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Abstract

This paper focusses on the sparse estimation in the situation where both the the sens-

ing matrix and the measurement vector are corrupted by additive Gaussian noises. The

performance bound of sparse estimation is analyzed and discussed in depth. Two types

of lower bounds, the constrained Cramér-Rao bound (CCRB) and the Hammersley-

Chapman-Robbins bound (HCRB), are discussed. It is shown that the situation with

sensing matrix perturbation is more complex than the one with only measurement noise.

For the CCRB, its closed-form expression is deduced. It demonstrates a gap between

the maximal and nonmaximal support cases. It is also revealed that a gap lies between

the CCRB and the MSE of the oracle pseudoinverse estimator, but it approaches zero

asymptotically when the problem dimensions tend to infinity. For a tighter bound, the

HCRB, despite of the difficulty in obtaining a simple expression for general sensing ma-

trix, a closed-form expression in the unit sensing matrix case is derived for a qualitative

study of the performance bound. It is shown that the gap between the maximal and

nonmaximal cases is eliminated for the HCRB. Numerical simulations are performed to

verify the theoretical results in this paper.

Keywords: Sparsity, unbiased estimation, constrained Cramér-Rao bound, Hammersley-

Chapman-Robbins bound, sensing matrix perturbation, asymptotic behavior.

1 Introduction

The problem of sparse recovery from linear measurement has been a hot topic these years

and has drawn a great deal of attention. Various practical algorithms of sparse recovery

have been proposed and theoretical results have been derived [1–10]. The theory of sparse

recovery can be applied to various fields, especially the field of compressive sensing which

considerably decreases the sampling rate of sparse signals [11–13].
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Suppose that a sparse signal x ∈ R
n is observed through noisy linear measurement

y = Ax+ n, (1)

where A ∈ R
m×n is called the sensing matrix, y ∈ R

m is the measurement vector, and

n ∈ R
m is the additive random noise vector. The main issue of sparse recovery is to

estimate x from measurement y with estimation error as small as possible, and the recovery

algorithm should be computationally tractable.

The performance of various recovery algorithms in noisy scenarios has been theoretical

analyzed [6–8,14–18]. Most of these works only consider the upper bound of the estimation

error. Theoretical result about to what extent the estimation error can be small (i.e. the

theoretical lower bound of estimation error) is of great interest because it sets a limit per-

formance which all sparse recovery algorithms cannot exceed. There are various approaches

that try to handle this topic. Reference [19] employed a minimax approach to study the

problem. Another approach is to reformulate the sparse recovery problem as a parame-

ter estimation problem [20]. The sparse vector x is viewed as a deterministic parameter

vector, and y represents the observation data. The goal of this approach is to minimize

the mean-squared error E[(x̂ − x)2] (MSE) among all possible estimators x̂ = x̂(y). The

theory of lower bounds of MSE has been well established for parameter vector x ∈ R
n

without further constraints [21]. Various bounds, including the Cramér-Rao bound [21,22],

the Hammersley-Chapman-Robbins bound [23,24], and the Barankin bound [25], have been

introduced. However, the classical theory in general requires some modification to adapt to

the sparse settings.

Recently, researches on the lower bounds of MSE for constrained parameter vectors,

especially sparse parameter vectors, have been developed. The Cramér-Rao bound has been

modified for the constrained parameter case, and works well in the sparse settings [20,26].

The Hammersley-Chapman-Robbins bound requires little essential modifications, and has

also been applied to the the problem of sparse recovery [27,28].

This paper also focusses on the theoretical lower bounds of sparse estimators and employs

the constrained Cramér-Rao bound and the Hammersley-Chapman-Robbins bound, but

deals with a more general setting in which the sensing matrix is perturbed by additive

random noise. Perturbed sensing matrices appear in many practical scenarios, and therefore

it is necessary to study the theoretical bounds of sparse recovery with perturbed sensing

matrix [29–31]. One of the consequences of perturbed sensing matrix is that it is a kind

of multiplicative noise, and the total noise on the measurement vector is dependent on

the parameter vector x, which demonstrates potential complexity compared to the sensing

matrix perturbation-free setting (1).

The problem of sensing matrix perturbation is also closely related to other research

topics. In [32], the authors considered the case of basis mismatch between the assumed

model and the actual one, and commented that sensing matrix perturbation can reflect basis

mismatch. They derived the approximation error in terms of mismatch level and showed
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that extra care may be needed to account for the effects of basis mismatch. In [33,34], the

authors analyzed the case where the sparse signal is directly contaminated with white noise

and demonstrated the phenomenon of noise folding. Though different from the situation

where it is the sensing matrix that is corrupted, their work shows the necessity to study

more general noise settings.

The main contributions of this work are the theoretical bounds of sparse recovery with

perturbed sensing matrix and noisy measurement vector. Closed-form expressions of the

constrained CRB will be derived, and the quantitative behavior will be discussed. For the

Hammersley-Chapman-Robbins bound, only the case of identity sensing matrix is studied

for the sake of simplicity, but the results are still inspiring in that its analysis is much

simpler and can still provide much information about the behavior of the theoretical lower

bounds when the noises are large.

The rest of this paper is organized as follows. In Section 2, the fundamental problem

of sparse recovery with perturbed sensing matrix is introduced, and the classical theory of

parameter estimation will be reviewed. In Section 3, the constrained Cramér-Rao bound

will be derived, and quantitative analysis will be provided in order to have a deeper un-

derstanding of its behavior. In Section 4, the Hammersley-Chapman-Robbins bound will

be derived for the case with unit sensing matrix, and its behavior with different settings

of signals and noises will also be studied. In Section 5, numerical results will be presented

to verify the theoretical results and to compare with existing estimators. This paper is

concluded in Section 6 and the proofs are postponed to Appendices.

Notation

The M ×M unit matrix is denoted by UM . For any index set Λ ⊂ {1, . . . , N}, |Λ| denotes
the cardinality of Λ, and Λc denotes the complement set {1, 2, . . . , N}\Λ. For any index set

Λ and any N -dimensional vector v (N ≥ |Λ|), vΛ denotes the |Λ|-length vector containing

the entries of v indexed by Λ. For any index set Λ and any M×N matrix M (N ≥ |Λ|), MΛ

denotes theM×|Λ| matrix containing the columns of M corresponding to Λ. For any vector

v, ‖v‖ℓp denotes the p-norm of v. For any appropriate matrix M, M† denotes the Moore-

Penrose pseudo-inverse of M. For x = (x1, . . . , xN )T, ∇x denotes the gradient operator

(∂/∂x1, . . . , ∂/∂xN )T, and ∇T
x denotes its transposition. ek denotes the kth column vector

of the identity matrix. Other notations will be introduced when needed.

2 Problem Setting

The settings of sparse estimation with general perturbation is introduced in this section.

In the case of general perturbation, the measurement vector is observed via a corrupted

sensing matrix as

y = (A+E)x+ n, (2)

3



where x is the deterministic parameter to be estimated, and y is the measurement vector.

E ∈ R
m×n represents the perturbation on the sensing matrix, whose elements are i.i.d.

Gaussian distributed random variables with zero mean and variance σ2
e . The vector n ∼

N (0, σ2
nUm) is the noise on the measurement vector y, and is independent of E.

The parameter x is supposed to be sparse, i.e. the size of its support is far less than

its dimension. The support of x is denoted by S, and its size is assumed to satisfy |S| =
‖x‖ℓ0 ≤ s. Furthermore, it is adopted in the following text that

spark(A) > 2s, (3)

where spark(A) is defined as the smallest possible number k such that there exists a sub-

group of k columns from A that are linearly dependent [35]. The above prerequisite ensures

that two different s-sparse signals will not share the same measurement vector if the mea-

surement is precise.

An estimator x̂ = x̂(y) is a function of the measurement vector, and is essentially a

random variable. A widely used criterion of the performance of an estimator is the mean

square error (MSE), given by

mse(x̂) = Ey;x[‖x̂(y)− x‖2ℓ2 ]. (4)

Here, Ey;x[·] denotes the expectation taken with respect to the pdf p(y;x) of the measure-

ment y parameterized by x. Note that the MSE is in general dependent on x.

In this paper only unbiased estimators are considered. Unbiased estimators are the ones

that satisfy

Ey;x[x̂(y)] = x, ∀x ∈ X . (5)

Here X denotes the set of all possible values of the parameter x. In the sparse setting, the

notation Xs is used for this set and could be formulated as

Xs = {x ∈ R
n : ‖x‖ℓ0 ≤ s}. (6)

The set of all unbiased estimators will be denoted by U . For every unbiased estimator, its

MSE at a specific parameter value possesses a lower bound known as the Barankin bound

(BB) [25]. Unfortunately, the BB often does not possess a closed-form expression, or its com-

putation is of great complexity. In the remainder of this paper, two types of lower bounds

of the BB, the constrained Cramér-Rao bound (CCRB) and the Hammersley-Chapman-

Robbins bound (HCRB), are discussed for sparse estimation with general perturbation. As

they are lower bounds of the BB, they can also be viewed as the lower bounds of the MSE

of unbiased estimators. Although they are not as tight as the BB, they usually possess

simpler expressions and can provide insights into the properties of the BB.

3 The Constrained CRB

In this section, the constrained Cramér-Rao bound (CCRB) of the estimation problem (2)

is considered. The CCRB generalizes the original CRB to the case where the parameter is
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constrained in an arbitrary given set. Researches on CCRB have been developed recently

and especially on the situation of sparse estimation [20,26]. The CCRB can be summarized

by the following proposition.

Proposition 1 [26] Suppose that the parameter x ∈ R
n lies in a given set X 1, and x0 is

a specific value of x. Define the set F(x0) as follows,

F(x0) = {v ∈ R
n : ∃ ǫ0(v) > 0 s.t. ∀ǫ ∈ (0, ǫ0(v)),x0 + ǫv ∈ X}.

It can be proved that F(x0) is a subspace of Rn. Let V = [v1, . . . ,vl] be an orthogonal basis

of F(x0), and J be the Fisher information matrix (FIM),

J(x0) = Ey;x0

[(

∇x ln p(y;x)
)(

∇T
x ln p(y;x)

)]

. (7)

If

R(VVT) ⊆ R(VVTJVVT), (8)

where R(P) is the column space of P, then for any estimator x̂ which is unbiased in the

neighborhood of x0, its covariance matrix Cov(x̂) satisfies

Cov(x̂) � V(VTJV)†VT, (9)

where P � Q means that P−Q is positive semidefinite. The trace of the covariance matrix

gives the MSE of the estimator. Conversely, if (8) does not hold, then there exists no finite

variance estimator which is unbiased in the neighborhood of x0.

Remark 1 Note that the estimators considered in Proposition 1 are “unbiased in the neigh-

borhood of x0”, which can be rigorously formulated as follows: define b(x) = E[x̂ − x] to

be the bias at x, then one says that the estimator x̂ is unbiased in the neighborhood of x0 if

and only if

∀v ∈ F(x0), b(x0) = 0 and
∂b(x)

∂v

∣

∣

∣

∣

x0

= 0. (10)

We denote the set containing all the estimators unbiased in the neighborhood of x0 as Ux0
.

In the sparse setting, it can be seen that

U ⊂ Ux0
, ∀x0 ∈ Xs, (11)

therefore the CCRB is certainly lower than the BB. Nevertheless, the CCRB has simple

closed-form expression which is convenient to analyze. In this section we relax our restric-

tions on the estimators to be unbiased in the neighborhood of a specific parameter value.

From Proposition 1, it can be seen that the computation of CCRB mainly relies on the

computation of the FIM J and the orthogonal basis V. The FIM J is given by the following

lemma.
1There are certain requirements that X has to meet. Refer to [20] for detailed exposition. Fortunately,

the set Xs of the sparse setting meets all the requirements.
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Lemma 1 The Fisher information matrix is given by

J(x) =
1

σ2
x

[

ATA+ 2mσ4
e

xxT

σ2
x

]

, (12)

where σ2
x is defined as

σ2
x = σ2

e‖x‖2ℓ2 + σ2
n. (13)

Proof The proof is postponed to Appendix A.

Next we deal with the orthogonal basis V of the subspace F . The cases in which

‖x‖ℓ0 = s and ‖x‖ℓ0 < s should be discussed separately. For the case ‖x‖ℓ0 = s, it can be

seen that for every k ∈ S = supp(x), one has ‖x+ ǫek‖ℓ0 ≤ s, i.e. x+ ǫek ∈ Xs for arbitrary

ǫ, and therefore ek ∈ F ; on the other hand, for k /∈ S, one has ‖x + ǫek‖ℓ0 > s and thus

ek /∈ F . It follows that the subspace F(x) can be formulated as

F(x) = span({eS1
, . . . , eSs}), (14)

in which S1, . . . , Ss are the elements of the support S = supp(x), and the basis V can take

the following form

V = [eS1
, . . . , eSs ]. (15)

For the case ‖x‖ℓ0 < s, the situation is rather different, because for every ek, k =

1, . . . , n, one has ‖x + ǫek‖ℓ0 ≤ s. Thus it can be concluded that F(x) = R
n in this case,

and the basis V can be given by [e1, . . . , en] = Un.

With the form of the FIM J and the basis V, one can readily derive the CCRB of the

problem (2). The situation in which x has maximal support (‖x‖ℓ0 = s) is first analyzed.

Theorem 1 For ‖x‖ℓ0 = s, the CCRB is given by

σ2
x

[

tr
(

(AT
SAS)

−1
)

−
2mσ4

e‖(AT
SAS)

−1xS‖2ℓ2
σ2
x + 2mσ4

ex
T
S (A

T
SAS)−1xS

]

, (16)

where σ2
x is defined in (13).

Proof The condition (8) should be checked first. The matrix VTJV is given by

VTJV = VT 1

σ2
x

[

ATA+ 2mσ4
e

xxT

σ2
x

]

V

=
1

σ2
x

[

AT
SAS + 2mσ4

e

xSx
T
S

σ2
x

]

.

Because we have assumed that spark(A) > 2s, it follows that AS has full column rank, and

thus VTJV is invertible by employing the Sherman-Morrison formula [36], which gives

(

VTJV
)−1

= σ2
x

[

(AT
SAS)

−1 − 2mσ4
e(A

T
SAS)

−1xSx
T
S (A

T
SAS)

−1

σ2
x + 2mσ4

ex
T
S (A

T
SAS)−1xS

]

, (17)
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and thus R(VVTJVVT) = R(VVT), i.e. the CCRB exists. The expression of the CCRB

can also be obtained from (17) that

mse(x̂) ≥ tr
(

V(VTJV)−1VT
)

= tr
(

VTV(VTJV)−1
)

= tr
(

(VTJV)−1
)

= σ2
x

[

tr
(

(AT
SAS)

−1
)

−
2mσ4

e‖(AT
SAS)

−1xS‖2ℓ2
σ2
x + 2mσ4

ex
T
S (A

T
SAS)−1xS

]

.

Next consider the case in which x has nonmaximal support. The CCRB of this case can

be summarized as the following theorem.

Theorem 2 For ‖x‖ℓ0 < s, if the FIM J is nonsingular, then the CCRB exists. Further-

more, if A has full column rank, then the CCRB is given by

σ2
x

[

tr
(

(ATA)−1
)

−
2mσ4

e‖(ATA)−1x‖2ℓ2
σ2
x + 2mσ4

ex
T(ATA)−1x

]

. (18)

If the FIM J is singular, then there do not exist finite variance estimators that are unbiased

in the neighborhood of x.

Proof Because in this caseV = Un, the two subspaces are respectivelyR(VVT) = R
n and

R(VVTJVVT) = R(J). Therefore when J is invertible, it can be seen that the condition

(8) holds, and the CCRB can be obtained by taking the trace of J−1. In the special case

where A has full column rank, the inverse J−1 can be calculated with the help of the the

Sherman-Morrison formula [36],

J−1 = σ2
x

[

(ATA)−1 − 2mσ4
e(A

TA)−1xxT(ATA)−1

σ2
x + 2mσ4

ex
T(ATA)−1x

]

, (19)

and the CCRB is

mse(x̂) ≥ tr
(

J−1
)

= σ2
x

[

tr
(

(ATA)−1
)

−
2mσ4

e‖(ATA)−1x‖2ℓ2
σ2
x + 2mσ4

ex
T(ATA)−1x

]

. (20)

When J is not invertible, the dimension of the column space of J is less than n. Thus

the condition (8) does not hold, and estimators that are unbiased in the neighborhood of x

do not exist.

Theorem 2 illustrates that for the nonmaximal support case, the prior information of

sparsity cannot lower the theoretical bound of estimation error compared to the ordinary

problem where x can be any vector in R
n. This demonstrates a gap between the maximal

and nonmaximal support cases of the CCRB, which is the main topic of the next subsection.
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(a) The maximal support

case

(b) The nonmaximal sup-

port case

Figure 1: A geometrical demonstration of the discontinuity between the neighborhood struc-

tures of the maximal and the nonmaximal support cases. The vectors vi are base vectors

of the neighborhood subspace F .

3.1 Gap between the Maximal and the Nonmaximal Cases

The gap between the maximal and nonmaximal cases of the CCRB can be revealed from

the following example. Suppose we observe a sparse vector x ∈ Xs with s nonzero entries.

Then by the result of Theorem 1, the CCRB is given by (16). Next we assume that one

of the nonzero components, say xq, tends to zero. Consequently, the CCRB given by (16)

tends to a specific limit γ1. However, when xq equals zero, the CCRB cannot be computed

by (16) anymore because its support is now nonmaximal, therefore the CCRB of the xq = 0

case is given by (18), which we temporarily denote as γ2. It is interesting to find that γ1 and

γ2 are not equal to each other, which means that the CCRB is not a continuous function

of the parameter x.

Generally one has γ1 ≤ γ2, which can be inferred as follows. γ1 could be seen as the

CRB of estimators which are unbiased on the subspace span({ei : i ∈ supp(x)}), while γ2

could be seen as the CRB of estimators unbiased on R
n. If the former class of estimators is

denoted by U1, and the latter is denoted by U2, it can be seen that U1 ⊃ U2, and thus the

lower bounds of estimation error of the two classes should satisfy γ1 ≤ γ2. This conclusion

can also be verified by numerical approaches.

This gap originates from the “discontinuity” of the restriction that the estimator should

be unbiased in the neighborhood of a specific parameter value. The “neighborhood” of a

parameter point having maximal support in Xs has an entirely different structure from that

of a parameter point having nonmaximal support: the former is a subspace that is locally

identical to R
s, while the latter is a union of s-dimensional subspaces. Fig. 1 is a geometric

illustration of the structure of the neighborhood of x. It can be seen that as xq → 0, the

structure of the neighborhood of x will have an abrupt change: from being locally identical

to R
s to being locally identical to R

n. This is the cause of the gap between the maximal

and nonmaximal cases.

On the other hand, if a stronger condition, global unbiasedness, is imposed on the

considered estimators instead of unbiasedness in the neighborhood, i.e. the estimators are
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restricted to be unbiased for all x ∈ Xs, then this discontinuity should not occur. Thus the

corresponding lower bound should also be continuous as xq → 0, i.e. x changes from having

maximal support to having nonmaximal support. Since γ1 ≤ γ2, it is further demonstrated

that the CCRB for maximal support is not sufficiently tight for estimators in U , especially
when the support of x is nearly nonmaximal, i.e. at least one of the non-zero entries is

small compared to other non-zero entries.

3.2 Further Analysis of the CCRB

In this subsection we aim to analyze the behavior of the CCRB. The following analysis will

mainly focus on the maximal support case. As can be seen from (16) and (18), the CCRB

of the two cases share a similar form, and thus the main results provided in the following

will still be valid for the nonmaximal support case with minor modifications.

The expression (16) contains two terms, the first of which is rather simple, while the

second of which is much more complicated. The following proposition relates the first

term σ2
xtr
(

(AT
SAS)

−1
)

to the MSE of the oracle estimator, which provides an intuitive

explanation. The definition and performance of the oracle estimator can be summarized as

follows.

Proposition 2 For a given support S whose size is s, the oracle estimator x̂or is defined

as
(x̂or(y))S = A

†
Sy = (AT

SAS)
−1AT

Sy,

(x̂or(y))Sc = 0.

This estimator is unbiased in the neighborhood of any parameter value whose support is S.

The MSE of x̂or is

σ2
xtr
(

(AT
SAS)

−1
)

, ∀x : supp(x) = S. (21)

Proposition 2 demonstrates that the first term of the CCRB is just the MSE of the oracle

estimator. This term is also similar to the CCRB of the case where only measurement noise

exists. Various references (e.g. [3, 20]) have shown that the CCRB with only measurement

noise is the variance of the noise on y multiplied by tr(AT
SAS)

−1, and the oracle estimator

achieves this bound.

The second term of (16) stems from the dependence of the variance of the total noise

on the parameter x, and reveals a possibility that utilizing matrix perturbation might help

estimate x more accurately2. However, it can be shown that this term is not dominant in

the CCRB under certain assumptions on A, which is given as follows.

Assumption 1 For the sensing matrix A in (16), it is assumed that there exist constants

ϑl,s ∈ (0, 1) and ϑu,s > 0 such that

(1− ϑl,s)‖x‖2ℓ2 ≤ ‖Ax‖2ℓ2 ≤ (1 + ϑu,s)‖x‖2ℓ2 (22)

2An extreme example is given in Appendix F.
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for any s-sparse parameter x.

Assumption 1 is very similar to the restricted isometry property [37,38], and has the same

form as the asymmetric restricted isometry property in [39]. However, the sensing matrix is

not restricted to be underdetermined in our case. With Assumption 1, the following theorem

can be derived providing lower and upper bounds on the second term of the CCRB.

Theorem 3 Denote the opposite of the second term of the CCRB as dCCRB, i.e.

dCCRB = σ2
x ·

2mσ4
e‖(AT

SAS)
−1xS‖2ℓ2

σ2
x + 2mσ4

ex
T
S (A

T
SAS)−1xS

. (23)

Then dCCRB satisfies the following inequalities:

dCCRB S σ2
x

(1 + ϑ±,s)
2

(1 + ϑ∓,s)2
· 2ce
2(1 + ϑ∓,s)ce + 1 + ϑ±,s + cn/ce

, (24)

where ϑ+,s = ϑu,s, ϑ−,s = −ϑl,s, and

ce =
msσ2

e
∑m

i=1

∑

j∈S A2
ij

=
msσ2

e

tr(AT
SAS)

, cn =
mσ2

n

‖x‖2ℓ2
indicate the matrix perturbation level and the measurement noise level3 respectively. The

ratio γCCRB = dCCRB/(CCRB + dCCRB), i.e. the ratio of the second term to the first term

of the CCRB, is bounded by the following inequalities:

γCCRB S 1

s

(1 + ϑ±,s)
3

(1 + ϑ∓,s)2
· 2ce
2(1 + ϑ∓,s)ce + 1 + ϑ±,s + cn/ce

(25)

Proof See Appendix B.

Theorem 3 provides very simple approximate expressions that captures how dCCRB and

γCCRB vary with the noise level ce and cn:

dCCRB ≈ σ2
x · 2ce

2ce + 1 + cn/ce
, (26)

γCCRB ≈ 1

s
· 2ce
2ce + 1 + cn/ce

, (27)

provided that the constants ϑl,s and ϑu,s are small compared to 1. Apparently the quantity

2ce/(2ce + 1 + cn/ce) is always less than 1, and therefore γCCRB can be upper-bounded

approximately by 1/s. Furthermore, (27) implies that as s increases, the second term dCCRB

becomes less and less important, and finally becomes negligible. This can be considered as

the asymptotic behavior of dCCRB or the CCRB, which can be summarized as the following

corollary.

3One may argue that mσ2

n/‖Ax‖2ℓ2 seems more reasonable as an indication of the measurement noise

level. However, because of Assumption 1, one has ‖Ax‖2ℓ2 ≈ ‖x‖2ℓ2 , and thus for simplicity mσ2

n/‖x‖
2

ℓ2
is

employed instead.
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Corollary 1 Assume that there exist constants ǫl ∈ (0, 1) and ǫu > 0 such that when s

tends to infinity, the constants ϑl,s and ϑu,s keep satisfying ϑl,s < ǫl and ϑu,s < ǫu for every

s. Then if ce and cn remains constant, γCCRB possesses the following asymptotic behavior:

A

s
≤ γCCRB ≤ B

s
, (28)

where A and B are some positive constants.

Remark 2 This corollary demonstrates that as s → ∞, the CCRB approaches σ2
xtr
(

(AT
SAS)

−1
)

which is just the MSE of the oracle estimator. The oracle estimator is the solution of the

following minimization problem:

arg
xS

min ‖y −ASxS‖2ℓ2 ,

which merely minimizes the residual and completely ignores the dependence of the total noise

on x. It can be concluded that as s increases, less information can be possibly obtained from

the dependence of the total noise on x to help reduce the estimation error, and finally this

dependence can be ignored.

4 The Hammersley-Chapman-Robbins Bound

The constrained CRB given in the above section possesses a simple closed form, but it takes

into account only the unbiasedness in the neighborhood of a specific parameter value rather

than the global unbiasedness for all sparse vectors. Therefore it can be anticipated that for

estimators that are globally unbiased for sparse parameter values (i.e. for all estimators in

U), the CCRB is not a very tight lower bound.

In this section, the Hammersley-Chapman-Robbins bound (HCRB) is derived for sparse

estimation under the setting of general perturbation. However, the calculation of the HCRB

for general sensing matrix A is much more complicated, and therefore attention is focussed

only on the simplest case of unit sensing matrix in this section [27, 40]. Nevertheless, the

HCRB of this simple case is still instructive for us to have a qualitative understanding of

the HCRB for general cases.

The HCRB in the context of sparse estimation with general perturbation can be sum-

marized as the following lemma.

Lemma 2 In the setting given in Section 2, consider a specific parameter value x ∈ Xs.

Suppose {vi}ki=1 are k vectors such that x+vi ∈ Xs for all i = 1, . . . , k. Then the covariance

matrix of any unbiased estimator x̂ ∈ U at x satisfies

Cov(x̂) � VH†VT. (29)

Here the matrix V is given by

V = [v1, . . . ,vk], (30)
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and the (i, j)th element of H is

Hij =

(

σ2
xς

2
x,vi,vj

σ2
x+vi

σ2
x+vj

)m
2

exp



−
‖Avi‖2ℓ2
2σ2

x+vi

−
‖Avj‖2ℓ2
2σ2

x+vj

+
ς2x,vi,vj

2

∥

∥

∥

∥

∥

Avi

σ2
x+vi

+
Avj

σ2
x+vj

∥

∥

∥

∥

∥

2

ℓ2



− 1,

(31)

where
1

ς2x,vi,vj

=
1

σ2
x+vi

+
1

σ2
x+vj

− 1

σ2
x

. (32)

Proof The proof is postponed to Appendix C.

It can be seen from Lemma 2 that the HCRB is actually a family of lower bounds

of unbiased estimators. By employing different sets of vi, one will generally get different

HCRBs, and the tightest one is their supremum. However, it is often impossible to obtain

a closed-form expression of the supreme value of the HCRB family, and thus our task is to

employ a certain set of vi in the hope that the corresponding HCRB will be simple and

easy to analyze.

By appropriately choosing a set of vi and applying some special techniques, the following

theorem of the HCRB4 will be obtained.

Theorem 4 Assume that n ≥ 2, and denote β = x2q/σ
2
x, where xq is the smallest entry

in magnitude of the parameter x, with q the corresponding index. Then the MSE of any

estimator x̂ ∈ U satisfies

mse(x̂) ≥ σ2
x

(

s−
2nσ4

e‖x‖2ℓ2
σ2
x + 2nσ4

e‖x‖2ℓ2

)

+
σ2
x(n − s)βe−β

eβ − 1
·
(

1− 1

n− s+ eβ(1− g(β))−1

)

(33)

for any x ∈ Xs with ‖x‖ℓ0 = s. The specific form of the function g(β) is

g(β) =
β(1− 2σ2

eβ)
2

(eβ − 1)(1 + 2nσ4
eβ)

, (34)

and g(β) satisfies

0 ≤ g(β) < 1, ∀β > 0, n ≥ 2. (35)

When σn and σe are fixed, ones has

lim
xq→0

g(β) = 1. (36)

Proof See Appendix D.

The quantity β = x2q/σ
2
x represents a special kind of signal-to-noise ratio, and can be

named the “worst case entry SNR” [27]. This quantity plays a central role in the transition

4This lower bound is actually a limit of a family of HCRBs. Nevertheless this bound will still be referred

to as the HCRB in the following text.
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from maximal support to nonmaximal support. However, it should be noticed that there

exists an upper bound of the domain of β if σe 6= 0:

β =
x2q

σ2
n + σ2

e‖x‖2ℓ2
≤

x2q
σ2
e‖x‖2ℓ2

=
1

σ2
e

∑

x2i /x
2
q

≤ 1

sσ2
e

. (37)

Therefore the situation here is more complicated than that with only the measurement

noise. One of the consequences is that when xq → +∞5, the HCRB does not generally

tends to the CCRB of maximal support unless σe = 0, i.e.

lim
xq→+∞

HCRB− CCRBmax supp

CCRBmax supp
> 0, if σe 6= 0. (38)

This phenomenon reveals that the global unbiasedness has an essential effect on the problem

of the σe 6= 0 case. Fortunately, when σn and σe remains constant, the HCRB will converge

to the CCRB of nonmaximal support as xq → 0, as can be seen from

lim
xq→0

HCRB = σ2
x

(

n−
2nσ4

e‖x‖2ℓ2
σ2
x + 2nσ4

e‖x‖2ℓ2

)

. (39)

Therefore it can be said that the gap between the maximal and nonmaximal cases is elimi-

nated.

We compare the above result with other similar works. In [27], a closed-form expression

of the HCRB for σ2
e = 0 is derived in a similar approach but with different choice of {vi}.

Their closed-form result is tighter than ours when β is sufficiently large, but is not as tight

as ours in the low β range and fails to close the gap between maximal and nonmaximal

cases. In [40], another lower bound is provided and is tighter than ours for all β > 0,

but the derivation is based on the RKHS formulation of the BB which is difficult to be

generalized when σ2
e 6= 0. Despite that our bound is not the tightest, it still provides a

correct qualitative trend of the lower bound of sparse estimation, and is able to deal with

matrix perturbation without much effort.

4.1 Further Analysis of the HCRB

It has already been mentioned that the domain of β possesses an upper bound which is not

greater than 1/sσ2
e , and thus the xq → +∞ limit of the HCRB does not coincide with the

CCRB. This difference implicates the effect of the matrix perturbation on the HCRB and

is the major topic of this subsection. For simplicity of analysis, in the following text it is

assumed that as xq → +∞, all other components of x equal xq asymptotically, which leads

to the fact that the upper bound of β is 1/sσ2
e .

5The case xq → +∞ is studied to analyze the large signal-to-measurement-noise-ratio situation. This is

for the convenience of analysis and clarity of exposition.
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As xq → +∞, the HCRB asymptotically equals

σ2
x

(

s−
2nσ4

e‖x‖2ℓ2
σ2
x + 2nσ4

e‖x‖2ℓ2

)

+
σ2
x(n − s) exp(−1/sσ2

e)

sσ2
e(exp(1/sσ

2
e)− 1)

·
(

1− 1

n− s+ exp(1/sσ2
e )(1− g(1/sσ2

e ))
−1

)

.

The above expression contains two terms, the first of which is just the CCRB of the maximal

support case. For the second term, it can be seen that the σe’s mainly appear in the

exponentials, which demonstrates that there exists a particular value of σe that separates

the low σe region and the high σe region. This particular value will be named the transition

value of σe and will be denoted by σe,t.

The analysis and computation of σe,t is simple. When σ2
e ≪ 1/s, one has exp(1/sσ2

e ) ≫ 1

and exp(−1/sσ2
e) ≈ 0, and thus the HCRB approximates

σ2
x

(

s−
2nσ4

e‖x‖2ℓ2
σ2
x + 2nσ4

e‖x‖2ℓ2

)

,

which is just the maximal support CCRB. However, if the matrix perturbation is large

enough so that σ2
e ≫ 1/s, the difference between the HCRB and CCRB cannot be neglected.

Therefore 1/
√
s can be regarded as the transition point σe,t : when σe < σe,t, the HCRB

degenerates to the CCRB as xq → +∞; when σe > σe,t, the lower bound is raised for large

xq and does not degenerate to the CCRB.

The theory of the transition point σe,t may have a geometrical explanation which is

not rigorous but very intuitive. The set Xs can be regarded as the union of s-dimensional

hyperplanes spanned by s coordinate axes respectively. The sparse parameter x lies on

one of the hyperplanes Σs and is surrounded by a noise ball whose radius is r2 = σ2
x. As

xq → +∞, the radius satisfies r2 ∼ σ2
e‖x‖2ℓ2 ∼ sσ2

exq. The transition point corresponds

to the tangency of the noise ball to one of the hyperplanes of Xs apart from Σs, and the

high and low σe regimes correspond to whether or not the noise ball intersects with another

hyperplane (See Fig. 2). It can be easily verified that this geometrical interpretation gives

out correct value of the transition point σe,t.

5 Numerical Results

In this section, numerical simulations are performed in order to substantiate the theoretical

results presented in the previous sections.

5.1 Numerical Analysis of γCCRB

Numerical experiments are first made on the CCRB, or equivalently, on the quantity γCCRB.

We wish to verify that the formula (27) is valid and can demonstrate how γCCRB varies

versus the perturbation level ce and the noise level cn. Before we perform the numerical

14



The noise ball

Figure 2: The geometrical interpretation of the transition point σe,t. The hyperplanes are

part of the set Xs, and the sparse parameter x lies on Σs. The radius of the noise ball is

r2 ∼ sσ2
exq. If this ball intersects another hyperplane, such situation belongs to the high σe

regime; otherwise it belongs to the low σe regime. For the low σe regime, the HCRB equals

the corresponding CCRB approximately if xq is sufficiently large; for the high σe regime,

the HCRB is evidently higher than the corresponding CCRB.

simulations, it is worthwhile to analyze the formula (27) first with the help of its graph

obtained by numerical approaches.

Define the function in the approximate formula (27)

γ(ce, cn) =
1

s

2ce
2ce + 1 + cn/ce

. (40)

The graphs of the function γ(ce, cn) with varying ce and cn are shown in Fig. 3, where the

sparsity s is set to be 10 . It can be seen that when cn is fixed, γ(ce, cn) is monotonically

increasing of ce, with limits γ(0+, cn) = 0 and γ(+∞, cn) = 1/s. Also, for each fixed cn,

there exists a transition point ce,t of the curve which approximately separates the high ce

and low ce regimes: when ce ≪ ce,t, one has γ(ce, cn) ≈ 0, while for ce ≫ ce,t, one has

γ(ce, cn) ≈ 1/s. This transition point can be defined such that γ(ce,t, cn) = 1/2s. When

cn = 0, the transition point is ce,t = 1/2 = −3 dB; for general cn > 0, ce,t is the positive

root of 2x2 − x− cn = 0.

When ce is fixed, γ(ce, cn) is monotonically decreasing of cn. Fig. 3 also indicates that

the transition point ce,t(cn) is a monotonically increasing function of cn, which is a direct

corollary of the monotonicity of γ(ce, cn) with respect to cn.

In order to verify that the trend of γCCRB can be described by γ(ce, cn), numerical

results of γCCRB are performed. The dimensions are n = 20s,m = 10s, and s = 10. The

entries of A are drawn independently from N (0, 1/m). Such generation of A is standard

in the field of compressive sensing, and ensures the existence of the constants ϑl,s and ϑu,s

with overwhelming probability [38, 39]. The support of x is equiprobably chosen from all

subsets of {1, . . . , n} with size s, and the nonzero entries satisfy i.i.d. equiprobable Bernoulli

distribution on {−1, 1}.
The results are shown in Fig. 4. Points marked by “×” are raw simulation results,
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Figure 3: The graphs of the approximate formula of γCCRB as a function of ce with different

settings of cn. The theoretical approximate formula is given by (27).
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Figure 4: γCCRB as a function of ce with different settings of cn. Data points marked by

“×” are generated by simulation results. The solid lines represent the corresponding values

calculated by the approximate expression (27).

while the solid lines represent the function γ(ce, cn). It can be seen that the curves of the

function γ(ce, cn) can correctly describe how γCCRB varies versus ce and cn. The figures

also demonstrate that the solid curves lie almost in the middle of the raw points, which

partially justifies the validity of the approximate formula and the bounds of (24).

Next we wish to verify the asymptotic behavior of γCCRB, i.e. the s−1 law given by

Corollary 1. This time s varies from 3 to 300 with exponentially increasing increments, and

n = 20s,m = 10s. The generations of A and x are the same as in previous simulations.

The results are shown in Fig. 5. The dotted points are raw experimental data of γCCRB,

and the solid straight line is the s−1 line given by (27). Note that we employ the log-log

scaling of the coordinate system so that the s−1 law is represented by a straight line with

slope −1. It can be seen that the data points can be upper and lower bounded by two s−1

curves, and they cluster near the straight line given by (27). Thus it can be concluded that

the trend of γCCRB with respect to s can be described by the s−1 law.
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Figure 5: Simulation results of γCCRB versus the support size s under different settings of ce

and cn. Dotted data points are generated by numerical simulations, and the solid straight

lines are computed by the approximate expression (27). Every single sub-figure contains

three groups of data, which correspond to ce = 5 dB,ce = −5 dB and ce = −15 dB as shown

from the top to the bottom. The figures share the same legend as shown in Fig.5(a). Notice

that the log-log scaling of the coordinate system makes the graph of s−1 a straight line of

slope −1.

5.2 Numerical Analysis of the HCRB

We first have a brief review of Theorem 4. The lower bound of (33) consists of two parts:

the maximal support CCRB and the additional term which eliminates the CCRB gap.

Numerical experiments will mainly be performed on the additional term, and the common

factor σ2
x will be ignored. In other words, our analysis will be focussed on the quantity

dHCRB =
(n− s)βe−β

eβ − 1

(

1− 1

n− s+ eβ(1− g(β))−1

)

. (41)

Settings of the numerical simulations are as follows. The dimensions are n = m = 10s.

x is set to be [xq, ..., xq , 0, . . . , 0]
T. Different settings of σe and σn are employed, and for

each group of {σe, σn} we simulate the HCRB with varying xq to get a graph of dHCRB.

The first task is to verify the theory of transition point presented previously. The

sparsities are 1, 3, 10, 30 and 100 respectively, and for each s, σ2
e ranges from 0.0001 to 100.

σn is set to be 0.1, and the HCRB for xq = 1000 is computed as a good approximation for

the xq → +∞ case.

The numerical results are shown in Fig. 6, where dHCRB is “normalized” by n − s so

that the curves share a similar scale. It can be seen that the transition point for each s

exists and can be well evaluated by σ2
e,t = 1/s. For σe ≪ σe,t, dHCRB/(n − s) is much less

than 1, and as σe → 0, dHCRB/(n − s) tends to zero rapidly; for σe > σe,t, dHCRB/(n − s)

cannot be neglected, and as σe → +∞, dHCRB/(n− s) possesses a limit which is of order 1.

Next we fix σe and σn, and test how dHCRB varies versus xq. The sparsity s is set to

be 1 for simplicity. Results are shown in Fig. 5.2, where σn = 0.1 is fixed with different

σe’s. The figure shows that when σe belongs to the low value regime (i.e. σe ≪ σe,t,
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Figure 6: dHCRB/(n− s) versus σe with different settings of s.
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Figure 7: dHCRB versus xq with σn = 0.1 and different settings of σe.

where σe,t = 1 here), its effect on dHCRB can be neglected. Moreover, each curve can be

separated into three regions: the low xq region where HCRB ≈ CCRBnonmax supp, the high

xq region where HCRB ≈ CCRBmax supp, and the transition region which connects the low

and high xq region. However, when σe exceeds σe,t, the behavior of dHCRB will become

rather different and exhibits a more complex pattern. These phenomena demonstrate the

way matrix perturbation influences the HCRB.

5.3 Comparison with Existing Estimators

In this subsection we compare the derived bounds with the performance of existing

estimators. Because the HCRB is only derived for the unit sensing matrix case, the following

analysis and simulations will be focused on this particular situation. One of the existing

estimators to be compared is the maximum likelihood (ML) estimator, which, in the unit

sensing matrix case, is given by

x̂ML(y) = Ps(y), (42)

where the operator Ps retains the s largest entries in magnitude and zeros out all others. It

should be noted that when the noise is large, this estimator will be severely biased. Another

estimator is the one given in [40, §5] for the special case of s = 1. This estimator is globally

18



10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

σn

M
S
E

/
σ

2 x

 

 

ML Estimator
Unbiased Estimator
HCRB
CCRB

(a) σe = 0.1

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

σn

M
S
E

/
σ

2 x

 

 

(b) σe = 1

Figure 8: Comparison of the performance of ML estimator and the unbiased estimator (43)

with HCRB and CCRB.

unbiased, and is given by

x̂k(y) =















yq, k = q,

yk exp

(

−
2ykx0,q + x20,q

2σ2
x0

)

, otherwise.
(43)

Here x0 is a sparse vector with s = 1 which represents a kind of prior knowledge that the

true parameter x will not be far from x0
6, q is the index of the single non-zero entry, and

x0,q is the value of this entry.

We test the case when s = 1 and n = 5. The sparse vector x is set to be [1, 0, . . . , 0]T.

The MSE of the two estimators together with HCRB and CCRB are numerically computed

for different settings of σn’s and σ′
es.

The results are shown in Fig 8. We first analyze the case σe = 0.1 which represents

relatively small matrix perturbation. It can be seen that when σn is small, the MSEs of the

ML estimator and the unbiased estimator are both lower bounded by the HCRB and the

CCRB. As σn increases, the ML estimator undergoes an evident performance degradation

6Rigorously, this estimator is the locally minimum variance unbiased (LMVU) estimator at x0 when

σn = 0. See [40] for more detailed explanations.
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before the unbiased estimator does. However, when σn is considerably large, the MSE of

the ML estimator is not lower bounded by the HCRB. This is due to the severe bias of the

ML estimator in such situations. For the unbiased estimator, it can be seen that its MSE

is always lower bounded by the HCRB.

For the case σe = 1, it can be seen that when σn is small, the MSEs of both the ML

estimator and the unbiased estimator are much larger than the HCRB due to the large

matrix perturbation level. As explained before, the ML estimator is severely biased when

the noise level is large, and thus for certain values of σn, its MSE will not be lower bounded

by the HCRB. For the unbiased estimator, its MSE is always lower bounded by the HCRB.

6 Conclusion

In this paper, the performance bound of sparse estimation with general perturbation has

been studied. Two widely-used types of lower bounds, the CCRB and the HCRB, have been

calculated and analyzed. For the CCRB, it has been shown that the additional term of the

CCRB can be approximated by a simple s−1 law if the sensing matrix satisfies RIP-type

conditions. For the HCRB where only the case of unit sensing matrix is studied, it has been

shown that the HCRB provides a tighter lower bound than the CCRB, and that it exhibits

a satisfying transition behavior when the smallest entry of the parameter tends to zero. A

geometrical interpretation of the theory of the HCRB has also been given.

There are several future directions to be explored. First, the HCRB is obtained only

for the unit sensing matrix case, which is useful for a qualitative comprehension but has

apparent limitation. In many cases the sensing matrix cannot be assumed unit, and a more

precise quantitative study on the performance bound also requires generalizing the HCRB

to the general sensing matrix case. There may be two practical approaches to this problem.

One is to derive a closed-form lower bound which is convenient to analyze and understand;

the other is to find a tractable way to numerically compute the lower bound. However, both

ways need further research and are still waiting for useful results.

Second, the HCRB provides a lower bound for globally unbiased estimators. However,

recovery algorithms are quite likely to be biased in the sparse setting, and the bias is usually

dependent on the noise variance. Moreover, there are occasions that biased estimators can

achieve a lower MSE than unbiased estimators [41]. These problems also point out a possible

direction for future study.

A Proof of Lemma 1

We first compute the likelihood function p(y;x). Notice that the problem (2) can be re-

formulated as

y = Ax+Ex+ n = Ax+ nx, (44)

where nx = Ex+n denotes the equivalent noise. Because the elements of E are drawn i.i.d.

from Gaussian distribution, Ex is an m-dimensional Gaussian-distributed random vector,
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and is independent of n. By straightforward calculation, it can be shown that E[Ex] = 0

and Cov(Ex) = σ2
e‖x‖2ℓ2Um. Then, from the mutual independence of Ex and n one has

nx ∼ N (0, (σ2
e‖x‖2ℓ2 + σ2

n)Um). Therefore the likelihood function is given by

L(x) =
1

(2πσ2
x)

m
2

exp

[

−(y −Ax)T(y −Ax)

2σ2
x

]

, (45)

where

σ2
x = σ2

e‖x‖2ℓ2 + σ2
n. (46)

The next step is to compute the FIM. The gradient of the log likelihood function

ln p(y;x) is

∇x ln p(y;x) =
1

σ2
ex

Tx+ σ2
n

[

AT(y −Ax) +
‖y −Ax‖2ℓ2x
σ2
ex

Tx+ σ2
n

]

−m
σ2
ex

σ2
ex

Tx+ σ2
n

, (47)

and therefore

(∇x ln p(y;x))(∇T
x ln p(y;x)) =

m2σ4
e

(σ2
ex

Tx+ σ2
n)

2
xxT −

2mσ4
e‖y −Ax‖2ℓ2

(σ2
ex

Tx+ σ2
n)

3
xxT

+
1

(σ2
ex

Tx+ σ2
n)

2
AT(y −Ax)(y −Ax)TA

+
σ4
e‖y −Ax‖4ℓ2

(σ2
ex

Tx+ σ2
n)

4
xxT + terms linear in (y −Ax)

+ terms cubic in (y −Ax).

(48)

The specific forms of the linear and cubic terms in the above equation is of no importance;

they will vanish when we take their expectation because y−Ax is Gaussian-distributed with

zero mean and diagonal covariance. The expectation value of ‖y−Ax‖2ℓ2 is m(σ2
ex

Tx+σ2
n),

while for ‖y −Ax‖4ℓ2 the expectation will be (m2 + 2m)(σ2
ex

Tx+ σ2
n)

2, which can be seen

from the fact that for a series of i.i.d. zero-mean Gaussian random variables w1, . . . , wk with

the same variance q2, one has E[(w2
1 + · · ·+w2

k)
2] = (k2+2k)q4. By taking the expectation

of (48), and recalling the covariance matrix of y −Ax = Ex+ n, one has

J(x) =
1

σ2
ex

Tx+ σ2
n

ATA+
2mσ4

e

(σ2
ex

Tx+ σ2
n)

2
xxT,

which is exactly (12).

B Proof of Theorem 3

Assumption 1 implies that the eigenvalues of AT
SAS are bounded by 1 − ϑl,s and 1 + ϑu,s.

Therefore the eigenvalues of (AT
SAS)

−1, denoted by λ̃i, are bounded as follows

1

1 + ϑu,s
≤ λ̃i ≤

1

1− ϑl,s
. (49)
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Since (AT
SAS)

−1 is a symmetric matrix, it can be diagonalized by some orthogonal matrix

Q, i.e.

(AT
SAS)

−1 = QTdiag(λ̃1, . . . , λ̃s)Q.

Thus, for any vector u ∈ R
s, denote ũ = Qu, one has

uT(AT
SAS)

−1u =ũTdiag(λ̃1, . . . , λ̃s)ũ =

s
∑

k=1

λ̃kũ
2
k

≥
s
∑

k=1

1

1 + ϑu,s
ũ2k =

1

1 + ϑu,s
‖ũ‖2ℓ2

=
1

1 + ϑu,s
‖u‖2ℓ2 .

By employing the same techniques it can be verified that

‖x‖2ℓ2
1 + ϑu,s

≤ xT
S (A

T
SAS)

−1xS ≤
‖x‖2ℓ2
1− ϑl,s

, (50)

where we have used the fact that for s-sparse vector x supported on S, one has ‖xS‖2ℓ2 =

‖x‖2ℓ2 . Noting that the square of (AT
SAS)

−1 has eigenvalues λ̃2
1, . . . , λ̃

2
s with the same

eigenvectors as (AT
SAS)

−1, it can be shown similarly that

‖x‖2ℓ2
(1 + ϑu,s)2

≤ ‖(AT
SAS)

−1xS‖2ℓ2 ≤
‖x‖2ℓ2

(1− ϑl,s)2
. (51)

Substituting (50) and (51) into (23), one will obtain

dCCRB S σ2
x

1 + ϑ±,s

(1 + ϑ∓,s)2
· 2mσ2

e

1 + 2mσ2
e + ϑ±,s +

cn(1+ϑ±,s)
mσ2

e

, (52)

where ϑ+,s = ϑu,s, ϑ−,s = −ϑl,s.

Next we wish to bound the term mσ2
e . It can be seen from the definition of ce that

mσ2
e = cetr(A

T
SAS)/s, and with the help of the bounds of the eigenvalues of AT

SAS , it can

be shown that

ce(1− ϑl,s) ≤ mσ2
e ≤ ce(1 + ϑu,s). (53)

Substituting this into (52), one will obtain the bounds given by (24).

The bounds of γCCRB can also be derived by similar techniques with the help of the

bounds of the eigenvalues of (AT
SAS)

−1.

C Proof of Lemma 2

We first refer to [23] for the definition of the multivariate HCRB for unbiased estimators.
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Proposition 3 [23] Suppose p(y;x) are a class of pdf’s parameterized by x ∈ X , and let

x,x+ v1, . . . ,x+ vk be test points contained in the constrained parameter set X . Define

V = [v1, . . . ,vk], (54)

δip = p(y;x+ vi)− p(y;x), (55)

δp = [δ1p, . . . , δkp]
T, (56)

H = Ey;x

[

δp

p

δpT

p

]

, (57)

where p denotes p(y;x) for short. Then for any unbiased estimator x̂, the estimator covari-

ance matrix Cov(x̂) satisfies the matrix inequality

Cov(x̂) � VH†VT, (58)

Next Proposition 3 will be applied to the present case. The (i, j)th element of H is

given by

Hij = Ey;x

[

p(y;x + vi)p(y;x + vj)

p2(y;x)

]

− Ey;x

[

p(y;x+ vi)

p(y;x)

]

− Ey;x

[

p(y;x+ vj)

p(y;x)

]

+ 1.

(59)

The second term of the above equation is

−Ey;x

[

p(y;x + vi)

p(y;x)

]

= −
∫

Rm

p(y;x+ vi)dy = −1, (60)

and similarly the third term also equals −1. The first term is

Ey;x

[

p(y;x+ vi)p(y;x + vj)

p2(y;x)

]

=

(

σ2
x

2πσ2
x+vi

σ2
x+vj

)
m
2

exp

(

−
‖Avi‖2ℓ2
2σ2

x+vi

−
‖Avj‖2ℓ2
2σ2

x+vi

)

·
∫

Rm

exp

[(

vT
i A

T

σ2
x+vi

+
vT
j A

T

σ2
x+vj

)

(y −Ax)−
‖y −Ax‖2ℓ2
2ς2x,vi,vj

]

dy

=

(

σ2
xς

2
x,vi,vj

σ2
x+vi

σ2
x+vj

)
m
2

exp

[

−
‖Avi‖2ℓ2
2σ2

x+vi

−
‖Avj‖2ℓ2
2σ2

x+vi

+
ς2x,vi,vj

2

∥

∥

∥

∥

∥

Avi

σ2
x+vi

+
Avj

σ2
x+vj

∥

∥

∥

∥

∥

2

ℓ2

]

,

(61)

where
1

ς2x,vi,vj

=
1

σ2
x+vi

+
1

σ2
x+vj

− 1

σ2
x

. (62)

Substituting these results into (59), one will readily obtain (31), and Lemma 2 is proved.

D Proof of Theorem 4

It is assumed without loss of generality that the support of x is S = {1, 2, . . . , s}. We split

the MSE of an estimator x̂ into two parts as follows:

mse(x̂) =
∑

i∈S

E[(x̂i − xi)
2] +

∑

i/∈S

E[(x̂i − xi)
2], (63)
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i.e. the support part and the non-support part. We choose different sets of vi for the two

parts respectively, and in the end combine these two parts to get a lower bound. This

approach results from the fact that the MSE of a vector-valued estimator is the sum of the

MSE of its components.

For the lower bound of the support part, the following {vi}si=1 is employed:

vi = tei, i = 1, . . . , s, (64)

where t is an arbitrary real number. After the corresponding covariance matrix is obtained,

we take t → 0 and sum only the first s diagonal elements to obtain the lower bound of the

support part. It can be proved (see Appendix E) that this lower bound is identical to the

CCRB.

For the non-support part, the following {vi}n−s+1
i=1 is used:

vi =

{

xqei+s − xqeq, i = 1, . . . , n− s,

teq, i = n− s+ 1.
(65)

Here t is also an arbitrary real number which will tend to zero afterwards. At last, the last

n − s diagonal elements of the covariance matrix will be summed to represent the lower

bound of the non-support part.

The matrix V in (29) could be expressed as

V =

[

t −xq1
T

0 xqUn−s

]

, (66)

(the order of vi’s is slightly changed which has no effect on the final result), where the bold

face 1 denotes the column vector [1, 1, . . . , 1]T. Then the elements of the matrix H can be

given as follows:

H11 =

(

σ2
xς

2
x,q

σ4
q

)
n
2

exp

(

t2

σ2
q

(

2
ς2x,q
σ2
q

− 1

))

− 1, (67)

where it has been defined that

σ2
q = σ2

n + σ2
e(‖x+ teq‖2ℓ2), ς2x,q =

(

2

σ2
q

− 1

σ2
x

)−1

, (68)

and

H1i = Hi1 = exp

(

− txq
σ2
x

+
x2q
σ2
x

(

σ2
q

σ2
x

− 1

))

− 1, (69)

Hij = exp

(

(1 + δij)x
2
q

σ2
x

)

− 1 (70)

for i, j ≥ 2. The matrix H could be represented as

H =

[

a(t) b(t)1T

b(t)1 D

]

, (71)
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where a(t) = H11, b(t) = H12 and D = (H22 −H23)Un−s +H2311
T. To check the existence

and the expression of H−1, we first calculate the inverse of D by the Sherman-Morrison

formula [36]:

D−1 =
1

H22 −H23

(

Un−s −
H23

H22 +H23(n− s− 1)
11T

)

. (72)

Then the blockwise inversion formula is used for the calculation of H−1 (if it exists):

H−1 =

[

f11(t) f12(t)1
T

f12(t)1 D−1 + b2(t)D−111TD−1

a(t)−b2(t)1TD−11

]

, (73)

where f11(t) and f12(t) are some functions of t. Because at last only the last n− s diagonal

elements will be summed up, the specific form of the two functions are of no importance.

The existence of H−1 relies on whether the submatrices are valid. By employing (72), one

has

D−11 =
1

H22 +H23(n− s− 1)
1

1TD−11 =
n− s

H22 +H23(n− s− 1)
.

(74)

With these equations, it can be shown by tedious calculation that

lim
t→0

b2(t)D−111TD−1

a(t)− b2(t)1TD−11

=
β(1 − 2σ2

eβ)
2

H22 +H23(n− s− 1)
([H22 +H23(n− s− 1)] (1 + 2nσ4

eβ)− (n− s)β(1 − 2σ2
eβ)

2
)−1

,

(75)

and that

H22 ≡ lim
t→0

(

D−1 +
b2(t)D−111TD−1

a(t)− b2(t)1TD−11

)

=
(n− s)e−β

eβ − 1

(

1− 1

n− s+ eβ(1− g(β))−1

)

,

(76)

where H22 is defined as the limit of the (2, 2)th submatrix of H, and the function g(β) is

defined as (34). As will be shown later, under the modest requirement that n ≥ 2, for any

β > 0 one has 0 < g(β) < 1, and thus the expressions presented above are all valid. In this

way we have not only checked the invertibility of H, but also find out the expression of the

inversion’s limit.

To get the final form of the HCRB, we calculate VH−1VT and sum up its last n − s

diagonal elements. By straightforward calculation it can be verified that this is just equal

to x2qtr(H22). Adding this to the lower bound of the support part, given by

σ2
x

(

s−
2mσ4

e‖x‖2ℓ2
σ2
x + 2mσ4

e‖x‖2ℓ2

)

, (77)

one will finally get the expression (33).
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The last part of the proof deals with the properties of g(β). The proof of the two limits

given by (36) is straightforward. In order to prove (35), we consider separately the situations

0 < β ≤ 1/(2σ2
e ) and β > 1/(2σ2

e ). When 0 < β ≤ 1/(2σ2
e ), one has 0 ≤ 1− 2σ2

eβ < 1, and

therefore

(1− 2σ2
eβ)

2 < 1 < 1 + 2nσ4
eβ.

Together with β < eβ − 1, it leads to the inequality that

g(β) =
β(1 − 2σ2

eβ)
2

(eβ − 1)(1 + 2nσ4
eβ)

< 1, ∀β ∈
(

0,
1

2σ2
e

]

.

When β > 1/(2σ2
e ), i.e. 2σ

2
eβ > 1, it follows that 0 < 2σ2

eβ − 1 < 2σ2
eβ, and thus

g(β) =
β

eβ − 1

(1− 2σ2
eβ)

2

1 + 2nσ4
eβ

<
β

eβ − 1

(2σ2
eβ)

2

1 + 2nσ4
eβ

<
β

eβ − 1

4σ4
eβ

2

2nσ4
eβ

=
2

n

β2

eβ − 1
.

Because β2/(eβ − 1) < 1 for all β > 0, it can be seen that g(β) < 1 when n ≥ 2. Combining

the discussions of the two situations, we have proved that g(β) < 1 for all β > 0. The

inequality that g(β) ≥ 0 for all β > 0 is trivial.

E Lower Bound of the Support Part

In this section, we prove that the lower bound of the support part obtained by using

vi = tei, i = 1, . . . , s and taking t → 0 is just the CCRB of maximal support. It can be

easily seen that the matrix V in (54) is t[Us 0]T, and therefore the right side of (58) is

VHVT =

[

t2H† 0

0 0

]

, (78)

where the matrix H is given by (57). Next we calculate the limit of H/t2. It can be seen

that for δp/pt, one has

(

δp

pt

)

i

=
1

p(y;x)

p(y;x + tei)− p(y;x)

t
. (79)

Taking the limit t → 0, one will get

lim
t→0

(

δp

pt

)

i

=
1

p(y;x)
lim
t→0

p(y;x+ tei)− p(y;x)

t

=
1

p(y;x)

∂p(y;x)

∂ei
=

∂ ln p(y;x)

∂ei
,

(80)
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where ∂/∂ei denotes the directional derivative along ei with respect to x. Thus the limit

of δp/pt is

lim
t→0

δp

pt
=









∂ ln p/∂e1
...

∂ ln p/∂es









=
[

Us 0

]

























∂ ln p/∂e1
...

∂ ln p/∂es

∂ ln p/∂es+1

...

∂ ln p/∂en

























=
[

Us 0

]

∇x ln p(y;x),

(81)

and the limit of H/t2 is

lim
t→0

1

t2
H = E

[

lim
t→0

δp

pt

δpT

pt

]

=
[

Us 0

]

E
[

(∇x ln p(y;x))(∇T
x ln p(y;x))

]

[

Us

0

]

=
[

Us 0

]

J

[

Us

0

]

.

(82)

Here J is just the FIM, and thus the above matrix is invertible in the setting given by

Section 2. Substituting it into (78), and take the sum of the first s diagonal elements, one

will get

lim
t→0

tr(t2H−1) = tr





(

[

Us 0

]

J

[

Us

0

])−1


 . (83)

Comparing this with the proof of Theorem 1, one will readily accept that this bound is the

CCRB for maximal support case.

F An Example for Section 3.2

In this section we give an extreme example showing that utilizing the matrix perturba-

tion appropriately might help estimate the sparse vector x more accurately.

We only consider the case where the additive noise n vanishes and the sensing matrix

is a unit matrix. We also set the sparsity level to be one, i.e. s = 1, and denote the only

element of the support as k. In this case, it can be seen that as long as the total noise

is small, the support could be correctly recovered with high probability by selecting the

element with the maximum magnitude.

A commonly used method to estimate the non-zero coefficient is given by

x̂k̂ = yk̂, (84)
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Table 1: Performance of Least Squares Estimator and Eq. (87)

Estimator MSE

Least Squares 1× 10−4 (Theoretical)

Least Squares 1.0161 × 10−4 (Empirical)

Eq. (87) 4.9823 × 10−5 (Empirical)

where k̂ denotes the estimated support element. This estimation is actually a least squares

estimation. However, as the measurement can be formulated as

y = x+Ex,

it can be seen that the noise term Ex also contains some information about the sparse

vector x. The above equation can be equivalently represented as

y = x+ xke = [xke1, . . . , xk(1 + ek), . . . , xken]
T, (85)

where e = [e1, . . . , en]
T ∼ N (0, σ2

eUn). Intuitively, as long as n is sufficiently large, e21 +

. . .+ e2n can be arbitrarily close to nσ2
e . Therefore, it can be seen that

∑

j 6=k

y2j + (yk − xk)
2 ≃ nσ2

ex
2
k. (86)

One can construct an estimator from the above expression by interpreting it as an equality

and substituting k̂ for k and x̂k̂ for xk.

Set n = 10000 and σe = 0.01. In this case the estimator derived from (86) is given by

x̂k̂ =

∑n
j=1 y

2
j

2yk̂
. (87)

We compare the two estimators (84) and (87) by numerical simulations. The sparse vector

is set to be x = [1, 0, . . . , 0]T. We run the simulation 10000 times to obtain the average

performance of the two estimators. The results is given in Table 1, where the theoretical

MSE of the least squares estimator is simply given by σ2
e‖x‖2ℓ2 . It can be seen that the

empirical MSE of the least squares estimator is evidentally smaller than the MSE of (84).

Therefore it can be concluded that by appropriately using the information from the noise

term Ex, one can estimate the sparse vector with higher accuracy than the commonly used

least squares approach.
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