
Adaptive multiset stochastic decoding of
non-binary LDPC codes

Alexandru Ciobanu

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montréal, Québec

December 2011

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Engineering

c© Alexandru Ciobanu, 2011

ACKNOWLEDGMENTS

I would like to thank Professor Warren J. Gross for introducing me to the field

of LDPC decoding, for maintaining a team and environment where my ideas could

come to fruition, and for all the feedback and guidance. I am thankful to Gabi

Sarkis for providing and diligently improving his excellent simulator, for the countless

explanations and discussions. I am grateful to Dr. Saied Hemati for his assistance

and encouragement. Finally, I would like to thank Professor Emmanuel Boutillon

of Université de Bretagne-Sud for the constructive feedback provided as part of his

review of this work.

- ii -

ABSTRACT

In this thesis, we propose a new stochastic decoding algorithm for non-binary

LDPC codes with dv = 2, which is based on the concept of a mutliset, a generalization

of the set that allows for multiple occurrences of the same element. The algorithm is

called Adaptive Multiset Stochastic Algorithm (AMSA) and represents probability

mass functions as multisets, which simplifies the structure of the variable node.

AMSA reduces the run-time complexity of one decoding cycle to O(q) for regular

memory architectures, and to O(1) if a custom SRAM architecture is used. Two fully-

parallel AMSA decoders are implemented on FPGA for two versions of a (192,96)

(2,4)-regular code, one over GF(64) and the other over GF(256), both achieving a

maximum clock frequency of 108 MHz and a throughput of 65 Mbit/s at Eb/N0 = 2.4

dB. We also propose an SRAM architecture for ASIC implementations that reduces

the run-time complexity of a decoding cycle to O(1) and achieves a throughput of

698 Mbit/s at the same noise level. The algorithm has a frame error rate (FER) of

3.5×10−7 at Eb/N0 = 2.4 dB when using the GF(256) version of the code. To the best

of our knowledge, the implemented decoders are the first fully-parallel non-binary

LDPC decoders over GF(64) and GF(256) reported in the literature.

- iii -

ABRÉGÉ

Dans cette thèse, nous proposons un nouvel algorithme de décodage stochastique

pour des codes LDPC non-binaires avec dv = 2, qui est basé sur le concept de multi-

ensemble, une généralisation de l’ensemble où un élément peut apparâıtre plusieurs

fois. L’algorithme est appelé Algorithme Stochastique à Multiensembles Adaptifs

(ASMA) et représente des fonctions de masse comme multiensembles, ce qui sim-

plifie la structure du nœud de variable. ASMA réduit la complexité d’exécution

d’une itération de décodage à O(q) pour les architectures de mémoire ordinaire, et

O(1) si une architecture SRAM personnalisée est utilisée. Deux décodeurs ASMA

tout-parallèles sont mis en œuvre sur FPGA pour deux versions d’un code (192,96)

(2,4)-réguliers, l’un sur GF(64) et le l’autre sur GF(256), et tous les deux atteignent

une fréquence d’horloge maximale de 108 MHz et un débit de 65 Mbit/s à Eb/N0

= 2.4 dB. Nous proposons aussi une architecture SRAM pour les implémentations

ASIC qui réduit la complexité d’exécution d’un cycle de décodage à O(1) et atteint

698 Mbit/s au même niveau de bruit. L’algorithme a un taux d’erreur de trame

de 3.5 × 10−7 à Eb/N0 = 2.4 dB pour la version GF(256) du code. Au meilleur de

notre connaissance, les décodeurs présentés ici sont les premiers décodeurs LDPC

non-binaires opérant sur GF(64) et GF(256) et tout-parallèles rapportés dans la

littérature.

- iv -

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF FIGURES . vii

LIST OF TABLES . x

1 Introduction . 1

1.1 Contributions of this Work . 3
1.2 Outline . 4

2 Background . 5

2.1 Iterative LDPC Decoding over GF(q) 5
2.1.1 The Sum-Product Algorithm 5
2.1.2 The FFT-SPA Algorithm 9
2.1.3 The Log-SPA Algorithm 11
2.1.4 The Extended Min-Sum Algorithm 13

2.2 Stochastic LDPC Decoding over GF(q) 16
2.2.1 Stochastic Representation of Probabilities 16
2.2.2 Messages in Stochastic Decoding Algorithms 17
2.2.3 Stochastic Decoding Over GF(q) 18
2.2.4 Relaxed Half-Stochastic Decoding Over GF(q) 20
2.2.5 Redecoding . 21

2.3 Architectures and Implementations of GF(q) LDPC Decoders . . . 22

3 The Adaptive Multiset Stochastic Algorithm 24

3.1 Multiset Representation of a Probability Mass Function 24
3.2 Algorithm Definition and Analysis 27

3.2.1 The Add Routine . 28
3.2.2 The Remove Routine . 32

- v -

3.2.3 The Sample Routine . 35
3.3 Non-Binary LDPC Decoding with AMSA 35
3.4 Complexity Analysis . 37
3.5 Redecoding . 39

4 Circuit Implementation . 41

4.1 Structure of fully-parallel decoders 42
4.2 Variable Node . 42

4.2.1 Pseudo-Random Number Generator 43
4.2.2 Hardware Representation of the Likelihoods Table 44
4.2.3 Edge Memories - a Hardware Representation of the Mulitset S 45
4.2.4 Hardware Implementation of the Remove Routine 46
4.2.5 Hardware Implementation of the Add Routine 48
4.2.6 Hardware Implementation of the Sample Routine 50
4.2.7 State Machine . 52

4.3 Check Node . 53
4.4 Permutation Block . 55
4.5 Message Passing Scheduling . 56
4.6 Synthesis Results . 58
4.7 ASIC-specific Considerations . 60

4.7.1 Single Clock-Cycle Update Memory Design 60

5 Simulation Results and Analysis . 64

5.1 Performance . 64
5.2 Throughput and Latency . 66
5.3 Efficient Quantization . 69
5.4 Accelerated Convergence Add Routine 71

6 Conclusion and Future Work . 76

6.1 Advances . 76
6.2 Future Work . 77

REFERENCES . 78

- vi -

LIST OF FIGURES
Figure page

2–1 Tanner graph transformation by adding permutation nodes on the edges. 8

2–2 Tanner graph with the check node computation performed in the fre-
quency domain over GF(q). 10

2–3 Comparison of SPA and RHS algorithm for a GF(64) (2,4)-regular
code with n = 192 and k = 96 on the AWGN channel. 21

3–1 Schematic representation of a variable node of degree dv = 2 with the
multisets S0 and S1, and the channel likelihoods table LCH 28

3–2 Comparison of the non-binary RHS algorithm and AMSA by tracking
the probability of the correct symbol in an edge memory. 32

4–1 The 32-bit LFSR with the feedback taps corresponding to the poly-
nomial. 44

4–2 The interface of a likelihoods memory corresponding to the probabili-
ties lj where j = 1, . . . , q as implemented on FPGA. 45

4–3 The interface of an edge memory corresponding to a multiset contain-
ing at most M GF(q) symbols. 46

4–4 Removing a symbol from memory at random index R1 < L by over-
writing it with the symbol at index L− 1. 47

4–5 Circuit for the Remove routine. 48

4–6 Adding k instances of a symbol to the memory, the equivalent of the
S ← S ∪ { k instances of αj} operation in the Add routine. 49

4–7 Circuit for the part of the Add routine responsible for computing the
number of symbols to add. 50

4–8 Circuit for the Sample routine as implemented for AMSA-128. 52

- vii -

4–9 The finite state machine controlling the computation in the variable
node. 53

4–10 Circuit representation of the check node computation. 55

4–11 The edge of the Tanner graph connecting variable node i (V N i) and
check-node j (CN j). 56

4–12 The flood scheduling method where donei is the signal that all variable
nodes that send messages to check node i (CNi) have completed
their computation. 56

4–13 The layered decoding method where donei is the signal that all variable
nodes that send messages to check node i (CNi) have completed
their computation. 57

4–14 The FPGA chip floor plan after the synthesis, and place and route of
the GF(256) AMSA-512 fully-parallel decoder. 59

4–15 Schematic representation of the scenarios in Table 4–4 and the modi-
fications they make to the memory. 61

4–16 Architecture of SRAM that can perform any of the scenarios in Table
4–4 in one cycle. 62

5–1 Frame error rate performance of the AMSA algorithm 65

5–2 Throughput of the FPGA implementation and estimated throughput
for the ASIC implementation of the AMSA algorithm, at clock fre-
quency f = 108 MHz. 67

5–3 Settling curves for the GF(64) and GF(256) versions of the (192,96)
code. 68

5–4 The impact of using the efficient quantization method on the perfor-
mance. 70

5–5 The impact of using the efficient quantization method on the average
number of decoding cycles. 71

5–6 The impact of using the accelerated convergence Add routine on the
average number of decoding cycles. 73

- viii -

5–7 The impact of using the accelerated convergence Add routine on the
performance. 74

5–8 Circuit for computing the term lα + cAA(t) in the accelerated conver-
gence Add routine. 75

- ix -

LIST OF TABLES
Table page

2–1 Comparison of implementations of GF(q) LDPC decoders in literature 23

3–1 Equivalence of operations on a pmf and a multiset representation of a
pmf . 26

3–2 The number of operations required and run-time complexity for fully-
parallel implementations of the AMSA algorithm 37

3–3 Summary of space complexity for AMSA 38

4–1 Comparison of GF(64) AMSA-128 and GF(256) AMSA-512 fully-parallel
decoders . 43

4–2 Computations corresponding to each state 54

4–3 Summary of the hardware resources used by the fully-parallel GF(64)
AMSA-128 and GF(256) AMSA-512 fully-parallel decoders on Altera
Stratix IV GX EP4SGX230. Note that these results are after place
and route. 58

4–4 Possible scenarios based on decisions made in Add and Remove routines 61

- x -

Chapter 1

Introduction

Introduced in 1962 by Gallager [1] and rediscovered by MacKay three decades

later [2], low-density parity-check (LDPC) codes are linear error-correcting block

codes built using sparse bipartite graphs.

LDPC codes are widely recognized for the channel capacity-approaching per-

formance [2, 3, 4] and the high degree of parallelism in decoding operations. These

properties led to the inclusion of LDPC codes in multiple communication standards

like DVB-S2 (satellite broadband) [5], ITU-T G.hn (networking over power lines,

phone lines, and coaxial cable) [6], IEEE 802.3an (10GBase-T Ethernet) [7], IEEE

802.11n-2009 (Wi-Fi) [8], IEEE 802.16e (WiMAX) [9], and others. Additionally,

LDPC codes found their use in storage systems [10, 11].

Non-binary LDPC codes have been shown to have better resilience against burst

errors [11] and mixed types of noise and interference [12], are better suited for higher-

order modulation, and provide a considerable performance boost to medium and

short length codes. Because of these properties non-binary LDPC codes were studied

- 1 -

1.0.

within DAVINCI project which aims at further reducing the gap between state-of-

the-art performance of practical codes and Shannon capacity [13, 14]. The non-binary

LDPC codes used in this work were designed under the auspices of this project.

The performance improvements associated with the generalization of LDPC

codes to non-binary GF(q) fields came at a cost. The complexity of the Sum-Product

Algorithm (SPA) under GF(q) becomes O(q2), which limits the feasibility of non-

binary decoders to lower-order GF(q) fields. There have been multiple attempts at

tackling the complexity problem with algorithms like FFT-SPA [15], Log-SPA [16],

and Extended Min-Sum [17] (EMS) but the complexity remains high and a fully-

parallel implementation of these decoders is not practical. For example, it has been

reported in [18] about an LDPC decoder implementation for a GF(64) (192,96) (2,4)-

regular code with a complexity of O(nm
√
nm) where nm < q and a throughput of 3.8

Mbit/s.

Stochastic decoding for LDPC codes was introduced in [19] as a way of reducing

hardware complexity [20] while matching and even improving on the performance of

reference algorithms like SPA in both binary [19, 21, 22] and non-binary [23] cases. In

stochastic decoding, instead of the probabilities of symbols actual symbols are sent as

messages with the probabilities being encoded in the statistics of the stream. Despite

the implementation advantages of non-binary stochastic decoders compared to the

previously reported decoders, designing a fully-parallel decoder remains challenging,

especially for high order fields GF(q ≥ 64).

In order to address the problems mentioned above, this thesis proposes a new

stochastic decoding algorithm, an architecture, and a fully-parallel implementation

of a decoder for practical dv = 2 LDPC codes over GF(64) and GF(256). This

2

1.1. Contributions of this Work

algorithm considerably reduces the complexity of the computations performed in the

variable nodes (VNs) while inheriting the benefits of very simple check nodes (CNs)

and interleaver circuit [20, 24].

Another issue that affects both binary and non-binary LDPC codes is the so-

called “error floor” - a degradation of performance in the high signal-to-noise ratio

(SNR) region [25]. To tackle this problem, this work successfully extends the rede-

coding technique [22] to non-binary codes. Redecoding is a technique, introduced

originally for relaxed half-stochastic (RHS) decoding of binary LDPC codes, that im-

proves bit-error-rate (BER) performance and lowers error floors by making multiple

decoding attempts on codewords that fail to decode initially.

1.1 Contributions of this Work

This work proposes a new stochastic decoding algorithm for non-binary LDPC

codes with dv = 2. The algorithm is called Adaptive Multiset Stochastic Algorithm

(AMSA) and reduces the run-time complexity of one decoding iteration to O(q) for

implementations using regular memory, and to O(1) with a custom SRAM architec-

ture.

We also propose a method of accelerating the convergence of the decoder while

improving the BER performance by using a proportional-integral strategy in the

variable node update. This allows to reduce the average number of decoding cycles

required for the AMSA-256 GF(64) decoder at 2.4 dB by 27%. Note that this method

is applicable for all configurations of the AMSA decoder including the GF(64) and

GF(256) implementations.

3

1.2. Outline

Furthermore, we propose a fully-parallel architecture for AMSA which we apply

to two practical codes from the DAVINCI project [13, 14]. The decoders achieve

clock frequencies of 108 MHz and a throughput of 65 Mbit/s on FPGA and 698

Mbit/s on ASIC at an SNR of 2.4 dB, which are, to the best of our knowledge,

the highest reported throughput for these codes. We show that AMSA decoder

architecture scales gracefully with the order of the field q. The length of the memory

blocks scales with O(q) while the width of the memory blocks, the number of wires

in the decoder, the length of the registers, and the size of control logic scale with

O(log q). To the best of our knowledge, these are the first fully-parallel non-binary

LDPC decoders for GF(64) and GF(256) presented in the literature.

Finally, we design a suitable SRAM architecture for the ASIC implementation

of the AMSA decoder that can write a single value in multiple locations in one write

cycle. This architecture reduces the run-time complexity of a decoding cycle of the

fully-parallel AMSA decoder from O(q) to O(1). On FPGA this operation becomes

O(q), still a considerable improvement over the current O(q2) algorithms.

1.2 Outline

A background on LDPC decoding and relevant topics is given in Chapter 2. For

the full discussion of the Adaptive Multiset Stochastic Algorithm and the hardware

implementation see Chapters 3 and 4, respectively. Chapter 5 is concerned with

the analysis of the simulation results. Chapter 6 concludes this thesis and proposes

several directions for future work.

4

Chapter 2

Background

This chapter is organized in three parts. The first part reviews iterative LDPC

decoding over GF(q) and the proposed algorithms. The second part focuses on

stochastic decoding and how it applies to non-binary LDPC decoding. The last part

compares the hardware implementations of non-binary LDPC decoders reported in

literature.

2.1 Iterative LDPC Decoding over GF(q)

2.1.1 The Sum-Product Algorithm

The Sum-Product Algorithm (SPA) was originally extended to non-binary LDPC

codes over GF(2p) by Davey and MacKay in [26]. The authors use a memoryless

binary symmetric channel (BSC) with additive noise of variance σ2 = 1. They define

the likelihood of received symbol xn being equal to a to be

fan :=

p∏
i=1

gaini

- 5 -

2.1. Iterative LDPC Decoding over GF(q)

for each a ∈ GF (2p) where gaini is the likelihood of the ith bit of xn to be equal to

the ith bit of a.

The set of of all symbols that participate in the parity check m are denoted by

N (m), and the set of parity checks that depend on symbol n is denoted by M(n).

The decoding problem is to find the most likely vector x such that Hx = z,

where z is the syndrome vector. The two values qamn and ramn are associated to each

non-binary value hmn found in the parity check matrix. The first one, qamn, is the

probability that symbol n of x is equal to a, given the outputs of all checks except the

one corresponding to m. Similarly, ramn is the probability of parity check m being

satisfied by making symbol n of x equal to a, given the probabilities qamn′ where

n′ ∈ N (m).

As presented by Davey and MacKay, the Sum-Product Algorithm for GF(q)

consists of the following steps:

1. Initialization

Quantities qamn are initialized to fan .

2. Update ramn

The new ramn values are computed:

ramn =
∑

x′:x′n=a

Pr (zm | x′)
∏

j∈N (m)\n

q
x′j
mj (2.1)

where Pr (zm | x′) is 1 if x′ satisfies the parity check m and 0 otherwise.

3. Update qamn

For each m and n and for α ∈ GF (q) the update is done as follows:

qamn = αmnf
a
n

∏
j∈M(n)\m

rajn (2.2)

6

2.1. Iterative LDPC Decoding over GF(q)

where αmn is a normalization factor chosen such that
∑q

a=1 q
a
mn = 1.

4. Tentative decoding

The symbols of the tentative codeword x̂ are computed:

x̂n = argmax
a
fan

∏
j∈M(n)

rajn (2.3)

If Hx̂ = z then x̂ is a valid codeword and decoding stops; otherwise, the

decoding continues. Failure is declared when a preset maximum number of

iterations is reached.

Davey and MacKay give the complexity of one decoding iteration as O(Ntq2) where

N is codeword length and t is the average column weight in matrix H.

After the publication of [26], a graph transformation and an alternative nota-

tion were introduced [15] aiming at a simpler presentation of the non-binary SPA

equations. The initial observation was that parity checks, corresponding to rows of

H, can be written as
dc∑
k=1

hk(x)ik(x) = 0 mod p(x)

where dc is the degree of the check, ik(x) are the codeword symbols, hk(x) are the as-

sociated non-zero values in matrix H, and p(x) is the primitive polynomial of GF(q).

The product hk(x)ik(x) performed under modulo p(x) is actually a permutation of

the message values passed between the variable and the check nodes. In this light,

the Tanner graph can be transformed by adding permutation nodes to each edge as

shown in Figure 2–1.

On the updated graph, the following notation is used for messages: {Vpv}v=1,...,dv

is the set of messages entering the a variable node of degree dv, {Uvp}v=1,...,dv are the

output messages for a variable node, {Upc}c=1,...,dc are the inputs for a check node,

7

2.1. Iterative LDPC Decoding over GF(q)

+

��� ��� ���= ==

+

��� ��� ���= ==

-

⊗
ik(x)

⊗ ⊗
Upc = ik(x)hk(x)I

IVpv

Vcp

/

	

Upv = ik(x)

���= variable node

permutation node

check node+

⊗

Figure 2–1: Tanner graph transformation by adding permutation nodes on the edges.

and {Vcp}c=1,...,dc are the outputs for a check node. The indexes show the direction

of the message, for example cp means that the message is originating from the check

node and aiming at the permutation node, and pv stands for the direction from the

permutation node to the variable node.

With this new notation the SPA algorithm can be rewritten like this:

1. Initialization

The decoder is initialized using the channel likelihoods L[i1, . . . , ip] =
∏p

l=1 l(il)

where l(il) = Pr(yl | bl = il) where bl is the lth bit of the symbol, and yl is the

corresponding noisy bit received.

2. Product step

The output messages are computed for a variable node of degree dv:

Utp = L
dv∏

v=1,v 6=t

Vpv (2.4)

where t = 1, . . . , dv and all the products are tensor dot products. Note that

after normalization all the Utp messages add up to 1. This step is equivalent

with Equation (2.2) in the Davey and MacKay notation.

8

2.1. Iterative LDPC Decoding over GF(q)

3. Permutation step

In the direction from the variable node to the check node, the permutation

operation is:

Upc[i1, . . . , ip] = Uvp[j1, . . . , jp] (2.5)

with (i1, . . . , ip) ∈ {0, 1}p and i(x) = h(x)j(x). In the reverse direction the

same principle applies, but h−1(x) is used.

4. Check step

When using as input permuted messages all the check nodes behave identi-

cally, allowing for the sum-product update to be written as a convolution of

probability densities:

Vtp = ~dc
c=1,c 6=tUpc (2.6)

where t = 1, . . . , dc. The convolution can also be expressed as a more recog-

nizable sum of products using the tensorial notation:

Vtp[it1 , . . . , itp] =
∑

{ic(x)}c6=t

dc∏
c=1,c 6=t

Upc[ic1 , . . . , icp]× 1I∑dc
c=1 ic(x)=0 (2.7)

The indicator function 1I∑dc
c=1 ic(x)=0 is 1 when the condition

∑dc
c=1 ic(x) = 0 is

satisfied and 0 otherwise. Note that this indicator function is equivalent to the

Pr (zm | x′) term in Equation (2.1).

2.1.2 The FFT-SPA Algorithm

The complexity of the check node computation in Equations (2.1), (2.6), and

(2.7) is O(dcq
2) which motivated the search for a reduced complexity alternative.

The idea of performing this computation in the frequency domain was proposed in

[27, 28] and expanded in [29, 11].

9

2.1. Iterative LDPC Decoding over GF(q)

+

��� ��� ���= ==

⊗⊗ ⊗
Upc6

6Vpv

Vcp

?

?

Uvp

F F F

Figure 2–2: Tanner graph with the check node computation performed in the fre-
quency domain over GF(q).

In frequency domain the convolution from Equation (2.6) becomes a product:

Vtp = F−1
(

dc∏
c=1,c 6=t

F(Upc)

)
(2.8)

where t = 1, . . . , dc. The complexity of this product is reduced to O(dcpq) for GF(2p).

This concept is illustrated in Figure 2–2 by showing the Fourier transform nodes in

the Tanner graph.

It was shown in [30] that the Fourier transform over GF(q) reduces to a Hadamard

transform and that F(U) = UHm where U is a message vector and Hm is the appro-

priately sized Hadamard matrix. Since matrix Hm contains only 1 and -1 values, the

UHm product can be performed using additions only. It was reported in [11] that, in

addition to the frequency domain transformation used here, by using a logarithmic

representation to transform products into sums, the authors were able to implement

a full decoder by using only addition and subtraction operations. The next section

describes how SPA computations can be carried out in the logarithm domain.

10

2.1. Iterative LDPC Decoding over GF(q)

2.1.3 The Log-SPA Algorithm

Logarithm domain SPA decoding was first introduced for the binary case in [16]

and then extended to GF(q) in [31]. There are two main benefits stemming from the

application of logarithm domain computations in SPA. Firstly, multiplications are

transformed to additions. Secondly, logarithm domain representations are affected

less by quantization in fixed-point realizations [32, 33].

In [31] Wymeersch et al. use the notion of a Log Likelihood Ratio Vector (LLRV)

defined for a random variable v from GF(q) as

L(v) = [L(v = α1) . . . L(v = αq−1)]
T

where

L(v = αi) = log
Pr(v = αi)

Pr(v = 0)
.

They denote by L(m → n) an LLRV message sent from check node m to variable

node n, and by L(m← n) an LLRV message sent from variable n to check node m.

Using this notation, the logarithm domain SPA is performed in the following steps:

1. Demapping and initialization

Similarly to previous variations of SPA, the first step is to initialize the decoder

using the channel likelihoods as follows

L(m← n) = Lch(cn)

L(m→ n) = 0

where Lch(cn) is the LLRV for the nth codeword symbol and is calculated

according to the channel model.

2. Tentative decoding

11

2.1. Iterative LDPC Decoding over GF(q)

The a posteriori LLRVs are computed for all cn, 1 ≤ n ≤ N :

Lpost(cn) = Lch(cn) +
∑

j∈M(n)

L(j → n) (2.9)

where N is the codeword length and M(n) has the same meaning as defined

in Section 2.1.1. From each LLRV the most likely symbol is chosen and if all

the checks are satisfied the decoding is stopped.

3. Horizontal step

The messages from variable node n to check node m are computed by the

following equation:

L(m← n) = Lch(cn) +
∑

j∈M(n)\m

L(j → n) (2.10)

4. Vertical step

For each check node m and adjacent varaible node nm,k two GF(q) random

variables are introduced:

σm,nm,l =
∑
j≤l

hm,nm,jcnm,j

ρm,nm,l =
∑
j≥l

hm,nm,jcnm,j

which are used to compute the messages from the check node m to each of the

the variable nodes nm,k:

L(m→ nm,k) = L
(
h−1m,nm,kσm,nm,k−1

+ h−1m,nm,kρm,nm,k+1

)
(2.11)

where 1 ≤ m ≤ M , n ∈ N (m), hm,n are the non-zero entries in the parity

check matrix corresponding to variable node n and check node m.

12

2.1. Iterative LDPC Decoding over GF(q)

Finally, note that Log-SPA is equivalent to SPA in terms of performance and com-

putation complexity.

2.1.4 The Extended Min-Sum Algorithm

The Extended Min-Sum (EMS) algorithm was introduced in [15] as a way of

reducing the complexity of the generalized Min-Sum Algorithm (MSA) over GF(q)

and, more specifically, the complexity of the check node computation. It uses a loga-

rithm domain representation for its messages called log-density-ratio (LDR) defined

for z ∈ GF (q) as

L(z) = [L[0] . . . L[q − 1]]T

where

L[i] = log
Pr(z = αi)

Pr(z = α0)

and αi are GF(q) symbols.

In EMS, the size of a message is decreased from q to nm ≤ q; additionally, the

values in the message vectors are kept in sorted order. The reduction is obtained by

discarding the q − nm smaller LDR values and replacing them by a quantity γ. For

example given a message A represented by its LDR vector of length q

A = [A[0] . . . A[q − 1]]T

with likelihoods A[i] in decreasing order, the corresponding reduced message B is

B = [A[0] . . . A[nm − 1]γA]T

13

2.1. Iterative LDPC Decoding over GF(q)

where γA ≤ A[nm − 1] and compensates for the discarded values. For practical

purposes γA = A[m] − Offset as given in [17] along with the derivations and the

heuristics for optimizing Offset.

For messages Vcp and Uvp (see Figure 2–1) the additional vectors βVcp and βUvp

are defined such that the kth largest values in Vcp and Uvp are associated with the

GF(q) symbols found at βVcp [k] and βUvp [k] respectively.

The EMS algorithm for parameter nm ≤ q can be described in the following

steps:

1. Initialization

The {Uvpi}i=0,...,dv−1 messages for all variable nodes are initialized with the nm

largest values of the corresponding LLR vectors obtained from the channel.

2. Variable node update

Let V and I be two input messages for a variable node, and let U be the output

message to be computed, with βV , βI , and βU being the corresponding index

vectors. The variable node computation uses a temporary vector T :

T [k] = V [k] + Y (2.12)

T [nm + k] = γV + I[k] (2.13)

where

Y =

I[l] if βI [l] = βV [k]

γI if βI [l] /∈ βV

and k, l = 0, . . . , nm − 1. The output U consists of the largest nm values in T .

3. Permutation step

14

2.1. Iterative LDPC Decoding over GF(q)

The messages are permuted according to the non-zero values from the parity

check matrix. In the case of EMS, the permutation is done on the index vectors:

βUpic [k] = hiβUvpi [k] (2.14)

where hi is the corresponding non-zero value from the parity check matrix and

k = 0, . . . , nm − 1. The reverse permutation is computed similarly but using

h−1i .

4. Check node update

Let U and I be two input messages and V an output message for the check

node, and let βU , βI , βV be the associated index vectors. The elements of the

message vector V are obtained as follows:

V [i] = max
S(βV [i])

(U [j] + I[p]) (2.15)

where S(βV [i]) is the set of all possible symbol combinations that satisfy the

parity check equation βV [i]⊕ βU [j]⊕ βI [p] = 0 for i, j, p = 0, . . . , nm − 1.

5. Post-processing

In order to avoid the convergence of the messages to the largest value, a post-

processing step is required where the smallest value in a message is subtracted

from the rest of the values:

Uvpi [k] = Uvpi [k]− Uvpi [nm − 1] (2.16)

Vcpj [k] = Vcpj [k]− Vcpj [nm − 1] (2.17)

where i = 0, . . . , dv − 1, j = 0, . . . , dc − 1 and k = 0, . . . , nm − 1.

The complexity of the EMS algorithm is O(nm log nm) for parameter nm ≤ q.

15

2.2. Stochastic LDPC Decoding over GF(q)

2.2 Stochastic LDPC Decoding over GF(q)

Stochastic decoding is inspired by the technique of stochastic computing [34]

where quantities are represented as Bernoulli sequences of bits and the information

is conveyed through the statistics of the stream. This stream representation allows

for complex computations to be implemented with simple hardware, and reduces

the number of interconnecting wires required. The result of these reductions in

complexity are circuits that can sustain higher clock rates [34].

The following sections show how stochastic decoding applies to the problem of

decoding non-binary LDPC codes.

2.2.1 Stochastic Representation of Probabilities

A stochastic stream of bits can be used to represent a probability. For ex-

ample, the probability p = 0.461538462 can be represented by the stream s1 =

0101001011010 . . . corresponding to p = n1

nt
= 6

13
= 0.461538462 where n1 is the

number of times 1 was observed and nt is the total number of received bits. Note

that the order of the bits in the stream is not important and that all permutations

of the bits in the stream are alternative representations of p.

The concept can be extended to the non-binary case where a stochastic stream

of symbols can be used to represent the distribution of probabilities of the symbols.

Let α, β, γ, δ be the four possible symbols in GF(4). The non-binary stream snb =

γβααγβδαγααγ . . . is equivalent to the following distribution of probabilities:

pα =
5

12
= 0.41(6), pβ =

2

12
= 0.16(6), pγ =

4

12
= 0.33(3), pδ =

1

12
= 0.08(3)

16

2.2. Stochastic LDPC Decoding over GF(q)

The distributions created this way are always normalized because
∑

x∈GF (q) nx = nt

where nx is the number or times symbol x has been observed and nt is the total

number of symbols.

2.2.2 Messages in Stochastic Decoding Algorithms

It is important to understand the difference in the nature of the messages in

SPA or MSA, and the ones used in stochastic decoding. In stochastic decoding

a codeword symbol x can be seen as a random variable defined on GF(q), and a

message is symbol x itself [19]. The probability distribution associated with x can be

inferred from statistical properties of the stochastic stream as shown in the previous

section. In contrast, in SPA and MSA a message is an expression of the distribution

of probabilities associated with x, a probability mass function (pmf). It can be

represented as a collection of probabilities as done in Section 2.1.1, or as a collection

of logarithm-domain likelihoods as in Section 2.1.3. In MSA and SPA messages are

vectors of length q, while in EMS the length is reduced to nm ≤ q (see Section 2.1.4).

The amount of information needed to represent an SPA or MSA message is

qw bits (or nmw bits for EMS) where w is the number of bits required to store

each probability or likelihood. The number of bits needed to represent a stochastic

message is log q. As it can be seen, the stochastic messages are considerably more

compact than their SPA, MSA, and even EMS counterparts.

The small size of the stochastic message brings two benefits. Firstly, it reduces

the hardware complexity of the non-binary decoders both in the number of intercon-

nection wires and in the processing units themselves [20]. Secondly, shorter messages

improve the average throughput when the received vector is close to a codeword and

17

2.2. Stochastic LDPC Decoding over GF(q)

few cycles are enough for convergence. With alternative approaches, even if one it-

eration is required, larger messages have to be passed between the nodes resulting in

reduced throughput.

It is also important to point out the difference between an SPA, MSA, or EMS

decoding iteration and a stochastic decoding iteration. In the former case during one

iteration the nodes exchange full pmf messages, while in the stochastic case only one

symbol is exchanged. To emphasize this difference, the stochastic decoding iteration

is referred to as a decoding cycle (DC) [35].

Finally, SPA, MSA, and EMS decoders follow a deterministic trajectory, and

when a local optimum is reached it results in decoding failure. Stochastic decoders,

on the other hand, follow stochastic trajectories, meaning that repeating the decoding

process can yield an alternative path that avoids the local optimum. This idea was

exploited in [23] for binary decoders with a method called redecoding, which will be

discussed in detail later.

2.2.3 Stochastic Decoding Over GF(q)

Stochastic decoding was proposed in [19] for the binary case. Early applications

of the technique had limited decoding performance [21, 36]. The first successful

application of stochastic decoding for LDPC codes was reported in [35], followed by

a fully parallel decoder for binary LDPC codes [37].

The technique was extended to non-binary LDPC codes in [24] and consists of

the following steps:

1. Initialization

The {Uvpi}i=0,...,dv−1 messages are initialized with the initial likelihood values

according to the channel model.

18

2.2. Stochastic LDPC Decoding over GF(q)

2. Variable node update

Given the variable node inputs Viv, the output messages Uvp are computed:

Uvp(t) =

a if Viv = a for all i 6= p

ξ otherwise

(2.18)

where ξ is a random sample generated from the Uvp(t) statistics.

3. Permutation step

The permutation operation is the same as in Equation (2.5).

4. Check node computation

The stochastic check node was initially proposed in [19] for the binary case.

The non-binary check node output messages for a given edge p is computed by

summing the input messages from all edges except p itself:

Vcp(t) =
dc∑

i=1,i 6=p

Uic(t) (2.19)

where the sum is under GF(q).

A common problem for the stochastic decoders is latching, the undesired scenario

when a group of nodes form a cycle and lock into a state of reduced or no switching

resulting in poor bit-error-rate (BER) performance[35, 21]. Two solutions to latching

are proposed in [35]. Firstly, edge memories (EM) and tracking forecast memories

(TFM) [37] are introduced on the edges between the nodes in order to randomly

reorder the symbols in the streams and thus break any correlation. Secondly, the

Noise-Dependent Scaling (NDS) technique is used to increase switching activity.

19

2.2. Stochastic LDPC Decoding over GF(q)

2.2.4 Relaxed Half-Stochastic Decoding Over GF(q)

The Relaxed Half-Stocastic (RHS) decoding algorithm for LDPC codes was

proposed in [22] and represents a combination of SPA and stochastic decoding tech-

niques. The algorithm uses successive relaxation to convert stochastic streams into

LLR values. In fact, an RHS decoder can be seen as a hybrid decoder operating in

both LLR and stochastic domains. Structurally, the difference between an RHS and

a stochastic decoder is the variable node, with the interleaver and the check nodes

being identical.

In the non-binary version, Tracking Forecast Memories [37] are used to store the

probabilities associated with the corresponding stochastic streams. For an incoming

symbol x ∈ GF (q) the memories are updated according to the following rule:

PMFt[i] =

(1− β)PMFt−1[i] + β if i = x

(1− β)PMFt−1[i] otherwise

(2.20)

for all i ∈ GF (q) where PMFt[i] is the probability of x being equal to symbol i at

time t, and β ≤ 1 is the relaxation paramter.

The RHS algorithm was successfully generalized for GF(q) and was shown in [23]

to have a performance close to that of SPA as shown in Figure 2–3. Additionally, an

optimized version of RHS called RD2 was introduced in [38] for the case when dv = 2.

It eliminates the need to perform term-by-term pmf multiplications in Equation 2.4

by updating the product of the pmfs directly as follows:

PMFt[i] =

(1− β)PMFt−1[i] + βL[i] if i = x

(1− β)PMFt−1[i] otherwise

(2.21)

20

2.2. Stochastic LDPC Decoding over GF(q)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 1.5 2 2.5 3 3.5 4

F
ra

m
e
 E

rr
o
r

R
a
te

Eb/N0 (dB)

RHS, maxDC = 10
6
, β = 1/128

RHS, maxDC = 10
4
, β = 1/128

SPA, maxitrs = 10
6

SPA, maxitrs = 10
3

Figure 2–3: Comparison of SPA and RHS algorithm for a GF(64) (2,4)-regular code
with n = 192 and k = 96 on the AWGN channel. The SPA results are shown for
106 and 103 maximum iterations while the RHS results are shown for 106 and 104

maximum decoding cycles.

where L[i] is the likelihood of symbol i.

2.2.5 Redecoding

It has been shown in [22] that stochastic decoders are capable of decoding some

of the frames that initially failed to decode. The method involves restarting the

decoder with the same received soft-values vector but using a different random seed.

This technique is called redecoding, and was shown to improve the BER performance

21

2.3. Architectures and Implementations of GF(q) LDPC Decoders

and lower the error floors. In [39] redecoding was generalized to dithered decoding

algorithms, which can be applied to non-stochastic decoders as well.

2.3 Architectures and Implementations of GF(q) LDPC De-
coders

In the case of GF(q) LDPC decoders there are some architectures proposed in

the literature but there are few implementations (see Table 2–1). In [40] Spagnol

et al. propose a serial architecture and FPGA implementation for a GF(8) LDPC

decoder. In [41] a partially-parallel implementation of the EMS algorithm is given

for GF(4). In [42] an architecture for decoding non-binary quasi-cyclic LDPC codes

is proposed along with an ASIC implementation for a (620, 310) GF(32) code.

An architecture that works for higher order fields GF(q ≥ 64) is presented

without implementation in [17]. An optimized version of this architecture with an

FPGA implementation is provided in [18].

22

2.3. Architectures and Implementations of GF(q) LDPC Decoders

Table 2–1: Comparison of implementations of GF(q) LDPC decoders in literature

Implementation [41] [40] [42] [18]

Galois Field GF(4) GF(8) GF(32) GF(64)

Code
N = 486
K = 972

N = 720
N = 620
K = 310

N = 192
K = 96

(2,4)-regular

Type of architecture
partially-
parallel

serial
partially-
parallel

serial

Max. decoding iterations
not

reported
15 10 8

Platform FPGA FPGA ASIC FPGA

Frequency 131.4 MHz 99.73 MHz 200 MHz 75 MHz

Throughput 50 Mbit/s 1.09 Mbit/s 60 Mbit/s 3.8 Mbit/s

23

Chapter 3

The Adaptive Multiset Stochastic Algorithm

In this chapter we introduce the Adaptive Multiset Stochastic (AMS) algorithm.

First, we identify a data structure that allows for efficient storage, updating, and

sampling of probability mass functions (pmf). Then, we define three operations on

this data structure and show how they can be used for stochastic decoding.

Note that AMS algorithm proposes a new variable node computation while doing

the permutation and check node updates as shown in Equation (2.5) and Equation

(2.19), respectively. Therefore, the following sections will focus on the variable node

computation.

3.1 Multiset Representation of a Probability Mass Function

As discussed in Chapter 2, in non-binary decoding, a GF(q) symbol si can

be seen as a random variable and the associated pmf is a q-tuple of probabilities

(p1, p2, . . . , pq) where pj = P (s = αj) and αj ∈ GF (q). Note that the pmf is

normalized, i.e.
∑q

j=1 pj = 1. In this section we show that multisets can be used as

approximate representations for such pmfs.

Definition Let S be a multiset containing symbols from GF(q).

- 24 -

3.1. Multiset Representation of a Probability Mass Function

A multiset is a generalization of the concept of a set that allows for multiple

instances of the same element. The cardinality of a multiset S is denoted by |S| and

represents the total number of instances of elements.

Definition Let fj =
nj
|S| be the probability of finding GF(q) symbol αj in S, where

nj is the number of times αj appears in S.

Definition Let s be a GF(q) symbol and let the pmf associated with it be defined

by the probabilities pj = Pr(s = αj).

Proposition 3.1.1 There exists a multiset S such that |pj − fj| < ε for all ε > 0

and 1 ≤ j ≤ q.

Proof Let n be a large integer, then we can set nj = bnpjc. Then

fj =
bnpjc
n

=
npj − frac(npj)

n
= pj −

frac(npj)

n

where frac(x) is the fractional part of x. Observe that 0 ≤ frac(npj) ≤ 1 and that it

is always possible to find a large enough value for n such that

frac(npj)

n
< ε.

So it is always possible to build a multiset S that satisfies the condition.

As it is shown in Table 3–1, a multiset representation of a pmf allows for the

same operations as a regular pmf. In order to increase a probability pα by ∆1, one

or more instances of symbol α are added to S. The exact number of instances to

add, k1, can be calculated from the following equation:

nα
|S|

+ ∆1 =
nα + k1
|S|+ k1

25

3.1. Multiset Representation of a Probability Mass Function

Table 3–1: Equivalence of operations on a pmf and a multiset representation of a
pmf

pmf multiset representation of pmf

Increase
probability

pα ← pα + ∆1 S ← S ∪ {k1 instances of α}

Decrease
probability

pα ← pα −∆2 S ← S \ {k2 instances of α}

Normalization pi ← pi∑q
j=1 pj

for all i Not needed. S is implicitly normalized.

Sampling
ci ←

∑i
j=1 pj s← a random symbol from S.

r ← U(0, 1)
s← argmin

i
|ci − r|

and solving for k1 gives:

k1 =
∆1|S|

1− nα
|S| −∆1

Note that only an integer number of symbols can be added to S, either bk1c or dk1e,

depending on the desired strategy. In order to decrease pα by ∆2 a number k2 of α

symbols need to be removed from S, and is calculated similarly.

The steps required in order to sample a normalized pmf are presented in Table

3–1 and include calculating a cumulative density function (CDF) shown as ci, and

finding i where ci is closest in value to r, a uniform random variable between 0 and 1.

In contrast, sampling a multiset representation of a pmf is trivial, and is equivalent

to picking a random symbol from S.

Finally, normalization is not needed when using a multiset representation be-

cause the probabilities are represented as ratios that sum up to 1 at all times:

q∑
j

nj
n

=

∑q
j nj

n
=
n

n
= 1

26

3.2. Algorithm Definition and Analysis

As it can be seen from Proposition 3.1.1 and Table 3–1, a multiset can be used as

an approximate representation of a probability mass function that has the advantage

of being simple to sample and not requiring normalization. The following sections

will show how multisets can be used for stochastic decoding of regular LDPC codes

with dv = 2.

3.2 Algorithm Definition and Analysis

As it was shown in Section 2.2.4, the RHS algorithm allows to perform stochastic

decoding using SPA nodes. This is achieved by using pmfs to keep track of changes

in the statistics of the stochastic streams incoming to the variable node, or, as done

in [38] for the dv = 2 case, to keep track of changes in the statistics of the stochastic

streams outgoing from the variable node. There are two disadvantages to using pmfs

for these purposes. Firstly, the update Equations (2.20) and (2.21) require that q

probabilities are recalculated at each update, where q is the number of symbols in

GF(q). Secondly, sampling such a pmf takes up to q steps and requires computing

or updating a cumulative density function.

The Adaptive Multiset Stochastic algorithm proposed in this work, addresses

these problems by using multisets instead of pmfs. Similar to the algorithm in [38],

in the case of dv = 2 codes it allows to generate the variable node outputs without

explicitly performing the product in Equation (2.4), but by associating multisets

to edges and updating them. Figure 3–1 gives the structure of a variable node of

degree two with its input symbols α0 and α1, which, together with the corresponding

likelihoods l0 and l1, are used to update the multisets S0 and S1. Note that the

output symbols β0 is a sample from S1 and output symbols β1 is a sample from S0.

27

3.2. Algorithm Definition and Analysis

S0 S1

LCH

� ^
l0 l1

�]

� ^

α0 α1

β0 β1

Figure 3–1: Schematic representation of a variable node of degree dv = 2 with the
multisets S0 and S1, and the channel likelihoods table LCH . The incoming messages
are α0 and α1, and the outgoing messages are β0 and β1.

In the context of this configuration, we algorithmically define three routines

that operate on the multisets S0 and S1: the Add routine (Algorithm 1), the Remove

routine (Algorithm 2), the the Sample routine (Algorithm 3). Together these routines

constitute the Adaptive Multiset Stochastic algorithm.

3.2.1 The Add Routine

The Add routine updates a multiset S by adding zero or more instances of

incoming symbol α to it. If no symbols are added, obviously, the multiset S is

unchanged, but when one or more symbols are added the probability pα associated

with symbol α is increased while the probabilities of all other symbols are decreased.

The routine makes use of the floor operator because only an integer number of

symbols can be added to S. The fractional part is compared against the uniform

random variable R1 to decide weather or not an additional symbol should be added.

As it is shown in Proposition 3.2.1, the expected number of symbols added by this

routine is lα(M − |S|). The term M − |S| is the difference between the maximum

28

3.2. Algorithm Definition and Analysis

Algorithm 1: The Add routine of AMSA. S is the multiset to be added
to, M is the upper bound on |S|, α is the incoming symbol, lα is the
channel likelihood of symbol α.

Input: S, symbol α, lα
Output: S with zero one or more instances of symbol α added
R1 ← uniform random real value from interval (0, 1)1

x← lα · (M − |S|)2

if frac(x) ≥ R1 then3

k ← bxc+ 14

else5

k ← bxc6

end7

S ← S ∪ { k instances of α}8

capacity of S and its current size, and can be interpreted as the empty part of S, or

the spare capacity of S.

Proposition 3.2.1 For incoming symbol α, the expected number of symbols added

by the Add routine to S is lα(M − |S|).

Proof The Add routine is an experiment that can have two outcomes: bxc symbols

are added, or bxc+ 1 symbols are added, where x = lα(M −|S|). Using the notation

from Algorithm 1, the probabilities of the outcomes are given by:

Pr(k = bxc+ 1) = Pr(frac(x) ≥ R1) = frac(x)

Pr(k = bxc) = Pr(frac(x) < R1) = 1− frac(x)

29

3.2. Algorithm Definition and Analysis

The expected value of k is:

E(k) = bxc(1− frac(x)) + (bxc+ 1)frac(x)

= bxc − bxcfrac(x) + bxcfrac(x) + frac(x)

= bxc+ frac(x)

= x = lα(M − |S|)

Now let us examine what is the effect of adding k instances of symbol α to S

on pα, the probability of α according to S, and pβ, where β is a symbol from GF(q)

other than α. Before the addition we have pα(t) = nα
|S| and pβ(t) =

nβ
|S| , and after

addition:

pα(t+ 1) =
nα + k

|S|+ k

pβ(t+ 1) =
nβ
|S|+ k

Expressing pα(t+ 1) in terms of pα(t):

pα(t+ 1)

pα(t)
=
nα + k

|S|+ k
· |S|
nα

pα(t+ 1) = pα(t) · |S|
|S|+ k

· nα + k

nα

= pα(t) ·
(

1− k

|S|+ k

)
·
(

1 +
k

nα

)
= pα(t) ·

(
1− k

|S|+ k

)
+ pα(t)

(
1− k

|S|+ k

)
k

nα

= pα(t) ·
(

1− k

|S|+ k

)
+
nα
|S|

|S|
|S|+ k

k

nα

= pα(t) ·
(

1− k

|S|+ k

)
+

k

|S|+ k

30

3.2. Algorithm Definition and Analysis

And if we substitute k by its expected value lα(M − |S|) from Proposition 3.2.1:

pα(t+ 1) = pα(t) ·
(

1− lα(M − |S|)
|S|+ lα(M − |S|)

)
+

lα(M − |S|)
|S|+ lα(M − |S|)

Let us denote ωα = lα(M−|S|)
|S|+lα(M−|S|) , then the equation becomes:

pα(t+ 1) = pα(t) · (1− ωα) + ωα

Similarly, expressing pβ(t+ 1) in terms of pβ(t) we get:

pβ(t+ 1) = pα(t) · (1− ωα)

Now, we can write the update equation of the Add routine for the incoming

symbol α ∈ GF (q) as:

ps[t+ 1] =

(1− ωα) · ps[t] + ωα if s = α

(1− ωα) · ps[t] otherwise

(3.1)

where ps[t] is the probability of symbol s at time t. Note that this update maintains

the probabilities normalized, i.e.
∑

s∈GF (q) ps[t] = 1 for all t.

Equation (3.1) is recognizable as the RHS update from Equation (2.20) but

instead of using a constant term β it uses ωα, a function of the likelihood lα corre-

sponding to incoming symbol α.

This result is confirmed by experimental data. Figure 3–2 shows how the prob-

ability of the correct symbol evolves during the decoding process in an edge memory

using the non-binary RHS update from Equation (2.20) and AMSA as defined in this

section. At any given point in time, the difference between the two probabilities is

due to the fact that the multiset used by AMSA is only an approximation of a pmf.

31

3.2. Algorithm Definition and Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
ro

b
a
b
il
it

y
 o

f
c
o
rr

e
c
t

s
y
m

b
o
l

Iteration

Non-binary RHS

AMSA

Figure 3–2: Comparison of the non-binary RHS algorithm and AMSA by tracking
the probability of the correct symbol in an edge memory. The maximum size of the
multiset is M = 128.

3.2.2 The Remove Routine

The goal of the Remove routine is to uniformly and gradually remove symbols

from multiset S. The decision whether to remove a symbol or not is based on the

result of a probabilistic experiment of comparing the value of a uniform random

variable R2 from the interval [1,M] to |S|. As it is shown in Proposition 3.2.2, the

expected number of symbols removed by Remove is |S|
M

. Intuitively, that means that

when |S| is closer in value to M , i.e. S is close to maximum capacity, it is more likely

that a symbol will be removed, and as |S| approaches zero, i.e. S becomes empty, it

is less likely that a symbol will be removed. Note that the Remove routine enforces

32

3.2. Algorithm Definition and Analysis

Algorithm 2: The Remove routine of AMSA

Input: S
Output: S with possibly one symbol removed
R2 ← uniform random intger from interval [1,M]1

if R2 < |S| then2

S ← S \ {random symbol from S}3

end4

the lower bound 1 ≤ |S| on the cardinality of S, because the condition R2 < 1 is

never true.

Proposition 3.2.2 The expected number of symbols removed by the Remove routine

in one invocation is |S|
M

.

Proof Let r be the random variable associated with the number of symbols removed

by the Remove routine, then r ∈ {0, 1} because either one or zero symbols are

removed. The probabilities of the outcomes are given by:

Pr(r = 1) = Pr(R2 ≤ |S|) =
|S|
M

Pr(r = 0) = 1− |S|
M

The expected value of r is:

E(r) = 1 · |S|
M

+ 0 ·
(

1− |S|
M

)
=
|S|
M

Lemma 3.2.3 Let nα be the number of times symbol α appears in S, then the prob-

ability that the Remove routine removes symbol α is nα
M

.

33

3.2. Algorithm Definition and Analysis

Proof From Proposition 3.2.2, the probability of removing a symbol is |S|
M

. The

probability of finding symbol α is S is nα
|S| . The probability of removing a symbol α

is equal to the product of the above probabilities and is equal to nα
M

.

As it is shown in Proposition 3.2.4, Remove does not change the expected value

of the probabilities of the symbols in S. This means that by invoking the Add

and Remove routines, the expected values of the probabilities will be updated as in

Equation 3.1.

Proposition 3.2.4 Let pα(t) be the probability of symbol α in S, and let E(pα(t+1))

be the expected probability of the same symbol after the invocation of Remove, then

E(pα(t + 1)) = pα(t), i.e. the expected value of the probability is not changed by

Remove.

Proof Looking at a symbol α from S, the Remove routine is an experiment with

three outcomes: no symbol is removed, symbol α is removed, and another symbol

β 6= α is removed. Let poi be the probability of outcome i, then po1 = 1 − |S|
M

, and,

from Lemma 3.2.3, po2 = nα
M

, and, finally, po3 = |S|−nα
M

.

When no symbol is removed, the probability is unchanged, and equal to nα
|S| .

When α is removed, its new probability is nα−1
|S|−1 . Finally, when a symbol other than

34

3.3. Non-Binary LDPC Decoding with AMSA

Algorithm 3: The Sample routine of AMSA

Input: S
Output: A random symbol α from S
α← a random symbol from S1

α is removed, the probability of α is nα
|S|−1 . We can now compute the expected value:

E(pα(t+ 1)) =

(
1− |S|

M

)
nα
|S|

+
nα
M

nα − 1

|S| − 1
+
|S| − nα
M

nα
|S| − 1

=

(
1− |S|

M

)
nα
|S|

+
n2
α − nα + |S|nα − n2

α

M(|S| − 1)

=

(
1− |S|

M

)
nα
|S|

+
nα
M

=
nα
M

(
M − |S|
|S|

+ 1

)
=
nα
|S|

= pα(t)

3.2.3 The Sample Routine

The Sample routine is used to generate samples according to the probabilities

of the symbols in S. Unlike Add and Remove, this routine does not modify S. The

probability that the symbol returned by Sample is α is equal to pα, the probability

of finding α in S, and pα = nα
|S| , which is equivalent to sampling a pmf with the same

symbol probabilities.

3.3 Non-Binary LDPC Decoding with AMSA

As shown in Figure 3–1, for a variable node of degree two, AMSA uses two

multisets, S0 and S1, each associated with an edge. The Add and Remove routines

35

3.3. Non-Binary LDPC Decoding with AMSA

update the multisets, while the Sample routine generates the output symbols. The

steps of a decoding cycle using AMSA is given below:

1. Initialization

The decoding process starts when the soft-decision sequence y is received from

the channel. The decoder front-end uses y to compute, for each variable node,

a set of initial likelihoods lj for all symbols in GF(q) where j = 1, . . . , q. Ad-

ditionally, M samples are generated according to the likelihoods lj and added

to the multisets S0 and S1.

2. Variable node update

The processing of the variable node can be done in parallel. Keeping the

notation from Figure 3–1 it can be expressed with the following invocations of

the routines:

Remove(S0) Remove(S1)
Add(S0, α0, l0) Add(S1, α1, l1)
β1 ← Sample(S0) β0 ← Sample(S1)

Additionally, the variable node computes the belief argmax
i

li where i ∈ {0, 1},

and li is the likelihood of the input symbol αi.

3. Permutation step

The permutation operation is the same as in Equation (2.5).

4. Check node computation

The check node computation is done as in Equation (2.19).

5. Tentative decoding

If the beliefs computed in the variable nodes satisfy all the parity checks, de-

coding stops. Otherwise decoding continues with the next decoding cycle.

36

3.4. Complexity Analysis

Table 3–2: The number of operations required and run-time complexity for fully-
parallel implementations of the AMSA algorithm

Number of
operations

Run-time
complexity of a

fully-parallel
implementation

(regular memory)

Run-time
complexity of a

fully-parallel
implementation
(custom SRAM)

Add O(dvq) O(q) O(1)
Remove O(dv) O(1) O(1)
Sample O(dv) O(1) O(1)

Variable Node O(dvq) O(q) O(1)

Check Node O(dc) O(1) O(1)

Permutation O(1) O(1) O(1)

Belief O(dv) O(1) O(1)

Decoding continues until all the parity checks are satisfied, or until a maximum

preset number of decoding cycles is reached.

3.4 Complexity Analysis

This section summarizes the computational complexities for the variable node,

check node, and permutation operation within AMSA. It also discusses the impli-

cations of fully-parallel circuit implementations on the run-time complexity of the

decoder.

In the first column of Table 3–2 are presented the upper bounds on the number

of operations needed for each stage of the decoding process. Note that in the case

of the Add routine, the complexity is more intuitively O(dvM), but since M scales

linearly with q for all practical purposes, it was presented as O(dvq) to simplify

comparison with other results in the literature.

37

3.4. Complexity Analysis

Table 3–3: Summary of space complexity for AMSA

Space complexity
(bits)

Comments

Memories O(dvM log q+qw) dv edge memories and q w-bit likeli-
hoods memories

Variable Node logic O(logM) determined by size of memory indexes

Check Node O(1) no memory required

Permutation O(q log q) q × log q lookup table

The second column of the table gives the upper limit on the run-time of the algo-

rithm computations using regular memory, where by regular memory we understand

a memory unit that requires O(k) steps in order to write k values. This approach

was used for the FPGA implementation presented in Chapter 4. In the cases where

operations could be carried in parallel and implemented as such on hardware, the

corresponding reduction in complexity was noted. For instance, the Sample routine

is shown to require O(dv) operations because we have to execute it on each of the

dv edges of the variable node. However, in the FPGA implementation all dv edges

are instantiated and can execute the routine in parallel in O(1) time. Indeed, in this

FPGA implementation, all the edges of a variable node are sampled in parallel in 1

clock-cycle. Similarly, the rest of routines can be parallelized to reduce the run-time

complexity.

The third column provides the run-time complexities when using the custom

SRAM architecture (see Section 4.7.1), which is possible on ASIC platforms. In

this case the Add routine becomes O(1) allowing to perform all the variable node

computations also in O(1). This reduction in run-time complexity of AMSA results

in increased throughput of the decoder. See Section 5.2 for details.

38

3.5. Redecoding

Table 3–3 presents the memory space requirements for the AMSA algorithm.

Note that a GF(q) symbol is represented in hardware by log q bits and that the

multisets are implemented as memories, while w is a quantization parameter - the

number of bits used to represent probabilities.

This thesis provides the fully-parallel hardware implementations for a GF(64)

and a GF(256) decoder in FPGA. In fact, with AMSA, even higher order fields are

feasible like GF(512), as shown in Section 4.6. More details about fully-parallel

FPGA and ASIC implementations of the AMSA algorithm are given in Chapter 4.

3.5 Redecoding

As it can be seen from the description of the Add, Remove, and Sample routines,

they make use of three uniform random variables (R1 and R2). The use of random

variables during decoding is characteristic to stochastic decoding and makes the

process non-deterministic. It has been shown in [22] that if a stochastic decoder fails

to decode a codeword, it can succeed by trying to decode it again using different

seeds for the pseudo-random number generators.

Redecoding can be seen as a tradeoff mechanism between error-rate performance

and latency. A redecoding configuration has two parameters: the number of attempts

ra, and the maximum number of decoding cycles for each attempt maxDC . These

parameters can be changed at run-time making the AMS decoder suitable for variable

latency application.

Latency scales with the ra maxDC product and with 1/f where f is the working

frequency of the hardware implementation.

39

3.5. Redecoding

The technique of redecoding has been successfully extended to non-binary stochas-

tic decoding in this work in order to improve performance and remove the error floor.

The impact of redecoding on the performance can be observed in Figure 5–1.

40

Chapter 4

Circuit Implementation

In this chapter we look at two fully-parallel FPGA implementations of the

AMSA decoder. Let AMSA-M be a configuration of the AMSA algorithm, one

that uses multisets of maximum size M . The first decoder is GF(64) AMSA-128

meaning that it uses a GF(64) code and that parameter M is equal to 128. The sec-

ond implemented decoder is GF(256) AMSA-512, and as it will be shown in Section

4.6, its size confirms the complexity analysis done in Section 3.4.

Additionally, in Section 4.7.1, an optimized Static Random-Access Memory

(SRAM) architecture is proposed for ASIC implementations. It further reduces the

run-time complexity of a decoding cycle to O(1) while simplifying the control logic

of the decoder.

In what follows, GF(q) symbols are represented as log q bit words. Symbol

likelihood values lj are represented in fixed-point format. Note that lj are posi-

tive sub-unitary numbers, which in the case of w-bit quantization means that the

smallest non-zero value that can be represented is (0.0000 . . . 0001)2 = 2−w and the

largest value is (0.1111 . . . 111)2 =
∑w

k=1 2−k = 1 − 2−w. For details on the efficient

quantization scheme used in this implementation see Section 5.3.

- 41 -

4.2. Structure of fully-parallel decoders

Both the GF(64) and GF(256) DAVINCI codes used in this work are (192,96)

(2,4)-regular codes, meaning that there are 192 degree-two variable nodes and 96

degree-four check nodes. The GF(64) code has only 9 different non-zero values in its

parity-check matrix and the GF(256) code has only 4 distinct non-zero values in the

parity-check matrix.

The FPGA platform used for implementation is the EP4SGX230-KF40C2 chip

from the Altera Stratix IV GX family. It provides, among other things, 182,400

Adaptive Lookup Tables (ALUTs), 182,400 registers, 1,235 M9K memory blocks,

and 1,288 18x18-bit Digital Signal Processing (DSP) blocks. As it is shown in Table

4–3, these resources are more than sufficient for the fully-parallel implementation of

both GF(64) AMSA-128 and GF(256) AMSA-512 decoders.

4.1 Structure of fully-parallel decoders

The GF(64) AMSA-128 and the GF(256) AMSA-512 decoders will include 192

variable nodes, 96 check nodes, and 384 edges with an edge memory on each. Table

4–1 gives a more detailed comparison of the decoders. In the next sections, we will

present the implementation details of the main components of the AMSA decoders.

4.2 Variable Node

A degree-two variable node uses multisets S0 and S1 on its edges, and a likeli-

hoods table, as it was illustrated earlier in Figure 3–1. In a hardware implementation,

each of these is represented by a memory. Much of the AMSA variable node compu-

tation is, in fact, updating these memories depending on the input symbols and the

internal state of the node. From an architectural point of view, the variable node is

42

4.2. Variable Node

Table 4–1: Comparison of GF(64) AMSA-128 and GF(256) AMSA-512 fully-parallel
decoders

GF(64)
AMSA-128

GF(256)
AMSA-512

Variable Nodes 192 192

Check Nodes 96 96

Edge Memories 384 384

Permutation Blocks 1152 1152

Length of symbols 6 bits 8 bits

Length of memory indices 7 bits 9 bits

Memory size 128×6 bits 512×8 bits

Length of Random Number Generator 32 bits 32 bits

Quantization parameter, w 12 bits 12 bits

a state machine that controls the reading and writing operations to the memories.

The state machine is defined in Section 4.2.7.

4.2.1 Pseudo-Random Number Generator

The Add and Remove routines (Algorithms 1 and 2) make use of the uniform

random variables R1 and R2, respectively. The Sample routine also uses random

bits to select a random symbol from S. An efficient and practical way to generate

pseudo-random numbers is to use linear feedback shift registers (LFSR) that can

achieve a maximum sequence period of 2n − 1 where n is the length of the register

in bits.

Each variable node uses a 32-bit LFSR with the x31 + x21 + x + 1 feedback

polynomial, illustrated in Figure 4–1, that achieves the maximum-length sequence

of 232− 1 [43]. The uniform random variables Ri can be mapped to bit ranges of the

43

4.2. Variable Node

66

�

⊕ ⊕ ⊕--
-
?

012131

Figure 4–1: The 32-bit LFSR with the feedback taps corresponding to the polyno-
mial. The symbol ⊕ represents modulo 2 addition which is implemented with XOR
gates.

LFSR or mapped to bits in any other order. Several such mappings were considered

in this work, all of them having a negligible effect on the overall performance of the

decoder. Variable R1 is w-bit in length because it is used for comparisons with the

likelihood values. Variable R2 has a length of logM bits because it is used as an

index in memory arrays of length M . Similarly, Sample uses a random memory index

of logM bits to select a random element from the memory representing the multiset

S.

4.2.2 Hardware Representation of the Likelihoods Table

The likelihood values are computed from the channel soft sequence y and are

denoted throughout this work as lj where j = 1, . . . , q. Each likelihood, valued

between 0 and 1, is represented in fixed-point format using w bits.

As in the case of the edge memories shown below, the q likelihood values are

organized in a q×w bits dual-port memory. Within each variable node the Add and

the belief computation routines make use of the likelihood values. In both cases the

access is read-only. The only time the likelihood memory is written to is during the

initialization phase of the algorithm.

44

4.2. Variable Node

-

-

outA

outB

w

w

-

-

w

w

-

-

log q

log q
addrA

addrB

dataA

dataB

Likelihoods

q × w

Memory

bits-

-

writeA

writeB

Figure 4–2: The interface of a likelihoods memory corresponding to the probabilities
lj where j = 1, . . . , q. Values are represented using w bits.

4.2.3 Edge Memories - a Hardware Representation of the Mulitset S

As presented in Section 3.2, in AMSA, we associate multisets S0 and S1 with the

edges of a variable node. We also impose upper and lower bounds on the cardinality

of these multisets 1 ≤ |S| ≤M .

The hardware representation for a multiset is a memory array of length M . For

practical reasons and efficient utilization of memory resources M is chosen to be a

power of 2. On the Altera Stratix IV FPGA platform used in this work, the so-called

M9K memory blocks were used for this purpose. Each block has a capacity of 8192

bits with configurable dual read-write ports. Note that the space required to store

M = 128 GF(64) symbols is 128 log 64 = 768 bits, meaning that decoders with larger

M or q will fit in the same number of memory blocks.

For a length-n (dv, dc)-regular code, ndv such blocks will be instantiated in the

fully-parallel decoder. Both codes used in this work have 384 edges in the Tan-

ner graph, therefore we use 384 M9K memory blocks to represent the associated

multisets.

45

4.2. Variable Node

-

-

outA

outB

log q

log q

-

-

log q

log q

-

-

logM

logM
addrA

addrB

dataA

dataB

Edge

M × log q

Memory

bits-

-

writeA

writeB

Figure 4–3: The interface of an edge memory corresponding to a multiset containing
at most M symbols from GF(q).

4.2.4 Hardware Implementation of the Remove Routine

From the mathematical point of view, the Remove routine randomly removes a

symbol from the multiset S, which is an unordered collection. Additionally, as shown

in Proposition 3.2.4, it removes symbols uniformly, such that the expected value of

the probabilities of symbols in S does not change.

On the hardware implementation, we represent S with a memory of length M ,

which is implicitly an ordered collection. Normally, if the order of the elements had to

be preserved, removing an arbitrary element from the memory would imply shifting

up to M − 1 elements by one position to the left, which would take O(M) steps to

perform.

Fortunately, in AMSA we are not concerned with the order of the elements in the

memory, a property inherited from the unordered multisets. In this case, removing

an element can be achieved by overwriting it with the last element in sequence and

reducing the length of the sequence by one. This operation takes only O(1) steps.

46

4.2. Variable Node

R2 L− 1

�

0 M − 1

Figure 4–4: Removing a symbol from memory at random index R1 < L by overwrit-
ing it with the symbol at index L − 1 and, finally, decrementing L. Note that here
all indexes are zero-based.

Algorithm 4: The set of commands implementing the Remove routine.

R2 ← LFSR1

if R2 < L then2

MEM [R2]←MEM [L− 1]3

L← L− 14

end5

Note that, in Figure 4–4, L = |S| is the number of symbols in the multiset and

M − L is the size of the unused, or empty, segment of the memory. The hardware

implementation of the Remove routine from Algorithm 2 can be expressed as in

Algorithm 4, where MEM [i] represents the ith element in the memory array. Note

that it is not necessary to fetch from memory the value MEM [L − 1] each time

because it can be stored and updated in a register.

In terms of hardware, the routine is very simple to implement. The R2 < L

test is done by a logM -bit comparator which controls the read-write mode of the

edge memory. As shown in Figure 4–5, the index L is stored in a register and is

decremented if a symbol is removed. The last symbol in the sequence, the one at

index L− 1 and denoted by LastSymbol is also registered in order to avoid the need

to fetch its value from the memory before writing, and is updated according to the

47

4.2. Variable Node

-

R2

LFSR

-

L

<
Q

-

-

- addrA

dataA

Edge

Memory

writeA

Q

LastSymbol

Figure 4–5: Circuit for the Remove routine.

following rule:

LastSymbol =

α if k > r

LastSymbol if k = r

MEM [L− 1] if k < r

where k is the number of instances of symbol α added by the Add routine, and r is

the number of symbols removed by the Remove routine. Note that in the last case,

since r is at most one, k is zero, meaning that no symbols need to be added. This

allows for the memory to be read to update LastSymbol.

4.2.5 Hardware Implementation of the Add Routine

Following the same conventions and notation, a multiset S with a maximum

cardinality of M but containing L < M elements is equivalent, in our case, to a

memory array of length M partitioned into two segments: one with L elements

stored at indexes from 0 to L− 1 and an unused segment from index L to M − 1. In

this context adding k instances of a symbol to the multiset S (Algorithm 1 line 8) is

48

4.2. Variable Node

L− 10 M − 1

L− 10 M − 1

symbols unused

symbols k added unused

L+ k − 10 M − 1

symbols unused

?

?

Figure 4–6: Adding k instances of a symbol to the memory, the equivalent of the
S ← S ∪ { k instances of αj} operation in the Add routine.

equivalent to extending the first segment by k positions and implicitly reducing the

unused part by the same amount. This is illustrated in Figure 4–6.

On FPGA, the task of writing k symbols to the edge memory is done by the

state machine defined in Section 4.2.7. The run-time complexity of this approach is

O(q). The constant factor in O(q) can be improved on FPGAs by using multi-port

memory blocks, using multiple parallel memory blocks instead of a single memory

block, or configuring the memory blocks to fit multiple symbols in each memory

word.

On ASIC, with a special memory architecture, the state machine is not needed

for this operation, and the run-time complexity can be reduced to O(1).

The circuit for computing k, the number of symbols to add, is given in Figure

4–7, and it uses a w × logM -bit multiplier and two w-bit comparators and two

multiplexers. On the FPGA system used here, each of the 1,288 DSP blocks provides

49

4.2. Variable Node

-

-
∗ -

M − L

lj
-

+

6

-
>

1

-

R1

-
- k
-

frac(x)

bxc
x

Figure 4–7: Circuit for the part of the Add routine responsible for computing the
number of symbols to add. The result of the product x is w + logM bits long, with
frac(x) corresponding to the w least significant bits and the rest corresponding to
bxc.

a 18×18-bit multiplier, more than enough to instantiate one for each of the 384 edges.

On ASIC it is possible to use truncated multipliers [44, 45] to minimize the area.

4.2.6 Hardware Implementation of the Sample Routine

Mathematically the Sample routine is trivial, it randomly selects one of the L

symbols in S. This translates to the requirement to find a uniformly distributed

random integer in the interval [0, L − 1]. In the case when L is a power of 2, the

problem reduces to generating logL random bits. In our case, however, L is variable

and not necessarily a power of 2.

One way to generate random integers in the [0, L− 1] range is to first generate

a random integer X ∈ [0, 2p − 1] where L ≤ 2p and then compute the remainder of

X/L. Unfortunately the inclusion of a circuit implementation of an integer divider

is not practical.

This implementation uses an adapted version of the acceptance-rejection sam-

pling method [46]. It stipulates that in order to generate a random sample from

50

4.2. Variable Node

an arbitrary probability density function f(x) one can first sample an envelope dis-

tribution with the density function g(x) that is easy to sample, and for which the

ratio f(x)/g(x) is bounded by c > 0 and preferably close to 1. Let x be a sample

from g(x) and let u be a sample from U(0, 1) (the uniform distribution), we can now

determine if x is acceptable as a sample of f(x) with the following test:

u <
f(x)

cg(x)
(4.1)

If the condition holds, the sample x is accepted, otherwise it is rejected and a new

attempt has to be made.

Since the Sample routine has to generate a sample at every invocation, this

implementation uses a series of fallback values in case of rejection as shown in Figure

4–8. The notation is as follows: R is a random variable, L is the current size of

the multiset S, R(3 : 7) represents the sequence of bits b3, . . . , b7 from R where b1

is the most significant bit, and L(1 : 2)R(3 : 7) stands for the concatenation of the

specified sequences of bits.

Three logM -bit comparators are used in parallel to implement three acceptance-

rejection tests. If the sample used in the first test passes the test it is routed to the

output x, otherwise we fallback to the sample on the next level, and if necessary next

level, and so on. If all the tests fail, the last fallback value is L−1 which is guaranteed

to be a valid sample. One can create a longer chain of comparators for more uniform

sampling, the tradeoff being the longer critical path for the computation of x.

Observe that the final distribution of values of x is not truly uniform in the

mathematical sense, but rather biased towards values closer in value to L, this is

due to replacing the most significant bits in R with those from L. This bias can be

51

4.2. Variable Node

-

-
<

L

L(1 : 4)R(5 : 7)

-

-
<

L

L(1 : 2)R(3 : 7)

-

-
<

L

R(1 : 7)

6

-

-L− 1

6

-

-

6

-
-

-
x ∈ [0, L− 1]

Figure 4–8: Circuit for the Sample routine as implemented for AMSA-128, where the
output x is used as address on the edge memory in order to read a random symbol.

directed to the other end of the [0, L − 1] interval by replacing the most significant

bits of R with zeros. Alternatively, the bias can be reduced by using a random bit

and multiplexing among the two options.

Experimental results have shown that AMSA decoders converges faster to the

correct codeword when the former version is used (as shown in Figure 4–8). This is

due to the fact that the Add routine adds new incoming symbols at the end of the

memory and using more recent results seems more suitable.

4.2.7 State Machine

On FPGA platforms, the limitations of the memory blocks result in a more

complex control logic compared to an ASIC implementation. This is mainly due to

the fact that the Add routine might require up to M cycles to write all the added

symbols to memory if single port memory blocks are used, and M/2 when dual port

memories are used. For this implementation, the control logic of the variable node

computation has been implemented as a state machine.

52

4.3. Check Node

ST-0 ST-1- ST-2- -

e
ST-3

]]

� �

RESET inputs not ready more to write

done writing

done writing

j

Figure 4–9: The finite state machine controlling the computation in the variable
node.

Table 4–2 lists the assignment of the operations to states, which are are explained

in detail in the following paragraphs.

The Load routine, corresponding to state ST-0, loads the q likelihood values into

the likelihood memory and the M initial symbols into the edge memories (denoted

as eram0 and eram1).

State ST-1 serves as a synchronization point. In fact, variable nodes will not

transition to ST-2 until inputs on all their edges are ready. The readiness of the

inputs for each edge is signaled via dedicated 1-bit lines. For a discussion of two

different ways of message passing scheduling for AMSA see Section 4.5.

Since the edge memory blocks have two ports, the Add routine requires k/2

cycles to add k symbols. When k ≤ 2, ST-2 transitions directly to ST-1, otherwise

the ST-3 finishes writing all the symbols, and then moves to ST-1.

4.3 Check Node

The check node in stochastic decoders is considerably simpler than the SPA

equivalent. As discussed in Section 2.2.3, it is a sum under GF(q), implementable

directly with XOR gates.

53

4.4. Check Node

Table 4–2: Computations corresponding to each state

State Routine Memory port Action

ST-0 Load cram-A load likelihoods
cram-B load likelihoods
eram0-A load symbols for edge 0
eram0-B load symbols for edge 0
eram1-A load symbols for edge 1
eram1-B load symbols for edge 1

ST-1 cram-A get likelihood for input 0
cram-B get likelihood for input 1

Sample eram0-B sample edge memory 0
eram1-B sample edge memory 1

Remove eram0-A remove symbol from edge 0
eram1-A remove symbol from edge 1

ST-2 cram-A –
ST-3 cram-B –

Add eram0-A add symbol to edge memory 0
eram0-B add symbol to edge memory 0
eram1-A add symbol to edge memory 1
eram1-B add symbol to edge memory 1

In addition to the output messages vi, the hardware implementation contains an

additional output bit to signal whether the parity check is satisfied. The satisfaction

is determined based on the belief symbols of the variable nodes, rather than the edge

outputs.

On FPGA platforms, the circuit shown in Figure 4–10 maps directly to O(log q)

lookup tables. It is thus one of the smallest elements of the Tanner graph in terms

of hardware resources used.

54

4.5. Permutation Block

Rz
:
�

u1
u2
u3
u4

v1

v2

v3

v4

⊕

⊕
-

u1

-
w

⊕
-

u2

-
R

⊕
-

u3

-
w

⊕
-

u4

-
w

Rz
:
�

-

b1
b2
b3
b4

⊕
satisfied=

0 -
-

Figure 4–10: Circuit representation of the check node computation, where ui is the
input from edge i and vi the corresponding output, bi is the belief symbol incoming
from edge i, and satisfied is a bit flag indicating that the parity check is satisified.

4.4 Permutation Block

On each edge of the Tanner graph (see Figure 4–11) there are three GF(q)

multiplication-by-constant operations performed: one for the message from the vari-

able node to the check node, another one for the reverse direction, and one for the

belief message from the variable node to the check node. Even though the number

of such blocks is large, as shown in Table 4–1, the hardware complexity of each of

them is small.

A GF(q) multiplication by a constant is efficiently implemented by a q× log q-bit

LUT, assuming q is a power of 2. Modern FPGA platforms provide 6-input LUT

resources which can be used directly for q ≤ 64 or combined for q > 64. A GF(64)

permutation nodes is implemented using six 6-input LUTs while the GF(256) version

requires fifteen 6-input LUTs.

55

4.5. Message Passing Scheduling

&%
'$

= +

⊗⊗
�

-

�

hi,j

h−1i,j

-
u

v

uhi,j

vh−1i,j

?

6

V N i CN j

⊗
-

N

hi,j
?

b bhi,j

Figure 4–11: The edge of the Tanner graph connecting variable node i (V N i) and
check node j (CN j). The hi,j multiplication factor is the non-zero value from H
matrix associated with this edge. Message b is the variable node belief.

������������

RW �	
+

U N�

�

�

+CN1 CNk

...

· · ·

done1

donek

������������

RW �	 U N�

????????

IterationDone

= = ======

Figure 4–12: The flood scheduling method where donei is the signal that all variable
nodes that send messages to check node i (CNi) have completed their computation.
The global signal IterationDone is used to synchronize all variable nodes.

4.5 Message Passing Scheduling

The discussion in this section is specific to FPGA platforms only where, due

to interface limitations of the memory blocks, up to dM−1
2
e cycles might be needed

to complete the Add routine. On ASIC, with a custom memory architecture, all

the variable nodes are implicitly synchronized since they all take constant time to

complete the variable node computation.

56

4.5. Message Passing Scheduling

������������

RW �	
+

U N�

??

+CN1 CNk

· · ·

done1 donek

������������

RW �	 U N�

????????
= = ======

? ? ? ?

done1
done2

donek

...
...

? ? ? ?

Figure 4–13: The layered decoding method where donei is the signal that all variable
nodes that send messages to check node i (CNi) have completed their computation.
Each variable node uses the appropriate donei signals to independently decide if it
is ready to proceed with computations.

The first, perhaps most natural, way of scheduling is to wait for all the variable

nodes to complete their computation, and only then commence the computation for

the next iteration. The principle is illustrated in Figure 4–12, and is called flood

scheduling.

A disadvantage of using this method is that the number of cycles to complete an

iteration is max ti where ti is the number of steps it took to complete the computation

for variable node i, and i = 1, . . . , n. In other words, in each iteration, variable nodes

will be waiting for the slowest variable node to finish processing.

The second method, called layered decoding, is to synchronize variable nodes

locally around check nodes. This way if all dc incoming edges associated with a check

node have completed their computation, the outputs of the check node are flagged

ready for use. As soon as a variable node has inputs ready for all its dv edges it

can start processing, i.e. it transitions from state ST-1 to ST-2 in the state machine

described in Section 4.2.7. The method is illustrated in Figure 4–13.

57

4.6. Synthesis Results

Table 4–3: Summary of the hardware resources used by the fully-parallel GF(64)
AMSA-128 and GF(256) AMSA-512 fully-parallel decoders on Altera Stratix IV GX
EP4SGX230. Note that these results are after place and route.

Resource
Total

available
on FPGA

GF(64)
AMSA-128

(fully-parallel)

GF(256)
AMSA-512

(fully-parallel)

Adaptive Look-up Tables 182,400 66,885 (37%) 91,376 (50%)
Adaptive Logic Modules 91,200 0 0
Registers 182,400 23,150 (13%) 30,840 (17%)
Simple multipliers (12x12) 1,288 384 (30%) 384 (30%)
M9K memory blocks 1,235 576 (47%) 576 (47%)
Total block memory bits 14,625,792 453,120 (3%) 2,162,688 (15%)

Layered decoding allows the decoding process to start earlier in the sense that

there is no need to wait for all variable nodes to finish loading their data during

initialization, some can start processing as soon as their donei signals are ready.

Note that in both Figures 4–12 and 4–13 signals donei are outputs of the check

nodes in addition to the ones discussed in Section 4.3.

4.6 Synthesis Results

The FPGA chip used in this work is Altera Stratix IV GX EP4SGX230-KF40C2.

Two configurations of the fully-parallel AMSA decoder were realized on the FPGA:

GF(64) AMSA-128 and GF(256) AMSA-512. The synthesis results for both designs

are given in Table 4–3. Figure 4–14 shows the floor plan of the FPGA chip with the

GF(256) AMSA-512 decoder on it.

An important thing to notice is that the synthesis results confirm the complexity

analysis done in Section 3.4 and summarized in Table 3–3. The total amount of

58

4.6. Synthesis Results

Figure 4–14: The FPGA chip floor plan after the synthesis, and place and route
of the GF(256) AMSA-512 fully-parallel decoder. Different colors indicate different
type of hardware resources used, while darker shades indicate higher percentage of
usage of the logic elements in a particular block.

memory used scaled, as predicted, with O(dvM log q + qw):

2× 512 log 256 + 256× 12

2× 128 log 64 + 64× 12
≈ 15% total memory bits

3% total memory bits

Similarly, the size of the variable node control logic, which is built using ALUTs and

registers, scales, as predicted, with O(log q):

log 256

log 64
≈ 50% ALUTs

37% ALUTs
≈ 17% registers

13% registers

Note that the number of memory blocks did not increase because in both cases the

number of edge memories is the same, and each edge memory fits in a M9K block.

Furthermore, it is possible to reliably estimate the size of any configuration

of the AMSA decoder. Assuming that a GF(512) code is available with the same

structure, i.e. GF(512) (192,96) and (2,4)-regular code, let us estimate what would

be the size of a GF(512) AMSA-1024 decoder based on such a code. The amount of

ALUTs, registers, and block memory bits can be calculated based on the synthesis

59

4.7. ASIC-specific Considerations

results of GF(256) AMSA-512:

ALUTs usage =
log 512

log 256
× 50% ≈ 56%

registers usage =
log 512

log 256
× 17% ≈ 19%

block memory bits usage =
2× 1024 log 512 + 1024× 12

2× 512 log 256 + 256× 12
× 15% ≈ 48%

Note that the number of multipliers is the same for all decoders because the number

of edges in the Tanner graph does not change. In this case the number of memory

block used will change because the size of an edge memory exceeds the size of a

M9K block. The results indicate that a fully-parallel implementation of a GF(512)

AMSA-1024 decoder would probably fit on the FPGA platform used in this work.

4.7 ASIC-specific Considerations

4.7.1 Single Clock-Cycle Update Memory Design

We have seen that the Remove routine (Algorithm 2) is a memory write oper-

ation. The same can be said about Add (Algorithm 1). This section will present

details of how the two can be combined and executed in a single write operation.

Given that both routines are non-deterministic, there are four possible scenarios

to look at (see Table 4–4 and Figure 4–15).

One important observation to make about these scenarios is that when values

are being written to the memory, all the values are the same. This means that by

designing an SRAM memory with a custom address decoder that enables multiple

SRAM cells at the same time the write operation can be done in one cycle.

60

4.7. ASIC-specific Considerations

Table 4–4: Possible scenarios based on decisions made in Add and Remove routines

Scenario Add Remove Changes to edge memory

A adds α k times remove symbol α written in k locations

B adds α k times does not remove symbol α written in k locations

C nothing added does not remove symbol no change

D nothing added remove symbol last symbol written

L− 10 M − 1

α . . . αα

L− 10 M − 1

α . . . αα

L− 10 M − 1

L− 10 M − 1

β

Scenario A

Scenario B

Scenario C

Scenario D

R

R

L− 10 M − 1

Initial

Figure 4–15: Schematic representation of the scenarios in Table 4–4 and the modifi-
cations they make to the memory.

Figure 4–16 provides an architecture for such an SRAM memory. The Address

Decoder used in the circuit is a standard address decoder. The Mask Overlay unit sets

high all the address lines in the segment [L,M − 1]. Thus, having selected multiple

SRAM cells, the data will be written to multiple locations of the memory in one

cycle. Even though more than the necessary k symbols are written (see Algorithm 1

line 8) in the [L,M − 1] segment of the memory, only k will be in S, the rest being

outside and, thus, not having any effect.

61

4.7. ASIC-specific Considerations

Address
Decoder

?

Mask
Overlay

-
-
-
-

-
-

-

-

-
-
-
-

-
-

-

-

-

6

...
...

...

data

address

L

?-

-

α

β

scenario

R -
-

...

...

M − 2

M − 1

M − 3

0

1

2

3

4

log q

logM

logM

?

write

Figure 4–16: Architecture of SRAM that can perform any of the scenarios in Table
4–4 in one cycle.

We can consider the Address Decoder and Mask Overlay pair as a Custom

Address Decoder for the SRAM memory block. In order to estimate how much

bigger is the Custom Address Decoder compared to the standard Address Decoder,

both have been implemented in VHDL and compared in terms of logical resources

used. In the case of M = 128 the size increased by 43% while for M = 256 the size

increased by 38%. Considering that the decoder represents only a part of the total

area of an SRAM block (the rest being occupied by the SRAM cells, sense amplifiers,

etc.), the overall area increase for an SRAM memory block is further reduced. It is

possible to create a controller that will enable exactly k lines by adding an additional

overlay that sets low all the lines in the segment [L + k,M], the result being that

only the lines in the segment [L,L+ k − 1] will be selected for writing.

62

4.7. ASIC-specific Considerations

As it was shown in Section 5.2, this SRAM memory design reduces the decoding

run-time to O(1) and increases the throughput by two orders of magnitude compared

to the results available in literature for the same code.

63

Chapter 5

Simulation Results and Analysis

This chapter presents and analyzes the simulation results for different configura-

tions of the AMSA decoder. Additionally, in Section 5.3 an optimized quantization

scheme is proposed, and in Section 5.4 the method of accelerated convergence is

introduced, which improves throughput without sacrificing performance.

5.1 Performance

The performance of several configurations of the AMSA algorithm are given in

Figure 5–1 for the Additive white Gaussian noise (AWGN) channel. The codes used

here are the GF(64) (192,96) (2,4)-regular and GF(256) (192,96) (2,4)-regular. Both

codes are from the DAVINCI project.

For each code, several different configurations of the AMSA algorithm are used.

For the GF(64) code the AMSA-256 and AMSA-512 configurations are used. For the

GF(256) code the AMSA-256, AMSA-512, and AMSA-1024 configurations are used.

As it can be seen from Figure 5–1, the decoder configurations with larger values of

M have better performance. This is explained by the fact that when M is larger the

- 64 -

5.1. Performance

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

F
ra

m
e
 E

rr
o
r

R
a
te

Eb/N0 (dB)

GF(64) EMS with bubble check, nb=5, maxiter=20

GF(64) AMSA-256, maxDC = 5x10
4

GF(64) AMSA-256, maxDC = 10
4
, ra=5

GF(64) AMSA-512, maxDC = 5x10
4

GF(64) AMSA-512, maxDC = 10
4
, ra=5

GF(256) AMSA-512, maxDC = 5x10
4

GF(256) AMSA-512, maxDC = 5x10
4
, ra=5

GF(256) AMSA-1024, maxDC = 5x10
4

GF(64) SPA floating point, maxiter = 20

GF(256) SPA floating point, maxiter = 20

Figure 5–1: Frame error rate performance of the AMSA algorithm compared to the
Bubble Check algorithm from [18]. The two codes used here are (192,96) (2,4)-
regular over GF(64) and GF(256). The channel is AWGN. Parameter ra stands for
the number of redecoding attempts. For all AMSA configurations, likelihoods are
represented in w = 12 bits.

multiset representation is more precise, as it was shown in Section 3.1. Parameter

M is a tradeoff between memory size and BER performance.

Another parameter that affects performance is redecoding. In Figure 5–1, the

performance is compared for the same configuration with and without redecoding

but keeping the total number of decoding cycles equal. For example, for the GF(64)

AMSA-256 decoder the frame error rate at Eb/N0 = 2.4dB is 6× 10−6 with 5× 104

65

5.2. Throughput and Latency

maximum allowed decoding cycles, while if doing 5 redecoding attempts of 104 max-

imum decoding cycles each, the performance is improved to 3× 10−6. Additionally,

it can be observed that for the same AMSA-256 configuration, redecoding reduces

the error floor. As it can be seen, for the same total number of decoding cycles it is

possible to improve the performance and reduce error floor by using redecoding.

For the GF(64) code, AMSA-512 is only 0.04 dB away from the floating-point

SPA performance at FER of 2× 10−6. On the other hand, when using the GF(256)

version of code, the difference between the SPA results and AMSA-1024 are of about

0.22 dB at FER of 4× 10−6. Note that the SPA algorithm used here uses a floating-

point representation, while the AMSA decoders use quantized values represented in

w = 12 bits.

In comparing the performance of a fully-parallel AMSA decoder to SPA it must

be taken into account that a fully-parallel SPA decoder for the codes used in this

work is, at the moment, impractical.

Note that AMSA matches and improves on the performance of the EMS algo-

rithm implementation in [18] while also considerably improving the throughput, as

shown in the following section.

5.2 Throughput and Latency

As the SNR increases the AMSA decoder takes fewer decoding cycles to complete

decoding. This implies that the throughput is a function of the SNR. Indeed, by

looking at Figure 5–2 it can be seen that throughput is a linear function of SNR

for all configurations of AMSA decoders. The throughput shown here is the coded

throughput of the decoder.

66

5.2. Throughput and Latency

 0

 200

 400

 600

 800

 1000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2

T
h
ro

u
g
h
p
u
t

(M
b
it

/s
)

Eb/N0 (dB)

GF(64) AMSA-256 (ASIC)

GF(64) AMSA-512 (ASIC)

GF(256) AMSA-512 (ASIC)

GF(256) AMSA-1024 (ASIC)

GF(64) AMSA-128 (FPGA)

GF(256) AMSA-512 (FPGA)

Figure 5–2: Throughput of the FPGA implementation and estimated throughput for
the ASIC implementation of the AMSA algorithm based on the GF(64) and GF(256)
version of the (192,96) (2,4)-regular DAVINCI code, at clock frequency f = 108 MHz.

In literature, the highest throughput for a hardware implementation for the

GF(64) (192,96) code used here is of 3.8 Mbit/s [18] using EMS with the Bubble

Check algorithm. AMSA presents an improvement in throughput of an order of

magnitude for an FPGA implementation and of more then two orders of magnitude

for ASIC implementations due to the special SRAM architecture.

As a general rule, stochastic decoders have a higher latency compared to other

decoding approaches. In this case the limit on number of decoding cycles maxDC is

set to 5×104 even though the average number of decoding cycles at Eb/N0 of 2.4 dB

67

5.2. Throughput and Latency

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 10000 20000 30000 40000 50000

F
ra

m
e
 E

rr
o
r

R
a
te

decoding cycles

GF(64) AMSA-256 maxDC=5x10
4

GF(256) AMSA-512 maxDC=5x10
4

Figure 5–3: Settling curves for the GF(64) and GF(256) versions of the (192,96)
code.

is approximately 180. Looking at the settling curves from Figure 5–3 it can be seen

why a large maxDC is required, because there is a non-negligible number of frames

decoded after a large number of iterations. For the O(1) run-time complexity ASIC

architecture a decoding cycle corresponds to a clock cycle, meaning that for a clock

frequency of f = 108MHz, the latency introduced by a decoder with maxDC = 5×104

is 0.5 ms.

In the case of SPA, the average number of iterations at Eb/N0 of 2.4 dB is

approximately 4 for both the GF(64) and GF(256) version of the code. In this case

68

5.3. Efficient Quantization

latency cannot be directly estimated without knowing how many clock cycles an SPA

iteration takes for the particular implementation.

5.3 Efficient Quantization

The algorithm presented in this thesis performs its computations using integer

quantities with the exception of the Add routine where channel likelihoods are used

(see Algorithm 1). As discussed in Chapter 4, the likelihoods are represented in fixed-

point format using w bits. This parameter is, in fact, a tradeoff mechanism between

hardware complexity and the BER performance of the decoder. This section presents

a quantization strategy that allows to reduce the value of w without performance

loss.

Let p be a probability with a value between 0 and 1 and let p(w) be the value

of p represented in w bits in fixed-point format, then p(w) =
∑w

i=1 2−ibi where bi is

the ith most significant bit of the fixed-point representation of p. In the context of

LDPC decoding, the goal is to find the smallest w that results in an acceptable BER

performance. The deterioration in performance with decreasing w can be explained

by the fact that all probabilities less than 2−w are represented as zero (see the results

for the cases not using the efficient quantization in Figure 5–4). In AMSA, a symbol

α with likelihood pα = 0 is never added to the multiset S because the product

lj · (M − |S|) from Algorithm 1 is zero, which results in the symbol never being

used as output of the variable node. This is also true in SPA, because if a message

Vpv[α] = 0 for the corresponding symbol α, then the result of the product in Equation

(2.4) will also be zero for the the symbol, i.e. Utp[α] = 0.

69

5.4. Efficient Quantization

10
-6

10
-5

10
-4

10
-3

10
-2

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

F
ra

m
e
 E

rr
o
r

R
a
te

Eb/N0 (dB)

GF(64) AMSA-256, maxDC = 5x10
4
, w=12

GF(64) AMSA-256, maxDC = 5x10
4
, w=14

GF(64) AMSA-256, maxDC = 5x10
4
, w=16

GF(64) AMSA-256, maxDC = 5x10
4
, w=12 eff. quant.

Figure 5–4: The impact of using the efficient quantization method on the perfor-
mance. The decoder used is AMSA-256, the code is a GF(64) (192,96) (2,4)-regular
code, and the channel is AWGN. The maximum number of decoding cycles is 5×104.

The alternative approach used in this work is to represent probabilities with w

bits, but avoid zero likelihoods. The w-bit representation of p is computed as follows:

p(w) =

∑w

i=1 2−ibi if p ≥ 2−w

2−w if p < 2−w

As it can be seen in Figure 5–4, for the same w the performance is considerably

improved by using this optimization. Note that throughput is also slightly improved

in the lower SNR region (see Figure 5–5).

70

5.4. Accelerated Convergence Add Routine

 150

 200

 250

 300

 350

 400

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

d
e
c
o
d
in

g
 c

y
c
le

s

Eb/N0 (dB)

GF(64) AMSA-256, maxDC = 5x10
4
, w=12

GF(64) AMSA-256, maxDC = 5x10
4
, w=14

GF(64) AMSA-256, maxDC = 5x10
4
, w=16

GF(64) AMSA-256, maxDC = 5x10
4
, w=12 min. quant.

Figure 5–5: The impact of using the efficient quantization method on the average
number of decoding cycles. The decoder used is AMSA-256, the code is a GF(64)
(192,96) (2,4)-regular code, and the channel is AWGN. The maximum number of
decoding cycles is 5× 104.

5.4 Accelerated Convergence Add Routine

As discussed in Section 2.2.2, a constant distribution of probabilities can be

represented by a non-binary stream or any of its permutations. In stochastic LDPC

decoding edge memories and the associated distributions of probabilities are updated

at every decoding cycle, which implies a continuous change in the statistics of the

stochastic stream. In this case, not all permutations of the symbols in a stochastic

stream represent the same distribution. For example, let us consider two streams

s1 = ααβαβαδαβαγα . . . and s2 = βγβδβααααααα . . . that are permutations of

71

5.4. Accelerated Convergence Add Routine

Algorithm 5: The accelerated Add routine of AMSA where M is the
upper limit imposed on the cardinality of multiset S, α is the current
incoming symbol with likelihood lα, and β is the previous symbol. The
coefficient cA is used in association with the accumulator A.

Input: S, symbols α and β, lα, accumulator A
Output: S with possibly added one or more instances of symbol α, A
if α = β then1

A← min(A+ lα, 1)2

else3

A← 04

end5

x← (lα + cAA) · (M − |S|)6

if frac(x) ≥ R1 then7

k ← bxc+ 18

else9

k ← bxc10

end11

S ← S ∪ { k instances of α}12

β ← α13

each other and let si[t] ∈ GF (q) be the symbol in stream si at time t ≥ 0. Even

though the number of times symbol α appears in both streams is equal, the fact

that in s2 the most recent symbols si[t − k] where k < t. are all α, indicates that,

possibly, the associated distribution has converged to a configuration that maximizes

the probability of symbol α. In contrast, s1 did not stabilize to a certain value.

In order to take advantage of this observation, an improved version of the Add

routine, that recognizes such patterns and accelerates the convergence of the distri-

bution associated with the edge, is proposed in Algorithm 5. The value of A increases

up to the maximum value of 1 as long as the sequence of identical symbols continues.

The term lα + cAA on line 6 in Algorithm 5 is similar to a proportional-integral

(PI) term used in PI control where the output of the manipulated variable (MV) is

72

5.4. Accelerated Convergence Add Routine

 150

 200

 250

 300

 350

 400

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

d
e
c
o
d
in

g
 c

y
c
le

s

Eb/N0 (dB)

GF(64) AMSA-256, maxDC = 5x10
4

GF(64) AMSA-256, maxDC = 5x10
4
, accel. Add

Figure 5–6: The impact of using the accelerated convergence Add routine on the
average number of decoding cycles. The coefficient cA is equal to 1/4. The decoder
used is AMSA-256, the code is a GF(64) (192,96) (2,4)-regular code, and the channel
is AWGN. The maximum number of decoding cycles is 5× 104. All probabilities are
represented with w = 12 bits.

given by MV(t) = Kpe(t) + Ki

∫ t
0
e(τ)dτ with e(t) being the error, and Ki and Kp

being the proportional and integral coefficients, respectively. The difference is in the

way the integral component is calculated A(t) =
∫ t
t−k lα(τ)dτ where k is the length

of the current run of identical symbols in the stream. Note that it is possible to

implement a proportional-integral strategy by calculating Ai(t) =
∫ t
0
lα(τ)dτ where

Ai is the integral term associated to symbol i in GF(q), but it is less practical because

it requires O(q) memory.

73

5.4. Accelerated Convergence Add Routine

10
-6

10
-5

10
-4

10
-3

10
-2

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

F
ra

m
e
 E

rr
o
r

R
a
te

Eb/N0 (dB)

GF(64) AMSA-256, maxDC = 5x10
4

GF(64) AMSA-256, maxDC = 5x10
4
, accel. Add

Figure 5–7: The impact of using the accelerated convergence Add routine on the
performance. The coefficient cA is equal to 1/4. The decoder used is AMSA-256,
the code is a GF(64) (192,96) (2,4)-regular code, and the channel is AWGN. The
maximum number of decoding cycles is 5 × 104. All probabilities are represented
with w = 12 bits.

The accelerated convergence method reduces the average number of decoding

cycles and also improves BER performance. As it can be seen in Figure 5–6, the

average number of decoding cycles at 2.4 dB is reduced by approximately 27%, which

translates into an improvement in throughput by the same factor. Figure 5–7 shows

the impact of the method on the performance. Various values have been tried for

the coefficient cA, and the value that maximizes the benefits in terms of performance

and throughput is 1/4.

74

5.4. Accelerated Convergence Add Routine

-

-
=

β

α

-

-

1-

-
+

pα

A(t− 1)

overflow

6

?

-

-

-0

+ -
lα + cAA(t)

A(t)

Figure 5–8: Circuit for computing the term lα+cAA(t) in the accelerated convergence
Add routine. Note that the rest of the circuit presented in Figure 4–7 is unchanged.

The additional logic required for the accelerated Add routine is given in Figure

5–8 while the rest of the circuit is unchanged (see Figure 4–7). The value of cA is

chosen to be a negative power of two in order to eliminate the need for a multiplier.

Note that in order to compute A(t) the previous value A(t − 1) has to be stored in

a memory.

75

Chapter 6

Conclusion and Future Work

6.1 Advances

Based on a multiset representation for probability mass functions, the Adap-

tive Multiset Stochastic Algorithm was introduced and applied for the non-binary

stochastic decoding of LDPC codes with dv = 2. Additionally, the concept of rede-

coding was applied to non-binary LDPC decoding and shown to improve performance

and lower the error floors.

The AMS algorithm was used for the FPGA implementation of two fully-parallel

LDPC decoders over GF(64) and GF(256). To the best of our knowledge, these

are the first fully-parallel LDPC decoders over GF(64) and GF(256) reported in

literature.

The FPGA decoders achieve a clock frequency of 108 MHz and a throughput of

about 95 Mbit/s at Eb/N0 of 3.0 dB. For the GF(256) decoder, the frame error rate

(FER) performance at Eb/N0 of 2.4 dB is 3.5×10−7 with redecoding, and 8.5×10−7

without redecoding. These implementations are also the highest throughput decoders

reported for the particular codes used.

- 76 -

6.2. Future Work

An SRAM architecutre for ASIC was proposed that reduces the run-time com-

plexity of an AMSA decoding cycle to O(1). The estimated throughput for a fully-

parallel ASIC decoder using this SRAM architecture is of 512 Mbit/s at 2.4 dB for

the GF(256) version, and 698 Mbit/sec at 2.4 dB for the GF(64) case.

6.2 Future Work

Stochastic decoders, in general, have a higher decoding latency compared to

other decoding methods. The accelerated convergence method described in Chapter

5 helped reduce the average number of required decoding cycles by 27% without

sacrificing the BER performance. Further investigation in this direction can lead to

more improvements.

The results of this work show than the GF(256) version of the decoder has a

better performance that the GF(64) version without being much more complex in

terms of hardware resources used. It is, therefore, interesting to investigate how to

efficiently apply AMSA to LDPC codes of higher order like GF(512) or GF(1024).

As shown in Section 5.4, stochastic streams can provide, in addition to the

statistics based on frequencies of symbols, information in the form of patterns that

can be recognized and used to improve the performance of the decoder.

An interesting research direction is to enable the stochastic LDPC decoders to

adapt to the changes in the Eb/N0 ratio of the channel by adjusting parameters like

the maximum number of decoding cycles, and the number of redecoding attempts.

This work used the AWGN channel for evaluating the performance of the pro-

posed algorithm. An assessment of the performance of AMSA on other channel

models would be valuable.

77

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8,
no. 1, pp. 21–28, Jan 1962.

[2] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE
Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, 1999.

[3] S.-Y. Chung, J. Forney, G. D., T. J. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the Shannon limit,” IEEE
Commun. Lett., vol. 5, no. 2, pp. 58–60, 2001.

[4] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 619–637, 2001.

[5] A. Morello and V. Mignone, “DVB-S2: The second generation standard for
satellite broad-band services,” Proc. IEEE, vol. 94, no. 1, pp. 210–227, 2006.

[6] V. Oksman and S. Galli, “G.hn: The new ITU-T home networking standard,”
IEEE Commun. Mag., vol. 47, no. 10, pp. 138–145, 2009.

[7] IEEE Standard for Information technology-Specific requirements - Part 3: Car-
rier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method
and Physical Layer Specifications, IEEE Std. IEEE 802.3an.

[8] IEEE Standard for Information technology–Telecommunications and informa-
tion exchange between systems–Local and metropolitan area networks–Specific re-
quirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications Amendment 5: Enhancements for Higher Through-
put, IEEE Std. IEEE 802.11an-2009.

[9] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface
for Broadband Wireless Access Systems, IEEE Std. IEEE 802.16e.

[10] J. Lu and J. M. F. Moura, “Structured LDPC codes for high-density recording:
large girth and low error floor,” IEEE Trans. Magn., vol. 42, no. 2, pp. 208–213,
2006.

- 78 -

[11] H. Song and J. R. Cruz, “Reduced-complexity decoding of q-ary LDPC codes for
magnetic recording,” IEEE Trans. Magn., vol. 39, no. 2, pp. 1081–1087, 2003.

[12] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction
of non-binary quasi-cyclic LDPC codes by arrays and array dispersions,” IEEE
Trans. Commun., vol. 57, no. 6, pp. 1652–1662, 2009.

[13] I. Gutierrez, G. Bacci, J. Bas, A. Bourdoux, H. Gierszal, A. Mourad, and
S. Pleftschinger, “DAVINCI non-binary LDPC codes: Performance and com-
plexity assessment,” in Proc. Future Network and Mobile Summit, 2010, pp.
1–8.

[14] A. Mourad and I. Gutierrez, “System level evaluation of DAVINCI non-binary
LDPC codes,” in Proc. Future Network and Mobile Summit, 2010, pp. 1–9.

[15] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes
over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643, 2007.

[16] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implemen-
tations of the sum-product algorithm for decoding LDPC codes,” in Proc. IEEE
Global Telecommunications Conf. GLOBECOM ’01, vol. 2, 2001, p. 1036.

[17] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity
decoding for non-binary LDPC codes in high order fields,” IEEE Trans. Com-
mun., vol. 58, no. 5, pp. 1365–1375, 2010.

[18] E. Boutillon and L. Conde-Canencia, “Simplified check node processing in non-
binary LDPC decoders,” in Proc. 6th Int Turbo Codes and Iterative Information
Processing (ISTC) Symp, 2010, pp. 201–205.

[19] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic computa-
tion,” Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003.

[20] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic LDPC
decoders,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5692–5703, 2008.

[21] C. Winstead, V. C. Gaudet, A. Rapley, and C. Schlegel, “Stochastic iterative
decoders,” in Proc. Int. Symp. Information Theory ISIT 2005, 2005, pp. 1116–
1120.

[22] F. Leduc-Primeau, S. Hemati, W. J. Gross, and S. Mannor, “A relaxed half-
stochastic iterative decoder for LDPC codes,” in Proc. IEEE Global Telecom-
munications Conf. GLOBECOM 2009, 2009, pp. 1–6.

- 79 -

[23] G. Sarkis, S. Hemati, S. Mannor, and W. J. Gross, “Relaxed half-stochastic
decoding of LDPC codes over GF(q),” in Proc. 48th Annual Allerton Conf.
Communication, Control, and Computing (Allerton), 2010, pp. 36–41.

[24] G. Sarkis, S. Mannor, and W. J. Gross, “Stochastic decoding of LDPC codes
over GF(q),” in Proc. IEEE Int. Conf. Communications ICC ’09, 2009, pp. 1–5.

[25] T. Richardson, “Error floors of LDPC codes,” Proc. 41st Allerton Conf. on
Communications, Control, and Computing, vol. 1, p. 1, 2003.

[26] M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),”
IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167, 1998.

[27] D. MacKay and M. Davey, “Evaluation of Gallager codes for short block length
and high rate applications,” in Proc. IMA Workshop Codes, Syst., Graphical
Models, 1999.

[28] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes
under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
599–618, 2001.

[29] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF (2q),”
in Proc. IEEE Information Theory Workshop, 2003, pp. 70–73.

[30] X. Li and M. R. Soleymani, “A proof of the Hadamard transform decoding of
the belief propagation algorithm for LDPCC over gf(q),” in Proc. VTC2004-Fall
Vehicular Technology Conference 2004 IEEE 60th, vol. 4, Sep. 26–29, 2004, pp.
2518–2519.

[31] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of
LDPC codes over GF(q),” in Proc. IEEE International Conference on Commu-
nications, H. Steendam, Ed., vol. 2, 2004, pp. 772–776 Vol.2.

[32] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, 2005.

[33] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Computational complexity
and quantization effects of decoding algorithms for non-binary ldpc codes,” in
Proc. IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP ’04), H. Steendam, Ed., vol. 4, 2004, pp. iv–669–iv–672 vol.4.

- 80 -

[34] B. Gaines, Advances in Information Systems Science. Plenum, New York, 1969,
ch. 2, pp. 37–172.

[35] S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding of LDPC
codes,” IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718, 2006.

[36] W. J. Gross, V. C. Gaudet, and A. Milner, “Stochastic implementation of LDPC
decoders,” in Proc. Conf Signals, Systems and Computers Record of the Thirty-
Ninth Asilomar Conf, 2005, pp. 713–717.

[37] S. Sharifi Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and
W. J. Gross, “Majority-based tracking forecast memories for stochastic LDPC
decoding,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4883–4896, 2010.

[38] G. Sarkis and W. J. Gross, “Efficient stochastic decoding of non-binary LDPC
codes with degree-two variable nodes,” in IEEE Communication Letters, 2011,
submitted for publication.

[39] F. Leduc-Primeau, S. Hemati, S. Mannor, and W. J. Gross, “Lowering error
floors using dithered belief propagation,” in Proc. IEEE Global Telecommunica-
tions Conf. GLOBECOM 2010, 2010, pp. 1–6.

[40] C. Spagnol, E. M. Popovici, and W. P. Marnane, “Hardware implementation
of GF (2m) LDPC decoders,” IEEE Trans. Circuits Syst. I, vol. 56, no. 12, pp.
2609–2620, 2009.

[41] Y. Sun, Y. Zhang, J. Hu, and Z. Zhang, “FPGA implementation of nonbinary
quasi-cyclic LDPC decoder based on EMS algorithm,” in Proc. Int. Conf. Com-
munications, Circuits and Systems ICCCAS 2009, 2009, pp. 1061–1065.

[42] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient decoder design for nonbinary
quasicyclic LDPC codes,” IEEE Trans. Circuits Syst. I, vol. 57, no. 5, pp. 1071–
1082, 2010.

[43] P. Alfke. (1996, July) Application note: Efficient shift registers, LFSR counters,
and long pseudo-random sequence generators. Xilinx Inc. [Online]. Available:
http://www.xilinx.com/support/documentation/application notes/xapp052.pdf

[44] M. J. Schulte and J. Swartzlander, E. E., “Truncated multiplication with cor-
rection constant [for DSP],” in Proc. [Workshop] VLSI Signal Processing, VI,
1993, pp. 388–396.

- 81 -

[45] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient multipliers for
digital signal processing applications,” IEEE Trans. Circuits Syst. II, vol. 43,
no. 2, pp. 90–95, 1996.

[46] C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer Texts
in Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

- 82 -

