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Abstract

We consider the scenario in which multiple sensors sendadipatorrelated data to a fusion center
(FC) via independent Rayleigh-fading channels with adéditioise. Assuming that the sensor data is sparse
in some basis, we show that the recovery of this sparse stgmabe formulated as a compressive sensing
(CS) problem. To model the scenario in which the sensorsatpewith intermittently available energy
that is harvested from the environment, we propose that sanBor transmits independently with some
probability, and adapts the transmit power to its harvestegkgy. Due to the probabilistic transmissions,
the elements of the equivalent sensing matrix are not GausBiesides, since the sensors have different
energy harvesting rates and different sensor-to-FC dis@arnthe FC has different receive signal-to-noise
ratios (SNRs) for each sensor. This is referred to asrthemogeneityf SNRs. Thus, the elements of the
sensing matrix are also not identically distributed. Fas thnconventional setting, we provide theoretical
guarantees on the number of measurements for reliable angdutationally efficient recovery, by showing
that the sensing matrix satisfies the restricted isometpgnty (RIP), under reasonable conditions. We then
compute an achievable system delay under an allowable swpaared-error (MSE). Furthermore, using
techniques from large deviations theory, we analyze theaghpf inhomogeneity of SNRs on the so-called
k-restricted eigenvalues, which governs the number of mieasents required for the RIP to hold. We
conclude that the number of measurements required for tReifRhot sensitive to the inhomogeneity of
SNRs, when the number of sensarss large and the sparsity of the sensor data (sighajyows slower

than the square root of. Our analysis is corroborated by extensive numerical tesul
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I. INTRODUCTION

The lifetimes of conventional wireless sensor networks R&/Sare limited by the total energy
available in the batteries. It is inconvenient to replacéeoges periodically, or even impossible
when sensors are deployed in harsh conditions, e.g., ic Bsironments or inside human bodies.
Energy harvesting of ambient energy such as solar, windmidleand piezoelectric energy, appears
as a promising alternative to a fixed-energy battery, togmglthe lifetime and offer potentially
maintenance-free operation for WSNs [1], [2]. Comparedrtotéd but reliable power supply from
conventional batteries, energy harvesters provide aallytyperpetual but unreliable energy source.
Moreover, the sensors typically have differeartergy harvesting rateslue to varying harvesting
conditions such as the spread of sunlight and differenceiml wpeeds.

This paper addresses the problem of data transmission mgyeharvesting WSNs (EH-WSNSs).
We assume that energy harvesting sensors are deployed tblomsome physical phenomenon
in space, e.g., temperature, toxicity of gas. Data coltedtem sensors are sent to the fusion
center (FC). The data are typically correlated, and wellraxmated by a sparse vector in an
appropriate transform (e.g., the Fourier transform). Red®velopments in compressive sensing
(CS) theory provide efficient methods to recover sparseasiginom limited measurements| [3]. CS
theory states that if the sensing matrix satisfies the otstrisometry property (RIP), a small number
of measurements (relative to the length of the data vectogufficient to accurately recover the
sparse data. This advantage of CS potentially allows usdiaceethe total number of transmissions,
and this is particularly important for data transmissiorbandwidth-limited wireless channels.

The accurate estimation of the sensor data by the FC hastiyedsren addressed by using
CS techniques in the literature. Inl [4], Haugit al presented a sensing scheme based on phase-
coherent transmissions for all sensors. However, [4] made gractically limiting assumptions.
First, it assumed that there was no channel fading, and pa#e$ for all sensors were identical.
Second, the transmissions from all sensors were synclawrsach that signals arrived in phase
at the FC. In[[5], Aeroret. al derived information theoretic bounds on sensing capadityeasor
networks under a fixed signal-to-noise ratio (SNR) for aliss®s. In contrast, [6] proposed a sparse
approximation method in non-fading channels, which adhptsensor’'s sensing activity according
to its energy availability. In[[7], Xueet. al successively applied CS in the spatial domain and the
time domain, under a fixed SNR for all sensors. [In [8], Faelal proposed a random access

scheme in underwater sensor networks. Each activatedrsgicgked a uniformly-distributed delay
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to transmit. By simply discarding the colliding data paskébm concurrent medium access, the
FC used a CS decoder to recover the sensor data based onlg sndtessfully received packets.
Thus, the scheme did not exploit packet collisions for dataovery.

Since sensors are placed at different locations, it is conlynassumed that the sensors transmit
data over independent but nonidentical channels with rdiffiefading conditions. Different energy
harvesting rates also lead to different transmit powersrantte different (receive) SNRs. We refer
to this generally as themhomogeneityf SNRs. The application okireless compressive sensitgy
the scenario of inhomogeneous SNRs has, to the best of owld&nge, not been studied in the
literature. We define theystem delays the number of concurrent sensor-to-FC transmissions (or
channel uses) for estimating one data vector (among segn¥desaim to reduce the system delay,
while ensuring a target estimation accuracy. Surprisingly observe that the required number of
measurements for accurate recoverys not overly sensitive to the inhomogeneity of SNRs progtide
that the number of sensorsis large and the sparsity of the data vectogrows slower than/n.
This motivates us to further investigate the impact of inbgeneity of SNRs, based on the recovery
performance in terms of RIP.

The three main contributions are summarized as follows.

1) We first present an efficient transmission scheme, whiatufes probabilistic transmission by
sensor nodes. In each time slot, every sensor locally detidgansmit with some probability,
and adjusts the transmit power according to its energyatviity. The FC thus receives a linear
combination of signals that are transmitted from a randobssuof sensors. The transmissions
over successive time slots result in a sensing matrix whiaffectively achieved through the
mixing of signals in wireless channels.

2) Second, we prove that the FC can recover the data acgyrittie total number of trans-
missions (or measurements) exceeds

o (k5 et @

wheren is the number of sensork,is the sparsity of the sensor data, and. (k) and ppi. (k)

are respectively the maximum and minimiénnestricted eigenvalues (see definition[in](15)) of
a Gram matrix which depend on the inhomogeneity of SNRs.ebsfit from previous works
on CS, our bound depends explicitly on the ratiQ..(k)/pmin(k), Which is thek-restricted

condition number of the Gram matrix. Based on this result,alg® compute the achievable
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system delay subject to a desired recovery accuracy.

3) Third, we analyze the impact of inhomogeneity of SNRs om fibquired number of mea-
surements, in terms Qh.. (k) and pnin(k). We model the signal powers of the sensors as
independent truncated Gaussians. By using the theory @é ldeviations, we show that both
Pmax (k) and punin (k) concentrate around one (for all constantin large n regime, and the
rate of convergence to one depends on the inhomogeneity BESRhis allows us to explain
the observation that the inhomogeneity of SNRs does noifiigntly affect the number of
measurements required for the RIP to hold.

This remainder of this paper is organized as follows: Sedilbprovides a description of the
system model. Sectidn ]Il presents a new wireless compeessinsing scheme. Sectionl IV details
the main results on the RIP, the achievable system delaynardtigates the impact of inhomogeneity
of SNRs. Sectiom V provides the simulation results. Sedi@irconcludes this paper. The proofs
for the RIP result and the result on the impact of inhomoggrai SNRs are given in Sectidn VII.

We adopt the following set of notation in this paper: lowesedetters denotes deterministic
scalars, and lower case Greek letters for constants or @anBtedface upper case and boldface
lower case refer to matrices and (column) vectors, respygtiWe use upper case letters to denote
random variables. Sets are denoted with calligraphic ferg.()). The cardinality of a finite sey
is denoted as$V|. The n-order identity matrix is denoted hl,. We also us&R™ andC" to denote

the n-dimensional real and complex Euclidean spaces respBctive

1. SYSTEM MODEL

Consider a wireless sensor network that consists efiergy harvesting sensor nodes and a FC.
Sensors transmit their data to the FC via a shared multiptess channel (MAC). We consider
slotted transmissions by first considering a single snapshthe spatial-temporal field. Assuming
the sensor data is compressible, we can model it as being sparse with respduatr.t.) to a fixed

orthonormal basi§vy; € C": j =1,...,n}, i.e,
j=1

wherex € C" has at most < |n/2| non-zero components arjd| is the floor operation.
We assume a flat-fading channel with complex-valued chacwefficientsh,;, wherel <i <m

denotes the slot index arld< j < n denotes the sensor index. The channel remains constarthn ea
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Fig. 1. The MAC communication structure for WSNs in th¢h time slot. The signals that are concurrently transmiittem
sensors to the FC are linearly combined over the air.

slot. We further assume a Rayleigh-fading channel, hereelihnnel coefficients for different slots

are independent and identically distributed (i.i.d.) adawy to the complex Gaussian distribution.
We propose that sensors concurrently transmit to the FC imbapilistic manner, such that the

signals from sensors are linearly combined over the airs@gnmultiplies its datums; by some

random amplitude;; (to be defined in[{4)), then transmits in thh time slot. The FC thus receives
Yi = Z hijdijs; + ei,
j=1

where e; is a noise term (not necessarily Gaussian). Aftertime slots, the FC receives the

measurement vector

y=MHO®)s+e=2Zs+e=72Tx +e, (3)

where the matriXz = H® ®, and the operation is the element-wise product of two matrices. We
assume all noise components are independent, zero mearna@d/driances?. The signal model
over one slot is illustrated in Figl 1.

From the perspective of signal recovery, we want to estimmate equivalentlys, from y, such
that themean-squared-erro(MSE) E||x — x|| does not exceed some thresheldAlso, we would
like to estimate the sparse vector using minimum networlkuees (i.e., channel uses), due to
limited channel resources. Thus, given a fixed number ofaens and ane, our objective is to

design a transmission scheme that minimizes the numbemgbs¢o-FC transmissions.
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Different from [€], [9], we consider Rayleigh-fading chaeis, and adopt concurrent transmissions
in a probabilistic manner. Moreover, the SNRs of differeemhsors are considered to be different,

compared to the fixed SNR case in the literature [5], [7], [9].

Ill. ENERGY-AWARE WIRELESS COMPRESSIVESENSING

In Section Il[-A, we first provide a CS perspective for thergigmodel in [(B). Then in Section
[I-B] we present an energy-aware wireless compressivsisgrscheme. By taking into account the
inhomogeneity of SNRs, we also derive the probability dstiion function (pdf) of elements in
the random matrixZ in Section lI-C, which will be used to show the RIP in SectidhAl

A. A Compressive Sensing Perspective

Since we assume the data vectois sparse in some basis, it seems natural to adopt a CS method
to recoverx. The over-the-air combination via the channel maiidxcontributes to the effective
equivalent sensing matri¥ in (3). However, there are two differences from the conwrdl CS
setup that make the analysis more challenging.

« Due to probabilistic transmissions, the elements of thesisgnmatrixZ are not Gaussian.

« Since sensors have different energy harvesting rates dfeledit sensor-to-FC distances, the
FC has different receive SNRs for all sensors. Thus, the esiésrof the sensing matri& are
also not identically distributed.

The proposed transmission scheme calls for the analysisref3aussian non-i.i.d. sensing matrices.
Hence, we need to analyze the system performance in a mateaiet way that differs from
conventional CS problems. The key technique we employ ishtovsthat the elements of the

sensing matrixz are sub-Gaussian, and make use of new results on sub-Gatesstlom matrices.

B. Energy-Aware Wireless Compressive Sensing

We consider only the energy consumption for wireless trassions, by assuming the energy
consumption on sensing is negligible. The energy harvgstte varies over sensors. For simplicity,
we assume that each sensor allocates the same power footall sét £; be the accumulated
harvested energy that is available for sengdo transmit in each slot. We perform energy-aware

wireless transmissions taking into account the differemtilable energy. It is noted that @ausal
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energy constrainthat comes from energy harvesting should be satisfiedenergy that is consumed
for transmissions can not exceed the energy available in slat.

Set a probability € (0, 1] and a squared-amplitude > 0 . Let @ in (3) be aselection-and-weight
(SW) matrix, whose elements are independently generateatdinog to the random variable
(

+4/b; W.p.p/2
bij = 0 w.p.1—p, Vi=1,2,...,m. 4)

\

That is, the sensgj transmits with probabilityy with an amplitude of\/F, and the actual value is

positive or negative with equal probability. Given avaltakenergyE;, we choose; such th

Clearly, each entry,; is zero mean and has variang®. The causal energy constraint is satisfied
in expectation, i.e.E(¢;;) = pb; < E;. This allows us to save energy to be used for future
transmissions. The energy-saving feature can be cructhkeiscenario where the energy harvesting
rates are fluctuating over several snapshots of the speatrgloral field. It is, however, beyond the
scope of this paper to optimize for ti¢'s.

In [6], all sensors consume the same amount of energy folsmmesions. In contrast, each
sensor here adapts the transmit power to its available gneagthe above-designed SW matrix.
Furthermore, the SW matrix randomly selects the sensoramsmit, and weighs the data according
to the sensors’ harvested energy. In each time slot, a sobbsEnsors are selected at random to
perform transmissions and over-the-air combination. Télecsions are performed in a distributed
manner at each sensor node, since each node separatelgsd#dedslots that it transmits in. We
couple random sensor selection and energy-aware tranemisg the choice of the SW matrix.

Recall the signal model in(3), i.ey,= Z¥x + e. With the knowledgg of the matrixZ and the
sparsity-inducing basi¥, the FC can implement CS decoding to recover sparse coafficteand
obtain the estimated data vect®e Ux.

The quantityb; can be written more generally &s;, which means the transmit powers for different slots arkedifit. To reduce
the complexity of processing, we allocate the same powetl tive slots.

2The assumption that the FC knoWsand ¥ is reasonable, because the FC can perform channel estinfedion preambles, and
obtain the information on the amount of harvested energyfegalback. The channel and energy information is used foergéng
SW matrix from a predefined set of SW matrices. The globalmpatars likem andp can be broadcasted to all sensors.
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C. Probability Distribution Analysis and Equivalent Norhzad Signal Model

Consider the signal model inl(3). Denote each elemett &s Z;; = h;j¢:; = Z; + jZ};, where

Z} & hl ¢y, and Zi; £ hi;¢;;. Note that elements of the matrk are assumed to be independent,
and each elemerit;; has independent real and imaginary components. Also thexntconsists

of independent elements. All elements of mativare thus independent, and have independent real
and imaginary components. As such, it suffices to analyzeptbbability distribution of the real
component, since the analysis is similar for the imaginampgonent. The marginal pdf (iff} can

be shown to be
TS N S R S SR B Ry v
)= (ﬁ) 2Wb7»ij< ¢b7> g HimpeE O

WherefHJR(~) is the pdf of channel coefficient of sensgrandd(-) is the Dirac delta function. For

the sake of brevity, we define a new pdf as follows.

Definition 1. A random variableX follows a mixed Gaussiardistribution, denoted asY ~

N(u,v2,p), if its pdf has the following form

1 (z —p)®
fx(@) = p s exp (— 52 ) +(1—=p)é(z), 7)

wherep € (0, 1] is the mixing parameter. The corresponding complex mixeds&ian distribution,

assuming the real and imaginary components are independedenoted a3\7c(u, V2 p).

Assuming Rayleigh-fading channels, all elements in thennkhmatrixH are independent, zero
mean and follow Gaussian distributions. Note that due tfeint fading channels for the sensors,
the matrixH has column-dependent variances, wherejthiecolumn follows a Gaussian distribution

with variances/]?. From [6) and[{I7), the marginal pdf tﬂ}} can be expressed as

1

fn(2) =~ esp - - )+ =i ®)

2
27 veb;
Wijj e

Thus, we haveZ® ~ /\7(0, u]?bj/2,p).
Recall thatZ = H® ®. Let H = ﬁI‘H and® = :I3Fq>, whereT'y = diag{v, 1s,..., v,} and
I'y = diag{+/pb1, Vb2, ..., \/pb,}. Then we can decompose the matfixas follows

7 = VmZT, 9)
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where we denotZ = H® ® andI' = [y, Let T' = diag{,/71, /72 - - -, v/In}, Where the
receive signal power of sensj)risH v = pbjuf. We term the diagonal elements Bfa signal power
pattern. They,’s are generally all different (i.e., inhomogeneous sigomalers), and this directly
leads to the inhomogeneous (receive) SNRs. We note thateatleats of the matrixZ are i.i.d.
mixed Gaussian random variables, i.8.~ N, (0,1/(pm),p) and Z® ~ N (0,1/(2pm), p).

Using the equivalent expression [0 (9), we rewrite the digmadel in [3) as

y = V/mZI'¥x + e, (10)

where the matrix¥ is a unitary matrix. The distinct signal powerslhare spread along sparsity-
inducing basis vectors (i.e., columns ).

A matrix (or more correctly, @equencef matrices) is said to bstandard column regulaif all
elements are uniformly bounded by some constant [10]. Falytioal convenience, we normalize
the matrixI'® to be standard column regular. The normalization consgfi¥ || »/\/n = v/Pae,
where P,,. = Z;.‘:lpbjuf/n denotes the average (receive) signal power in one time Bhan the

normalized matrix

Y =T¥/\/P. (11)

has bounded spectral norm. By dividing both sides of (10)\/yP,.., we obtain the normalized
signal model
y=7ZYx+¢&=Ax+¢, (12)

where all noise components are independent, zero mean ared fmamalized variance? =

02/(mPy.). The average SNR is defined as

P, P —
A ave 2
SNRave = —F = W E b]l/J (13)
Jj=1

o2

IV. MAIN RESULTS

Having derived the probability distribution of elements tbe matrix Z in Section[1lI-C, we
recall the definition of RIP[[11] and state our main resulgttis Theoreni]l, in Section [VIA.

The engineering implication of Theorem 1, and in particutes tradeoff between the achievable

3The receive signal power depends on both the channel condjiie., the variance of fading coefficiemé’ and the average
transmit powerpb;) that is governed by the accumulated harvested energy.
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system delay and the allowable MSE, will be discussed in I\FBially we analyze the effect of

inhomogeneity of SNRs on RIP and the required number of nmeawmnts in Sectioh TVAC.

A. Restricted Isometry Property

It is well established in CS theory that a sufficient conditior accurate and efficient recovery
(via convex optimization) is that the sensing matrix sassthe RIP. A matrixA is said to satisfy
RIP of orderk, if there exists &) € (0, 1) such that

(1= dn)llxlly < [ Axll; < (1 + d) |13 (14)

holds for all k-sparse vectors. The smallest constanf, satisfying [14) is known as thestricted
isometry constan{RIC) [11]. When the sensing matriA is random, the inequality should hold
with overwhelming probability that approaches oneragrows. Many families of random matrices,
e.g., i.i.d. Gaussian random matrices and Bernoulli randuatrices are known to satisfy the RIP
[11], [12]. As a result, to evaluate the recovery perfornearadl we have to show is that the sensing
matrix A in our scheme also obeys RIP with overwhelming probability.

The RIP requires that the sensing matix preserves the Euclidean norm of sparse vectors
well. For the signal model in(12), the entries Inhare i.i.d. sub-Gaussiamandom variables (See
Definition[8 in Sectior_VII-A). It is known that random mateis (with sufficiently many rows and)
with i.i.d. sub-Gaussian entries approximately preseheeEuclidean norm of sparse vectors with
high probability [13]. SinceA = 73, we need to analyze the norm-preserving propert¥ofTo
do so, we define th&-restricted extreme eigenvaluesthe Gram matrix>*3 as

k) = DML
puac(k) = mex = [Bv;,

(15)

(k) = i Yvl?
Prmin (k) V:||v|\or§;iﬁl\v||2:1|| vl[3,

wherev € C", and the %,-norm”

v||o refers to the number of non-zero elements/oThe extreme

eigenvalues will be used to understand how the inhomogen8blRs affects the RIP.

Lemmal. The following bounds om,,.x(k) and p,i, (k) hold:
1 S pmax<k> S k; 0 S pmin(k) S 1. (16)

Proof: Fix a vectorv € C" such that||v|; = 1 and ||v]o = k. Let T C {1,...,n} with
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7| < k be the support of. Let £ € C™*I7l be the submatrix o= with column indicesT.
Denote the eigenvalues of the Gram mafd%3, by A; > ... > X\, > 0. Due to the normalization
in (11), the trace o5-% is Zle Aj = k. This implies that the largest eigenvalue is at least one
and at most:. Similarly, the smallest eigenvalue is no larger than one. [ ]

We note that the sparsity leveél is usually much smaller than the number of sensorm
large-scale WSNs. We further assume. (k) € [1,2] in the following. This simplifies some of the
mathematical arguments. We analytically and numericalyfy this claim in Sectioft [V-C. To state

our main theoretical result cleanly, we define two quardtitieat depend o and %k as follows

&u(X) = max {1 — pmin(k), pmax (k) — 1},

A 2— pmax(k> - pmin(/{;) (17)
G(%) 2 max {0, T } .

Since pmax (k) € [1,2], we havB &k, G € 10,1]. Let ¥, = (1 + (k) pmax(k) — 1. Givendy € (&, 1),

for convenience, we magf). to a “modified RIC” via a piecewise linear mapping as follows

A 11— (1 - 5k)/pm1n(k)7 5k S (£k7 ﬁk)
Br(6r, X) = (18)
(1 + 5k>/pmax(k) -1, o € (791% 1)

Let ¢ = 2/pmax(k) — 1. The inverse of5,(dx, X) is denoted as

A 1-— (1 - 5k)pmin(k)7 51@ € (07 Ck)
(B, 3) 2 (19)

(1 + Br)pmax(k) =1, By € (Cry )
In the sequel, we assume that the quangjty®) is a small positive number and it measures the
inhomogeneity of the eigenvalues Bf-3 for | 7| < k. This implies¢, is small, and the deviation
betweengs, andd, is also small. The validity of this assumption will be showottb analytically
and numerically in Section TVAC.
Recall that the sensing matrix = Z3 in (@12), where all elements of the x n matrix Z are
i.i.d. mixed Gaussian random variablgs,is defined in[(Ill), and is the number of sensors. We

now state our main theoretical result.

“The arguments of some quantities are sometimes omittedotational convenience.
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Theorem 1. Lete, co > 0 be some universal constants. Given a sparsity level|n/2], a transmit

probability p € (0, 1] and a number, € (&, 1), if the number of measurements satisfies

c1kpmax (k) Sen
> lo ,
D5 (k) K
where 5, = 5(0k, X) is defined in(18), then for any vectowx with support of cardinality of at
mostk, we have that the RIP il4) holds with probability at least

(20)

1—exp (—czmpzﬁ,f/él). (22)

Proof: See Section VII=A. ]

Remarkl (Specialization to the homogeneous casi#g¢arly, the lower bound on the required number

kpmax (k)
B/% Pmin (k)

I" is a multiple of the identity matriX,)), we havepy..(k) = pmin(k) = 1 and g, = . Thus

of measurements i®( log 7). For the homogeneous signal power pattern (i.e., the matrix
the lower bound reduces @(5%10g 7), which coincides with the known results for i.i.d. random
k

sensing matrices. See Theorem 5.2[in [12] and Section In4[43j.

Remark2 (Contribution to the RIP analysisbue to the inhomogeneous signal power pattern, the
rows a; of the sub-Gaussian sensing matfixare non-isotropic To the best of our knowledge, little

is known about the RIP of non-isotropic sub-Gaussian ranchatnices. The only relevant result is in
Remark5.40 in [13] which gives a concentration inequality of non-iggiic random sensing matrices
in terms of the upper bound on the spectral norm. Howeverathbors did not demonstrate how
the inhomogeneity affects the RIP, nor did they investighte number of measurements required
to satisfy the RIP. Theoref 1 fills this gap.

Remark3. Theorentl is proved in Section VIIA by leveraging Theorerh @f [14], which states
that a sufficient condition for the approximate preservatid the Euclidean norm upon random
linear mapping is that the number of measurements is priopaitto the fourth power of the sub-
Gaussian norm. In our scenario, as shown in Lerhina 6, the swisgtan norm bounded above by
1/,/p. In addition, Lemmal6 shows (using the Chernoff-bound) thatsub-Gaussian tail probability
is bounded above bye?%*/2. Note that the sub-Gaussian norm is the smallest constan for
which the sub-Gaussian tail probability 2&*°/(2¢*) (Definition [B). In view of the fact that the
pre-factor in our bound ig (and not2), there is some degradation with respecptm Theorem 1.

For largerp, the degradation is reduced.
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B. Achievable System Delay

The performance of wireless compressive sensing schentaraaterized by two quantities, i.e.,
the MSE and the system delay. The MSE performance under ldundise is studied in the CS
literature [3], [15], [16]. Note that there is often a traoié-between the two quantities. Under an

allowable MSEe > 0, we thus analyze thachievable system deldy(¢), which is defined as
D(e) £ min m subject to E|X —x|? <e. (22)

Corollary 1. Let p,m,n, k, X, &, 0, be as in Theorerhl 1. Let, £ 1/(0.0942 x SNR,,.). Given
an allowable MSE > ¢,,, with overwhelming probability (exceedirf@l)), the achievable system

delay is
D(e) = C1kpmax (k) ) Sen (23)
p2(ﬁk’)2pmin(k) k
where 0.693 + 1/4/eSNR,
. + ave
~ ]- - /(ke) ) 6/43 € (gkaﬁk’)a
Bu(S,6) £ P (24)
1.307 — 1/+/€SNRove
P (]C) -1, 6 € (ﬁk,l)

Proof: We start the proof by leveraging on the following lemma.

Lemma2 (Theorem 3.2 of [15])Let y = Ax + €, wherex is ak-sparse vector ift”, e € C™ is a
zero mean, white random vector whose entries have variahdéthe A satisfies the RIP with RIC
0, < 0.307, then the solutiorx to the /;-minimization problem in CS decoder![3], [13] satisfies

0.2

Poe(0.307 — 6,2

E[% — x|l < (25)

Recall the definition o6NR,,. in (13). From Lemmal2, to achieve a MSEit suffices to ensure
the RIC satisfies); = 0.307 — 1/v/eSNRay.. From Theorenill, the required minimum number of
measurements such that the RIP holds with overwhelmingamibty is

ben

L 1k pmax (k) log 2%
p2(52)2pmin<k>

wherej;, is given in [24). The definition of the achievable system ylestablishes Corollafyl 1m

(26)

Remark4. Note that Corollary. 11 applies only to the case where the MSE greater than the

thresholde,. If € < €y, then from [(25), simple algebra reveals that= 0, which implies that
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the sensing matribA is a perfect isometry. SincA is random, and the entries are governed by a
density that is absolutely continuous w.r.t. the Lebesgeasure, this occurs with probability zero,
implying that the constraint if_(22) is almost surely notisfad. Thus, in this case, we define the

system delay to bec.

Remarkb. As eithere or SNR, . increasesﬁk increases, and thus the system del#y) decreases.
More importantly, we note from Corollafy 1 that the key measior the inhomogeneity of SNRs is
the ratior (k) £ pmax(k)/pmin(k) € [1,00). The system delay increasesds) increases from one.
We hence analyze the impact of inhomogeneity of SNRs on thimtiten of p,,.. (k) and pun (k)
from unity in Sectior_ IV-C. In addition, the system delay deses ap increases, SINCENR,..
defined in[(1B) increases asncreases. Thus, there is an inherent tradeoff betweeamydtlay and
energy consumption because laggenplies high transmit energy. Thus, it is always advantageo

to transmit with as high a probability as possible subjedh® causal energy constraint.

Examplel. Let the number of sensofs= 500, the sparsity levek = 5 and the transmit probability
p = 0.8. These parameters imply..(k) = 1.09, pmin(k) = 0.88 (See Section V). We plot the
achievable system delal(¢) against the allowable MSE, for different average SNRs in Figl 2.
We observe that beyond the MSE threshold (that depends oaviitage SNR), the system delay

D(e) decreases as eitheror SNR,,. increases, which is is expected.

Remark6. We considered the scenario in which the FC collects one dattow from all sensors
in one frame. As a generalization of our setup, one can seekrionize the total number of slots
for collecting multiple data vectors. By adjusting the samt probability in each frame, one can
allocate different powers for different frames, such thathbthe recovery accuracy and the causal

energy constraint is guaranteed. Details of this possiitension are beyond the scope of this paper.

C. Effect of Inhomogeneity

This section investigates the impact of inhomogeneity etcdive) SNRs on the number of
measurements needed to satisfy the RIP. Without loss ofrglige we assume all sensors have
the same noise power, hence, it suffices to analyze the inghanhomogeneity of receive signal
powers. We focus on the asymptotic scenario where the numbeensorsn tends to infinity
and, for the ease of analysik,is kept constant. To make the dependencenctiear, we denote

Prmax (k) (resp. pmin(k)) aS pmax(k, 1) (reSp. pmin(k, n)). It will be shown that bothp,,..(k,n) and
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Fig. 2. Plot of achievable system delay against allowabl&EMBeyond the MSE threshold, the achievable system delagases
as either the allowable MSE or the average SNR increases.

pmin(k,n) concentrate around one whenis large, and the rate of convergence to one depends
on the inhomogeneity of SNRs. This implies that the recoyssformance (the required number
of measurements and the probability that the RIP holds inofidre[1) is not sensitive to the
inhomogeneity of SNRs when is large.

Let w = v, where the unit-normk-sparse vectoy is supported on the s6t = {s,...,s,} C
{1,...,n} and lets; < ... < s;. To obtain further insights, we laF be then-point discrete Fourier

transform (DFT) matrix. Then the squarégnorm of w can be expressed as follows

1 & P j2m(i — 1)(sy — 1)
* - - - l
w3 = - E Vi (1 + E E 2Re {vsqul exp ( - a )}) _ (27)
ave j—q q=1l=1,l<q

Since||w||% is strongly influenced by the inner summation terms, we am@athie behavior of these
terms more carefully in the sequel. When the signal powetepatis homogeneous, i.el; =
diag(\/7, ..., /7), we have|w||3 = [|[Zv||3 = 1, hencepuax(k,n) = pmin(k,n) = 1 for all k, n.

We are interested to know howy,..(k, n) and p..in(k, n) vary with different signal powers;’s.
Thus, we consider a model in which thgs are i.i.d. random variables following an approximate
Gaussian distribution. By varying the variance of this rilisition, we are in fact varying the

inhomogeneity of the signal powers. Specifically, to dedahwhe fact that the signal powers cannot
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be negative, we use the following truncated Gaussian kligtan to model the signal powers.

Definition 2. A random variableX is truncated Gaussiamenoted as\V;,(u,w?), if its pdf is

1 o (=)’
= Q) ¢ (o ) ’ (29)

for z > 0 and0 else, where)(z) = % [ e~*/2 dt is the Q-function of a standard Gaussian pdf.

gx (z; p,w) =

We assume that; ~ N, (u,w?) for all e = 1,...,n and they are mutually independent. Given
the “variance”w? is a measure of the degree of inhomogeneity of the signal fsows. Also, the
parametet! = ;/w is a measure of the homogeneity of the SNR4.if small (resp. large), the SNRs
are less (resp. more) homogeneous. We use the exponegtiaptasic notations,, < exp(—nkE) to
mean thatim sup,_,, 2 loga, < —E. Under the above assumptions on the statistics of the signal

powers, we have the following large deviations upper boum@,Q..(k, n) and pyi.(k, n):
Theorem 2. Letd £ p/w. For anyt > 0, and any constant < k < |n/2],

P (pmax(k,n) > 1+ 1) < exp [—ndQE(k:,t)z] ,

_ (29)
P (pmin(k,n) <1 —1) < exp [-nd*E(k,1)?],
where the exponent(k,t) is defined ast(k,t) = t/(k — 1+ /2t).
Proof: See Section VII-B. |

Recall that Theorer 1 says that both the required number asutements and the probability
that the RIP holds depends on the rati@, n) = pmax(k,7)/pmin(k, n). From Theorenll2, we note
that bothp,..(k, n) and p.i (k, n) concentrate around one in the largeegime (for bounded),
and the rate of convergence to one depends on the inhomogaiesNRs. This allows us to
conclude that that for large-scale EHWSNSs (relative to tigaad sparsity), the inhomogeneity of
SNRs does not significantly affect the RIP and the systemydalhich is a surprisingly positive

observation.

Remark?7. We note thatE(k,t) is an increasing function of and a decreasing function of the
sparsityk which is expected. Also, the exponetE(k, t)? increases withl, which means that the
convergence Op.x(k,n) and pmin(k,n) to unity is faster wheni is large, or equivalently, when
the signal powers are more homogeneous. It is observeg thatk, n) is close to one in the large

n regime. This validates the assumption that.(k,n) € [1,2] in Section IV-A.
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Remark8. In the preceding analysis, and particularly in Theotém 2,assumed that does not
grow with n. Close examination of the proof shows thakif= |n!/2=*| for any A € (0, 1/2], then
the probability thaf p,...(k, n) > 1+t} still goes to zero albeit at a slower ratesefexp(—n?*d?t?)

(not exponential im). More precisely, we can verify that

1
lim sup po 10g P(pmax (k,n) > 1+1) < —d*?, (30)

n—o0

and analogously fof p.in(k,n) < 1 — t}. Inequality (30) is a so-callethoderate-deviationgesult
[17, Sec. 3.7]. Notice that the dependencies on the homdgehe- 1./w andt are similar to[(2D).

Remark9. One may wonder whether Theorém 2 depends stronglydreing the DFT matrix. In
fact, the only property of the DFT that we exploit in the probfTheoreni R is its circular symmetry,
i.e., each basis vector of the DFT (containing elementsdhaipowers of the-th root of unity) is
uniformly distributed over the circle in the complex plattence, certain Cesaro-sums converge to
zero and the proof goes through. See (44) in Se¢tion VII-BisTheoremI2 also applies for other
sparsity-inducing bases whose basis vectors have thdarirsymmetric property, e.g., the discrete

cosine transform (DCT) or the Hadamard transform.

V. SIMULATION RESULTS

We now numerically validate our results. We set the numbesesisors: = 500 and transmit
probability p = 0.8. We use the truncated Gaussian distribution with- 0.2 to model the receive
signal powers, and use the basis pursuit de-noising (BPDdyithm [18] as the CS decoder.

First, we fix d = 2, which impliesw = p/d = 0.1. Fig.[3 plots the MSE against the number
of measurements (or transmissions)for different sparsities: and different average SNRs. As
expected, the MSE decreases as eithatecreases or the average SNR increases. Consider the
MSE level2 x 10~2. When the average SNR &5 dB, the wireless compressive sensing scheme
achieves a smaller system delay BOf= 68 for £k = 5 compared toD = 115 for £k = 10. When
the sparsityk = 5, the scheme achieves a smaller system delay ef 39 for SNR,,. = 30dB
compared taD = 68 for SNR,,. = 25dB.

Second, we fixd = 2 and the average SNR to BdB. Fig.[4 compares the MSEs of the
inhomogeneous SNR and the homogeneous SNR scenarios,ef@péusity levels: = 5, 10, 20.

It is observed that in the inhomogeneous scenario, the MStrpeance is slightly worse than

that of the homogeneous-SNR scenario. Note that the dagyradsecomes larger as the sparsity
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Fig. 3. Plot of MSE against the number of measurements. ThE M&reases as decreases, or the average SNR increases.
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Fig. 4. Plot of MSE against the number of measurements. ThE ptSformance for the inhomogeneous scenario is slightisvo
than that of the homogeneous-SNR scenario.

increases. This is because the convergence rate, fQ(k) and p,,i, (k) to one is faster i is small
relative ton. This corroborates the observation in Secfion IV-C.
Third, we setd = 1,2 andk = 5, 10. Fig.[8 shows the cumulative distribution function (CDF) of
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Fig. 5. CDF 0of pmax(k, 500) and pmin (k, 500). Both converge to one faster for more homogeneous SNRslérged).

Pmax (K, 500) and pyin (k, 500). We note that botlp,,. (k, 500) and pyi, (k, 500) converge to one faster
for largerd, or equivalently, for more homogeneous SNRs. Also, undersime inhomogeneous
SNRs, bothp,,..(k, 500) and pui, (k, 500) converge to one faster for smaller

Finally, we numerically validate the asymptotic behaviérpg..(k,n) asn grows. Setk = 5,
d = 1,2, 3, respectively. Figl16 shows the probability that..(k,n) > 1.04 for differentn. It is
observed that the logarithm of the probability decreasesalily asn grows (whenn/k is large)
and furthermore, the slope varies quadratically wi.ti.e., the slope is proportional tel, —4, —9

for d = 1,2, 3, respectively. This observation corroborates Thedrem 2.

VI. CONCLUSION

In this paper, we considered the scenario in which each se@mdependently decides whether or
not to transmit with some probability, and the overall transmission power (and thyslepends
on its available energy. Hence, only a subset of sensorsmrigs concurrently to the FC, and this
exploits the spatial combination inherent in wireless cteg We use techniques from CS theory to
prove a lower bound on the required number of measuremestisdy the RIP and hence to ensure
that the data recovery is both computationally efficientd(amenable to convex optimization) and
accurate. We also compute an achievable system delay givalioavable MSE. Finally, we analyze

the impact of inhomogeneity on thierestricted extreme eigenvalues. These eigenvalues igolver
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Fig. 6. Plot of the probability ofomax(k,n) > 1.04 against the number of sensors. The logarithm of the prabaliecreases
linearly asn grows, and the slope varies quadratically wd.t.

number of measurements required for the RIP to hold. In facgdée EH-WSNs, we showed using
large deviation techniques that the recovery accuracy badystem delay are not sensitive to the

inhomogeneity of SNRs.

VII. PROOFS OFMAIN RESULTS
A. Proof of Theorerhl1

Proof: Recall the signal model in_(12), i.ey,= 7Z¥x +¢6 = Ax+e. The proof involves three
steps. In step 1 and step 2, we prove the desired result wheguaattities are real; and in step 3, we
extend the result to the complex case. For the real case, ove thiat the matrixzZ acts as isometry
on the images of the sparse vector under magixi.e., on the sef{Xv : ||v|o < k,v € R"}.
By showing the rows ofZ are isotropic sub-Gaussian and by exploiting the so-célesiricted
eigenvalue property” ob, we derive an RIP for the matriA in step 2. Before step 1, we start

with the following preliminaries. Let/(u, v) be the Euclidean distance .

Definition 3 (Nets, covering numbers [L3]Consider a metric spacé/,d) with &/ C R" and a
positive numbet. A subsetfV, C U is called ane-netof/ if every pointu € U can be approximated
to within e by some point € N, i.e.,d(u,v) < e. Thecovering numbeV (i, ¢) is the cardinality

of the smallest-net ofi/.
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Definition 4 (Set of sparse vectorslet S"~! be the unit sphere ifR” and 1 < k < n. Define
U, = {ues" " ullo <k},
also define the subset of the Euclidean unit gillwith (at most)k-sparse vectors as
U £ {ue By |lufo <k}

Lemma3 (Upper bound on covering numbers, Lemma 2.310 [1BPt 0 <e <1 andl < k < n.

There exists am-net of(,, namely\,, whose cardinality can be upper bounded as

as(2)6)

Definition 5 (Complexity measure [14])The complexity of a sety C R" is defined as

vey

L) 28 [sup (v, wl].

where (-, -) denotes inner product ifR", u ~ A(0,1) is a standard Gaussian random vector, and

the supremum is over all vectosse V.

Given a subseV C R”, we aim to measure the complexity B¥()), which is the image set of

the setY under a fixed linear mapping. More precisely, we define
WOW) £ {wecR": w=3v, forsome v € V}. (31)

Define the complexity olV(V) ast. (W(V)) £ E [sup,.y, [(v, Zu)]] .

Lemma4 (Upper bound on complexity measure, Lemma B.6_in [18¢t N%Jf be a%-net of U,
provided by Lemmal3. Then for all < k£ < n, it holds that

5en

A (W(N%,,@)) < 3\/ kpmax(k) log ——,
LWU)) <26 (W) (32)

where p,.« (k) is the k-restricted maximum eigenvalue &% defined in [(15).

Define the set

&2 {veR" ||Bv]z=1,]vlo =k}, (33)
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then forV = &, the complexity measure of the 98i(&;) is bounded in the following Lemma.

Lemma5. The complexity measure of the s|f(&;.) is upper bounded as

. (W(&)) < 6\//{?22?;(((:)) log 5Zn, (34)

where .. (k) and pyi, (k) are defined in[(15).
Proof: For any vectorv € &, and any random vectar € R", we have with probability one

that

[(u, 3v)| = [(v, Zw)| = [[v]}2

VvV
<—,2u>‘ < Iv]ls sup |(r, Su)] (35)
Vs

rely,

where the inequality follows from the definition of the s{% :v € &} C Uy. From Lemmad 4,

(a)
B {sup I, zv>|} 2 sup [[v]},E {sup I, zw@

vely vely rely
() Pmax (k) Sen
< 64/k log —. (36)
\/ pmin<k> k
where (a) comes from[(35) andb) follows from Lemmd 4 and the definitions in_(15). u

Step 1: Isometry on the images of sparse vector§Ve consider the case in which the sensor
data and all matrices are real. In this step, we first showatabw vectors in matrixZ are isotropic
sub-Gaussian (see Definitidh 7 below) in Lemimha 6. Then we @senhal 5 to obtain an isometry

on the images of sparse vectors.

Definition 6 (sub-Gaussian random variablés|[13]et X be a zero mean random variable that

has unit variance. It isub-Gaussiaiif for any ¢ > 0, there exist a positive numbersuch that
t2
P(X|>t) <2 —— .
(X1 2 1) < 260 (-
The sub-Gaussian normX ||, is the smallest number for which the above inequality holds.

Definition 7 (Isotropic sub-Gaussian random vectars| [13]g¢t u be a random vector IR". If

E[uu’] = I,,, thenu is calledisotropic The random vecton is sub-Gaussiawith constanto if

sup [l (w1l < o
reRn:|rf|2=1
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Lemma6. Let u € R™ be a random vector with i.i.d. elements, each distributedVas, 1/p, p).

Thenu is isotropic sub-Gaussian with constant= ¢,/,/p, wherec, is an absolute constant.

Proof: Since all elements iru are independent zero mean random variables, and has unit
variance, we hav&[uu’] = I,.. Let X ~ A/(0,1/p, p) be a mixed Gaussian random variable with

pdf defined in[(). Then, we have for every> 0 that

o 1 ( xz)d
p- -exp(——)dx
/Pt \/271‘ 2

%) pe P2 (2 2e7P/2,

P(|IX| > t) =2

where(a) follows from the Chernoff bound on Gaussi@afunction, and(b) from p € (0, 1]. Hence,
the sub-Gaussian norm of is bounded above by/,/p. From Lemma5.24 in [13], we have that
the vectoru is sub-Gaussian with constant= c,/,/p, wherec, is an absolute constant. [ |
Recall that the signal model js= Z3x +¢. We note that all elements in matr&are i.i.d. with
distribution (0, 1/(mp), p). Then Lemmé&6 implies that all row vectors of scaled magfixZ are
independent, and isotropic sub-Gaussian with constantc,/,/p. The key idea to prove Theorem

[l is to apply one result irn_[14], which is given without proaf fllows.

Lemma7 (Theorem 2.1 in[14])Setl < m < n and0 < < 1. Letb be an isotropic sub-Gaussian
random vector orR™ with constanto > 1. Let by, b,, ..., b, be independent copies of Let the

random matrixB have rowsb;,b,,...,b,. Let V c 8" L. If m satisfies

/4
m > Cﬁi?e*(w?,

then with probability at least — exp (—¢3%m/a?), for all v € V, we have

B3
m

1-p<

<148,

whered, ¢ are positive absolute constants.

Recall the definitions in((31) an@(33), and 3&t= W(&;). Then from Lemmal5, Lemnid 6 and

LemmalT, we obtain the following result: if the number of meaments

c1kpmax (k) Sen
> lo , 37
pzﬁzpmin(k) & k ( )
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then with probability at least — exp (—cy5%*p*m/4), for all v € &, we have
1-B<||ZEv|3 <145, (38)

wherec, = 36¢c) andc, = ¢/cj are positive absolute constants.

Furthermore, by replacing with the 3-normalized vectow /|| 2v||; in (38), we obtain
(1= B)IBvl; < 1Z3v]; < (1+ B)| =3 (39)

holds with probability at least — exp (—cy3%p*m/4).
Step 2: Restricted Isometry Property.From (39) and the definitions of therestricted extreme

eigenvalues in[(15), for ank-sparse vectok, we obtain that the following inequality

(1= B)pmin(B) x5 < 1ZEx])5 < (1 + 5) pma (k) 113, (40)

holds with probability at least — exp (—comp?5%/4).

Recall the definitions of the parameteis (., Vi, Bx, andd, defined prior to Theoreml 1. As in
(40), the LHS and the RHS may have different deviations fram. dlence, the maximum operation
and piecewise linear mappings are used in those definitsoies, that after some simple substitutions

and algebraic manipulations, the following inequality
(1= 6e)IxII3 < 1Z2x]15 < (1+ ) 1|3 (41)

holds with probability at least — exp (—comp?37/4). Collecting the results i (37) anf(41), we
obtain Theoreml1 for the real case.

Step 3: Generalization to the complex casalMe generalize the above RIP result to the complex
case. First, we show that the mat#2 satisfies the RIP for the complex data= x® + jx!. With

probability at leastl — exp (—comp?33/4), we have
(1= 60) [x"I3 < |1 ZEx3 < (1+ d)[Ix"13,
(1= du)lIx'[15 < 1ZEx[5 < (1+ 8%
Combining the above two equations yields

(1= 8)lxll5 < 1 Z2x]3 < (1+ 6)lIx]l3-
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Second, we show that when the sensing maiixn our scheme is complex random matrix, it
still satisfies the RIP. LeA = AR + jAl It is assumed that the real pakt® and the imaginary
part A' are independent, and have the same probability distribpuRecall that the sensing matrix

A = ZX. For anyk-sparse complex vectot, we have

1 1
5 (1= an)lIxl3 < |ATX]5 < 5(1+ )|,
1 1
5 (L= au)lIx[l5 < [[AX[5 < S(1+ ) [

Combining the above two equations yields the RIPLIO (14) fer general complex case. ®

B. Proof of Theorerhl2

Proof: Clearly, we havep,,..(1,17) = pnin(1,7) = 1 so the bounds are satisfied for= 1. We
will first prove Theorem 2 for the case = 2. Subsequently, we generalize the result to arbitrary
2 < k < |n/2]. Let the two non-zero elements bg = A,e/% andv,, = A,e’%2, whereA? + A2 =1
(becausé|v|; = 1). Then from [[2Y¥), and the fact th&,.. = > .-, 7;/n, we obtain

1 2A (z - 1A
2 _ ) 1
|wl|5 = P ;:1 ,—E ~; COS (9 + )

ave

n

=1+ 2A1A2M (42)
Zz 1 Vi

whered 2 0, —0, € (0,27], A = s5—s; € {1,...,n—1},and a; = cos(0+27(i — 1)A/n). We now
set X; = ~; to emphasize that the signal powers are random variablesllRbat the distributions

of X;'s are truncated Gaussian, denotedMy(u,w). We consider the random variable

X,
5, & iz 0 (43)
Zz 1X

We define the Cesaro-sum of thegs as

Al 1 2m(i — 1)A
an—n;az—n;cosQ?—i- - , (44)

and note that as — oo, the Cesaro-sum converge. Indeed, we have

2w A
ap — 0= —— cos (0 + At) dt = 0. (45)
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We now bound the probability that, exceeds some> 0 by considering the chain of inequalities

Zﬂ_ CI,Z‘XZ' )
P(S,>t)=P (% >t
( ) Zi:l X;

@ P <iCLZXZ > tin>
=1 =1
i=1 =1 i=1 i=1
1
+ —
n

1 n 1 n n
IP’({EZaiXi>tT,u}ﬂ{EZXi>Tu}> IP’( XiST,lL)
i=1 i=1 i=1
P 12": X;>t + P 1ZH:X< (46)
[ e 8 L s

where(a) is due to the fact thak;’s are nonnegative random variables, (b) follows from thet fa
P(A) =P(ANB)+P(ANB°) <P(ANB)+P(B°) and(c) comes from monotonicity of measure.
In the following, we bound the two terms in_(46) using the tiyeof large deviations [17].

Definet’ £ tru and lets be an arbitrary non-negative number. Then from Markov'sjiradity,
the first term in[(46) can be upper bounded as follows

exp (i saiXi>] , 47

INZE

INZ

IN

n

1
P{— Xi>t ] < —nst')E
(n Za > ) < exp(—nst’)

i=1

which implies by the independence of th&’s that

1 1< 1<
“logP [ =Y aX, >t ) < —st' + = 3 logE X! 4
—log <n a; X; > t) < —st' + "2 og Elexp(sa; X;)] (48)

=1
To bound the sum if(48), we find the cumulant-generatingtfand CGF) of X ~ N, (p,w?) in
terms of a Gaussian with meanand variance,?. By simple algebraic manipulations, we have

1
log Elexp(sX)] = ps + §w232 + o(p,w, s), (49)

where o(u, w, s) £ log (1 — Q (p/w + ws)) — log (1 — Q (1/w)). We note that given thafu, w) is
a positive pair of numbers;, — ¢(u, w, s) for s > 0 is concave, because— —Q(u/w + ws) (for
u/w > 0) andt — log(1 +t) are both concave and the latter function is non-decreadliogeover,

s — p(p,w, s) is continuous for each positivig:, w) pair, because every concave function on an
open set is continuous. Note thatu,w,0) = 0.
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Substituting the CGF of the truncated Gaussian distribuitio(49) into (48) yields

n

1 1

i=1

w2s? & 1 &
! — 2
< —st A psap + ST ;:1 @ + - ;:1 p(p,w,a;s)

2.2 2,2 " ; n
@ o wst ws ArA(i — 1) 1
St s + =+ ?:1 cos ( 0+ - + ;:1 o(p,w, a;s)
® o wrs? W ArA(i — 1) 5 —
< st sty + =+ ;:1 cos (29 t— ) o | mw, ;:1 ai |, (50)

where (a) comes from the definition ofi; and the double-angle formula for the cosine, dhy
follows the facty(u,w, s) is concave ins for any positive(yu,w) pair.
Taking the limsup on both sides &f (50) and using the definitba,, yields

1 1 &
li —logP | — X > t
1msupn og (nZa )

(a) 2.2 2.2 4 A
< st 42l 20 / cos (20 + t) dt + limsup o (i, w, @,s)

4 167TA 0 n—00
® o, Wi _
= —st’' + + lim sup ¢ (4, w, @,s)

n—oo

2.2

© st + S 2 (), (51)

where (a) follows from Riemann sums, (b) comes from the fastre has zero mean over an integer
number of periods (noté& € Z) and (c) follows from the continuity of(u,w,s) and [45). Note
that the minimumf (s) in (&1) is f(s*) = —72d?*t* (attained ats* = 2t'/w?). Hence,
1 & :
Pl - X, "< —nrid?*?] . 2
(n;al ,>t>_exp[m‘ t} (52)
The second term in_(46) can be bounded using standard tegmigom the large deviations

theory [17] (Cramér’s theorem) and along the same linehi@glerivation above. As such we have

P (% ZX,- < T,u> %) exp [—n (sp(l —7) — w?s?/2 — o(p,w, —s))]

g exp [—n (sp(1—7) — w?s*/2)],
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where(a) follows from using the CGF oX; in (49), and(b) follows from the fact thato (1, w, —s) <

0 for all s > 0. Hence, setting = (1 — 7)/w?, we have

P (% ZXZ- < T,LL) < exp [—n(1—7)*d*/2]. (53)

=1
Combining the two terms in_(46), we have from|(52) and (53) tredlargest-exponent-dominates
principle that

P(S, > t) < exp [—nmin {7°d*t, (1 — 7)*d*/2}] (54)
Sincer > 0 is a free parameter, we can set it toﬁe— -. Substitutingr™ into (54) yields
P (S, >t) < —nd*. (55)

wheret = t/(1 + +/2t). By symmetry, we can also conclude that
P(S, < —t) < —nd*t>. (56)

Recall thatp,,..(k,n) is the maximum value ofjw||3 = ||Xv]|2 over all unit-normk-sparse
2 depends only omi; A,. Note thatd < A; A, < 1/2 because/A; A, <
(A; + Ay)/2. We setd; A, = 1/2, whence||w||, attains its maximum value. Fror_(42),

P (pmax(2,n) > 1+1) < exp [—nd*¢]
. (57)

P (pmin(2,n) < 1 —t) < exp [—nd*t?] .
Having proved the result for theé = 2 case, we now generalize it to the case where 2.
Set the non-zero elements of the vectoto bev,, = Ae’®, ¢ =1,... k, WhereZ';:1 Ag = 1.

Equation [(2I7) can be written as

wlf; =

<1+Z > AAZCOS(ql—i-]%T( DA ))

q=1 l=1,l#q

k
=1+> AASH A1+ B, (58)
where S%! is defined as in[(43) but involving theth and thel-th nonzero elements of, i.e.,
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0, =0,— 0, andA,; = s, — s,. On the other hand, we can bout} as follows

q=1 I=1,l#q g=11=1,l#q
k 2 k k k
() -xa) (3 3 )
—1 g=1 =1 1=1,l4q
®) 1 N\ (S
=|1- k ZAq Z Z (527
a=1 q=1 1=1,l#q

E_1 k k
— TZ > (s, (59)

where (a) comes from the Cauchy-Schwartz inequality andcfimes from the basic inequality
relating the arithmetic and quadratic means, namely/ > «; < (1/M 301, a2)1/2.

Now, given anyt > 0, we can bound the probability thaB,, | exceeds as follows:

) & p 2

< P( (5%

22 p(E'> 5
g=1 1=1,l#q
k k ¢

=y P (531 > 1) : (60)
g=1 1=1,l#q

where (a) comes fron_(59) and monotonicity of measure andc@im)es from the union bound.
Applying the result fork = 2 in (57) to (60), we have

P(|B,| >t) < k(k — 1) exp [-nd®E(k,t)*] , (61)

where the exponent i8(k,t) £ t/(k — 1+ +/2t). Recall the definition of,,..(k,n) in (I5). From
(58) and [(611), we conclude that

P (pmax(k,n) > 1 +t) < exp [-nd’E(k,t)?] . (62)

June 12, 2018 DRAFT



30

The analysis off (pin(k,n) < 1 — t) proceedsnutatis mutandisThis completes the proof. =
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