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Abstract

Applying the theory of compressive sensing in practice always takes different kinds

of perturbations into consideration. In this paper, the recovery performance of greedy

pursuits with replacement for sparse recovery is analyzed when both the measurement

vector and the sensing matrix are contaminated with additive perturbations. Specifi-

cally, greedy pursuits with replacement include three algorithms, compressive sampling

matching pursuit (CoSaMP), subspace pursuit (SP), and iterative hard thresholding

(IHT), where the support estimation is evaluated and updated in each iteration. Based

on restricted isometry property, a unified form of the error bounds of these recovery

algorithms is derived under general perturbations for compressible signals. The results

reveal that the recovery performance is stable against both perturbations. In addition,

these bounds are compared with that of oracle recovery— least squares solution with the

locations of some largest entries in magnitude known a priori. The comparison shows

that the error bounds of these algorithms only differ in coefficients from the lower bound

of oracle recovery for some certain signal and perturbations, as reveals that oracle-order

recovery performance of greedy pursuits with replacement is guaranteed. Numerical

simulations are performed to verify the conclusions.

Keywords: Compressive sensing, sparse recovery, general perturbations, perfor-

mance analysis, restricted isometry property, greedy pursuits, compressive sampling

matching pursuit, subspace pursuit, iterative hard thresholding, oracle recovery.

1 Introduction

Compressive sensing, or compressive sampling (CS) [1–3], is a novel signal processing tech-

nique proposed to effectively sample and compress sparse signals, i.e., signals that can be

represented by few significant coefficients in some basis. Assume that the signal of interest

x ∈ RN can be represented by x = Ψs, where Ψ ∈ RN×N is the basis matrix and s is
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K-sparse, which means only K out of its N entries are nonzero. One of the essential issues

of CS theory lies in recovering x (or equivalently, s) from its linear observations,

y = Φx = ΦΨs, (1)

where Φ ∈ RM×N is a sensing matrix with more columns than rows and y is the measure-

ment vector. Unfortunately, directly finding the sparsest solution to (1) is NP-hard, which

is not practical for sparse recovery. This leads to one of the major aspects of CS theory—

designing effective recovery algorithms with low computational complexity and fine recovery

performance.

1.1 Overview of Sparse Recovery Algorithms

A family of convex relaxation algorithms for sparse recovery [4] had been introduced before

the theory of CS was established. Based on linear programming (LP) techniques, it is shown

that `1 norm optimization, also known as basis pursuit (BP),

min
s
‖s‖1 s.t. y = ΦΨs (2)

yields the sparse solution as long as A = ΦΨ satisfies the restricted isometry property

(RIP) with a constant parameter [5–7]. Recovery algorithms based on convex optimization

include interior-point methods [8, 9] and homotopy methods [10,11].

In contrast with convex relaxation algorithms, non-convex optimization algorithms solve

(1) by minimizing `p norm with respect to 0 < p < 1, which is not convex. Typical algo-

rithms include focal underdetermined system solver (FOCUSS) [12], iteratively reweighted

least squares (IRLS) [13], smoothed `0 (SL0) [14], and zero-point attracting projection

(ZAP) [15,16]. Compared with convex relaxation algorithms, theoretical analysis based on

RIP shows that fewer measurements are required for exact recovery by non-convex opti-

mization methods [17].

A family of iterative greedy algorithms has received much attention due to their simple

implementation and low computational complexity. The basic idea underlying these algo-

rithms is to iteratively estimate the support set of the unknown sparse signal, i.e., the set

of locations of its nonzero entries. In each iteration, one or more indices are added to the

support estimation by correlating the columns of A with the regularized measurement vec-

tor. Typical examples include orthogonal matching pursuit (OMP) [18], regularized OMP

(ROMP) [19], and stage-wise OMP (StOMP) [20]. Compared with convex relaxation algo-

rithms, greedy pursuits need more measurements, but they tend to be more computationally

efficient.

Recently, several greedy algorithms including compressive sampling matching pursuit

(CoSaMP) [21] and subspace pursuit (SP) [22] have been proposed by incorporating the

idea of backtracking. In each iteration, SP algorithm refines the K columns of matrix A

that span the subspace where the measurement vector y lies. Specifically, SP adds K more
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indices to the K candidates of support estimate, and discards the most unreliable K ones.

Similarly, CoSaMP adds 2K more indices in each iteration, while computes the regularized

measurement vector in a different way. By evaluating the reliability of all candidates in

each iteration, these algorithms can provide comparable performance to convex relaxation

algorithms, and exhibit low computational complexity as matching pursuit algorithms.

Another kind of greedy pursuits, including iterative hard thresholding (IHT) [23] and its

normalized variation [24], is proposed with the advantages of low computational complexity

and theoretical performance guarantee. In each iteration, the entries of the iterative solution

except for the most K reliable ones are set to zero. Together with CoSaMP and SP, these

algorithms can be considered as greedy pursuits with replacement involved in each iteration.

1.2 Overview of Perturbation Analysis

To apply the theory of CS in practice, the effect of noise and perturbation must be taken

into consideration. The common analysis is the additive noise to the measurements, i.e.,

ỹ = y + e, (3)

where e is termed measurement noise. Most existing algorithms have been proved to be

stable in this scenario, including theoretical analysis of BP [6], ROMP [25], CoSaMP [21],

SP [22], and IHT [23, 24]. It is shown that the error bounds of the recovered solutions are

proportional to the `2 norm of e. A certain distribution of the measurement noise can be

introduced to achieve better results, such as Gaussian [26–29] or others [30,31].

Until recently, only a few researches involve the perturbation to the sensing matrix

Φ, which is also termed system perturbation. Existing works include analysis of BP [32],

CoSaMP [33], SP [34], `p norm minimization with p ∈ (0, 1] [35], and OMP [36]. In these

works, (3) is extended by introducing a perturbed sensing matrix, i.e., Φ̃ = Φ + ∆. It is of

great significance to analyze the stability of recovery algorithms against both perturbations

when the theory of CS is applied in practice. Other related works include mismatch of

sparsity basis [37] and sparsity-cognizant total least-squares [38].

Two practical scenarios are usually considered in CS applications. First, when Φ repre-

sents a system model, ∆ denotes the precision error when the system is physically imple-

mented. Thus the whole sensing process is

ỹ = (Φ + ∆) x + e, (4)

and only the nominal sensing matrix and contaminated measurement vector are available

for recovery, i.e., x̂ = R(Φ, ỹ) where R(·) denotes a certain recovery algorithm.

In countless other problems, ∆ is involved due to mis-modeling of the actual system Φ.

Thus Φ̃ = Φ + ∆ and the sensing process is

ỹ = Φx + e. (5)
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Both the sensing matrix and measurement vector are contaminated, and the recovered

solution is x̂ = R(Φ̃, ỹ).

Existing works [32–34,36] are all based on the latter scenario, thus it is well considered

and fully analyzed in this paper. The first scenario (4) is briefly discussed after that as a

remark.

1.3 Our Work

This paper mainly considers the recovery performance of greedy pursuits with replacement

against general perturbations. Specifically, when both measurement noise and system per-

turbation exist, the error bounds of the solutions of CoSaMP, SP, and IHT are derived and

discussed in detail for not strictly sparse signals, i.e., compressible signals. It is shown that

these relative error bounds are linear in the relative perturbations of the measurement vec-

tor and the sensing matrix, which indicates that the recovery performance is stable against

general perturbations. These error bounds are also compared with that of oracle recovery,

and it reveals that the results in this paper are optimal up to the coefficients. Numerical

simulations are performed to verify the conclusions in this paper. Previous related works

including [29,33,34] are compared with this work in Section VI.

The remainder of this paper is organized as follows. Section II gives a brief review of RIP

and three greedy pursuits with replacement. Section III presents the main theorems about

the recovery performance of greedy pursuits with replacement against general perturbations,

and the results are shown to be of the same order as oracle recovery by comparing them

in Section IV. Numerical simulations are performed in Section V. Several related works

are discussed in Section VI, and the paper is concluded in Section VII. Some detailed

descriptions and discussions of greedy pursuits with replacement and proofs are postponed

to Appendix.

2 Preliminary

In this section, the definition of RIP and descriptions of several greedy pursuits, including

CoSaMP, SP, and IHT, as well as their recovery performance against measurement noise,

are introduced.

2.1 Restricted Isometry Property

The restricted isometry property (RIP) for any matrix A describes the degree of orthogo-

nality among its different columns.

Definition 1 [5] For positive integer K, define the restricted isometry constant (RIC) δK

of a matrix A as the smallest non-negative number such that

(1− δK) ‖s‖22 ≤ ‖As‖22 ≤ (1 + δK) ‖s‖22 (6)
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holds for any K-sparse vector s.

According to Definition 1, δK < 1 implies that every K columns of A are linearly

independent, and δ2K � 1 implies that A almost maintains the `2 distance between any

pair of K-sparse signals. It is also easy to check that if A satisfies the RIP with δK1 and

δK2 , and K1 ≤ K2, then δK1 ≤ δK2 .

Calculating the exact value of RIC is intractable because it involves all submatrices

comprised of K columns of A. Fortunately, random matrices possess small RICs for over-

whelming probability. For example, if the entries of A ∈ RM×N are independently and

identically distributed Gaussian random variables with zero mean and variance 1/M , and

M satisfies

M ≥ CK log (N/K)

ε2
,

then δK ≤ ε with at least probability 1 − e−cM , where C and c are two constants [5, 21].

Recent theoretical results about the bounds of RIC can be found in [39,40].

Though RIP is usually used to show the impact of matrix on sparse signals, the following

lemma permits us to generalize the result from sparse signals to general signals.

Lemma 1 (Proposition 3.5 in [21]) Suppose that the matrix A satisfies RIP of level K

with δK , then for any signal s ∈ RN , it holds that

‖As‖2 ≤
√

1 + δK

(
‖s‖2 +

1√
K
‖s‖1

)
. (7)

Lemma 1 is used in the theoretical analysis of this paper for compressible signals.

2.2 Greedy Pursuits with Replacement

Greedy pursuits with replacement include CoSaMP, SP, and IHT algorithms, and they are

briefly introduced as follows. The pseudo codes for these algorithms and some discussions

are postponed to Appendix A.

The CoSaMP algorithm iteratively refines the support of K-sparse vector s. In each

iteration, 2K more indices are selected by correlating A with the residue vector r, then the

best K candidates out of at most 3K ones are kept and the residue vector is updated. The

details of CoSaMP can be found in [21].

The SP algorithm is firstly proposed in [41] and further developed in [22]. Unlike

CoSaMP, SP adds K more indices in each iteration, and keeps the best K candidates. In

addition, the residue vector of SP is orthogonal to the subspace spanned by the columns of

A indexed by the K candidates, making the new K indices added in each iteration totally

different from the previously identified K ones. Please refer to [22] for more details.

The IHT algorithm is firstly proposed in [42], and later developed and analyzed in [23].

To improve the convergence performance of the method, a normalized variation NIHT is
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Table 1: The Specification of the Constants

CoSaMP SP IHT

a 1 1.26 1

b 4 3 3

c 0.171 0.206 0.353

C 4δ4K
(1− δ4K)2

2δ3K + 2δ23K
(1− δ3K)3

√
8δ3K

C1
6 + 2δ4K

(1− δ4K)2
4(1 + δ3K)

(1− δ3K)2
2
√

1 + δ3K

D 6 + 2δ4K
1− 6δ4K + δ24K

5− 4δ3K − 8δ23K − δ43K
1− 6δ3K + 6δ23K − 2δ33K + δ43K

2
√

1 + δ3K
1−
√

8δ3K

proposed in [24] which retains theoretical performance guarantee similar to IHT. Without

loss of generality, only IHT algorithm is discussed in the following analysis.

The following Theorem 1 reveals the error bounds of the solutions of greedy pursuits

with replacement when only measurement noise exists. For two sets S1 and S2, S1 − S2

denotes the set comprised of all elements x ∈ S1 and x /∈ S2. sS denotes the subvector

composed of entries of s indexed by set S.

Theorem 1 Given a noisy measurement vector ỹ = As + e where s is K-sparse, the

estimated solution s[l] in the l-th iteration of CoSaMP and IHT algorithms satisfies∥∥s− s[l]
∥∥
2
≤ C

∥∥s− s[l−1]
∥∥
2

+ C1 ‖e‖2 , (8)

and the estimated support set Sl in the l-th iteration of SP algorithm satisfies∥∥sS−Sl∥∥2 ≤ C ∥∥sS−Sl−1

∥∥
2

+ C1 ‖e‖2 , (9)

where S denotes the support of s.

Furthermore, if the matrix A satisfies δbK ≤ c, then C < 1, and it can be derived that∥∥s− s[l]
∥∥
2
≤ aC l ‖s‖2 +D ‖e‖2 (10)

holds for greedy pursuits with replacement. The specific values of the constants a, b, c, C,

C1, and D are illustrated in TABLE 1.

Proof Theorem 1 is concluded from the results of [21–23]. The proof is postponed to

Appendix B.
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Now we have introduced CoSaMP, SP, and IHT algorithms, where sparsity level K

needs to be known a priori for replacement. According to (10), when only measurement

noise exists, the error bounds of the solutions are exponential decay function of iteration

number, and the limits of them are proportional to the `2 norm of the noise. Some remarks

based on (10) are derived in Appendix A, and the main conclusions in this paper are based

on (10) as well. It needs to be emphasized that the analysis is performed as worst-case, and

the demands of RICs of A are sufficient conditions. Better recovery performance of these

three algorithms is normally achieved in practice, thus they are widely applied in various

applications.

3 Recovery Performance of Greedy Pursuits with Replace-

ment

In this section, the error bounds of greedy pursuits with replacement are derived for general

signals when both measurement noise and system perturbation exist.

3.1 Notations and Assumptions

Several notations and assumptions are stated first and they will be used in the following

analysis. AS denotes the submatrix composed of the columns of A indexed by set S. AT

denotes the transpose of matrix A. A† denotes the pseudo-inverse of matrix A. The signal

s is assumed to be a compressible signal in the following context, which means that it can

be well approximated by a sparse signal. Vector sK is assumed to be the best K-term

approximation to s, and define the approximation error scK = s − sK . The approximation

error can be quantified as

rK =
‖scK‖2
‖s‖2

, sK =
‖scK‖1√
K ‖s‖2

. (11)

When s is K-sparse, the ratios rK and sK are both zero. If s is compressible, then for

reasonable K, the ratios are expected to be far less than 1.

The symbol ‖A‖2 denotes the spectral norm of a matrix A. The measurement noise e

and system perturbation ∆ can be quantified with the following relative perturbations

εy =
‖e‖2
‖y‖2

, εΦ =
‖∆‖2
‖Φ‖2

, (12)

where ‖y‖2 and ‖Φ‖2 are nonzero. εy and εΦ quantify the relative measurement noise and

relative system perturbation, respectively. In practical scenarios, the exact forms of e and

∆ are not known in advance, thus the relative perturbations are applied instead. In this

paper, εy and εΦ are assumed less than 1. Define

Ã = (Φ + ∆)Ψ = ΦΨ + ∆Ψ , A + E. (13)
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Let ‖A‖(K)
2 denote the largest spectral norm taken over all K-column submatrices of A.

Assume

εA =
‖E‖2
‖A‖2

, ε
(K)
A =

‖E‖(K)
2

‖A‖(K)
2

, (14)

which also represent the relative system perturbation. It is easy to derive that

εA ≤ κΨεΦ, ε
(K)
A ≤

‖Φ‖2 ‖Ψ‖2√
1− δK

εA,

where κΨ = ‖Ψ‖2
∥∥Ψ−1∥∥

2
is the condition number of Ψ. Particularly, κΨ is equal to

one if x is sparse in orthogonal basis. In general cases, the relative perturbations (14) are

approximately the same as εΦ if κΨ is not very large. The following lemma quantifies the

RICs of the matrix Ã.

Lemma 2 (Theorem 1 in [32]) Assume the matrix A satisfies RIP of level K with δK , and

the relative perturbation ε
(K)
A is associated with matrix E. Define the constant

δ̃K,max , (1 + δK)
(

1 + ε
(K)
A

)2
− 1, (15)

then the RIC δ̃K of matrix Ã = A + E satisfies δ̃K ≤ δ̃K,max.

As can be seen from Lemma 2, the upper bound of the RIC of perturbed matrix Ã is

slightly bigger than that of A if the relative perturbation ε
(K)
A is small. Notice that δ̃K,max

represents a worst-case of δ̃K , thus better RICs of Ã are normally achieved in practice.

3.2 Error Bounds of Greedy Pursuits with Replacement

The relative error bounds of greedy pursuits with replacement under general perturbations

for compressible signals are given in this subsection. The following Theorem 2 summarizes

the main result.

Theorem 2 Suppose y = Φx, where x = Ψs and s is a compressible vector. The available

information for recovering x is ỹ = y +e, Φ̃ = Φ+∆, and basis matrix Ψ. If the available

perturbed matrix Ã = Φ̃Ψ satisfies RIP with

δ̃bK ≤ c, (16)

and the non-perturbed matrix A satisfies RIP of level K with δK , then in the l-th iteration,

the relative error of the solution x[l] = Ψs[l] of greedy pursuits with replacement satisfies∥∥x− x[l]
∥∥
2

‖x‖2
≤ κΨ

(
aC̃ l + rK + D̃

√
1 + δK

(
εy + ε

(K)
A + (1 + εy) (rK + sK)

))
, (17)

where the specific values of the constants a, b, c, C̃, and D̃ are illustrated in TABLE 1 and

TABLE 2.

8



Table 2: The Specification of the Constants

CoSaMP SP IHT

C̃ 4δ̃4K
(1− δ̃4K)2

2δ̃3K + 2δ̃23K
(1− δ̃3K)3

√
8δ̃3K

D̃ 6 + 2δ̃4K
1− 6δ̃4K + δ̃24K

5− 4δ̃3K − 8δ̃23K − δ̃43K
1− 6δ̃3K + 6δ̃23K − 2δ̃33K + δ̃43K

2
√

1 + δ̃3K
1−
√

8δ̃3K

Furthermore, after at most

l =

⌈
logC̃

(
εy + ε

(K)
A + sK
a

)⌉
(18)

iterations, these algorithms estimate x with accuracy∥∥x− x[l]
∥∥
2

‖x‖2
≤κΨ

(
D̃
√

1 + δK + 1
)(

εy + ε
(K)
A + (1 + εy) (rK + sK)

)
. (19)

For exact sparse signals, a better and more intuitive result can be derived from Theo-

rem 2 by setting rK and sK to zero. The result is stated as Theorem 3.

Theorem 3 Suppose y = Φx, where x = Ψs and s is K-sparse. The available information

for recovering x is ỹ = y + e, Φ̃ = Φ + ∆, and basis matrix Ψ. If the available perturbed

matrix Ã = Φ̃Ψ satisfies RIP with

δ̃bK ≤ c, (20)

and the non-perturbed matrix A satisfies RIP of level K with δK , then in the l-th iteration,

the relative error of the solution x[l] = Ψs[l] of greedy pursuits with replacement satisfies∥∥x− x[l]
∥∥
2

‖x‖2
≤ κΨ

(
aC̃ l + D̃

√
1 + δK

(
εy + ε

(K)
A

))
, (21)

where the specific values of the constants a, b, c, C̃, and D̃ are illustrated in TABLE 1 and

TABLE 2.

Furthermore, after at most

l =

⌈
logC̃

(
εy + ε

(K)
A

a

)⌉
(22)

iterations, these algorithms estimate x with accuracy∥∥x− x[l]
∥∥
2

‖x‖2
≤ κΨ

(
D̃
√

1 + δK + 1
)(

εy + ε
(K)
A

)
. (23)
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3.3 Proof of Theorem 2

Proof Recalling the sensing process (5) with general perturbations, it is equivalent to

ỹ = As + e =
(
Ã−E

)
sK + AscK + e

= ÃsK + (e−EsK + AscK) . (24)

Define ẽ = e − EsK + AscK as the error term. According to Theorem 1, under condition

(16) about the RICs of Ã, the solution s[l] in the l-th iteration satisfies∥∥sK − s[l]
∥∥
2
≤ aC̃ l ‖sK‖2 + D̃ ‖ẽ‖2 , (25)

where C̃ < 1 and D̃ are constants specified in TABLE 2. From the triangle inequality, it

can be derived that ∥∥s− s[l]
∥∥
2
≤ ‖s− sK‖2 +

∥∥sK − s[l]
∥∥
2
. (26)

Substituting (25) into (26), and from the fact that

‖sK‖2 ≤ ‖s‖2 , (27)

the error bound in the l-th iteration satisfies∥∥s− s[l]
∥∥
2
≤ aC̃ l ‖s‖2 + ‖scK‖2 + D̃ ‖ẽ‖2 . (28)

To estimate ‖ẽ‖2, the triangle inequality, Lemma 1, and definitions (11) imply

‖ẽ‖2 ≤‖e‖2 + ‖EsK‖2 + ‖AscK‖2
≤‖e‖2 + ‖E‖(K)

2 ‖sK‖2 + ‖A‖(K)
2 ‖s‖2 (rK + sK) . (29)

It can be derived that

‖e‖2 =εy ‖As‖2 ≤ εy (‖AsK‖2 + ‖AscK‖2)

≤εy ‖A‖(K)
2 ‖s‖2 (1 + rK + sK) , (30)

which indicates

‖ẽ‖2 ≤ ‖A‖
(K)
2 ‖s‖2

(
εy + ε

(K)
A + (1 + εy) (rK + sK)

)
. (31)

Since ∥∥x− x[l]
∥∥
2
≤‖Ψ‖2

∥∥s− s[l]
∥∥
2
, (32)

‖x‖2 ≥
∥∥Ψ−1∥∥−1

2
‖s‖2 , (33)

together with (28) and (31), inequality (17) can be obtained.

For the second part of the theorem, noticing that when (18) holds, it is obvious that

aC̃ l + rK ≤εy + ε
(K)
A + rK + sK

≤εy + ε
(K)
A + (1 + εy) (rK + sK) (34)

and (19) follows immediately, which completes the proof of Theorem 2.
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3.4 Discussion

In this subsection, several remarks are drawn to have a deep insight into the results of this

paper.

Remark 1 As can be seen from (19), the relative error of greedy pursuits with re-

placement is linear in both kinds of perturbations, and almost linear in the approximation

error of s to a K-sparse vector. If s is K-sparse and the sensing process is non-perturbed,

according to (21) with εy = ε
(K)
A = 0, the relative error is bounded by an exponential de-

cay function of iteration number, which indicates that the recovered solution can approach

the original signal at any given precision. If s is K-sparse and x is sensed under general

perturbations, (23) demonstrates that the recovery accuracy is bounded by the size of both

perturbations, and the recovery performance is stable in this scenario. If the sensing process

is non-perturbed for general signal x, according to (19) with εy = ε
(K)
A = 0, the recovery

accuracy is determined by how well s can be approximated by a K-sparse vector.

Remark 2 Under the assumption (16), the base C̃ of the exponential function in (17) is

less than one, which guarantees the convergence of the recovery error. As δ̃bK → c, the base

C̃ approaches one and the constant D̃ approaches infinity. Also, due to the monotonicity

of RICs, for less sparse signals with larger K, the constant D̃ gets larger.

For these three greedy pursuits with replacement, K is quite a significant parameter

and needs to be known a priori. An improper selection of K may result in a great loss of

recovery performance. If K is selected too large, the condition (16) can be hardly satisfied,

and the parameter D̃ may be quite large. On the other hand, too small K indicates large

rK and sK , which also leads to poor recovery performance.

As a typical compressible signal, strong-decaying signal s is a vector whose ordered

coefficients in certain basis satisfy

|s|(l) ≥ p |s|(l+1) , 1 ≤ l ≤ N − 1, (35)

where |s|(l) is the l-th largest magnitude among the elements of s, and p > 1 is a constant

controls the speed of the decay: the larger p is, the faster s decays. Simple calculation

implies that

rK ≤ p−K , sK ≤
√
p+ 1√

K(p− 1)
p−K . (36)

For compressible signal satisfying a power law, i.e.,

|s|(l) ≈ R · l
−p, 1 ≤ l ≤ N, (37)

where R is a positive constant denoting the radius of weak-`1/p ball and p > 1 controls the

speed of the decay, it can also be calculated that

rK ≈ K1/2−p, sK ≈
√

2p− 1

p− 1
K1/2−p. (38)
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In practice, the parameter K should be adjusted according to εy, ε
(K)
A , and the decay

parameter p. In the scenario with relatively large perturbations, according to (19), K can

be selected a small value such that δ̃bK and D̃ are small, and rK and sK are comparable

to εy and ε
(K)
A . In the scenario with relatively small perturbations, the recovery error is

mainly determined by rK and sK , and K is a trade-off parameter between these ratios and

D̃.

Remark 3 Considering the sensing process (4) with Φ̃ = Φ+∆ and Ã = Φ̃Ψ = A + E,

ỹ =(A + E)s + e = AsK +
(
e + EsK + ÃscK

)
. (39)

Define ẽ = e + EsK + ÃscK as the error term. Following the steps of proof of Theorem 2,

it can be derived that if the matrix A satisfies RIP with δbK ≤ c, then∥∥s− s[l]
∥∥
2
≤ aC l ‖s‖2 + ‖scK‖2 +D ‖ẽ‖2 . (40)

Since

‖ẽ‖2 ≤ ‖e‖2 + ‖E‖(K)
2 ‖s‖2 +

∥∥Ã∥∥(K)

2
‖s‖2 (rK + sK)

and the fact that ∥∥Ã∥∥(K)

2
≤ ‖A‖(K)

2 + ‖E‖(K)
2 ≤

(
1 + ε

(K)
A

)
‖A‖(K)

2 , (41)

it can be derived that the relative error of the solution in the l-th iteration obeys∥∥x− x[l]
∥∥
2

‖x‖2
≤ κΨ

(
aC l + rK +D

√
1 + δK

(
εy + ε

(K)
A +

(
1 + εy + ε

(K)
A

)
(rK + sK)

))
.

(42)

Notice that in this scenario, the relative error bound of greedy pursuits with replacement

is also linear in the relative perturbations of both measurement vector and sensing matrix,

which indicates that the recovery performance is stable against general perturbations. Also,

it should be stressed that for both scenarios, the demands of RIP are all for the available

matrix Ã or A in the process of recovery.

4 Comparison with Oracle Recovery

In this section, the upper and lower bounds of oracle recovery are derived, and are compared

with those of greedy pursuits with replacement. It reveals that the results in this paper are

optimal up to the coefficients.

4.1 Error Bound of Oracle Recovery

Consider the oracle recovery where the locations of the K largest entries in magnitude of

the vector s are known a priori. Assume S is the set of the K locations, i.e., S = supp(sK).

12



Recall the sensing process (5) where both perturbations exist. Through least squares

(LS) method, the estimated solution x̂ = Ψŝ of oracle recovery is obtained by

ŝS = Ã†Sỹ, ŝSc = 0. (43)

It is easy to check that

ŝS = Ã†Sỹ = Ã†S

(
ÃsK + ẽ

)
= sS + Ã†Sẽ. (44)

Thus the estimation error of ŝ obeys

‖s− ŝ‖22 = ‖sS − ŝS‖22 + ‖sSc − ŝSc‖22
=
∥∥Ã†Sẽ∥∥22 + ‖scK‖

2
2 . (45)

According to (45), the estimation error obeys

‖s− ŝ‖2 ≤
∥∥Ã†Sẽ∥∥2 + ‖scK‖2

≤
∥∥Ã†S∥∥2 ‖ẽ‖2 + ‖scK‖2 . (46)

Substituting (31) into (46), and together with (32), (33), and the fact that∥∥Ã†S∥∥2 ≤ 1√
1− δ̃K

, D̂, (47)

the relative error of LS solution is derived following the steps in the proof of Theorem 2

‖x− x̂‖2
‖x‖2

≤κΨ

(
D̂
√

1 + δK + 1
)(

εy + ε
(K)
A + (1 + εy) (rK + sK)

)
. (48)

Comparing (48) with (19), it can be derived that after finite iterations, the error bounds

of greedy pursuits with replacement and the error bound of oracle recovery only differ in

coefficients, and they are all of the same order on the noise level and approximation error

O
(
εy + ε

(K)
A + (1 + εy) (rK + sK)

)
(49)

under general perturbations.

4.2 Lower Bound Analysis of Oracle Recovery

According to (28), (29), and (32), after

l =

⌈
logC̃

(
‖e‖2 + ‖E‖(K)

2 ‖sK‖2
a‖A‖(K)

2 ‖s‖2

)⌉
iterations, the recovery error of greedy pursuits with replacement satisfies∥∥x− x[l]

∥∥
2
≤ ‖Ψ‖2

(
D̃ +

1√
1− δK

)(
‖e‖2 + ‖E‖(K)

2 ‖sK‖2 + ‖A‖(K)
2 ‖s‖2 (rK + sK)

)
.

(50)
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To show the optimality of the results in this paper, we prove that for some certain s, e, and

E, the lower bound of the estimation error of oracle recovery is also linear in the following

three terms

‖e‖2 , ‖E‖(K)
2 ‖sK‖2 , ‖s‖2 (rK + sK) , (51)

which quantify measurement noise, system perturbation, and approximation error, respec-

tively.

According to (45), the estimation error of ŝ obeys

‖s− ŝ‖2 ≥
1√
2

(∥∥Ã†Sẽ∥∥2 + ‖scK‖2
)
. (52)

The system perturbation E can be chosen as E = ε
(K)
A A, and the vector sK is selected such

that

‖EsK‖2 = ‖E‖(K)
2 ‖sK‖2 . (53)

Meanwhile, the vector scK is also assumed K-sparse, and it can be assumed that

(−EsK)T ASA
T
S (AscK) ≥ 0, (54)

otherwise (−scK) is applied. Furthermore, the measurement noise e is chosen in the column

space of AS, and satisfies

eTASA
T
S (−EsK + AscK) ≥ 0. (55)

Due to the above assumptions and the fact that

Ã = A + E =
(

1 + ε
(K)
A

)
A,

it can be derived that∥∥Ã†Sẽ∥∥2 =
∥∥(ÃT

S ÃS

)−1
ÃT

S ẽ
∥∥
2
≥ 1

1 + δ̃K

∥∥AT
S ẽ
∥∥
2
. (56)

According to the definition of ẽ, (54), and (55), it can be calculated that∥∥AT
S ẽ
∥∥
2
≥ 1√

2

(∥∥AT
S e
∥∥
2

+
∥∥AT

S

(
−EsK + AscK

)∥∥
2

)
≥ 1√

2

(∥∥AT
S e
∥∥
2

+
∥∥AT

S EsK
∥∥
2

)
. (57)

Since e and EsK both belong to the column space of AS, (57) and (53) further imply

∥∥AT
S ẽ
∥∥
2
≥
√

1− δK√
2

(‖e‖2 + ‖EsK‖2)

=

√
1− δK√

2

(
‖e‖2 + ‖E‖(K)

2 ‖sK‖2
)
. (58)
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In addition, Cauchy-Schwartz inequality implies

‖scK‖2 ≥
1

2

(
‖scK‖2 +

‖scK‖1√
K

)
=

1

2
‖s‖2 (rK + sK) . (59)

According to (52), (56), (58), (59), and the fact that∥∥x− x̂
∥∥
2
≥
∥∥Ψ−1∥∥−1

2

∥∥s− ŝ
∥∥
2
,

the lower bound of the estimation error of oracle recovery satisfies

∥∥x− x̂
∥∥
2
≥
∥∥Ψ−1∥∥−1

2

2

(√
1− δK

1 + δ̃K

(
‖e‖2 + ‖E‖(K)

2 ‖sK‖2
)

+
1√
2
‖s‖2 (rK + sK)

)
, (60)

which is also linear in the three terms (51).

According to the above analysis, it can be concluded that there exist s, e, and E

with which the results in this paper are essentially tight up to the coefficients, i.e., the

performances of these algorithms and oracle recovery are of the same order. In general,

no recovery algorithms can do better than the oracle least squares method. Thus, the

greedy pursuits with replacement, CoSaMP, SP, and IHT, can provide oracle-order recovery

performance against general perturbations.

5 Numerical Simulations

Three numerical simulations are performed in MATLAB and demonstrated as follows. The

first simulation compares the relative error of greedy pursuits with replacement and oracle

LS method for different sparsity levels. The second simulation compares the relative error

with different relative perturbations. The final simulation considers compressible signals

and presents the influence of parameter K on the relative recovery error.

In each trial the matrix Φ of size 512 × 2048 is randomly generated with independent

Gaussian distributed entries with variance σ2 = 1/512 so that the expectation of the `2 norm

of each column is normalized. The basis matrix Ψ is the identity matrix, i.e., x = s and

A = Φ. The nonzero locations of vector s are randomly selected among all possible choices,

and the nonzero entries are generated independently from normal distribution. Then, for

each pair of relative perturbations, ỹ and Φ̃ are generated according to (5) and (12). Notice

that only εA is used in the simulations since calculating ε
(K)
A is NP-hard. However, it is

reasonable because εA ≈ ε
(K)
A holds for all K with high probability when both A and E are

random Gaussian matrices [32].

In the first experiment, the relative perturbations are set to εA = 0.05 and εy = 0.05.

The sparsity level K varies from 1 to 20, and the simulation is repeated for 1000 times. As

can be seen from Fig. 1, when K < 20, the relative error increases almost linearly as K

increases. When the sparsity level K continues to increase, the relative error of IHT cannot

be bounded any more, which indicates that the RIP condition is violated.
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Figure 1: Average relative error (1000 trials) of greedy pursuits with replacement and oracle

LS recovery versus sparsity level K when εA = 0.05 and εy = 0.05.

In the second experiment, for fixed sparsity level K = 5, 10, and 15, the relative per-

turbations εA and εy both vary from 0 to 0.1 with step size 0.005. The simulation is

conducted 1000 trials to obtain the average relative error. The results are demonstrated

in Fig. 2, where they are represented for the same K in the same row, and for the same

recovery algorithm in the same column, with labels in the left and on the top, respectively.

As can be seen from them, for the same K, the surface of oracle LS method lies below the

others, while the surface of CoSaMP is above on the top. The surfaces of SP and IHT are

almost the same in the middle. It verifies that the relative errors of CoSaMP, SP, and IHT

are linear in the measurement perturbation as well as system perturbation, and these greedy

pursuits with replacement can provide oracle-order recovery performance. It needs to be

pointed out that for the same recovery algorithm, the gradients of these surfaces increase

as the increase of K, which confirms that the coefficients of these error bounds are related

to K as discussed in Section III and IV. To display the results more intuitively, the average

relative error is plotted versus εA for different K when εy = 0, as in Fig. 3. As can be seen,

the relative error scales almost linearly as εA, and the slopes of these curves increase as K

for the same recovery algorithm.

In the final experiment, we consider compressible signal satisfying power law (37) with

R = 1 and p = 2. The relative perturbations are set to εA = 0.01 and εy = 0.01. The

parameter K in the recovery algorithms varies from 5 to 100, and the results are plotted

in Fig. 4. Since IHT fails when K ≥ 20, the recovery error of it is not shown for K ≥ 20

in the figure. As can be seen from Fig. 4, the optimal K is around 22 for CoSaMP and

SP, 19 for IHT, and around 40 for oracle recovery. Too small K or large K will affect the
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Figure 2: Average relative error (1000 trials) of greedy pursuits with replacement and oracle

LS recovery versus different εA and εy. The results are represented for the same K in the

same row, and for the same recovery algorithm in the same column, with labels in the left

and on the top, respectively.
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Figure 3: Average relative error (1000 trials) of greedy pursuits with replacement and oracle

LS recovery versus εA for different sparsity level K when εy = 0.

recovery performance for compressible signals, as is discussed in Remark 2. According to

(38), for K = 22 and p = 2, the approximation error rK is about 0.010 and sK is about

0.017, which are comparable to εA and εy. This further confirms the analysis in Remark 2

that the parameter K should be adjusted in accordance with ε
(K)
A and εy.

6 Related Works

A similar concept of this paper is presented in [29], where the authors also establish a

oracle-order performance guarantee for CoSaMP, SP, and IHT algorithms. Based on RIP,

the analysis considers the recovery of a K-sparse signal with the assumption that the mea-

surement vector is corrupted by additive random white Gaussian noise. The main result

of [29] is stated as follows, where some notations are replaced for the sake of consistency to

our work.

Assume that the white Gaussian noise vector is with covariance matrix σ2I, and that the

columns of matrix A are normalized. Under certain conditions of RICs and with probability

exceeding 1− (
√
π(1 + a) logN ·Na)−1, it holds that

‖x− x̂‖22 ≤ 2C2(1 + a) logN ·Kσ2, (61)

where x̂ is the recovered signal, and C is a constant related to specific recovery algorithms,

sensing matrix, and sparsity level. The result is similar to those for the dantzig-selector

and the basis pursuit, but with different constants. The logN factor in (61) is proven to
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Figure 4: Relative error of greedy pursuits with replacement and oracle LS recovery for

compressible signal versus different parameter K when εA = 0.01 and εy = 0.01. IHT

algorithm becomes invalid when K ≥ 20, thus it is not plotted for the wider range.

be unavoidable in [43], therefore this bound is optimal up to a constant factor. The result

is also extended to the nearly-sparse case in [29].

In other relevant works [33, 34], the error bounds of CoSaMP and SP are also derived

under general perturbations. The analysis is performed following the steps of [32] for basis

pursuit. Define

αK =
‖x− xK‖2
‖xK‖2

, βK =
‖x− xK‖1√
K‖xK‖2

, κ
(K)
A =

√
1 + δK√
1− δK

.

The main result in [33] states that under the conditions that

δ4K ≤
1.1

(1 + ε
(4K)
A )2

− 1 (62)

and

αK + βK ≤
1

2κ
(K)
A

, (63)

the recovered solution of CoSaMP satisfies

‖x− x̂‖2 ≤ C ·
(
‖x− xK‖2 +

1√
K
‖x− xK‖1 + ‖e‖2 + (‖E‖2αK + ‖E‖(K)

2 )‖y‖2
)
. (64)

Further define

εA,K,y ,

(
ε
(K)
A κ

(K)
A + εAγAαK

1− κ(K)
A (αK + βK)

+ εy

)
‖y‖2, (65)
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where

γA =
‖A‖2√
1− δK

. (66)

The main result in [34] states that under the conditions that

δ3K ≤
1.083

(1 + ε
(3K)
A )2

− 1 (67)

and that

αK + βK <
1

κ
(K)
A

, (68)

the recovered solution of SP satisfies

‖x− x̂‖2 ≤(C ′′K + 1)‖x− xK‖2 + C ′′K
‖x− xK‖1√

K
+ C ′KεA,K,y. (69)

Our analysis, on the other hand, derives a unified form of the relative error bounds

of CoSaMP, SP, and IHT under general perturbations. Specified in Theorem 2, for com-

pressible signals, when measurement vector and sensing matrix are perturbed, under the

condition of (16), the relative error bound of recovered solution in each iteration is derived

as (17). It is also proved that after finite iterations, the error bound is linear in both per-

turbations and almost linear in the approximation error, as in (19). The result is compared

with oracle recovery, where the locations of K largest entries in magnitude are known a

priori. It is also proved that for some certain x, e, and E, the lower bound of oracle recov-

ery only differs in coefficients from the error bounds of greedy pursuits with replacement.

Therefore, the oracle-order recovery performance of them is guaranteed in this work.

The main difference between [29] and our work is that we consider a more general

completely perturbed scenario, and the optimality of the recovery performance is also in

this sense. Compared with [33, 34], the demand of RICs in our work is for the perturbed

matrix Ã other than A, which is due to the fact that only Ã is available for recovery. Also,

the demand of RICs is with a constant parameter here. In addition, the condition such

as (63) or (68) is not required in our assumption. Our results are compared with oracle

recovery and shown to be optimal up to the coefficients, and they are verified by plentiful

numerical simulations.

7 Conclusion

In this paper, the relative error bounds of three greedy pursuits with replacement under

general perturbations are derived. It is shown that these bounds are linear in both per-

turbations, which leads to the stability of these algorithms against general perturbations.

Furthermore, these error bounds are compared with that of oracle LS solution with the loca-

tions of K largest entries in magnitude known a priori. Since the error bounds of CoSaMP,
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Table 3: The Pseudo Code of CoSaMP

Initialization

1. l = 0;

2. s[0] = 0, r = y;

Repeat

3. l = l + 1;

4. u = ATr, Ω = supp (u2K);

5. S̃ = Ω ∪ supp
(
s[l−1]

)
;

6. bS̃ = A†
S̃
y, bS̃c = 0;

7. s[l] = bK , r = y −As[l];

Until stopping criterion is satisfied

SP, and IHT algorithms are of the same order as the lower bound of oracle solution for

some certain signal and perturbations, it can be concluded that these greedy pursuits with

replacement can provide oracle-order recovery performance against general perturbations.

Numerical simulations verify that the relative recovery errors of these algorithms are linear

in both perturbations, and they exhibit oracle-order recovery performance. Discussions and

simulations also reveal how moderate parameter K achieves better recovery performance

for compressible signals.

Appendix A Discussions of Algorithms

Greedy pursuits with replacement are briefly introduced in Section II-B. The pseudo codes

of CoSaMP, SP, and IHT are demonstrated in Table 3, Table 4, and Table 5, respectively.

The definitions of the symbols are presented in Section III-A, and supp(u) denotes the

support set of u.

Based on Theorem 1, two remarks are derived as follows.

Remark 4 In the noiseless scenario, after finite iterations, the recovered solutions of

CoSaMP and SP are guaranteed to be identical to the sparse signal s. The result can be

verified through the following statement.

Suppose smin is the smallest magnitude of the nonzero entries of s. Then after

l =

⌊
logC

(
smin

a ‖s‖2

)⌋
+ 1

iterations, the recovered solution s[l] obeys∥∥s− s[l]
∥∥
2
< smin. (70)
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Table 4: The Pseudo Code of SP

Initialization

1. l = 0;

2. u = ATy, S0 = supp (uK);

3. s
[0]
S0

= A†
S0

y, s
[0]
(S0)c

= 0;

4. y0
r = y −As[0];

Repeat

5. l = l + 1;

6. u = ATyl−1
r , Ω = supp (uK);

7. S̃l = Ω ∪ Sl−1;

8. sp = A†
S̃l

y, Sl = supp
(
(sp)K

)
;

9. s
[l]

Sl
= A†

Sl
y, s

[l]

(Sl)c
= 0;

10. yl
r = y −As[l];

Until stopping criterion is satisfied

If the support of s is perfectly recovered, then for CoSaMP and SP, the solution is already

identical to s. Otherwise, at least one nonzero entry is not detected, thus the recovery

error is no less than smin, which contradicts (70). Notice that the solution of IHT does

not possess the above property, since exact support recovery for IHT does not imply exact

signal recovery.

Remark 5 According to (10), after

l =

⌈
logC

(
‖e‖2
a ‖s‖2

)⌉
iterations, the error bound of the recovered solution satisfies∥∥s− s[l]

∥∥
2
≤ (D + 1) ‖e‖2 , (71)

which means that the error bound is proportional to the `2 norm of the noise, and the

recovery performance of greedy pursuits with replacement is stable in this scenario.

Appendix B Proof of Theorem 1

Proof For CoSaMP algorithm, the inequality (8) can be obtained by following the steps

of the proof of Theorem 4.1 in [21], while preserving RICs during the derivation. As for

the second part of the theorem, it is easy to derive that if δ4K < 0.171, then C < 1. By
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Table 5: The Pseudo Code of IHT

Initialization

1. l = 0;

2. s[0] = 0;

Repeat

3. l = l + 1;

4. u = AT
(
y −As[l−1]

)
;

5. s[l] =
(
s[l−1] + u

)
K

;

Until stopping criterion is satisfied

recursion, it can be proved from (8) that∥∥s− s[l]
∥∥
2
≤ C l

∥∥s− s[0]
∥∥
2

+
C1

1− C
‖e‖2 , (72)

which arrives (10).

For IHT algorithm, the inequality (8) is directly derived in the proof of Theorem 5

in [23]. Similar to CoSaMP, the second part of the theorem can also be proved from (8).

For SP algorithm, the result cannot be directly found in [22]. However, it can be proved

based on several facts about SP in [22], and they are stated here without proofs.

Lemma 3 (Lemma 3 in [22]) Let s ∈ RN be a K-sparse vector, and ỹ = As + e is a

noisy measurement vector where A ∈ RM×N satisfies the RIP with parameter δ3K . For an

arbitrary set Ŝ ⊂ {1, . . . , N} such that |Ŝ| ≤ K, define ŝ as

ŝŜ = A†
Ŝ
ỹ, ŝŜc = 0. (73)

Then

‖s− ŝ‖2 ≤
1

1− δ3K

∥∥∥sS−Ŝ∥∥∥2 +
1 + δ3K
1− δ3K

‖e‖2 . (74)

Lemma 4 (Theorem 10 in [22]) It holds that∥∥sS−S̃l∥∥2 ≤ 2δ3K

(1− δ3K)2
∥∥sS−Sl−1

∥∥
2

+
2 (1 + δ3K)

1− δ3K
‖e‖2 ,∥∥sS−Sl∥∥2 ≤ 1 + δ3K

1− δ3K
∥∥sS−S̃l∥∥2 +

2

1− δ3K
‖e‖2 .

Therefore

∥∥sS−Sl∥∥2 ≤ 2δ3K + 2δ23K
(1− δ3K)3

∥∥sS−Sl−1

∥∥
2

+
4(1 + δ3K)

(1− δ3K)2
‖e‖2 .
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Lemma 4 directly implies inequality (9). It’s easy to check that if δ3K ≤ 0.206, then

C < 1, and ∥∥sS−Sl∥∥2 ≤ C l ‖sS−S0‖2 +
C1

1− C
‖e‖2

≤ C l ‖s‖2 +
C1

1− C
‖e‖2 . (75)

Applying Lemma 3 to (75) and with the fact that δ3K ≤ 0.206, inequality (10) can be

derived.
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