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∞-Optimal Fractional Delay Filters
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Abstract—Fractional delay filters are digital filters to delay
discrete-time signals by a fraction of the sampling period.Since
the delay is fractional, the intersample behavior of the original
analog signal becomes crucial. In contrast to the conventional
designs based on the Shannon sampling theorem with the band-
limiting hypothesis, the present paper proposes a new approach
based on the modern sampled-dataH∞ optimization that aims at
restoring the intersample behavior beyond the Nyquist frequency.
By using the lifting transform or continuous-time blocking the
design problem is equivalently reduced to a discrete-timeH∞

optimization, which can be effectively solved by numericalcom-
putation softwares. Moreover, a closed-form solution is obtained
under an assumption on the original analog signals. Design
examples are given to illustrate the advantage of the proposed
method.

Index Terms—Fractional delay filters, interpolation, sampled-
data systems,H∞ optimization, linear matrix inequality.

I. I NTRODUCTION

Fractional delay filters are digital filters to delay discrete-
time signals by a fractional amount of the sampling period.
Such filters have wide applications in signal processing, in-
cluding sampling rate conversion [1], [2], [3], nonuniform
sampling [4], [5], wavelet transform [6], [7], digital modeling
of musical instruments [8], [9], to name a few. For more
applications, see survey papers [10], [11], [12].

Conventionally, fractional delay filters are designed based
on the Shannon sampling theorem [13], [14] for strictly
bandlimited analog signals. Based on this theory, the optimal
filter coefficients are obtained by sampling a delayed sinc
function. This ideal low-pass filter is however not realizable
because of its non-causality and instability, and hence many
studies have focused their attention on approximating the ideal
filter by, for example, windowed sinc functions [15], [16],
maximally-flat FIR approximation [17], [18], [19], [20], [21],
all-pass approximation [22], [23], and minmax (Chebyshev)
optimization [24].

In particular,H2 (or weighted least-squares) design has
been prevalent in the literature [10], [25], [26], [21]. This
method minimizes theH2 norm of the weighted difference
between the ideal low-pass filter and a filter to be designed, and
is based on the projection theorem in Hilbert space. There are,
however, two major drawbacks in this conventional approach.
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One is that due to the averaging nature of theH2 criterion,
the obtained frequency response can have a sharp peak at a
certain frequency, thereby yielding a poor performance at that
frequency, while still maintaining smallH2 error in the overall
frequency response. The other is thatH2 criterion can yield
a truncated frequency response as an optimal approximant of
the ideal low-pass filter, which yields a distortion due to the
Gibbs phenomenon in the time domain. Furthermore, such a
design is mostly executed in the discrete-time domain, which
yields poor intersample response.

In view of these problems we employsampled-dataH∞ op-
timization,recently introduced for signal processing by [27]1.
This is based onsampled-data control theory[29] which
accounts for the mixed nature ofcontinuous- and discrete-
time thereby enabling optimization of the intersample signals
via discrete-time controllers (filters). This also allows for
optimization according to theH∞ norm, namelyminimizing
the maximum of the error frequency response. This worst-
case design is clearly desirable in that it does not have the
drawback due to the averaging property of theH2 criterion.
Due to the nature of theH∞ norm, however, this optimization
problem has been difficult to solve, but one can now utilize
a standardized method to solve this class of problems [30],
[29]. Furthermore, the obtained filter shows greater robustness
against unknown disturbances due to the nature of theuniform
attenuation of the error frequency response; see [27] for
details. Based on thisH∞ optimization method, we formulate
the design of fractional delay filters as a sampled-dataH∞

optimization problem2.
In order to optimize the intersample behavior, we must

deal with both continuous- and discrete-time signals, and
hence the overall system is not time-invariant. The key to
solving this problem islifting, which is introduced in the
early studies of modern sampled-data control theory [33], [34],
[35], [36], [37]. Indeed, continuous-time lifting gives anexact,
not approximated, time-invariant discrete-time model fora
sampled-data system, albeit with infinite-dimensional input
and output spaces. Hence the problem of the mixed time sets
is circumvented without approximation.

Lifting can also be interpreted as acontinuous-time blocking
or polyphase decomposition. As in multirate signal process-
ing [38], lifting makes it possible to capture continuous-
time signals and systems in the discrete-time domain without
approximation; see Section III-A for details. The remaining
system becomes atime-invariant discrete-timesystem, albeit
with infinite-dimensional input and output spaces. In view

1The approach dates back to [28], though.
2 This method was first proposed in our conference articles [31], [32]. The

present paper reorganizes these works with new results on the state-space
formulation (Proposition 1, Appendix A). Simulation results in Section IV
are also new.
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of this infinite-dimensionality, we retain the term liftingto
avoid confusion. With such a representation, we show that our
design problem is reducible to a finite-dimensional discrete-
time H∞ optimization without approximation. This type of
H∞ optimization is easily solvable by standard softwares such
as MATLAB [39].

In some applications, digital filters with variable delay
responses (variable fractional delay filters[40], [10], [25],
[26]) are desired. In this case, a filter should have a tunable
delay parameter, and hence a closed-form formula should be
derived. In general,H∞ optimal filters are difficult to solve
analytically. However, we provide a closed-form formula of
the optimal filter with the delay variable as a parameter under
the assumption that the underlying frequency characteristic of
continuous-time input signals is governed by a low-pass filter
of first order. While this assumption may appear somewhat
restrictive, it covers many typical cases and variations bysome
robustness properties [31].

The paper is organized as follows. Section II defines frac-
tional delay filters, and reviews a standardH2 design method.
We then reformulate our design problem as a sampled-data
H∞ optimization to overcome the difficulty due to theH2

design. Section III gives a procedure to solve the sampled-data
H∞ optimization problem based on the lifting transform. Sec-
tion IV shows numerical examples to illustrate the superiority
of the proposed method.

Notation

Throughout this paper, we use the following notation. We
denote byL2[0,∞) and L2[0, T ) the Lebesgue spaces con-
sisting of all square integrable real functions onR+ := [0,∞)
and [0, T ), respectively.L2[0,∞) may be abbreviated asL2.
By ℓ2 we denote the set of all real-valued square summable
sequences onZ+ := {0, 1, 2, . . .}. For a normed spaceX , we
denote byℓ2(Z+, X) the set of all sequences onZ+ taking
values inX with squared norms being summable. For normed
linear spacesX and Y , we denote byB(X,Y ) the set of
all bounded linear operators ofX into Y . R

ν and R
m×n

denote respectively the set of real vectors of sizeν and real
matrices of sizem×n. Finite-dimensional vectors and matrices
are denoted by bold letters, such asx or A, and infinite-
dimensional operators by calligraphic letters, such asB. The
transpose of a matrixA is denoted byA⊤. Symbolss and
z are used for the variables of Laplace andZ transforms,
respectively. For a linear systemF , its transfer function is
denoted byF̂ (z) (if F is discrete-time) orF̂ (s) (if F is
continuous-time), and its impulse response by the lower-case
letter,f [n] or f(t). The imaginary unit

√
−1 is denoted byj.

II. FRACTIONAL DELAY FILTERS

In this section, we review fractional delay filters with
conventional design methods based on the Shannon sampling
theorem. Then, we reformulate the design problem as a
sampled-dataH∞ optimization problem.

0 0 D

0 0 D

(A) Delay

(D) FDF

(C) Sampling (B) Sampling

t t

tt

v(t) v(t−D)

v(nT ) v(nT −D)

Fig. 1. Fractional delay process: (A) a continuous-time signal v(t) (top left)
is delayed byD > 0. (B) the delayed signalv(t−D) is sampled att = nT ,
n = 0, 1, . . .. (C) the signalv(t) is sampled att = nT , n = 0, 1, . . ..
(D) digital filtering (fractional delay filter, FDF) to produce (or estimate) the
sequence{v(nT −D)} from the sampled-data{v(nT )}.

A. Definition and standard design method

Consider a continuous-time signalv shown in Fig. 1 (top-
left figure). Assumev(t) = 0 for t < 0 (i.e., it is a causal
signal). Delaying this signal byD > 0 gives the delayed
continuous-time signalv(t − D) shown in Fig. 1 (top-right
in Fig. 1). Then by samplingv(t −D) with sampling period
T , we obtain the discrete-time signal{v(nT − D)}n∈Z as
shown in Fig. 1 (bottom-right in Fig. 1).

Next, let us consider the sampled signal{v(nT )}n∈Z of
the original analog signalv as shown in Fig. 1 (bottom-left in
Fig. 1). The objective of fractional delay filters is to reconstruct
or estimate the delayed sampled signal{v(nT − D)}n∈Z

directly from the sampled data{v(nT )}n∈Z when D is not
an integer multiple ofT . We now define theideal fractional
delay filter.

Definition 1: The ideal fractional delay filterKid with
delayD > 0 is the mapping that produces{v(nT −D)}n∈Z

from {v(nT )}n∈Z, that is,

Kid : {v(nT )}n∈Z 7→ {v(nT −D)}n∈Z.

Assume for the moment that the original analog signalv is
fully band-limited below the Nyquist frequencyΩN = π/T ,
that is,

v̂(jω) = 0, |ω| ≥ ΩN, (1)

where v̂ is the Fourier transform ofv. Then the impulse
response of the ideal fractional delay filter is obtained by [10]:

kid[n] =
sinπ(n−D/T )

π(n−D/T )
= sinc(n−D/T ),

n = 0,±1,±2, . . . , sinc(t) :=
sin(πt)

πt
.

(2)

The frequency response of this ideal filter is given in the
frequency domain as

K̂id(e
jωT ) = e−jωD, ω ≤ ΩN. (3)

Since the impulse response (2) does not vanish atn =
−1,−2, . . . and is not absolutely summable, the ideal filter
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Fig. 2. Error systemE for designing fractional delay filterK. (A)–(D)
correspond to those in Fig. 1.

is noncausal and unstable, and hence the ideal filter is not
physically realizable. Conventional designs thus aim at approx-
imating the impulse response (2) or the frequency response (3)
by a causal and stable filter. We here review in particular the
H2 optimization, also known as weighted least squares [10].

Define the weighted approximation error by

E2 := (Kid −K)Wd (4)

where Wd is a weighting function andK is a filter to
be designed, which is assumed to be FIR (finite impulse
response). TheH2 design aims at finding the FIR coefficients
of the transfer function̂K(z) of K that minimize theH2 norm
of the weighted error systemE2:

‖E2‖22 = ‖(Kid −K)Wd‖22

=
1

ΩN

∫ ΩN

0

∣∣∣
[
K̂id(e

jωT )− K̂(ejωT )
]
Ŵd(e

jωT )
∣∣∣
2

dω.

(5)

As pointed out in the Introduction, thisH2 design has
some drawbacks. One is that the designed filterK may yield
a large peak in the error frequency responseÊ2(e

jωT ) due
to the averaging nature of theH2 norm (5). If an input
signal has a frequency component at around such a peak of
Ê2(e

jωT ), the error will become very large. The second is
that the perfect band-limiting assumption (1) implies thatthe
H2 suboptimal filter is given as an approximant of the ideal
low-pass filter [41], which induces large errors in the time
domain [27]. Moreover, real analog signals always contain
frequency components beyond the Nyquist frequency, and
hence (1) never holds exactly for real signals.

B. Reformulation of design problem

To simultaneously solve the two problems pointed out
above, we introduce sampled-dataH∞ optimization [27]. This
method has advantages as mentioned in Section I. To adapt
sampled-dataH∞ optimization for the design of fractional
delay filters, we reformulate the design problem, instead of
mimicking the “ideal” filter given in (2) or (3).

Let us consider the error system shown in Fig. 2.W is
a stable continuous-time system with strictly proper transfer
functionŴ (s) that defines the frequency-domain characteris-
tic of the original analog signalv. More precisely, we assume
that the analog signalv is in the following subspace ofL2:

WL2 :=
{
v ∈ L2 : v = Ww, w ∈ L2

}
.

Note that the signal subspaceWL2 is much wider than that
of band-limitedL2 signals [42].

The upper path of the diagram in Fig. 2 is the ideal
process of the fractional delay filter (the process (A)→ (B)
in Fig. 1); that is, the continuous-time signalv is delayed
by the continuous-time delay denoted bye−Ds (we use the
notation e−Ds, the transfer function of theD-delay system,
as the system itself), and then sampled by the ideal sampler
denoted byST with period T > 0 to become anℓ2 signal3

ud := ST e
−Dsv, or

ud[n] :=
(
ST e

−Dsv
)
[n] = v(nT −D), n ∈ Z+.

On the other hand, the lower path represents the real process
((C) → (D) in Fig. 1); that is, the continuous-time signalv is
directly sampled with the same periodT to produce a discrete-
time signalvd ∈ ℓ2 defined by

vd[n] := (ST v) [n] = v(nT ), n ∈ Z+.

This signal is then filtered by a digital filterK to be designed,
and we obtain an estimation signalūd = KST v ∈ ℓ2.

Put ed := ud − ūd (the difference between the ideal output
ud and the estimation̄ud), and letE denote the error system
from w ∈ L2 to ed ∈ ℓ2 (see Fig. 2). Symbolically,E is
represented by (cf. (4))

E =
(
ST e

−Ds −KST

)
W. (6)

Then our problem is to find a digital filterK that minimizes
theH∞ norm of the error systemE.

Problem 1: Given a stable, strictly properW (s), a delay
time D > 0, and a sampling periodT > 0, find the digital
filter K that minimizes (cf. (5))

‖E‖∞ =
∥∥(ST e

−Ds −KST

)
W

∥∥
∞

= sup
w∈L2, ‖w‖2=1

‖
(
ST e

−Ds −KST

)
Ww‖ℓ2 .

Note thatW , or its transfer functionŴ (s), can be in-
terpreted as a frequency-domain weighting function for the
optimization. This is comparable tôWd(z) in the discrete-time
H2 design minimizing (5). The point to use continuous-time
Ŵ (s) is that one can model the frequency characteristic of
signals beyond the Nyquist frequency. Also, the advantage of
using the sampled-data setup here is that we can minimize the
norm of the overall transfer operator from continuous-timew
to the errored. In the next section, we will show a procedure
to solve Problem 1 based on sampled-data control theory.

III. H∞ DESIGN OFFRACTIONAL DELAY FILTERS

The error systemE in Fig. 2 contains both continuous-
and discrete-time signals, and hence the system is not time-
invariant; in fact, it isT -periodic [29]. In this section, we
introduce the continuous-time lifting technique [37], [29] to
derive a norm-preserving transformation fromE to a time-
invariant finite-dimensional discrete-time system. Afterthis,

3 If Ŵ (s) is stable and strictly proper, the discrete-time signalud =
ST e−Dsv belongs toℓ2. Otherwise,ST is not a bounded operator onL2;
see [29, Section 9.3].
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Fig. 3. Lifted error systemE .

one can use a standard discrete-timeH∞ optimization imple-
mented on a computer software such as MATLAB to obtain
an optimal filter. We also give a closed-form solution of the
optimization under an assumption onW (s).

A. Lifted model of sampled-data error system

Let {A,B,C} be a minimal realization [43] of̂W (s):

dx(t)

dt
= Ax(t) +Bw(t), v(t) = Cx(t), t ∈ R+, (7)

wherex(t) ∈ R
ν is the state variable (ν is a positive integer).

We assumeA ∈ R
ν×ν , B ∈ R

ν×1, C ∈ R
1×ν , and

x(0) = 0. Let D = mT + d wherem ∈ Z+ andd is a real
number such that0 ≤ d < T . First, we introduce the lifting
operatorL [37], [29] that transforms a continuous-time signal
in L2[0,∞) to anℓ2 sequence of functions inL2[0, T ). Apply
L to the continuous-time signalsw andv, and putw̃ := Lw,
ṽ := Lv. By this, the error system in Fig. 2, is transformed
into a time-invariant discrete-time systemE shown in Fig. 3.
Since the operatorL gives an isometry betweenL2[0,∞) and
ℓ̃2 := ℓ2(Z+, L

2[0, T )), we have

‖E‖∞ = ‖E‖∞ := sup
w̃∈ℓ̃2, ‖w̃‖2

ℓ̃
=1

‖Ew̃‖ℓ2 (8)

The following proposition is fundamental to the sampled-
data optimization in (8).

Proposition 1: A state-space realization of the lifted error
systemE is given by

ξ[n+ 1] = Adξ[n] +

[
B
0

]
w̃[n],

ed[n] = C1ξ[n]− ūd[n], vd[n] = C2ξ[n],

ūd[n] = (k ∗ vd)[n],

(9)

where ∗ stands for convolution, and the pertinent operators
Ad, B, C1 andC2 are given as follows: First,B is a linear
(infinite-dimensional) operator defined by

B : L2[0, T ] → R
ν+1,

w̃ 7→ Bw̃ =

[
B1w̃
B2w̃

]

=




∫ T

0

eA(T−τ)Bw̃(τ)dτ
∫ T−d

0

CeA(T−d−τ)Bw̃(τ)dτ




(10)

  

 
 

 

!"! "!

Fig. 4. Factorization ofE .

The matricesAd, C1, andC2 in (9) are defined by

Ad :=




eAT 0 0

CeA(T−d) 0 0
0 Bm Am



 ∈ R
(ν+1+m)×(ν+1+m),

C1 := [0, 0,Cm] ∈ R
1×(ν+1+m),

C2 := [C, 0, 0] ∈ R
1×(ν+1+m),

whereAm, Bm, andCm are state-space realization matrices
of the discrete-time delayz−m.

Proof: See Appendix A.
The state-space representation (9) then gives the transfer

function of the lifted systemE as

Ê(z) = Ĝ1(z)− K̂(z)Ĝ2(z), (11)

where

Ĝi(z) := Ci(zI −Ad)
−1

[
B
0

]
, i = 1, 2.

Put

Ê0(z) :=
(
C1 − K̂(z)C2

)
(zI −Ad)

−1. (12)

Note thatE0 is a finite-dimensional discrete-time system. Then
the lifted systemE(z) in (11) can be factorized (see Fig. 4)
as

Ê(z) = Ê0(z)

[
B
0

]
. (13)

B. Norm-equivalent finite-dimensional system

The lifted systemE given in (9), or its transfer function̂E in
(11), involves an infinite-dimensional operatorB : L2[0, T ) →
R

ν+1. Introducing the dual operator [44]B∗ : R
ν+1 →

L2[0, T ) of B, and composing this withB, we can obtain
a norm-equivalent finite dimensional system of the infinite-
dimensional systemE .

The dual operatorB∗ of B is given by [44]

B∗ =
[
B∗
1 B∗

2

]
, B∗

1(θ) := B⊤eA
⊤(T−θ),

B∗
2(θ) := 1[0,T−d)(θ)B

⊤eA
⊤(T−d−θ)C⊤, θ ∈ [0, T ),

where1[0,T−d) is the characteristic function of the interval
[0, T − d), that is,

1[0,T−d)(θ) :=

{
1, θ ∈ [0, T − d),

0, otherwise.

Then we have the following lemma:
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Fig. 5. Discrete-time systemEd.

Lemma 1:The operatorBB∗ is a positive semi-definite
matrix given by

BB∗ =

[
B1B∗

1 B1B∗
2

B2B∗
1 B2B∗

2

]

=

[
M(T ) eAdM(T − d)C⊤

CM(T − d)eA
⊤d CM(T − d)C⊤

] (14)

whereM(·) is defined by

M(t) :=

∫ t

0

eAθBB⊤eA
⊤θdθ ∈ R

ν×ν , t ≥ 0.

Proof: We first proveB1B∗
2 = eAdM(T − d)C⊤.

For everyu ∈ R, we have

B1B∗
2u =

∫ T

0

eA(T−θ)B
(
B∗
2(θ)u

)
dθ

=

∫ T

0

eA(T−θ)B
(
1[0,T−d)(θ)B

⊤eA
⊤(T−d−θ)C⊤u

)
dθ

= eAd

∫ T−d

0

eA(T−d−θ)BB⊤eA
⊤(T−d−θ)dθ C⊤u

= eAdM(T − d)C⊤u.

Similarly, we can prove the equalitiesB1B∗
1 = M(T ) and

B2B∗
2 = CM(T − d)C⊤.

Remark 1:The matrix M(t) can be computed via the
matrix exponential formula [45]:

M (t) = F⊤
22(t)F 12(t),[

F 11(t) F 12(t)
0 F 22(t)

]
:= exp

{[
−A BB⊤

0 A⊤

]
t

}
.

By this formula, we can easily compute the matricesM (T )
and M(T − d) in (14) without performing a numerical
integration.

From Lemma 1,BB∗ is a positive semi-definite matrix and
hence there exists a matrixBd such thatBB∗ = BdB

⊤
d . With

matrix Bd and discrete-time systemE0 given in (12), define
a finite-dimensional discrete-time system by

Ed := E0

[
Bd

0

]
.

See Fig. 5 for the block diagram ofEd. Then the discrete-
time systemEd is equivalent to the original sampled-data error
systemE in Fig. 2 with respect to theirH∞ norm as described
in the following theorem:

Theorem 1:Assume that the sampled-data error systemE
gives an operator belonging toB(L2, ℓ2), the set of all bounded
linear operators ofL2 into ℓ2. Then the discrete-time system
Ed belongs toB(ℓ2, ℓ2) and equivalent toE with respect to
their H∞ norm, that is,‖E‖∞ = ‖Ed‖∞.

Proof: First, the equality in (8) andE ∈ B(L2, ℓ2) give
‖E‖∞ = ‖E‖∞ < ∞. Using the factorization (13), we have

‖E‖2∞ = ‖E‖2∞ =

∥∥∥∥E0

[
B
0

]∥∥∥∥
2

∞

=

∥∥∥∥E0

[
B
0

] [
B
0

]∗
E∗

0

∥∥∥∥
∞

=

∥∥∥∥∥E0

[
Bd

0

] [
Bd

0

]⊤
E∗

0

∥∥∥∥∥
∞

= ‖Ed‖2∞ .

Thus the sampled-dataH∞ optimization (Problem 1) is
equivalently transformed to discrete-timeH∞ optimization.
A MATLAB code for the H∞-optimal fractional delay filter
is available on the web at [46]. Moreover, if we assume that
the filter K(z) is an FIR filter, the design is reduced to a
convex optimization with a linear matrix inequality. See [32],
[47] for details.

C. Closed-form solution under a first-order assumption

Assume that the weighting function̂W (s) is a first-order
low-pass filter with cutoff frequencyωc > 0:

Ŵ (s) =
ωc

s+ ωc
. (15)

Under this assumption, a closed-form solution for the optimal
filter is obtained [31], [32]:

Theorem 2:Assume thatŴ (s) is given by (15). Then the
optimal filter K̂(z) is given by

K̂(z) = a0(d)z
−m + a1(d)z

−m−1, (16)

where

a0(d) :=
sinh (ωc(T − d))

sinh(ωcT )
, a1(d) := e−ωcT

(
eωcd − a0(d)

)
.

Moreover, the optimal value of‖E‖∞ is given by

‖E‖∞ =

√
ωc sinh(ωcd) sinh(ωc(T − d))

sinh(ωcT )
. (17)

Since the optimal filterK̂(z) in (16) is a function of the
fractional delayd and the integer delaym, the filter can be
used as avariable fractional delay filter[10].

Remark 2:Fix d > 0 andm ∈ Z+ arbitrarily. By definition,
we haveT − d < T . It follows that asωc → ∞, we have
a0(d) → 0, a1(d) → 0, and ‖E‖∞ → ∞. This means
that if the original analog signals contain higher frequency
components (far beyond the Nyquist frequency), the worst-
case input signal becomes more severe, and theH∞-optimal
filter becomes closer to0.

IV. D ESIGN EXAMPLES

We here present design examples of fractional delay filters.
The design parameters are as follows: the sampling period

T = 1 (sec), the delayD = 5.5 (sec), that is,m = 5 andd =
0.5. The frequency-domain characteristic of analog signals to
be sampled is modeled by

Ŵ (s) =
ωc

s+ ωc
, ωc = 0.1.
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Fig. 6. Bode plot ofŴ (s) (solid) and its impulse-invariant discretization
Ŵd(z) (dash). The vertical line shows the Nyquist frequency.
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Fig. 7. Bode plot of filters: sampled-dataH∞ design (solid), and discrete-
time H2 design (dash).

Note thatŴ (s) has the cutoff frequencyωc = 0.1 (rad/sec)≈
0.016 (Hz), which is below the Nyquist frequencyπ (rad/sec)
= 0.5 (Hz).

We compare the sampled-dataH∞ optimal filter obtained
by Theorem 2 with conventional FIR filters designed by
discrete-timeH2 optimization [10], which minimizes the cost
function (5). The weighting function̂Wd(z) in (4) or (5) is
chosen as the impulse-invariant discretization [48] ofŴ (s).
Fig. 6 shows the Bode plots of̂W (s) andŴd(z).

The transfer function of the proposed filter is given by

K̂(z) = z−5
(
0.4994 + 0.4994z−1

)
.

Fig. 7 shows the Bode plots of the designed filters. As
illustrated in Fig. 7, theH2 optimal filter is closer to the ideal
filter (3) as expected, so that it appears better in the context
of the conventional design methodology.

However, theH2 optimal filter exhibitsmuch larger errors
in the high-frequency domain as shown in Fig. 8 that shows
the frequency response gain of the sampled-data error system
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Fig. 8. Frequency response gain of error systemE in Fig. 2: sampled-data
H∞ design (solid), and discrete-timeH2 design (dash).
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Fig. 9. Time response: sampled-dataH∞ design (above) and discrete-time
H2 design (below) with sampling frequency1000 (Hz).

E shown in Fig. 2. This is because the conventional designs
cannot take into account the frequency response of the source
analog signals while the present method does.

To see the difference between the present filter and the
conventional one, we show the time response against a piece-
wise regular signal produced by theMakeSignal function
of WaveLab [49] in Fig. 9. The present method is superior
to the conventional one that shows much ringing at edges
of the wave. To see the difference more finely, we show the
reconstruction error in Fig. 10. TheH2-optimal filter has much
larger errors around edges of the signal than the proposedH∞-
optimal one. In fact, theL2 norm of the error is1.34× 10−2

for H∞ design and2.07×10−2 for H2 design. This illustrates
the effectiveness of our method.

V. CONCLUSION

We have presented a new method of designing fractional
delay filters via sampled-dataH∞ optimization. An advantage
here is that anoptimal analog performancecan be attained.
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Fig. 10. Absolute value of reconstruction error: sampled-dataH∞ design
(above) and discrete-timeH2 design (below).

The optimal design problem can be equivalently transformed
to discrete-timeH∞ optimization, which is easily executed
by standard numerical optimization toolboxes. A closed-form
solution is given when the frequency distribution of the input
analog signal is modeled as a first-order low-pass filter. Design
examples show that theH∞-optimal filter exhibits a much
more satisfactory performance than the conventionalH2-
optimal filter.
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APPENDIX A
PROOF OFPROPOSITION1

From the relation (6), the lifted systemE is described as
(see also Fig. 3)

E = ST e
−DsWL−1 −KSTWL−1

= ST e
−mTse−dsWL−1 −KSTWL−1

= z−mST e
−dsWL−1 −KSTWL−1

= z−myd −Kvd,

whereyd := ST e
−dsWL−1w̃ and vd := STWL−1w̃. From

the state-space representation ofW in (7), for any t1 and t2
such that0 ≤ t1 ≤ t2 < ∞, we have

x(t2) = eA(t2−t1)x(t1) +

∫ t2

t1

eA(t2−t)Bw(t)dt.

Putting t1 := nT and t2 := (n+ 1)T for n ∈ Z+ gives

x(nT + T ) = eATx(nT ) +

∫ T

0

eA(T−τ)Bw(nT + τ)dτ.

Definex1[n] := x(nT ) and w̃[n] := (Lw)[n]. Then we have

x1[n+ 1] = eATx1[n] + B1w̃[n], (18)

whereB1 is defined in (10). On the other hand, from (7),
we havev(t) = Cx(t) for t ∈ R+. Putting t1 := nT and
t2 := nT + θ for n ∈ Z+ andθ ∈ [0, T ), we have

v(nT + θ) = Cx(nT + θ)

= CeAθx(nT ) +

∫ θ

0

CeA(θ−τ)Bw(nT + τ)dτ.

(19)

By this, we have

vd[n] = v(nT ) = Cx1[n]. (20)

Next, from (19), we have

yd[n] = v(nT − d) = v(nT − T + T − d)

= CeA(T−d)x1[n− 1]

+

∫ T−d

0

CeA(θ−τ)Bw̃[n− 1](τ)dτ.

Put x2[n] := yd[n]. Then we have

x2[n+ 1] = CeA(T−d)x1[n] + B2w̃[n],

yd[n] = x2[n],
(21)

whereB2 is defined in (10). By the relation

ud[n] = yd[n−m] = z−myd[n],

and the state-space matricesAm, Bm, andCm for m-step
delayz−m, we have

x3[n+ 1] = Amx3[n] +Bmyd[n],

ud[n] = Cmx3[n].
(22)

Combining (18), (20), (21), and (22) all together gives the
state-space representation (9) withξ⊤ := [x⊤

1 , x2,x
⊤
3 ]

⊤.
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