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Abstract—Fractional delay filters are digital filters to delay One is that due to the averaging nature of f#é criterion,
discrete-time signals by a fraction of the sampling periodSince the obtained frequency response can have a sharp peak at a
the delay is fractional, the intersample behavior of the orginal certain frequency, thereby yielding a poor performancéa t

analog signal becomes crucial. In contrast to the convential . . 22 9 .
designs based on the Shannon sampling theorem with the band-frequency, while still maintaining smalf © error in the overall

||m|t|ng hypothesisl the present paper proposes a new appa]nh frequency response. The other is tﬁﬂ% criterion can y|e|d
based on the modern sampled-datdi *° optimization that aims at ~ a truncated frequency response as an optimal approximant of

restoring the intersample behavior beyond the Nyquist fregiency.  the ideal low-pass filter, which yields a distortion due te th
By using the lifting transform or continuous-time blocking the Gibbs phenomenon in the time domain. Furthermore, such a

design problem is equivalently reduced to a discrete-timeH *° - . . . . .
optimization, which can be effectively solved by numericatom- design is mostly executed in the discrete-time domain, whic

putation softwares. Moreover, a closed-form solution is otained ~ Yi€lds poor intersample response.
under an assumption on the original analog signals. Design In view of these problems we emplsgampled-datd > op-

examples are given to illustrate the advantage of the propesl timization,recently introduced for signal processing by[27]
method. This is based orsampled-data control theory29] which
Index Terms—Fractional delay filters, interpolation, sampled- accounts for the mixed nature @bntinuous- and discrete-

data systems,H > optimization, linear matrix inequality. time thereby enabling optimization of the intersample signals
via discrete-time controllers (filters). This also allowsr f
|. INTRODUCTION optimization according to thé/> norm, namelyminimizing

) ] o ) the maximum of the error frequency respan$éis worst-
Fractional delay filters are digital filters to delay diseret 550 design is clearly desirable in that it does not have the

time signals by a fractional amount of the sampling periog,awback due to the averaging property of tH& criterion.
Such filters have wide applications in signal processing, ifyye to the nature of th&> norm, however, this optimization
cluding sampling rate conversio [1].1[2].1[3], nonuniformyopiem has been difficult to solve, but one can now utilize
sampling [4], [5], wavelet transform [6]. [7], digital molitey 5 standardized method to solve this class of probléms [30],
of musical instruments_[8],[[9], to name a few. For morgyg) Furthermore, the obtained filter shows greater rotess
applications, see survey papelrs|[10L.I[11].][12]. against unknown disturbances due to the nature ofitti®rm
Conventionally, fractior_1a| delay filters are designed U_as%lttenuation of the error frequency response; séel[27] for
on the Shannon sampling theorei I[13]. I[14] for strictiyetails, Based on thig#> optimization method, we formulate

bandlimited analog signals. Based on this theory, the @tiny,e design of fractional delay filters as a sampled-ddts
filter coefficients are obtained by sampling a delayed sipgtimization probleff

function. This ideal low-pass filter is however not realieab |, order to optimize the intersample behavior, we must

because of its non-causality and instability, and henceymafesl with both continuous- and discrete-time signals, and
s_tudies have focused thei_r attention_on appro_ximatingdhali hence the overall system is not time-invariant. The key to
fiter by, for example, windowed sinc functions_[15]. [16]so|ying this problem islifting, which is introduced in the
maximally-flat FIR a_pproxmaﬂor[[l?]EDQ]EDQ]EEZO]E@, early studies of modern sampled-data control theory [331],[
all-pass approximatiori [22][[23], and minmax (Chebysheys) [36], [37]. Indeed, continuous-time lifting gives amact,
optimization [24]. . _ not approximated, time-invariant discrete-time model #or

In particular, H* (or weighted least-squares) design hag;mpled-data system, albeit with infinite-dimensionaluinp
been prevalent in the literature [10]. [25]. [26]. [21]. $hi ang output spaces. Hence the problem of the mixed time sets
method minimizes thegZ? norm of the weighted difference js circumvented without approximation.
between the ideal low-pass filter and a filter to be designed, a Lifting can also be interpreted aantinuous-time blocking

is based on the projection theorem in Hilbert space. There a5 holyphase decompositios in multirate signal process-
however, two major drawbacks in this conventional approaqhg [38], lifting makes it possible to capture continuous-

Copyright (¢) 2012 IEEE. Personal use of this material ismited. time signals and systems in the discrete-time domain withou

However, permission to use this material for any other psepomust be approximation; see Sectidn 1A for details. The remagnin
obtained fr?]m the IEEhE by sending afrequthtdtO pUFS-pemn:'jS@iee;borg- system becomes time-invariant discrete-timeystem, albeit

M. Nagahara is with Department of Applied Analysis and CarpDy- ithoinfinite.di ; ; ;
namical Systems, Graduate School of Informatics, Kyotovehsity, Kyoto, with infinite-dimensional Input and output spaces. In view
606-8501, JAPAN (e-maibhagahara@ieee.org). Mailing address: Kyoto
University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8504pan. 1The approach dates back fo [28], though.

Y. Yamamoto is with Department of Applied Analysis and Coexpl 2 This method was first proposed in our conference arti€le [32]. The
Dynamical Systems, Graduate School of Informatics, Kyotaversity, Ky- present paper reorganizes these works with new results ersttte-space
oto, 606-8501, JAPAN (e-maiky@i.kyoto-u.ac. jp). Mailing address: formulation (Propositiori]1, AppendiJA). Simulation resuin Section TV
Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 60668, Japan. are also new.


http://arxiv.org/abs/1308.0797v1

Assume for the moment that the original analog signéa

avoid confusion. With such a representation, we show that ou (A) Delay
design problem is reducible to a finite-dimensional diseret —_— /\/
t
In some applications, digital filters with variable delay
: | hence a cl fo LA (D)
derived. In generalH>° optimal filters are difficult to solve . —_
? ;
continuous-time input signals is governed by a low-passrfiltrig 1. Fractional delay process: (A) a continuous-timenalg (¢) (top left)
robustness properties [31]. sequence{v(nT — D)} from the sampled-datdv(nT)}.
H*®° optimization to overcome the difficulty due to thé? Consider a continuous-time signalshown in Fig[l (top-
of the proposed method. in Fig.[). Then by sampling(t — D) with sampling period
the original analog signal as shown in Fig]1 (bottom-left in
i 2 i 2
and [0, T), respectively.L*[0, 00) may be abbreviated a5°. 5, integer multiple of. We now define thedeal fractional
values inX with squared norms being summable. For norm%m {(0(nT)}nez, that is
matrices of sizen x n. Finite-dimensional vectors and matrice§u
o(jw) =0, |w| = O, @)
z are used for the variables of Laplace a#dtransforms, where ¢ is the Fourier transform ob. Then the impulse

of this infinite-dimensionality, we retain the term liftingp o(t) v(t — D)
time H°° optimization without approximation. This type of t
H* optimization is easily solvable by standard softwares such (! 0'D
as MATLAB [39]. (C) Sampling 1(B) Sampling
responsesvariable fractional delay filtergJ40], [10], [25],
[26]) are desired. In this case, a filter should have a tunable v(nT) v(nT — D)
delay parameter, and hence a closed-form formula should be [ ) FDF N
analytically. However, we provide a closed-form formula of T TT ¢
the optimal filter with the delay variable as a parameter unde™ () oD
the assumption that the underlying frequency charadieoét
of first order. While this assumption may appear somewhaielayed byD > 0. (B) the delayed signal(t — D) is sampled at = nT,
ioti i i iati n = 0,1,.... (C) the signalv(t) is sampled at = nT, n = 0,1,....
restrictive, it covers many typlcal cases and Varlatlonsme (D) digital filtering (fractional delay filter, FDF) to prode (or estimate) the
The paper is organized as follows. Sectidn Il defines frac-
tional delay filters, and reviews a standdid design method.
We then reformulate our design problem as a sampled-déta Definition and standard design method
design. SectioR Il gives a procedure to solve the sampégd-djeft figure). Assumev(t) = 0 for t < 0 (i.e., it is a causal
H*> optimization proplem based on thg lifting transform. _S;e<;51gna|)_ Delaying this signal byD > 0 gives the delayed
tion IVl shows numerical examples to illustrate the sup@sior continuous-time signab(t — D) shown in Fig.[l (top-right
T, we obtain the discrete-time sign@b(nT — D)},cz as
shown in Fig[L (bottom-right in Fid]1).
Notation Next, let us consider the sampled sigfal(nT)},cz of
Throughogut this paper,gwe use the following notation. Wﬁig.l]]). The objective of fractional delay filters is to restmuct
dgnpte byL=[0, 0o) gndL [0,T) the Lepesgue SPaces CONgy estimate the delayed sampled sigdalnT — D)}nez
sisting of all square integrable real functionskn := [0, c0) directly from the sampled datéw(nT)},cz when D is not
By /2 we denote the set of all real-valued square summal?JS'ay filter.
sequence520ﬁ+ = {0,1,2,...}. For a normed spac¥, we Definition 1: The ideal fractional delay filter Kiq with
denote byl“(Z,, X) the set of all sequences dh, taking delay D > 0 is the mapping that producds (nT — D)} ez
linear spacesX andY, we denote byB(X,Y) the set of
all bounded linear operators of into Y. R” and R"*" Kiqa : {v(nT) }nez = {v(nT — D)}nez.
denote respectively the set of real vectors of sizend real
are denoted by bold letters, such asor A, and infinite-
dimensional operators by calligraphic letters, such3ahe
transpose of a matrixd is denoted byA'. Symbolss and
respectively. For a linear systeifi, its transfer function is response of the ideal fractional delay filter is obtainedI§] |
denoted byF'(z) (if F is discrete-time) orF'(s) (if F is sinm(n — D/T)
continuous-time), and its impulse response by the lowse-ca kia[n] = ——————-+= =sinc(n — D/T),

letter, f[n] or f(t). The imaginary unit/—1 is denoted byj. m(n = D/T) , (2)
n=0,+1,42,..., sinc(t) := sin(rt)
Tt
Il. FRACTIONAL DELAY EILTERS The frequency response of this ideal filter is given in the
frequency domain as
In this section, we review fractional delay filters with Kia(@T) = 9P, < Q. 3)

conventional design methods based on the Shannon sampling
theorem. Then, we reformulate the design problem as aSince the impulse responsgl (2) does not vanish at
sampled-datd? > optimization problem. —1,-2,... and is not absolutely summable, the ideal filter



(A) (B) Note that the signal subspa®€L? is much wider than that

w w2 _Ds Sy |t of band-limitedL? signals [42].
¢ ’ : The upper path of the diagram in Figl 2 is the ideal
(C) (D) process of the fractional delay filter (the process ()(B)
o Gg v+ eq in Fig. [1); that is, the continuous-time signalis delayed
St K O > by the continuous-time delay denoted by”* (we use the
notatione~P#, the transfer function of thé)-delay system,

as the system itself), and then sampled by the ideal sampler

Fig. 2. Error systemt for designing fractional delay filtet<. (A)~(D) denoted bySt with period T > 0 to become arn’? Signdﬂ
correspond to those in Fifg] 1. wy = Sre—Psy. or
d = T ’

ualn] == (Sre P*v) [n] =v(nT — D), n€Z,.
is noncausal and unstable, and hence the ideal filter is not
physically realizable. Conventional designs thus aim ptay- On the other hand, the lower path represents the real process
imating the impulse respondd (2) or the frequency resp@)se ((C) — (D) in Fig.[D); that is, the continuous-time signals
by a causal and stable filter. We here review in particular tiférectly sampled with the same peri@tto produce a discrete-
H? optimization, also known as weighted least squares [1djme signalvq € ¢* defined by

Define the weighted approximation error by van] = (Srv) [n] = o(nT), n€Zy

By = (Kia — K)Wa (4} This signal is then filtered by a digital filtdt to be designed,

where Wy is a weighting function andk is a filter to and we obtain an estimation signal = KSyv € (*.

be designed, which is assumed to be FIR (finite impulsePuted := ua — ua (the difference between the ideal output
response). Thé/2 design aims at finding the FIR coefficientsta @nd the estimatiom,), and letE’ denote the error system
of the transfer functiork (=) of K that minimize thef/2 norm fom w € L? to eq € (* (see Fig[R). Symbolicallyf is

of the weighted error systeri,: represented by (cfl{4))
1[5 = [|(Kia — K)Wall3 E = (Sre™”" = KSr)W. (6)
IR Then our problem is to find a digital filtek” that minimizes

2
’ dw.

_ S (WTY i (alwT ] 1A, (edwT
Ox Jo [K‘d(e ) - Kl )} Wa(e™?) the H°° norm of the error systenk.

%) Problem 1: Given a stable, strictly propéi/(s), a delay

time D > 0, and a sampling period > 0, find the digital

As pointed out in the Introduction, thigI? design has filter K that minimizes (cf.[5))

some drawbacks. One is that the designed fikemay yield

a large peak in the error frequency resporsgei“”) due IE|loc = ||(Sre™* = KSr) W/|
to the averaging nature of th&? norm [8). If an input _ sup I (STe—Ds — KSr) Wl
signal has a frequency component at around such a peak of weL?, |lwl2=1

Ey(e“T), the error will become very large. The second is
that the perfect band-limiting assumptidd (1) implies ttra

H? suboptimal filter is given as an approximant of the ide
low-pass filter [41], which induces large errors in the tim 5 ’ s S § g :
domain [27]. Moreover, real analog signals always conta design minimizing[(b). The point to use continuous-time

frequency components beyond the Nyquist frequency, a%(s) is that one can mpdel the frequency characteristic of
hence L) never holds exactly for real signals. signals beyond the Nyquist frequency. Also, the advantdge o
using the sampled-data setup here is that we can minimize the

norm of the overall transfer operator from continuous-time
B. Reformulation of design problem to the erroreq. In the next section, we will show a procedure
To simultaneously solve the two problems pointed od@ solve Problerill based on sampled-data control theory.
above, we introduce sampled-d&fa° optimization [27]. This
method has advantages as mentioned in Se€lion I. To adapt I1l. H> DESIGN OFFRACTIONAL DELAY FILTERS
sampled-datal{>° optimization for the design of fractional

de_la_y ﬁlters, we reforr_nulatg the_ design problem, instead Sf'nd discrete-time signals, and hence the system is not time-

mimicking the _(;dealh filter given in((2) r(:r[(IB)._ invariant; in fact, it isT-periodic [29]. In this section, we
Let us consider the error system shown in Fiig.1e. is introduce the continuous-time lifting technique [[37], [28

a stable continuous-time system with strictly proper f@ns yoive a norm-preserving transformation frofhto a time-

function W (s) that defines the frequency-domain CharaCter'ﬁivariant finite-dimensional discrete-time system. Afthis,

tic of the original analog signal. More precisely, we assume

that the analog signal is in the following subspace af*: 3 If W(s) is stable and strictly proper, the discrete-time signgl =

Sre~Psy belongs tof2. Otherwise,St is not a bounded operator ai@;

WIL? .= {U el?:.v= Ww, we L2} . see [29, Section 9.3].

Note that W, or its transfer functioni¥’(s), can be in-
terpreted as a frequency-domain weighting function for the
gptimization. This is comparable 10’4 (z) in the discrete-time

The error systemZ in Fig. [2 contains both continuous-
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Fig. 4. Factorization of.
Fig. 3. Lifted error systent.
The matricesdy, C1, andC> in (@) are defined by
one can use a standard discrete-tifhe® optimization imple- AT 0 0
mented on a computer software such as MATLAB to obtainAq := | CeAT-4d o 0 | e RWHIHm)x(viitm)
an optimal filter. We also give a closed-form solution of the 0 B, An
optimization under an assumption ®¥(s). Ci :=[0,0,C)] € RIXw+1+m),

C :=[C,0,0] € RM*(F1+m),

A. Lifted model of sampled-data error system whereA,,, B,,, andC,, are state-space realization matrices

Let {A, B,C} be a minimal realizatior [23] ofV/(s): of the discrete-time delay™"".
Proof: See AppendiXA. [ |
dz(t) = Az(t) + Bu(t), v(t) = Cz(t), te Ry, (7 The state-space representatibh (9) then gives the transfer
dt ’ ’ ’ function of the lifted systeng as
wherex(t) € R” is the state variable/(is a positive integer). £(2) = Gu(2) — K(2)Ga(2), (11)

We assumedA € R¥*¥, B ¢ R} C € R™, and
z(0) = 0. Let D = mT + d wherem € Z, andd is a real where
number such thab < d < T. First, we introduce the lifting

operatorZ [37], [29] that transforms a continuous-time signal g;.(z) = Cy(=I — Ag) ™! [ B ] . i=1,2.

in L2[0, 00) to an¢? sequence of functions ihZ[0, T'). Apply 0

L to the continuous-time signails andv, and putw := Lw, pyt

¥ := Lv. By this, the error system in Fifll 2, is transformed Eo(z) — (Cl B K(Z)CQ)(ZI— Ayt (12)

into a time-invariant discrete-time systefnshown in Fig[B.
Since the operatof gives an isometry betweefir' [0, 00) and  Note thatF, is a finite-dimensional discrete-time system. Then

(2 = (*(Z4,L*[0,T)), we have the lifted systemg(z) in () can be factorized (see Fig. 4)
as
[Elloc = €lloo := sup  [|EW||e (8) R R B
wel2, ||w)|2=1 E(z) = Eoy(2) [ 0 } . (13)

The following proposition is fundamental to the sampled-
data optimization in[{8).
Proposition 1: A state-space realization of the lifted erroB. Norm-equivalent finite-dimensional system

systemé is given by The lifted systen€ given in [), or its transfer functioé in

B (11), involves an infinite-dimensional operat®r L2[0,T) —
Eln + 1] = Agé[n] + [ } w(n], R¥*!. Introducing the dual operatof [44f* : R*T! —

B - B (9) L*0,T) of B, and composing this with3, we can obtain
ca[n] = C1€[n] — dafnl, valn] = C2¢[n], a norm-equivalent finite dimensional system of the infinite-
ta[n] = (k *va)[n], dimensional systers.

The dual operatoBB* of B is given by [44]

B
0

where x stands for convolution, and the pertinent operators
Ag, B, C1 and C5, are given as follows: First3 is a linear B — [ Br B ] B:(0) = BTeA (1-0)
(infinite-dimensional) operator defined by ' . ’
B3(0) :=1jpr_ay(0)BTe* T==0CT g e0,T),
B: L*0,T] — R"*1,

[Byw
| Bow

- T
/ eA(T*T)BfD(T)dT
0

where 1;y r_q) is the characteristic function of the interval
w— Bw = [0,T — d), that is,
(10) 1, 6c[0,T—d),

1o7_g(0) :=
o.7-(®) {0, otherwise

T—d
/0 CeA" T Bi(r)dr Then we have the following lemma:




™ Proof: First, the equality in[{8) andZ € B(L?,¢?) give

wWq €d
—> le] Fy —— |1E||cc = [I€]loec < oc. Using the factorizatio (13), we have
0 T8 17
1B =l = | | § ]
. : . (B[ B] .
Fig. 5. Discrete-time systemv. = ||Ey _ 0 } _ 0 ] EO N
r . T
B B "
Lemma 1:The operatorBB* is a positive semi-definite = || Eo Od [ Od ] By = Eal3,-
matrix given by - - o0
B.B; B.Bj .
BB* = {3131 3132} Thus the sampled-dat&/> optimization (Probleni]l) is
221 P2 . (14) equivalently transformed to discrete-tinfé> optimization.
B M(T) eAM(T — d)C A MATLAB code for the H>-optimal fractional delay filter
T leM(T-der™ CcM(T —d)CT is available on the web at [46]. Moreover, if we assume that

the filter K(z) is an FIR filter, the design is reduced to a
convex optimization with a linear matrix inequality. SE€]3
[47] for details.

where M (-) is defined by

t
M(t) == / eA’BBTeA %49 e RV, ¢ > 0.
0
C. Closed-form solution under a first-order assumption
Assume that the weighting functioi(s) is a first-order
- low-pass filter with cutoff frequency. > 0:
BiBju = [ AT B(5;00)00 (s = 2 (15)
C

_ /TeA(T—O)B (1[07T_d) (H)BTGAT(T—d—O)CTU) dg Under this assumption, a closed-form solution for the optim
0

filter is obtained([31],[[3P]:

Proof: We first proveB,8; = eA*M (T — d)C'".
For everyu € R, we have

T-d - Theorem 2:Assume thatiV (s) is given by [I5). Then the
Ad A(T—d—0 T . AT(T—d—06 T /!
=¢ /0 AT 'BBTet T )40 CTu optimal filter K (z) is given by
= eMM(T — d)C T w. K(2) = ao(d)z"" + a1 (d)z~™*, (16)
Similarly, we can prove the equalities; B; = M(T) and where
ByBs = CM(T —d)C'. u sinh (w.(T — d)) T
Remark 1:The matrix M (¢t) can be computed via the ao(d) := T sinh(wl D) ai(d) := e T (e*! — ag(d)).

matrix exponential formuld [45]:
M(t) = Fo,(t)F1a(t), FI T
Fll(t) F12(t) :| — o { |: _A BBT :| t} ' ||E||Oo _ \/wc Sin (Wc )Sln (WC( B )) ) (17)

Moreover, the optimal value dfF||» is given by

0 Fas(t) 0 AT sinh(w.T)

By this formula, we can easily compute the matrides(T) Since the optimal filter’'(2) in (@8) is a function of the
and M(T — d) in (@) without performing a numerical fractional delayd and the integer delayn, the filter can be
integration. used as aariable fractional delay filtef10].

From Lemmdll 3B* is a positive semi-definite matrix and Remark 2:Fix d > 0 andm € Z. arbitrarily. By definition,
hence there exists a matrR, such that35* = B,B, . With We haveT —d < T It follows that asw. — oo, we have
matrix By and discrete-time systeti, given in [12), define @o(d) — 0, a1(d) — 0, and [|[E||c — oo. This means

a finite-dimensional discrete-time system by that if the original analog signals contain higher frequenc
components (far beyond the Nyquist frequency), the worst-
Eq:=Ep [ Bq ] ) case input signal becomes more severe, andifeoptimal
0 filter becomes closer t6.
See Fig[b for the block diagram dfy. Then the discrete-
time systemE, is equivalent to the original sampled-data error IV. DESIGN EXAMPLES
systemFE in Fig.[2 with respect to theif > norm as described We here present design examples of fractional delay filters.
in the following theorem: The design parameters are as follows: the sampling period

Theorem 1:Assume that the sampled-data error system T = 1 (sec), the delay) = 5.5 (sec), that isyn = 5 andd =
gives an operator belonging®( L2, /2), the set of all bounded 0.5. The frequency-domain characteristic of analog signals to
linear operators of.? into /2. Then the discrete-time systembe sampled is modeled by
Eq4 belongs toB(¢2, ¢?) and equivalent ta& with respect to . We
their H>° norm, that is,| E||oc = || Edl|oc- W(s) = s+ w.
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time H? design (dash).

Note thatl¥(s) has the cutoff frequenay. = 0.1 (rad/sec)
0.016 (Hz), which is below the Nyquist frequenay(rad/sec)
= 0.5 (Hz).

We compare the sampled-dat&™ optimal filter obtained

Bode plot ofW(s) (solid) and its impulse-invariant discretization Fig. 8.

Bode plot of filters: sampled-dafd>> design (solid), and discrete- Fig. 9.
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Time response: sampled-ddf& design (above) and discrete-time
H? design (below) with sampling frequendp00 (Hz).

E shown in Fig[2. This is because the conventional designs
cannot take into account the frequency response of the sourc
analog signals while the present method does.

To see the difference between the present filter and the

by Theorem[R with conventional FIR filters designed bgonventional one, we show the time response against a piece-
discrete-timeH 2 optimization [10], which minimizes the costWise regular signal produced by theakeSignal function

function [3). The weighting functiofii’y(z) in @) or (8) is
chosen as the impulse-invariant discretization [48]1&5(5).
Fig.[d shows the Bode plots 6 (s) and Wy(z).

The transfer function of the proposed filter is given by

K(z) =277 (0.4994 + 0.49942 ) .

of WavelLab [[49] in Fig[®. The present method is superior
to the conventional one that shows much ringing at edges
of the wave. To see the difference more finely, we show the
reconstruction error in Fif._10. THé&2-optimal filter has much
larger errors around edges of the signal than the prop&sed
optimal one. In fact, the.?> norm of the error isl.34 x 102

Fig. [1 shows the Bode plots of the designed filters. Af§r H1°° design and.07x 10~ for H* design. This illustrates
illustrated in Fig[¥, theZ? optimal filter is closer to the ideal the effectiveness of our method.
filter (3) as expected, so that it appears better in the contex

of the conventional design methodology.
However, theH? optimal filter exhibitsmuch larger errors

V. CONCLUSION
We have presented a new method of designing fractional

in the high-frequency domain as shown in Hi@j. 8 that showdelay filters via sampled-da#d> optimization. An advantage
the frequency response gain of the sampled-data erromsysteere is that aroptimal analog performancean be attained.



Eror - desig) where B; is defined in [(ID). On the other hand, from (7),
we havev(t) = Cz(t) for t € Ry. Puttingt; := nT and
to:=nT +6forneZ, andd € [0,T), we have

v(nT +60) = Cx(nT + 0)

4 T

amplitude
~
I

0
= CeA%(nT) + / Ce=7) Bw(nT + 7)dr.
2 0
time (sec) (19)

Error (H-2 design)
T

By this, we have

3 va[n] = v(nT) = Cx;[n]. (20)
%j Next, from [19), we have

OL ‘ . ‘ ya[n] =v(nT —d) =v(nT =T + T —d)

T e _ CeAT Dy [ — 1]

Fig. 10. Absolute value of reconstruction error: samplatad? > design
(above) and discrete-tim&/2 design (below).

T—d
+ / CeA%~7) Bwn — 1)(r)dr.
0

Put z3[n| := yq[n]. Then we have
A(T—d ~
The optimal design problem can be equivalently transformed 2aln + 1] = CeAT™ a1 [n] + Byw[n), (21)
to discrete-timeH > optimization, which is easily executed ya[n] = z2[n],
by standard numerical optimization toolboxes. A closedrfo \here 3, is defined in[ID). By the relation
solution is given when the frequency distribution of theuthp
analog signal is modeled as a first-order low-pass filteridhes ua[n] = yaln —m] = z""yaln],

examples show that thé/>-optimal filter exhibits a much gnq the state-space matricds,,, B,,, and C,, for m-step
more satisfactory performance than the conventioRg+ delay >~ we have

optimal filter.
x3[n + 1] = A as[n] + Bryalnl, 22)
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