BBGA. Using any version of UBGA at the optimal value ε∗ for
BBGA results in suboptimal performance. UBGA-1 exhibits a number advantages over the other
algorithms: it converges in fewer broadcasts than the other algorithms for suitably chosen ε, and
the curve for UBGA-1 in Fig. 2 is extremely flat near the optimal value, so its performance is
very robust to the choice of ε in this region. From a practical perspective, UBGA-1 is also easy
to implement in undirected networks since all weights aj,k are constants only depending on the
network connectivity. For the graph shown in Fig. 1, the largest eigenvalue of L for BBGA is
1.3796, and the corresponding upper bound for ε is 29.30, which can also be verified by simulation.

8.2 Strongly Connected Digraphs

In practical wireless settings, not all links may be symmetric due to differing transmit powers (e.g., if
the batteries at different nodes have experienced different usage), multipath effects, or interference.
To simulate directed networks, we begin with a (undirected) random geometric graph and then
add and delete directed edges by random coin flips (while ensuring that the directed graph remains
strongly connected. Figure 3 illustrates an example of a strongly connected directed graph. In this
example, since the directed graph has fewer edges than the corresponding undirected graph shown
in Fig. 1, one would expect that more broadcasts are needed to achieve consensus. The real part of
the second smallest eigenvalue of L for the directed graph in Fig. 3 is 0.3930, so the approximately
optimal perturbation parameter is ε∗ = 0.1965.

Fig. 4 illustrates the number of broadcasts with respect to perturbation parameter ε required
to obtain ‖m(t) −m(t − 1)‖2 ≤ 10−5. The initial values are independent and uniform over [0, 1].
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Figure 4: Number of broadcasts to converge with respect to ε for simulations on the directed graph
shown in Fig. 3.

The optimal perturbation parameter occurs at 0.20, which matches the predicted value well. From
this figure, we see that UBGA-1 still gives the best performance

8.3 Scaling Behavior

In the previous two subsections, we illustrate the performance of UBGA and BBGA on particular
directed and undirected graphs. In this subsection, we demonstrate the scaling behavior of these
two algorithms as the size of the network increases. We compare the performance of three varieties
of UBGA and two varieties of BBGA. The three varieties of UBGA are those as defined above,
with weights aj,k given in (96), and with ε = 0.5. For BBGA, we use the same weights aj,k as given
in (70) and set ε either to 0.5 (BBGA-0.5) or to ε∗ (BBGA-opt).

Following [6], we investigate two metrics for error. The UBGA algorithms are guaranteed
to converge to the average consensus solution, and we measure the mean squared error after t
iterations,

r(t) = 1
n‖x(t)− 1

n11
Tx(0)‖22. (97)

Since BBGA and other biased broadcast gossip algorithms do not converge to the average consensus,
we measure their rate of convergence via the deviation,

q(t) = 1
n‖x(t)− 1

n11
Tx(t)‖22, (98)

which is guaranteed to go to zero. Note that we do not include the companion variables y(t) in
these calculations, since ultimately the aim is to reach consensus only on the states x(t).

As above, we declare that consensus is achieved if ‖m(t) −m(t − 1)‖2 ≤ 10−5. In the sequel,
we report the results of numerical simulations on random geometric graphs and random strongly
connected digraphs simulated using the procedure described above.

8.3.1 Convergence rate

The number of transmissions required to achieve consensus for undirected graphs and digraphs
are shown in Figs. 5 and 6 respectively. Unsurprisingly, BBGA-opt converges significantly faster
than BBGA-0.5. However UBGA-1 is still the best one in terms of converge rate performance of
scaling behavior. Since UBGA-1 can achieve the average consensus, we prefer UBGA-1 if out-degree
information is available; otherwise, BBGA-opt is the winner.
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Figure 5: Number of broadcasts to converge with respect to N on undirected graphs.
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Figure 6: Number of broadcasts to converge with respect to N on digraphs.
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Figure 7: The standard deviation performance with respect to N on undirected graphs.

8.3.2 Deviation

Figures 7 and 8 show the deviation q(t) at the time the algorithm is declared to have converged.
For this particular initialization scheme (i.i.d. uniform), we note that the BBGA algorithms are
roughly half an order of magnitude worse than the UBGA schemes. We investigate the effects
of initialization on deviation further in the next section. For now, we note that both versions of
BBGA achieve comparable performance in terms of deviation, and likewise, all three versions of
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Figure 8: The standard deviation performance with respect to N on digraphs.

UBGA achieve effectively the same deviation at the time they converge.
In summary, from the experiments reported in this section we conclude that UBGA-1 is the

most desirable solution if the out-degree information is available (including, when G is undirected);
otherwise BBGA-opt is the next most preferable since it gives the fastest rate of convergence.

9 Performance Analysis

In this section, we compare the broadcast gossip algorithms proposed in this paper with the previous
broadcast gossip algorithms of [6] and [7]. In the figures and discussion below, BGA-1 refers to
the algorithm in [6], BGA-2 refers to the one in [7], and BBGA and UBGA are the algorithms
proposed in this paper. The previous section illustrated that UBGA-1 exhibits many advantages,
both in terms of the choice of perturbation parameter and the rate of convergence, compared to
the other UBGA algorithms. For this reason, in this section we use UBGA-1 as the representative
of the UBGAs. For both UBGA and BBGA, we will investigate two settings for the perturbation
parameter: ε = 0.5 and ε∗. Note that ε∗ is only optimal for BBGA, and it may be suboptimal for
UBGA. We also remark that the comparison of BGA-1 and BGA-2 with BBGA-opt and UBGA-opt
(i.e., those using ε∗) is unfair, since the information used to determine ε∗ is not made available to
either BGA-1 or BGA-2; in particular, neither of those algorithms uses global topology information
such as ξ2. This is our primary motivation for also considering the performance of UBGA and
BBGA with ε = 0.5.

All simulations in this section use (undirected) random geometric graph topologies with the
same connectivity radius as in the previous section. When G is directed, BGA-1 is no longer
guaranteed to converge to the average consensus in expectation. Unless otherwise noted, each
result corresponds to the average over 100 Monte Carlo trials.

Since the initial values effect the performance of various broadcast gossip algorithms, we con-
sider four approaches to initializing the values xi(0): 1) independent and uniform over [0, 1]; 2)
independent and Gaussian with zero mean, unit variance; 3) the spike initialization, where one
random node has an initial value of 1 and all other nodes have initial values 0; and 4) the slope
initialization, the initial value at node i is the sum of its x- and y-coordinates in the unit square
(note all graphs are drawn from the ensemble of random geometric graphs in the plane.
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(a) n = 50
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(b) n = 100
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(c) n = 500

Figure 9: The deviation of BGA-1, BGA-2, BBGA and UBGA with respect to the number of
broadcasts on undirected random geometric graphs with uniform distribution for initial values.
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(b) n = 100
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(c) n = 500

Figure 10: The deviation of BGA-1, BGA-2, BBGA and UBGA with respect to the number of
broadcasts on undirected random geometric graphs with Gaussian initial values.

9.1 Deviation

Figures 9–12 show the deviation q(t) = 1
n‖x(t)− 1

n11
Tx(t)‖22 as a function of time for different ini-

tializations. Note that this indicates how quickly the algorithms converge to a consensus, regardless
of the value on which consensus is achieved.

It is clear from these figures that BGA-1 converges to its final value faster than the other
algorithms. As we will see below, this is because BGA-1 generally achieves a lower accuracy (in
terms of mean squared error, r(t)) than the other methods.

The algorithms BGA-2, BBGA, and UBGA all maintain companion variables. Among these
algorithms we observe that BGA-2 converges slower, in general, than BBGA. Also note that BBGA-
opt converges significantly faster than BBGA-0.5 when n = 50 or 100, but the performance of the
two is much closer for larger networks. Somewhat surprisingly, the deviation of UBGA-opt and
UBGA-0.5 are typically better or comparable to BBGA-opt. This is surprising because it indicates
that UBGA is converging faster, despite the fact that it is converging to the average consensus. On
the other hand, BGA-1 converges quickly to a consensus which is not on the average, and BGA-2
typically converges to the average consensus but more slowly than UBGA. We conclude that UBGA
strikes a desirable balance between converging quickly while achieving consensus on the average.
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(b) n = 100
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(c) n = 500

Figure 11: The deviation of BGA-1, BGA-2, BBGA and UBGA with respect to the number of
broadcasts on undirected random geometric graphs with slope initial values.
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(b) n = 100
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(c) n = 500

Figure 12: The deviation of BGA-1, BGA-2, BBGA and UBGA with respect to the number of
broadcasts on undirected random geometric graphs with spike initial values.

9.2 Mean Squared Error

Figs. 13–16 show the mean squared error r(t) = 1
n‖x(t)− 1

n11
Tx(0)‖22 as a function of t for all four

algorithms and the four different initializations on networks of n = 50, 100, and 500 nodes. UBGA
generally has the best performance among all algorithms, in the sense that a small deviation
is achieved with relatively few broadcasts. BGA-1 has a high deviation; it is well-known that
it converges quickly but that it does not converge to the average consensus. When out-degree
information is available UBGA is preferable. For networks with n = 50 or 100 nodes, using ε = 0.5
is close enough to optimal that the performance is extremely good for UBGA-0.5. For larger graphs,
the performance of UBGA-opt dominates that of UBGA-0.5. An interesting open problem is to
come up with a better practical guideline for setting ε as a function of network size and structure,
e.g., for random geometric graphs.

It is interesting to note that BBGA has better performance than BGA-2 for a smaller number
of broadcasts. Since BGA-2 converges to the average consensus in most examples, but BBGA does
not, this indicates that BGA-2 converges slower than BBGA. For larger networks BBGA may be
preferable as an alternative which quickly reaches a reasonably accurate solution.
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(a) n = 50
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(b) n = 100
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(c) n = 500

Figure 13: The mean squared error of BGA-1, BGA-2, BBGA and UBGA with respect to the
number of broadcasts on undirected random geometric graphs with uniform initial values.
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(b) n = 100
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(c) n = 500

Figure 14: The mean squared error of BGA-1, BGA-2, BBGA and UBGA with respect to the
number of broadcasts on undirected random geometric graphs with Gaussian initial values.
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(b) n = 100
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(c) n = 500

Figure 15: The mean squared error of BGA-1, BGA-2, BBGA and UBGA with respect to the
number of broadcasts on undirected random geometric graphs with slope initial values.

10 Conclusion and future work

In this paper, we propose a framework for broadcast gossip algorithms and prove that consensus
is achieved in both expectation and in the mean squared sense for reasonably chosen coefficients.
Then we analyze two particular broadcast gossip algorithms, UBGA and BBGA, where the for-
mer preserves the average and the latter is more practical for implementation in non-symmetric
broadcast networks. These algorithms have an interpretation from the perspective of matrix per-
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Figure 16: The mean squared error of BGA-1, BGA-2, BBGA and UBGA with respect to the
number of broadcasts on undirected random geometric graphs with spike initial values.

turbation, and we derive an upper bound on the perturbation parameter under which convergence
is guaranteed. We also study the optimal value of the perturbation parameter and find it is within
the range of allowable values. By numerical analysis, the optimal perturbation parameter obtained
from BBGA on undirected digraphs is shown to also work well on digraphs. If the out-degree
information is available (as is the case in undirected networks), we demonstrate that UBGA out-
performs the existing state-of-the-art broadcast gossip algorithms. When out-degree information
is not available, BBGA is a promising alternative because it exhibits an excellent tradeoff between
the rate of convergence and the limiting mean squared error.

Interesting future work includes studying convergence properties of broadcast gossip algorithms
with quantized transmissions. The broadcast gossip algorithms proposed in this paper involve
maintaining and transmitting companion variables, in addition to the state variables which are
being averaged, and we are interested in understanding how the number of bits allocated to these
two different values impacts the rate of convergence and limiting value.

Finally, since wireless media is shared by nodes within communication radius for each other,
broadcast packets are likely to undergo collisions and interference, and it would also be interesting
to develop a deeper understanding of how broadcast gossip algorithms behave under more realistic
channel models (e.g., accounting for capture effects).
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