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Abstract—When recovering a sparse signal from noisy com-
pressive linear measurements, the distribution of the sigal’s non-
zero coefficients can have a profound effect on recovery mean
squared error (MSE). If this distribution was apriori known ,
then one could use computationally efficient approximate mesage
passing (AMP) techniques for nearly minimum MSE (MMSE)
recovery. In practice, though, the distribution is unknown, moti-
vating the use of robust algorithms like LASSO—which is nealy
minimax optimal—at the cost of significantly larger MSE for
non-least-favorable distributions. As an alternative, wepropose
an empirical-Bayesian technique that simultaneously lears the
signal distribution while MMSE-recovering the signal—acmrding
to the learned distribution—using AMP. In particular, we model
the non-zero distribution as a Gaussian mixture, and learn ts
parameters through expectation maximization, using AMP to
implement the expectation step. Numerical experiments on wide
range of signal classes confirm the state-of-the-art perfonance
of our approach, in both reconstruction error and runtime, in the
high-dimensional regime, for most (but not all) sensing opetors.

|. INTRODUCTION

We consider estimating & -sparse (or compressible) sig

nal x € RY from M < N linear measurementy =
Az +w € RM, where A is known andw is additive

white Gaussian noise (AWGN). For this problem, accural

(relative to the noise variance) signal recovery is known
be possible with polynomial-complexity algorithms when

is sufficiently sparse and wheA satisfies certain restricted

isometry properties [4], or wherd is large with i.i.d zero-
mean sub-Gaussian entri€$ [5] as discussed below.
LASSO [€] (or, equivalently, Basis Pursuit Denoising [1$),

constructed from i.i.d zero-mean sub-Gaussian entries, th
performance of LASSO can be sharply characterized in the
large system limit (i.e., ask, M, N — oo with fixed
undersampling ratioM//N and sparsity ratioK /M) using

the so-called phase transition curve (PTC) [5], [8]. When
the observations are noiseless, the PTC bisectsMhev-
versus# /M plane into the region where LASSO reconstructs
the signal perfectly (with high probability) and the region
where it does not. (See Figsl[3-5.) When the observations
are noisy, the same PTC bhisects the plane into the regions
where LASSO’s noise sensitivity (i.e., the ratio of estiibat
error power to measurement-noise power under the worst-cas
signal distribution) is either finite or infinit€ [9]. An impnt

fact about LASSO'’s noiseless PTC is that it is invariant t® th
distribution of the nonzero signal coefficients. In otherds

if the vectorzx is drawn i.i.d from the pdf

px (@) = Afx(z) + (1= N)é(x), )

where d(-) is the Dirac delta,fx(-) is the active-coefficient
pdf (with zero probability mass at = 0), and A\ £ K/N,

‘then the LASSO PTC is invariant tfy (-). While this implies

that LASSO is robust to “difficult” instances gfx (-), it also
implies that LASSO cannot benefit from the case that-) is
% “easy” distribution. For example, when the signal is know

E?priori to be nonnegative, polynomial-complexity alglonits

exist with PTCs that are better than LASSQ’s][10].

At the other end of the spectrum is minimum mean-squared
error (MMSE)-optimal signal recovery undkenownmarginal
pdfs of the form [(R) ancknown noise variance. The PTC
of MMSE recovery has been recently characterized [11] and

a well-known approach to the sparse-signal recovery pm’bleshown to be well above that of LASSO. In particular, &y

that solves the convex problem

@)

Tlasso = argngin lly — Aﬁ}”% + Nasso |21,

fx(+), the PTC on thé///N-versus# /M plane reduces to the
line K/M = 1 in both the noiseless and noisy cases. More-
over, efficient algorithms for approximate MMSE-recovery

with \jasso @ tuning parameter that trades between the sp@ave been proposed, such as the Bayesian version of Donoho,

sity and measurement-fidelity of the solution. Wheh is
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Maleki, and Montanari'approximate message passiffgViP)
algorithm from [12], which performs loopy belief-propaipet

on the underlying factor graph using central-limit-theore
approximations that become exact in the large-system limit
under i.i.d zero-mean sub-GaussidnIn fact, in this regime,
AMP obeys [13] a state-evolution whose fixed points, when
unigue, are optimal. To handle arbitrary noise distrilngiand

a wider class of matriced, Rangan proposed generalized

Copyright ©2012 IEEE. Personal use of this material is permitted. HowAMP (GAMP) [14] that forms the starting point of this work.

(See Tabléll.) For more details and background on GAMP, we
refer the reader td [14].

In practice, one ideally wants a recovery algorithm thatsdoe
not need to knowx (-) and the noise variance a priori, yet
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offers performance on par with MMSE recovery, which (byvhered(-) is the Dirac delta) is the sparsity rate, and, for the
definition) requires knowing these prior statistics. Todghis k* GM componentywy, 0, andg¢, are the weight, mean, and
goal, we propose a recovery scheme that ainlsamthe prior  variance, respectively. In the sequel, we usé [w1,...,w]"
signal distributiorpx (+), as well as the variance of the AWGN,and similar definitions fof and¢. By definition,zfz1 wy =
while simultaneously recovering the signal veciofrom the 1. The noisew = [wi,...,wy]" iS assumed to be i.i.d
noisy compressed measuremegtsto do so, we model the Gaussian, with mean zero and variangei.e.,

active componenfx (-) in (2) using a generié-term Gaussian

mixture (GM) and then learn the GM parameters and noise pw (w;¥) = N (w; 0,9), (4)

variance using the expectation-maximization (EM) aldonit and independent of. Although above and in the sequel we

ﬁ' Aj we wil slee, da” of the ?juznutrl]es g:&d;dlfor,taﬁssume real-valued quantities, all expressions in thesteqn

up ates are already computed by the . agc_)n_t 'Be converted to the circular-complex case by replagingith
making the overall process very computationally efﬁmen& and removing th%’s from (28), [43), and{88). We note
Moreover, GAMP provides approximately MMSE estimates Qhat, from the perspective of GM-GAMP, the prior parameters

x that suffice for signal recovery, as well as posterior atytlwq 2 [\, w,0,¢,4] and the number of mixture components,
L, are treated as fixed and known.

probabilities that suffice for support recovery.
Since, in our approach, the prior pdf parameters are treate(bAMP models the relationship between thé" observed
puty,,, and the corresponding noiseless outpyt= a! x,

as deterministic unknowns, our proposed EM-GM-AMP algcb—ut

rithm can be classified as an “empirical-Bayesian® appro‘f"g\/rherealI denotes thent" row of A, using the conditional

[16]. Compared with pre\{lously p_roposed empirical-Bagasi pAf py (2 (ym|zm; ). It then approximates the true marginal

approaches to compressive sensing (€.al, [L7]-[19]), loass osteriorp(zm|y; q) by

a more flexible signal model, and thus is able to better matcr?a e

wide range of signal pdfsx (-), as we demonstrate through a (ool o . @) 2 Py |2 Ym|2m; @) N (2m; D, 1h,)

detailed numerical study. In addition, the complexity Bubf Pzyy \Zm|Y; Pm, [ 4 T2y 12 (0m 2 Q) N (Z: s 180

our algorithm is superior to that i [L7]=[19], implying lew

complexity in the high dimensional regime, as we confirmsing quantities,,, and 2, that change with iteration (see

numerically. Supplemental experiments demonstrate tbat dable[l), although here we suppress theotation for brevity.

excellent results hold for a wide range of sensing operadgrs Under the AWGN assumptiﬁn@l) we havepy|z(y|z; q) =

with some exceptions. Although this paper does not contaWi(y; z, ), and thus the pdf{5) has momerits][14]

any convergence guarantees or a rigorous analysis/jasiific »

of the proposed EM-GM-AMP, Kamilov et al. showed (after ~ Ezy {zm|¥; Pm, i, @} = P + 2725 (Ym — Bm) ~ (6)

the submission of this work) i [20] that a generalization of o b ap

EM-GM-AMP yields asymptotically (i.e., in the large system varzy {zmlY; P fin, 4} = b+ )

limit) consistent parameter estimates whdnis i.i.d zero- GAMP th imat the t inal teri

mean Gaussian, when the parameterized signal and noi €n approximates {he true marginal posterior

distributions match the true signal and noise distributjon” Znly; q) by

and when those distributions satisfy certain identifigoili - a Px(Tn; @) N (205 s i)

conditions. We refer interested reader<td [20] for moraitiet ~ PX|Y (@nl¥37n: 117, 4) = T px (25, ) N (5 7y 1) 8)
Notation For matrices, we use boldface capital letters like ) ‘ _ n

A, and we usetr(A) and ||Al|r to denote the trace andWhere again, andy;, vary with the GAMP iteratiort.

Frobenius norm, respectively. Moreover, we (&, (-)*, and  Plugging the sparse GM prio](3) intbl (8) and simplifying,

()" to denote transpose, conjugate, and conjugate transp@&e can obtafhthe GM-GAMP approximated posterior

respectively. For vectors, we use boldface small lettéesdi, oy

and we usé|z|, = (3, |.[")"/? to denote thef,, norm, pX‘Y(xnly’T"’M”’q)L

with x,, representing thex!” element ofx. For a Gaussian N (xp; P, i)

random vectoer with meanm and covariance matri), we ((1_/\)6(%)4')‘2“‘3]\/(%; Or, W)) ‘n

denote the pdf byV'(x;m, Q), and for its circular complex =t .

Gaussian counterpart, we u€dV(xz; m, Q). Finally, we use _ /, = .

E{}, 0(-), R, andC to denote th(e expectation operation, the (1= mn)d(n) + 7 Zﬂ"’ZN(In’%’Z’ Vnt) (10)

Dirac delta, the real field, and the complex field, respeltive

9)

=1

!Because GAMP can handle an arbitrary, » (-|-), the extension of EM-
GM-AMP to additive non-Gaussian noise, and even non-agditieasurement
channels (such as with quantized outplts| [21] or logistgrassion [[14]),

- - A is straightforward. Moreover, the parameters of the pgf 2 (-|-) could be

We first introduce Gaussian-mixture (GM) GAMP_’ a keY_Zarned using a method similar to that which we propose farnieg the

component of our overall approach, where the coefficients AWGN variances), as will be evident from the derivation in SectibriIll-A.

Il. GAUSSIAN-MIXTURE GAMP

T = [501, . ,xN]T are assumed to be i.i.d with marginal pdfFinaIIy, one could even modely| 7 (+|-) as a Gaussian mixture and learn the
corresponding parameters.
L 2Both [10) and[{IR) can be derived frof (9) via the Gaussidmpdtipli-

px (@A w,0,¢) = (1—N)6(x) + XY weN (w; 0, ¢¢), (3)  cation ruletN (ws a, AN (w;b,B) = N (w3 {7175 17act78N (050 —
— b, A+ B).



with normalization factor

inpUtS: pX(')pr\Z("')v{Amn}miaX7Tgamp
definitions: »
(o = / px (z;q) N (570, 1) (D) | piy Gonlys s i, ) = ”JYtjﬁ;‘yz"l‘:;”&jppm:m)) (D1)
L Px |y (@n|Y; P, iy, @) 2 pX(z"(f)J)VJ\(;E: ) (02)
= (L= NN (03 70 1)+ XD weN (057 — g, il +¢) (12)  fnitialize: et h
- 1) = F i e o) @
Vn:pd(l) = — &) 2px(z 12
and (7,, i, g)-dependent quantities Vr:: o =0 * (13)
R fort =1 : Tmax,
Bre = AN (5 00, be + piy,) (13) Ve plh (8) = op g Mmn 24 (8) (R1)
- . Brt Vm : P () = SON_ ) Amndin (t) — um]gt) dm(t—1) (R2)
ﬂn,f - =L 5, (14) Vm sz, (t) = VarZ\Y{Zm‘y Pm(t), pm (1), a} (R3)
k=1 Bk ¥m s 2n () = By {zm Y3 b (1), 1 (1), 4} (R4)
N 1 Vm : i, (1) = 1—u;(t)/uﬁl(t))/u%(t) (R5)
Tn = M —1 (15) vYm : §m(t) i Zm(t) P (t )2) /M’,n(t)71 (R6),
1 + (17}\)./\/(0;72”.#7‘) vn 'u"fl(t) - ( m=1 an| /J‘m( )) (R7)
. o Vn P (t) = En(t) 4+ pn (1) X —1 Amn Sm (1) (R8)
2 T’n./:un + 9£/¢l (16) Vn Zfl(:-l-l) = garX‘y{!;:n\y,rn(t) 1;tn( )sq} (R9)
Tt T T 1 1y ¥ s 2n(t+1) = Expy {ealys (1), 45 (), a} (R10
A 1 (17) |fz =1 ‘xn(t“l‘l) — In(t)P < Tgamp Zn 1 |$n(t)‘2 break (Rll
Unt = T 7 en
L +1/¢e RIS {8, 0 P OO (DR

The posterior mean and variance oty are given in steps TABLE |

(R9)-(R10) of Tabl¢ll, and(10) makes it clear thgtis GM-  THe GAMP ALGORITHM FROM [[L4] WITH A STOPPING CONDITION IN
GAMP’s approximation of the posterior support probability (R10)THAT USES THE NORMALIZED TOLERANCE PARAMETERrGAup
Pr{z,#0|y:q}.

In principle, one could specify GAMP for an arbitrary signaiterates over two steps: E) choosifgo maximize the lower
prior px (). However, if the integrals in (R9)—(R10) are nobound for fixedg = ¢, and M) choosingg to maximize
computable in closed form (e.g., wher (+) is Student's-t), the lower bound for fixedp = p'. For the E step, since
then they would need to be computed numerically, therellly(y; ¢*) = Inp(y: ¢') — D(p || px v (-ly; ¢*)), the maximiz-
drastically increasing the computational complexity of @R  ing pdf would clearly be)*(z) = px |y (z|y; ¢*), i.e., the true
In contrast, for GM signal models, we see above that all stepesterior under prior parameteys Then, for the M step, since

can be computed in closed form. Thus, a practical approa,cp Y;q) z){1np(ac y;q)} + H(pY), the maximizingg
to the use of GAMP with an intractable signal priet (-) is would clearly beqZ+ = argmax, E{lnp(z,y;q9) |y;q'}.
to approximatepx (-) using anL-term GM, after which all ~ In our case, because the true posterior is very difficult

GAMP steps can be easily implemented. The same approaetralculate, we instead construct our lower-boulidy; q)
could also be used to ease the implementation of intractabling the GAMP approximated posteriors, i.e., wefét) =
output priorspy | z(-|-). [, px|v(za|y: q') for px|y defined in[(8), resulting in

i+1

I1l. EM L EARNING OF THE PRIOR PARAMETERS q 7 = arg;naXE{lnp(m’y;Q) ly:a'}, (21)

We now propose an expectation- maX|m|zat|0n (EM) algo-
where ‘E” indicates the use of the GAMP’s posterior ap-
rithm [I5] to learn the prior parametets = [\, w, 8, ¢,v)].
The EM algorithm is an iterative technique that increasess%rcf)iimazgor;)'e'\r/]!g:ﬁqovvire’ Sulgfj:tttege Jg;ntcgﬂ:g'ﬁzg?g@fﬁne
lower bound on the likelihoog(y: q) at each iteration, thus o ue "y o1 i ke others fixed), which is the well known
guaranteeing that the likelihood converges to a local marim t Ig iant on EM front@3] In the seauel we use
or at least a saddle poirit [22]. In our case, the EM algonthﬁpfr?men al’ varian ' quel, we u

to denote the vector with the element\ removed
manifests as follows. Writing, for arbitrary pgfx), (an d similar for the other pZtrameters)

nplyia) = [ @) np(uia) (18)
z A. EM Update of the Gaussian Noise Variange

R x, x
= /P(fﬂ)ln (p( >y 9 2 ) )) (19)  we first derive the EM update for the noise variange

p(x)  p(zlyq : : e : ;
N R given a previous parameter estimage For this, we write
=FE; 1 ; H D |y; 20
:D(:c){ np(x,y;q)} + H(p)+D(P| pX|Y( ly;q)) (20) p(z,y;q) = Cp(y|z;) = CH%:I pY|Z(ym|a;rnm§1/)) for a

2 Ls(y: q) >0 i-invariant constan, so that

where E;,,){-} denotes expectation over ~ p(x), H(p) i1
denotes the entropy of pdp, and D(p|p) denotes the v argmaXZE{lan‘Z Y| a3 ) v a¢} (22

>0
Kullback-Leibler (KL) divergence betweehandp. The non-

negativity of the KL divergence implies thaf;(y;q) IS  _ j1omax /p el q) Inp slem) (23)
a lower bound onlnp(y;q), and thus the EM algorithm %>0 Z 21y (zm[y:4') I py 2 (| )



since z,, = a] x. The maximizing value ofy in @3) is ball B. £ [—¢,¢| and its complemenB. = R \ B., and note
necessarily a value af that zeroes the derivative of the sumthat, in the limite — 0, the following is equivalent td(30):

i.e., that satisfiés N
Z/ pxy(nlyia) = Z/ Px1y (@aly: q')
Z / Py enls @) WDy 2l ) = 0. @) 77t LenE o0 €.
Zm 520 T 520 1—m
Becausey |z (Ym|zm; ) = N (ym; 2m, 1), we can obtain "33

where the values taken by the integrals are evident ffom (10)

d L (lym =zl 1 inally, the EM update fon is the uni lue satisfyi
— I py 1z Wm|zms ¥) = = (7 ——), (25) Finally, the update for\ is the unique value satisfying
di | 2 Y2 (G (33) ase — 0, which is readily shown to be
which, when plugged intd (24), yields the unique solution | XN
Hl— . 34
i 1 i 2 A N Z_:Wn (34)
v =17 Z/ P2y (2m|Y; @°) [Ym — 2m| (26)
me1"7m Conveniently, the posterior support probabilities, }/_, are
1 M easily calculated from the GM-GAMP outputs via{15).
=1 Z (Iym — Zml? + ufn}), (27) Similar to [29), the EM update fa can be written as
m=1 N
where the use of,,, andy?, follows from (R3)-(R4) in Tabléll. gt = arg max Z E{lnpx (2,0, ate)|y;q'}.  (35)
n=1
B. EM Updates of the Signal Parameters: BG Case The maximizing value of) in (35) is again a necessarily a

Suppose that the signal distributipr (-) is modeled using value of§ that zeroes the derivative, i.e., that satisfies

an L = 1-term GM, i.e., a Bernoulli-Gaussian (BG) pdf. In o d ;
this case, the marginal signal prior [@ (3) reduces to Z/ px|y (Tn|y; q )@ Inpx (zn;0,q5) =0.  (36)

px (2 A w,0,8) = (1 = N)d(z) + AN (230, 9). (28)  For tr;e BGpx (zn; ), 0, ¢) given in [28),

Note that, in the BG case, the mixture weightis, by (@ — O) XN (20, 0")

definition, unity and does not need to be learned. 10 mpx (n; X', 0, ¢") = & px(@nif,q,) (37)
We now derive the EM update for given previous param- .o
etersq’ £ [\, 07, ¢',+)*]. Because we can writg(z, y; q) = _) e Tn 70 (38)
CTIY., px(2n; M, 0, ¢) for a M-invariant constant, 0 zn = 0.
N Splitting the domain of integration ifi.(B6) intB, and B, as

A= argmaXZE{ Inpx (zn; A q(,)|¥:q'}. (29) Dbefore, and then plugging i (B8), we find that the following
ACOD) is equivalent to[(36) in the limit of — 0:

The maximizing value of\ in (29) is necessarily a value of N
that zeroes the derivative of the sum, i.e., that satffies Z/ (@ — ) x|y (nly; @) = 0. (39)
n=1 anB_

- d _ _ N |
Z/ ple(:cn|y;qZ)a Inpx (xn; A, qt,) = 0. (30) The unique value of satisfying [39) as — 0 is then
’ N . i
gi+l — 2 p=1 limeso fmneg_e Tn px |y (Tnl|y; q')

For the BGpx (z,,; \, 0, ¢) in it is readily seen that . : (40)
Px( ¢) (Ifa) ) zl ) SN limeo o, eB-Px|y (20ly; @)
d In7 a¢ Ln N
— Inpx(za; )\ qly) = (32) 1
dX W px(Tni A ql) = Sy D (42)
1 r # 0 n=1
= {A__l xn - (32)  where{v,.1}_, defined in[T6) are easily computed from the
L=A  om GM-GAMP outputs. The equality if(#1) can be verified by

Plugging [32) and[{9) into[(30), it becomes evident thatlugging the GAMP posterior expressidn{10) infol(40).
the neighborhood around the poin{ = 0 should be treated ~ Similar to [29), the EM update fap can be written as

differently than the remainder @&. Thus, we define the closed N
¢ = argmax Y E Inpx(z,;0,q',) |y q (42)
3The continuity of both the integrand and its partial deiatwith respect ¢>0 nzl { w @ \¢ ’ }
to ¢ allow the use of Leibniz’s integral rule to exchange difféiation and . . . . .
integration. The maximizing value of in (42) is again necessarily a value

4To justify the exchange of differentiation and integratioa Leibniz's inte-  of ¢ that zeroes the derivative, i.e., that satisfies
gral rule here, one could employ the Dirac approximai¢n) = N (z;0, €)
for fixed arbitrarily smalle > 0, after which the integrand and its derivative

d )
w.r.t A become continuous. The same comment applies in to all egelsanf Z / x|y (Tnlys q ) Inpx (x,; @, q1\¢) =0. (43)
differentiation and integration in the sequel. do



For thepx (x,; A\, 6, ¢) given in [28), it is readily seen that then¢y, and then the entire vectar, while holding all other
parameters fixed. The EM updates are thus

d o
%hle(xn;Alaela(b) N
i+1 " . i .
(o0t 1) st 0 =g it ) @9
2 (¢)2 ¢ pX(%zh%Q@) ‘ N . _ .
| (Jeab'? 1 ¢y =argmax Y B{Inpx(zn;ér ql,,)|v;q'}  (50)
_J2 ( @z $) Tn # 0 ) (44) g $1>0 nX::l \O
0 z, =0 _ N _ _
N - . o . o W't = argmax ZE{ Inpx (zn;w, qt,,) | y;q'}. (51)
Splitting the domain of integration ih_(#3) int6, and B. as w>0: 3 wp=1,
pefore_, and then plugging ilﬂ!44), we find that the following Following (38), the maximizing value df, in (@3) is again
is equivalent to[(43) in the limit of — 0: necessarily a value df; that zeros the derivative, i.e.,
N N d
7|2 AN i . i _
ngl /zneBé (Jan —0°1* — ¢) px|y (znly; @) = 0. (45) 7;/% x|y (Tnly; q )di I px (zn;0k,a%,) =0, (52)
The unigue value of satisfying [45) as — 0 is then Plugging in the derivative
N i|2 . d . i N (Tn— 0Ok
i — Y on=1 h;[neﬁo Jo, e ltn — 0] px|Y(~’Cnl|y,q ) (4e) Inpx (zn; Ok, q\g, ) = ( K ) | (53)
D=1 limeso [, e Px|y (2nly: @) y NN (an; O, 61)

Finally, we expandz, — 0°* = |zn|? — 2Re(27,0") + [0°]? ) (wkN(xmek’.ék) + L el i 30
which gives and the version op x|y (z,|y; q*) from (@), integrating[(52)
separately oveB, andB3. as in [33), and taking — 0, we find
that the3. portion vanishes, giving the necessary condition

p(iZ?n|117n 7£ Ovy;qi))‘iw]ic (Inaekv(b?c)('rn - ok)
where {v,1}_, from (I7) are easily computed from the (/e (Wi (@n: Ok, &) + g sy WiN (203 07, 7))

GAMP outputs. The equality if(%#7) can be readily verified (54)
by plugging (D) into[[d6). Since this integral cannot be evaluated in closed form, we

apply the approximationV (z,; 0k, ¢i) ~ N(zn;0i, %)
in both the numerator and denominator, and subse-
C. EM Updates of the Signal Parameters: GM Case quently exploit the fact thatp(z,|r, # 0,y;q') =

We now generalize the EM updates derived in Sed@lll-é[(xn?rm%_) 2o WiN (@n; ‘.%’ ¢p) from @) to cancgl_terms,
to the GM prior given in[(B) forL > 1. As we shall see, it and so obtain the (approximated) necessary condition
is not possible to write the exact EM updates in closed-form N i i PSS i i
when L > 1, and so some approximations will be made. / NN (@ni P, 1 )N (203 05, 61)
We begin by deriving the EM update fok given the  n=1"%» n
previous parameterg’ £ [\, w’, ', ¢',¢7]. The first two
steps are identical to the steps](29) dnd (30) presentedhdor
BG case, and for brevity we do not repeat them here. In t

third step, use of the GM prio[{(3) yields N B
. . . " En: Wnﬂn_k'}/n,k
Sl WiN (i 04, 6)) — 8(wn) b = S

d , =
_1 n;Av \ - ; n= TnPn,
ay A ) Px (@i, B Tl

N
. 1 ;
o = ey (16—l ) @)
n=1
=0.

(xn - Hk) =0.

(55)
Y\le then simplify [(5b) using the Gaussian-pdf multiplicatio
ﬁule, and sef)}jl equal to the value off,, that satisfies[{35),
Which can be found to be

(56)

0 Note from [I0) thatr, 3, , can be interpreted as the proba-
= { ' Tn 7 , (48) bility that x,, originated from thek! mixture component.
= Zn=0 For sparse signals, we find that learning the GM means

which coincides with the BG expressidn [32). The remainin i} using the above EM procedl_Jre yie_lds excgllent recov=
steps also coincide with those in the BG case, and so the fin MSE. H(_)wever, for *heavy-tailed . signals (i.e., whose
EM update for\, in the case of a Gll.is given by [3h). pdfs have tails that are not exponentially bounded, such as

. Student's-t), our experience indicates that the EM-ledrne
We next derive the EM updates for the GM parameie;8, values of {6} tend to gravitate towards the outliers in

and ¢. For eachk = 1,...,L, we incrementally updaté, {2, }Y_,, resulting in an overfitting ofx (-) and thus poor
s —_— _ _ , reconstruction MSE. For such heavy-tailed signals, we find
The arguments in this section reveal that, under signat6 the form . . . -

px(x) = (1 — \)3(z) + Mx (), where fx(-) can be arbitrary, the EM that better reconstruction performance is obtained by dixin

update for) is that given in[[34). the means at zero (i.eﬂ}C =0 Vk, ). Thus, in the remainder

>



of the paper, we consider two modes of operation: a “spardgke in (584) and[[5D), the above integral is difficult to evatle,
mode where) is learned via the above EM procedure, and and so we approximate ~ w?, which reduces the previous

“heavy-tailed” mode that fixe8 = 0. equation to
Following (52), the maximizing value ofy; in (G0) is NN U
necessarily a value af;, that zeroes the derivative, i.e., &= Z/ (n; Oy (bz) (Zn; r"’M"). (65)

Z/ Pxy (*nlyiq ) 1npx(x”’¢’f’q\¢k) —=0. (57) Multiplying both sides by for k = 1,..., L, summing over
e k, employing the fact = ", wi, and S|mpI|fy|ng we obtain

T . . ) the equivalent condition
As for the derivative in the previous expression, we find q

N i L i Lpi i AT
d | RTINS A o £= Z/ N it N (@i b SN @ni P 1) g
don npx (Tn; Ok, Q\ g, ) = 3 (Ti - a) (58) = Jan Cn
T )0(@m) + NN (@03 O, 00) + S N @i 0 01) . = Z:l o (67)

Integrating [5¥) separately ovéd. and B., as in [38), and Plugging [67) into[(65) and multiplying both sides by, the
takinge — 0, we find that theBE portion VaniShes, gIVIng derivative-zeroing value Qf;k is seen to be

al / P(Tn)2n 20, Y; @ONWN (2005, d1) /Cn (|mn — 052 _1) ijzlfw NwpN (2505, GON (T Py 1) /i
w o

kN(m7l;ai’¢k)+Z[¢k w;]\/'(mn,é’b%) Wk = 27]:] 171' ’ (68)
(59)

Similar to [53), this integral is difficult to evaluate, andwhere, if we usev; ~ w} on the right of [68), then we obtain
so we again apply the approximatioN (z,;0%, ¢r) =

N
N (zn; 05, ¢) in the numerator and denominator, after which witl — Y on=1 Bk (69)
several terms cancel, yielding the necessary condition k ZN L Tn ‘
n=

N (@ oy WEINEN (20: 0, 8L) (|2 — 6L Although, for the case of GM priors, approximations were
Z/ a ( o 1) =0. used in the derivation of the EM updatés](56).] (61), andl (69),
(60) it is interesting to note that, in the case bf= 1 mixture
components, these approximate EM-GM updates coincide
To find the value of¢, satisfying [60), we expantk,, — with the exact EM-BG updates derived in Sectidn 1IIB. In
0i1* = |z,|? —2Re(z}0%) +0: |* and apply the Gaussian-pdfparticular, the approximate-EM update of the GM parameter
mult|pl|cat|on rule, which gives 01 in (BB) coincides with the exact-EM update of the BG
N _ _ parameterd in (41), the approximate-EM update of the GM
> et B g (0 = Yk +vn k) 61) parameterp; in (61) coincides with the exact-EM update of
Zivﬂ TnB i ' the BG parametey in (@7), and the approximate-EM update
B ’ of the GM parametew; in (69) reduces to the fixed value
Finally, the value of the positivex maximizing [51) under Thus, one can safely use the GM updates above in the BG
the pmf constramE,C L wr = 1 can be found by solving the setting without any loss of optimality.
unconstrained optimization problemax,, ¢ J(w, §), whereg
is a Lagrange multiplier and D. EM Initialization

Since the EM algorithm may converge to a local maximum

L
ZE{lan T W, q\w |y q } g<zw > or _at_lea_st a saddle point of the Iikelihpod funct_ion, proper
initialization of the unknown parametetgis essential. Here,

n=1"%n

n=1"%n

i+1__
b=

L we propose initialization strategies for both the “sparaptl

= Z/ px|y (Taly; q Ynpx (wn;w ,q\w 5(2“’4 ) “heavy-tailed” modes of operation, for a given value bf
Fn (=1 Regarding the value af, we prescribe a method to learn it in

(62)  sectionTI=R. However, the fixed choicds= 3 for “sparse”
mode andL = 4 for “heavy tailed” mode usually perform

well, as shown in Section IV.
N For the “sparse” mode, we set the initial sparsity rate
Z px(Tn; q' N(ffn?f“na%)iln (Eniw,qi) = equal to the theoretical noiseless LASSO PTC, i¥., =
Cn d Px(Tn;w (I\w) 5

We start by settingzd—J (w, ) = 0, which yields

w PRTT M se(M), where [10]
©3) 2X[(1+ ) B(—c) — c(c)
. _ o My _
i [ Pl O ) SN i) _ pel) = s 7 o vy 0O
n=1"%n Cn pX(x";w’qiw) descnbes the maximum valueﬁsupported by LASSO for

(64) a g|ven I, and whereb(-) and¢(-) denote the cdf and pdf of



the NV(0, 1) distribution, respectively. Using the energjag |3 005

and||A||% and an assumed value 8NR’, we initialize the Av»ﬂ«_—_"_iir‘,:ma%:;pdf Hos
noise and signal variances, respectively, as B opfl S foa
‘io.ﬁzf 704 >
o__ I3 o lyl3— My <ol
V= P = e (71)
(SNR” + 1) M I|A[[EA o :

where, in the absence of (user provided) knowledge about
the true SNR £ || Az|3/|wl|3, we suggesSNR® = 100, ST : : : : .
because in our experience this value works well over a wide —_ os{= cimasapm
range of trueSNR. Then, we uniformly space the initial GM %M, Lot
meansd” over [t 211 and subsequently fit the mixture < | e
weightsw® and variances)’ to the uniform pdf supported ‘ ‘
on [—0.5,0.5] (which can be done offline using the standard = e 0 ®

approach to EM-fittinOg of GM parametgrs, e'@[24’ p. 435]&&9. 1. True and EM-GM-AMP-learned versions of the signatritbution
Finally, we multiply8° by 1/12¢° and ¢’ by 124° to ensure px(z) = Afx(x) + (1 — A)d(z). The top subplot shows “sparse” mode
that the resulting signal variance equ@& EM-GM-AMP run using GM-orderL. = 3 on a sparse signal whose non-

. i e 10 0 zero components were generated according to a triangubeumj whereas
For the heavy'ta”ed mode, we initializa” and ¢" as the bottom subplot shows “heavy-tailed” EM-GM-AMP run ugih = 4 on a

above and set, fok =1,..., L, Student’s-t signal with rate parametge= 1.67 (defined in[8R)). The density
9 0 of the continuous componentfx (z) is marked on the left axis, while the
1 k (||y||2 - My°) 0 mass of the discrete compongfit— \)d(x) is marked on the right axis.
— 27 and¢? =0.  (72)

o_ + 40 _
CEST S UL AN

E. EM-GM-AMP Summary and Demonstration

The fixedZ EM-GM-AMPH algorithm developed in the :2:{:2::;2 %Oaid(;lo as described in Sectidn IHD.
previous sections is summarized in Tdble Il. For EM-BG-AMP ¢, — fcto_lm;x do
(as previously described inl[2]), one would simply run EMr Generatez’, 2%, (u*)!, =, {8}, ~},vi}E_, using GM-GAMP
GM-AMP with L = 1. with g7 (see Tabldll).

, o it |l&' — &3 < Tem||2°" 1|2 then

To demonstrate EM-GM-AMP’s ability to learn the un- break.
derlying signal distribution, Figl]1l shows examples of the endif _
GM-modeled signal distributions learned by EM-GM-AMH Sonllpgt?/\: ffrg 7'~ ! as described if(34).
in both “sparse” and “heavy-tailed” modes. To create the " S_parsg e enabldten
figure, we first constructed the true signal vectore RV Computed; from 7i=1, 4i~1, {Bi~ '} | as described in
using N = 2000 independent draws of the true distribution

px () shown in each of the subplots. Then, we constructed

else if Heavy-tailed mode enablatien

measurementy = Az + w by drawing A € RM*¥N en(jsﬁtek - _ _ _ _

with i.id A(0,M~!) elements andw < RM with ii.d gggﬁgﬁf{g é%’lm O L m oy v LB L as
N(0,02?) elements, with\/ = 1000 ando? chosen to achieve Computew' fmrg‘ﬂi,l and {81 ~'}£ | as described iT89).
SNR = 25 dB. Finally, we ran EM-GM-AMP according to end for _ B

Table[l, and plotted the GM approximatign (z; q*) from Computey)’ from 2 and (u*)" as in [2).

@) using the learned pdf parameters= [\, w’, 8", ', ¥7]. end for

Figure[d confirms that EM-GM-AMP is successful in learning TABLE I

a reasonable approximation of the unknown true pgf-) THE EM-GM-AMP ALGORITHM (FIXED-L CASE)

from the noisy compressed observatiansn both sparse and

heavy-tailed modes.

F. Selection of GM Model OrdeL where |g;| denotes the numbérof real-valued parameters

We now propose a method to learn the number of GRffected byL, andU is the sample size (see below).
components[.,, based on standard maximum likelihood (ML)-

based model-order-selection methodoldgy [25], i.e., Becauseln p(y; g, ) is difficult to evaluate, we work with

argmax Inp(y;q.) —n(L), (73)
Lezt

wheregq; is the ML estimate of; under the hypothesis and
n(L) is a penalty term. Foy(L), there are several possibilities,

but we focus on the Bayesian information criterion (B|[25 7In our case, the parameters affectedlbgre the GM means, variances, and
A weights, so that, for real-valued signals, we (gg| = 3L — 1 in “sparse”
WBIC(L) - |qL| InU, (74) mode and|q;| = 2L — 1 in heavy-tailed mode, and for complex-valued
signals, we useqg;| = 4L — 1 in “sparse” mode andg;| = 2L — 1 in
SMatlab code al http://www.ece.osu.edsthniter/EMturboGAMP. heavy-tailed mode.


http://www.ece.osu.edu/~schniter/EMturboGAMP

the lower bound (where for now/, ¢, , andq, ; are arbitrary) L™ = LJ or a predetermined maximum number of allowed
model-order iterationd,,,., has been reached.

Inp(y;q;) = 1n/ p(w|y;qm)w (75) As a demonstration of the proposed model-order selection
@ ) (@]y:q.5) procedure, we estimated a realizationafwith N = 1000
> [ p(xly;d)In p(z, y;AQL) (76) poefficients drawn i.i.ql from the triangular mixture pdf E.h'D
p(zly;qL:) in Fig.[ (top, red) withA = 0.1, from the M/ = 500 noisy
measurementg = A , where A was i.i.d N(0, M 1),
= [ plaly:au) mp(e.y:a,) + const (77) o (0, M)

andw was AWGN such thaBNR = 20 dB. For illustrative
purposes, we set the initial model orderZz#t = 1. Ilteration
/ (Tnly; qri) Inpx(x,;qr) +const  (78) j =1 yielded the metricC.; (y; G, ) — neic(L) shown at the
top of Fig.[2, which was maximized by, = 3 £ L'. The
/ metric resulting from iteratiory = 2 is shown in the middle

uMz HMZ\H\

P(Tn|Y; qri) In fx (xn;qp) + const of Fig.[2, which was maximized by, = 2 £ L2. At iteration
j = 3, we obtained the metric at the bottom of Hifj. 2, which is
20 (yid,) (79) also maximized by. = 2 £ L?. SinceL? = L?, the algorithm

’ terminates with final model order estimafe= 2. Figure[2
where [76) applies Jensen’s inequality, “const” denotesa#so indicates the per-iteration MSE, which is best at thal fin

constant term w.r.L,, and [78) holds becaus$ep(x,y;q;) = model order.
Inp(x;q;) + lnp(y|le;y) = 21]:[:1 Inpx(zn;q;) + const. SE 207 di
Equation [7B) can then be obtained integrating (78) seglgrat 240 : : — : :
over B, and B, and takinge — 0, as done several times in _ eor ]
Sectior II[-B. Using this lower bound in place bfp(y; g, ) in L zzz\/\/\
(Z3), we obtain the BIC-inspired model order estimate (wher a0 ‘ ‘ ‘ ‘ ‘ ‘
~ . e . 1 2 3 4 5 6 7 8
now q;, is specifically the ML estimate of ;) NMSE — 3029 dB
-150 T T T T T T
L 2 argmax L1 (y; ;) — meic(L). (80) o 200 - 1
Lez+ !
= -250F <
We in fact propose to per.forrrﬂBO) itergtively, with = 300 L L - L L L .
0,1,2,... denoting the iteration index. Notice thaf[80) can s NMSE = —30.35 dB
be interpreted as a “penalized” EM update fér if we .
neglect the penalty termy(L), then [Z5){(7P) becomes a I -a00
standard derivation for the EM-update bf (recall, e.g., the o ‘ ‘ ‘ ‘ ‘ ‘
EM derivation in Sectiofi_Ill). The penalty term is essential ! z : Yt ¢ ! °
thoth because the unpenahzed |Og -likelihood lower HOUBQ 2. An example of the model-order metric [n180) over savierations
Lri(y;q) is non- decreasu%n L. j = 1,2,3 using initial model-orderL’|;—o = 1, together with theNMSE

We now discuss several practical aspects of our procedLR@.he resulting estimates.
First, we are forced to approximate the integral [in] (79). To
start, we use GM-GAMP’s approximation of the posterior
p(znly; qr;) from (@), and the EM approximations of the ML-
estimatesy, ; and g, outlined in SectiofIII=C. In this case, In this section we report the results of a detailed numerical
the integral in [[7P) takes the form study that investigate the performance of EM-GM-AMP under

both noiseless and noisy settings. For all experiments,ete s
_ L the GM-GAMP tolerance togamp = 1075 and the maximum

/”n Z BN (@n; Ynts Vn 1) mekN(xn; Or: ox) (81)  GAMP-iterations tal . = 20 (recall Tabldll), and we set the

=1 k=1 EM tolerance torem = 10~° and the maximum EM-iterations
which is still difficult due to the log term. Hence, we evakatto I, = 20 (recall Tablel). For fixedt EM-GM-AMP, we
(87) using the point-mass approximatidf(z,,; v, vn,) & SetL = 3 in “sparse” andL = 4 in “heavy-tailed” modes.
d(xn —7n,1). Second, for the BIC penalty (I74), we use the
sample sizelU = ij:lwn, which is the effective number A. Noiseless Phase Transitions
of terms in the sum in{79). Third, when maximizidgover

IV. NUMERICAL RESULTS

PR 5 X ; We first describe the results of experiments that computed
2" in (80), we start withZ, = 1 and increment. in steps of isejess empirical phase transition curves (PTCs) under

one until the penalized metric decreases. Fourth, for tii@lin a0 sparse-signal distributions. To evaluate each érapir

model orderZ”, we recommend using” = 3 in "sparse” pTc we fixed NV — 1000 and constructed &0 x 30 grid
mode andZ” = 4 in *heavy-tailed” mode, i.e., the fixed- \nere (17, K') were chosen to yield a uniform sampling
defaults from Section II-D. Finally[(80) is iterated urgither of oversampling ratiosd € [0.05,0.95] and sparsity ratios
= € [0.05,0.95]. At each grid point, we generategl = 100

8Note thatZ; ; (y; @) can be written as a constant plus a scaled vaIu:iMd d li - ab f
of the negative KL divergence betwegit | #0,y; g, ;) and the GMM  [NAEPEN ent realizations of id-sparse signat from a spec-

Ix(x;qr), where the KL divergence is clearly non-increasingZin ified distribution and an\/ x N measurement matrid with



i.i.d NV(0,M~1) entries. From the noiseless measurements
y = Ax, we recovered the signal using several algorithms.

0.91

A recoverya from realizationr € {1,..., R} was defined o8
a success if theN\MSE £ ||z — #||3/||z||3 < 1079, and the 07
average success rate was definedsas L > | S, where o6l

S, = 1 for a success and, = 0 otherwise. The empirical
PTC was then plotted, using Matlabiont our command,

as theS = 0.5 contour over the sparsity-undersampling grid. 0.4F v os]

Figures[BEb show the empirical PTCs for five recovery 03 -— - genie GM-AMP
algorithms: the proposed EM-GM-AMP algorithm (in “sparse” e
mode) for bothL fixed and L learned through model-order 02 DMM-AMP
selection (MOS), the proposed EM-BG-AMP algorithm, a 01t — theoretical LASSO ||
genie-tunel GM-AMP that uses the true parameteys= 01 02 03 04 05 06 07 08 09
\,w,0,¢,7], and the Donoho/Maleki/Montanari (DMM) M/N

LASSO-style AMP from[[10]. For comparison, Figs[3-5 als®ig- 3. Empirical PTCs and LASSO theoretical PTC for noiseleecovery
display the theoretical LASSO PTC_{70). The signals wefd Bernoull-Gaussian signals.
generated as Bernoulli-Gaussian (BG) in Fiy. 3 (using mean ‘
0 = 0 and variancep = 1 for the Gaussian component), as 09t
Bernoulli in Fig.[4 (i.e., all non-zero coefficients set eljtea

1), and as Bernoulli-Rademacher (BR) in Hig. 5.

For all three signal types, Fids.[3-5 show that the empirical
PTC of EM-GM-AMP significantly improves on the empirical 06
PTC of DMM-AMP as well as the theoretical PTC of LASSO.
(The latter two are known to converge in the large system
limit [LQ].) For BG signals, Figl13 shows that EM-GM-AMP- o4r
MOS, EM-GM-AMP, and EM-BG-AMP all yield PTCs that 03f
are nearly identical to that of genie-GM-AMP, suggestinat th
our EM-learning procedures are working well. For Bernoulli
signals, Fig[% shows EM-GM-AMP-MOS performing very Odp o [T theorelal LASSO
close to genie-GM-AMP, and both EM-GM-AMP and EM- 01 02 03 04 06 07 08 09
BG-AMP performing slightly worse but far better than DMM-_ . _ _

AMP. Fina”y, for BR Signa|S, F|gD5 shows EM_GM_AMPz;gB:rnOSTFS):gﬁZ:SPTCS and LASSO theoretical PTC for noisglescovery
performing significantly better than EM-BG-AMP, since the
former is able to accurately model the BR distribution (with
L > 2 mixture components) whereas the latter (with a single 0.9y
mixture component) is not, and on par with genie-GM-AMP, 0.8}
whereas EM-GM-AMP-MOS performs noticeably better than
genie-GM-AMP. The latter is due to EM-GM-AMP-MOS
doing per-realization parameter tuning, while genie-GIMHA - 08
employs the best set difked parameters over all realizations. Z o5l
To better understand the performance of EM-GM-AMP =

0.8

0.7

~
Sost
<

-—--genie GM-AMP
—+— EM-GM-AMP-MOS
—— EM-GM-AMP

— — EM-BG-AMP

----- DMM-AMP

0.5
M/N

when % < 1, we fixed N = 8192 and constructed &2 x 9 —+— EM-GN-AMP-MOS |
grid of (M, K) values spaced uniformly in the log domain. 0.3 e
At each grid point, we generate® = 100 independent 0.25 — — EM-BG-AMP
realizations of ak -sparse BG signal and an i.i&l(0, M 1) g oo DVM-AVP

0.1r theoretical LASSO ||

matrix A. We then recoverea from the noiseless measure-
ments using EM-GM-AMP-MOS, EM-GM-AMP, EM-BG- MIN
A_MP’ genie-GM-AMP, and the LaSSO'SOI%'FIST [IE] Fig. 5. Empirical PTCs and LASSO theoretical PTC for noisgleecovery
Figure[® shows that the PTCs of EM-GM-AMP-MOS and EMef Bernoulli-Rademacher signals.

GM-AMP are nearly identical, slightly better than those of

EM-BG-AMP and genie-GM-AMP (especially at very small

. M), and much better than FISTAS.
For genie-tuned GM-AMP, for numerical reasons, we set tligeneariance . :
at+ = 10~% and, with Bernoulli and BR signals, the mixture variances at Next, we studied the effect of the measurement matrix

bp = 1072, construction on the performance of EM-GM-AMP in “sparse”
10For this experiment, we also tried DMM-AMP but found thatétchcon- mode with fixed L = 3. For this, we plotted EM-GM-
vergence problems, and we tried SPGL1 but found performeegeadations AMP empirical PTCs for noiseless recovery of a Iength-
at small M. .
LFor FISTA, we used the regularization parameefsra = 105, which 1V = 1000 BG signal under several typels of measurement

is consistent with the values used for the noiseless expetsnin [26]. matrix A: i.i.d A(0,1), i.i.d Uniform [—1, 1], i.i.d centered

0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4
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L |—iidN
8 —— EM-GM-AMP-MOS ] 09 iid Uni
+ === ii.d Unif
4L —— EM-GM-AMP a 0.8r..... DCT
-—-- EM-BG-AMP R ——iidBR Na=0.1
6 — — genie GM-AMP o o7y ——i.i.d Bern A=
e 0.6f | ——i.i.d Cauch:
L ~
5" S
2,0 <

0.6 0.7 0.8 0.9

3 2 5 6 7 8 9 01 02 03 04 05
logy M M/N
Fig. 6. Empirical PTCs for noiseless recovery of BernoGiiussian signals Fig- 7. Empirical PTCs for EM-GM-AMP noiseless recovery aérBoulli-
of length N = 8192 when M < N. Gaussian signals under varios i.i.d (0, 1), i.i.d Uniform [-3, 5], i.i.d

Bernoulli with A4 £ Pr{am» # 0} = 0.15, i.i.d zero-mean Bernoulli-
Rademacher witt\4 € {0.05,0.15,1}, i.i.d Cauchy, and randomly row-

Cauchy with scalé, i.i.d Bernoull (i.e.,amn € {0, 1}) with sampled DCT.

Aa 2 Pr{amn # 0} = 0.15, i.i.d zero-mean BR (i. 4., €

{0,1,-1}) with A4 € {0.05,0.15,1}, and randomly row- more robust T-MSBLI[[31]), de-biased genie-tuffeASSO
sampled Discrete Cosine Transform (DCT). Figlle 7 shovgia SPGL1[[32]), and Smoothel-(SLO) [33]. All algorithms
that the EM-GM-AMP PTC with i.i.d\/(0,1) matrices also were run under the suggested defaults, witi se=snal |
holds with the other i.i.d zero-mean sub-Gaussian examp|gasT-MSBL.

(i.e., Uniform and BR withA4 = 1). This is not surprising  For BG signals, Fig[18 shows that EM-GM-AMP-MOS,
given that AMP itself has rigorous guarantees for i.i.d zergEpM-GM-AMP, and EM-BG-AMP together exhibit the best
mean sub-Gaussian matriceés [5]. Figlile 7 shows that therformance among the tested algorithms, reducingiihia’
1i.d-N PTC is also preserved with randomly row-sampleBreakpoint (i.e., the location of the knee in tNMSE curve,
DCT matrices, which is not surprising given AMP’s excellenfyhich represents a sort of phase transition) fr@asdown to
empirical performance with many types of determinisic (.26, but also improvingNMSE by ~ 1 dB relative to the
[27] even in the absence of theoretical guarantees. Figurg\éxt best algorithm, which was BCS. Relative to the other
shows, however, that EM-GM-AMP’s PTC can degrade withM-AMP variants, MOS resulted in a slight degradation of
non-zero-mean i.i.d matrices (as in the Bernoulli examplgkrformance fol betweern.26 and0.31, but was otherwise
or with super-Gaussian i.i.d matrices (as in the BR examplgentical. For Bernoulli signals, Fidd9 shows much more
with sparsity rateAs = 0.05 and the Cauchy example).significant gains for EM-GM-AMP-MOS, EM-GM-AMP and
Surprisingly, the i.i.dA/ PTC is preserved by i.i.d-BR matriceseM-BG-AMP over the other algorithms: thef /N breakpoint
with sparsity rate\4 = 0.15, even though\ 4 > 3 is required was reduced from.4 down t00.32 (and ever0.3 with MOS),
for a BR matrix to be sub-Gaussién [28]. and theNMSE was reduced by 8 dB relative to the next best
algorithm, which was T-MSBL in this case. Finally, for BR
signals, Fig['ID shows a distinct advantage for EM-GM-AMP
. ) and EM-GM-AMP-MOS over the other algorithms, including
Figures[BEID showNMSE for noisy recovery of BG, gp.BG-AMP, due to the formers’ ability to accurately model
Bernoulli, and BR signals, respectively. To construct ¢hegne gr signal prior. In particular, fab//N > 0.36, EM-GM-
plots, we fixed V. = 1000, K = 100, SNR = 25 dB, and AMP-MOS reduces th&lMSE by 10 dB relative to the best
varied M. Each data point represer&MSE averaged oVer of the other algorithms (which was either EM-BG-AMP or

R = 500 realizations, where in each realization we drew af\vSBL depending on the value af//N) and reduces the
A with i.i.d N(0,M~1) elements, an AWGN noise vector,M/N breakpoint from0.38 down t00.35.

and a random signal vector. For comparisqn, we show the per investigate each algorithm's robustness to AWGN, we
formance of the proposed EM-GM-AMP (in “sparse” mode)|qiteq the NMSE attained in the recovery of BR signals
for both MOS andL = 3 versions, EM-BG-AMP, genie- with N = 1000. M = 500. and K — 100 as a function
tuneg Orthogonal Matching Pursuit (OMP]_[P9], geniet sNR in Fig. [, where each point represents an average
tunet Subspace Pursuit (SP)_[30], Bayesian Compressiyger r — 100 problem realizations, where in each realization
Sensing (BCS)[[19], Sparse Bayesian Learning [18] (via the, grew anA with iid A(0,M ') elements, an AWGN

120 _ : noise vector, and a random signal vector. All algorithmsever

or the Bernoulli and BR matrices, we ensured that no tworooki of L .

a given realizationA were identical. under the same conditions as those reported previouslgpexc
BBWe ran both OMP (using the implementation from

http://sparselab.stanford.edu/OptimalTuning/code)htand SP under 10 4We ran SPGL1 in ‘BPDN’ modeming ||z||1 S.t. ||y — Azx|2 < o, for

different sparsity assumptions, spaced uniformly froro 2/, and reported hypothesized tolerances® € {0.1,0.2,...,1.5} x M1, and reported the
the lowestNMSE among the results. lowest NMSE among the results.

B. Noisy Sparse Signal Recovery


http://sparselab.stanford.edu/OptimalTuning/code.htm

:
—A-sLo

11

T-MSBL must be given some knowledge about the true noise

—— genie SPGLL variance in order to perform well [84], unlike the proposed
—B— T-MSBL 1

e o algorithms.

—3¥— genie SP

o —o—8cs

S, —©— EM-BG-AMP —A—sto

w 57— EM-GM-AMP :T"_ g:::: zEGu

% ~%F— EM-GM-AMP-MOS —— seme OMP

BCS
Z z—_TMSBL
— —O— EM-BG-AMP
g, —V—EMVGMVAMP
s 3
= S -40f
02 025 03 035 04 045 05 =
M/N -50
Fig. 8. NMSE versus undersampling ratid//N for noisy recovery of
Bernoulli-Gaussian signals. -60r
5 : 10 20 30 40 50
O S Ao SNR [dB]
—A— genie SPGL1 ) . .
-5 —s¢— genie OMP Fig. 11. NMSE versusSNR for noisy recovery of Bernoulli-Rademacher
—s— genie SP signals.
-10r ——BCs

'5‘ —B— T-MSBL

5,15 —©— EM-BG-AMP

w I C. Heavy-Tailed Signal Recovery

N —-20f —#— EM-GM-AMP-MOS || . . . . .

% In many applications of compressive sensing, the signal to
=25 be recovered is not perfectly sparse, but instead contdms a
S| R L. G large coefficients and many small ones. While the literature

a5 often refers to such signals as “compressible,” there ameyma
= PN real-world signals that do not satisfy the technical definit
02 025 03 035 04 045 05 of compressibility (see, e.gl_[85]), and so we refer to such
M/N signals more generally as “heavy tailed.”
Fig. 9. NMSE versus undersampling ratid//N for noisy recovery of  To investigate algorithm performance for these signals, we

Bernoulli signals. first consider an i.i.d Student's-t signal, with prior pdf

— px(x:q) Iy F\(/(_%(lq)//;))) (1 +x2)—(q+1)/2 82)
-5¢ under the (non-compressible) raje= 1.67, which has been
_10l shown to be an excellent model for wavelet coefficients of
& natural images[[35]. For such signals, Hig] 12 pIbisISE
3, -15¢ versus the number of measuremendsfor fixed N = 1000,
I e SNR = 25 dB, and an average oR = 500 realizations,
= —e— gerle SPLL where in each realization we drew anwith i.i.d A/(0, M 1)
25 e elements, an AWGN noise vector, and a random signal vector.
30 e e Figure[I2 shows both variants of EM-GM-AMP (here run
_357_-3-_Exiﬁaw in “heavy-tailed” mode) outp_e_rforming all _other algoritem
S EM-GM-AMP-MOS | D o ST under tesf] We have also verified (in experiments not shown
02 025 03 035 04 045 05 here) that “heavy-tailed” EM-GM-AMP exhibits similarly
M/N good performance with other values of the Student's-t rate
Fig. 10. NMSE versus undersampling ratid//N for noisy recovery of parametey;, as well as for i.i.d centered Cauchy signals.

Bemoulli-Rademacher signals. To investigate the performance for positive heavy-tailed

signals, we conducted a similar experiment using i.i.d log-

that T-MSBL usednoi se=smal | whenSNR > 22dB and Normalz, generated using the distribution
noi se=m | d whenSNR < 22 dB, as recommended in [34]. cy a2y — 1 _(nz—p)

. — ' . . . pX(xvﬂaU )_ 75— CXP -
From Fig.[T1, we see that the essential behavior observed in @v2mo? 207
the fixedSNR BR plot Fig.[I0 holds over a wide range ofwith location parameter, = 0 and scale parameter* = 1.
SNRs. In particular, Fig[1 shows that EM-GM-AMP andFigure[I3 confirms the excellent performance of EM-GM-
EM-GM-AMP-MOS yield significantly loweNMSE than all AMP-MOS, EM-GM-AMP, and EM-BG-AMP over all tested
other algorithms over the fuBNR range, while EM-BG-AMP . _ _ .

. In this experiment, we ran both OMP and SP untedifferent sparsity

and T-MSBL yield the second loweStMSE (also matched by hypotheses, spaced uniformly fromto Kiaseo = Mpse (L), and reported
BCS for SNRs betweerB0 and40 dB). Note, however, than the lowestNMSE among the results.

(83)
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oo D. Runtime and Complexity Scaling witth
-5 : _ . . . .
i :fjjsp Next we investigated how complexity scales with signal
_ -o-evscawp | length N by evaluating the runtime of each algorithm on a
= T e typical personal computer. For this, we fixdd/N = 0.1,
S -7f —h—geniespoll | M/N = 0.5, SNR = 25 dB and varied the signal length
w T rameos N N. Figure[1# shows the runtimes for noisy recovery of a
% -8r ‘s\ei* Bernoulli-Rademacher signal, while Fig.]15 shows the cor-
EN:%, respondingNMSEs. In these plots, each datapoint represents
-9 L an average oveR = 50 realizations. The algorithms that we
tested are the same ones that we described earlier. Hok@ver,
10y fairly evaluate runtime, we configured some a bit differgntl
03 035 04 045 05 055 06 than before. In particular, for genie-tuned SPGL1, in ortder
M/N yield a better runtime-vs-NMSE tradeoff, we reduced thertol
Fig. 12. NMSE versus undersampling ratid//N for noisy recovery of ance grid (recall footnofe14) t& € {0.6,0.8,..., 1.4} x M1
Student-t signals with rate parametes7. and turned off debiasing. For OMP and SP, we used the fixed

support sizei|asso = MpSE(%) rather than searching for the
] ) ) size that minimizesNMSE over a grid of10 hypotheses, as
undersampling ratios\//N. We postulate that, for signalspefore. Otherwise, all algorithms were run under the sugges
known apriori to be positive, EM-GM-AMP’s performancedefau“S’ with T-MSBL run undenoi se=smal | and EM-
could be further improved through the use of a pgar with  sM-AMP run in “sparse” mode.

support restricted to the the positive reals, via a mixture 0 The complexities of the proposed EM-GM-AMP methods
positively truncated Gaussians. are dominated by one matrix multiplication by and A"
per iteration. Thus, when these matrix multiplications are
explicitly implemented andA is dense, the total complexity
of EM-GM-AMP should scale a®)(M N). This scaling is
indeed visible in the runtime curves of Fig]14. TheP& )M N)
becomesO(N?) since the ratioM/N was fixed, and the
horizontal axis plotsN on a logarithmic scale, so that this
complexity scaling manifests, at sufficiently large valuds
N, as a line with slope. Figure[I# confirms that genie-
tuned SPGL1 also has the same complexity scaling, albeit
with longer overall runtimes. Meanwhile, Fig.]14 shows T-
MSBL, BCS, SLO, OMP, and SP exhibiting a complexity
scaling ofO(N?3) (under fixedK /N andM /N, which results

‘ ‘ ‘ ‘ N in orders-of-magnitude larger runtimes for long signalg).(e
025 03 035 04 045 05 N > 10%. With short signals (e.g.N < 1300), though,
OMP, SP, SLO, and SPGL1 are faster than EM-GM-AMP.
Finally, Fig.[I5 verifies that, for most of the algorithmseth
NMSEs are relatively insensitive to signal lengthwhen the
undersampling ratid\//N and sparsity ratidk /M are both
géed, although the performance of EM-GM-AMP improves
with N (which is not surprising in light of AMP’s large-
I’system-limit optimality properties [13]) and the performea

T T
—H— T-MSBL
—9—BCs
—A—sLo
—A— genie SPGL1
—— genie OMP

—3¥— genie SP

—6— EM-BG-AMP
—%7— EM-GM-AMP
—##— EM-GM-AMP-MOS

|
N
N

|
N

NMSE [dB]
R

|
N
[es]
T

0.2

Fig. 13. NMSE versus undersampling rati®//N for noisy recovery of
log-normal signals with location parametgrand scale parametér.

It may be interesting to notice that, with the perfectly sgar
signals examined in Fig§] 8310, SLO and SPGL1 perform
relatively poorly, the relevance-vector-machine (RVMjsbd
approaches (i.e., BCS, T-MSBL) performed relatively wel

0{{ BCS degrades withV.
and the greedy approaches (OMP and SP) performed in-
between. With the heavy-tailed signals in Fifisl [12-13, it is Both the proposed EM-GM-AMP methods and SPGL1 can

more difficult to see a consistent pattern. For example, Wiﬁ‘)l(ploIt the case where mglt|pllc§1t|on by and A S imple
ented using a fast algorithm like the fast Fourier trarmafor

the Student’s-t signal, the greedy approaches performed EE . .
worse, the RVM approaches were in the middle, and SL FTE which reduces th_e complexity 10(N k’.gN)’ a_nd
and SPGL1 performed very well. But with the Iog—norma"l‘“loIdS the need to stord in memory—a potentially serious

signal, the situation was very different: the greedy apghea problem whenl N is large. The dashed lines in Fids] 14~

performed very well, SPGL1 performed moderately well, bt (labeled gft")l shc_)t\;]v the azj/ersalgél_rfr.ltlme amuxﬂaivE of
SLO and the RVM approaches performed very poorly. € proposed aigornthms an In case as a

randomly row-sampled FFT. As expected, the runtimes are

In conclusion, forall of the many signal types tested aboved amatically reduced. While EM-BG-AMP retains its place as

the best recovery performance came from EM-GM-AMP ar}de fastest algorithm, SPGL1 now ruhs$ x faster than EM-

its MOS variant. We attribute this behavior to EM-GM-AMP’s

ability to tune itself to the signal (and in fact the realiza) 16For our FFT-based experiments, we used the complex-valeesions of
at hand. EM-BG-AMP, EM-GM-AMP, and SPGL1.
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GM-AMP (at the cost ofl4 dB higherNMSE). The MOS random), noting that the latter allows a fast implementatd

version of EM-GM-AMP vyields slightly betteNMSE, but A andA. Tabldll shows the resulting time-averageMSE,

takes~ 2.5 times as long to run as the fixddversion. e, TNMSE 2 L S°7 | ||u; —a|?/||u]|? and total runtime
achieved by the previously described algorithms at block

A lengths N = 1024, 2048,4096, 8192, which correspond to
)0/ //’ ] T = 80, 40, 20, 10 blocks, respectively. The numbers reported
el in the table represent an average oMgrealizations of®. For
"/¥/ ‘;/‘ ’ these experiments, we configured the algorithms as desdcribe
B {/ S in Section[IV=C for the heavy-tailed experiment except that
% ey for genie-SPGL1, rather than using= 0, we used) = 10~
E oo for the tolerance grid (recall footnoke]14) because we found
§ T o ANPOS that this value minimizedTNMSE and, for T-MSBL, we
o  abidll used the settingpr une_gamma = 10~!2 as recommended
T e s in a personal correspondence with the author. For certain
X Saaer combinations of algorithm and blocklength, excessiveimes
—O- Ewecaupm prevented us from carrying out the experiment, and thus no
10° 10° result appears in the table.

N Tabledll shows that, for this audio experiment, the EM-GM-

Fig. 14. Runtime versus signal lengfki for noisy recovery of Bernoulli- AMP methods and SLO performed best in termsTOfMSE

Rademacher signals. . . . "
As in the synthetic examples presented earlier, we attribut
EM-GM-AMP’s excellentTNMSE to its ability to tune itself

—20 ‘ to whatever signal is at hand. As for SLO’s excell@NMSE,
m o we reason that it had the good fortune of being particularly
DAMMMAAAAMMMALA T well-tuned to this audio signal, given that it performedarel

“25h ok e ke e — A — %322“"‘ i tively poorly with the signal types used for Figs.[8+11 and

= Zo- tuneave Fig. [13. From the runtimes reported in Talilel Ill, we see
= sM T o eos that, with i.i.d Gaussian® and the shortest block length
7 ‘3(?“9‘9'9'0 T e ] (N = 1024), genie-OMP is by far the fastest, whereas the
= TOTTE T T T OO T e owras | EM-GM-AMP methods are the slowest. But, as the block
length grows, the EM-GM-AMP methods achieve better and

35 better runtimes as a consequence of their excellent coiitylex

scaling, and eventually EM-BG-AMP and fixdd-EM-GM-

_4(f%?§ﬁ;¢=*=$=‘$ —¥--v AMP become the two fastest algorithms under test (as shown
10° 10 10° 10° with i.i.d Gaussian® at N = 8192). For this audio example,

N the large-block regime may be the more important, because
Fig. 15. NMSE versus signal lengthV for noisy recovery of Bernoulli- that is where all algorithms give their small@$tiMSE. Next,
Rademacher signals. looking at the runtimes under random-selecti®n we see
dramatic speed improvements for the EM-GM-AMP methods
and SPGL1, which were all able to leverage Matlab’s fast
E. Example: Compressive Recovery of Audio DCT. In fact, the total runtimes of these four algorithms

As a practical example, we experimented with the recovefgcreaseas N is increased from024 to 8192. We conclude
of an audio signal from compressed measurements. The fi noting that EM-BG-AMP (atV= = 8192 with random
length®81920 audio signal was first partitioned int blocks selection®) achieves the fastest runtime in the entire table
{u}T_, of length N. Noiseless compressed measuremeridlile yielding aTNMSE that is within 1.3 dB of the best
y, = ®u; € RM were then collected using/ = N/2 sam- value in the entire table. Meanwhile, fixddEM-GM-AMP
ples per block. Rather than reconstructingdirectly fromy,, (@t N = 8192 with random selectionP) gives TNMSE only
we first reconstruct@d the transform coefficients; = ¥'w,, 0.3 dB away from the best in the entire table with a runtime
using the (orthogonaD discrete cosine transform (D@_ﬂ')g of onIy about twice the best in the entire table. FinaIIy, the
]RNXN’ and later reconstructedt via u; = \Il:ct. Our effec- best TNMSEs in the entire table are achieved by EM-GM-
tive sparse-signal model can thus be writteryas= Az, with AMP-MOS (at N = 8192), which takes~ 2.5 times as long
A = ®W¥. We experimented with two types of measuremef® run as its fixedt counterpart.
matrix ®: i.i.d zero-mean Gaussian and random selection (i.e.,

containing rows of the identity matrix selected uniformly a V. CONCLUSIONS

17Although one could exploit additional structure among theltiple- Those interested in practical compressive sensing face the

timestep coefficients{act}tT:1 for improved recovery (e.g., sparsity clusteringdaunting task of Choosing among Iiterally hundreds of digna
in the time and/or frequency dimensions, as well as ammitcmirelation in

those dimensions) as demonstrated[in [36], such technigresutside the reconStrUCtion algorithms (See, e.d..|[37]). In testingsth
scope of this paper. algorithms, they are likely to find that some work very well



N = 1024 | N = 2048 | N = 4096 |N:8192
TNMSE| time [[Tnmse|  time |[Tamse| time || TnvsE|  time [4]
EM-GM-AMP-MOS| -17.3468.9|[-18.3487.2||-21.01967.9|| -21.8 2543
g| _EM-GM-AMP_|-16.9150.2-18.213.2][-20.7434.0] -2L.4 1129 (5]
&| EM-BG-AMP [-15.9115.2|[-17.0174.1]|-19.4430.2|[-20.0/ 1116
@ SLO -16.8 41.6|[-17.9128.5([-20.6629.0|-21.3 2739
= genie SPGLI [-14.3 90.9][-16.2200.6||-18.6\514.3|[-19.5 1568
o BCS -15.0 67.5||-15.8149.1||-18.4428.0||-18.8 2295 [6]
= T-MSBL 1631264 - - i p— i
=7 genie OMP |-13.9 20.1|[-14.9109.9|[-17.6527.0]] - = [7]
genie SP|-14.5 87.7|[-15.5305.9|[-18.0 1331 | -
&[EM-GM-AMP-MOS] -16.§233.0]-17.§136.1]-20.§109.6]-2L.§ 93.9
S| EM-GM-AMP |-16.7 56.1[|-17.7 43.7||-20.9 38.0||-21.5 378 18l
S| EM-BG-AMP_|-16.2 29.6|[-17.2 22.3|[-19.7] 19.4][-20.5 18.0
Ko SLO 16.7] 35.7|[-17.6(119.5([-20.4597.8||-21.2 2739
; genie SPGL1L |-14.0 34.4||-15.9 24.5|[-18.4 21.7[-19.7 19.6
5 BCS -15.5 60.5|[-16.1126.2||-19.4373.8||-20.2 2295 &l
2 T-MSBL I551.2ed] - - i i
®|~ genie OMP |-15.1 20.1]|-15.7106.8-18.9506.0] - —| [10]
genie SP |-15.2104.5([-16.1395.3|[-18.7 1808 | —
TABLE IlI [11]
AVERAGE TNMSE (IN DB) AND TOTAL RUNTIME (IN SECONDS FOR
COMPRESSIVE AUDIO RECOVERY [12]

with particular signal classes, but not with others. They ar
also likely to get frustrated by those algorithms that regjtle (131
tuning of many parameters. Finally, they are likely to findtth
some of the algorithms that are commonly regarded as “véiy]
fast” are actually very slow in high-dimensional problems.
Meanwhile, those familiar with the theory of compressive
sensing know that the workhorse LASSO is nearly minimd5]
optimal, and that its phase transition curve is robust to the
nonzero-coefficient distribution of sparse signals. Hasvev (14
they also know that, for most signal classes, there is a large
gap between the MSE performance of LASSO and that of the
MMSE estimator derived under full knowledge of the signip]
and noise statistics [11]. Thus, they may wonder whetheetheig)
is a way to close this gap by designing a signal reconstmctio
algorithm thatboth learns and exploit¢he signal and noise [
statistics. [20]
With these considerations in mind, we proposed an em-
pirical Bayesian approach to compressive signal recovery
that merges two powerful inference frameworks: expe(mati@ﬂ]
maximization (EM) and approximate message passing (AMP).
We then demonstrated—through a detailed numerical study—
that our approach, when used with a flexible Gaussian-next
signal prior, achieves a state-of-the-art combinationesbn- [23]
struction error and runtime on a very wide range of signal
and matrix types in the high-dimensional regime. Howev ”
certain non-zero-mean and super-Gaussian sensing nsatrice
give our AMP-based method trouble. Making AMP robugps]
to these matrices remains a topic of importance for future
research. [26]
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