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Abstract—We consider a multiple-input multiple-output
(MIMO) interference channel (IC), where a single data stream
per user is transmitted and each receiver treats interference as
noise. The paper focuses on the open problem of computing
the outermost boundary (so-called Pareto boundary-PB) of the
achievable rate region under linear transceiver design. The Pareto
boundary consists of the strict PB and non-strict PB. For the
two user case, we compute the non-strict PB and the two ending
points of the strict PB exactly. For the strict PB, we formulate
the problem to maximize one rate while the other rate is fixed
such that a strict PB point is reached. To solve this non-convex
optimization problem which results from the hard-coupled two
transmit beamformers, we propose an alternating optimization
algorithm. Furthermore, we extend the algorithm to the multi-
user scenario and show convergence. Numerical simulations
illustrate that the proposed algorithm computes a sequenceof
well-distributed operating points that serve as a reasonable and
complete inner bound of the strict PB compared with existing
methods.

Index Terms—multiple-input multiple-output (MIMO) inter-
ference channel (IC), Pareto boundary, alternating optimization,
semidefinite programming, fractional programming.

I. I NTRODUCTION

I N wireless cellular systems, multiple sectors of different
cells share the same time-frequency resource for com-

munication in order to increase the spectral efficiency and
occupancy level, while inter-cell interference brings a strong
inter-cell coupling and limits the performance. In this paper,
we consider first a two-cell environment, where each cell
has a base station (BS) with multiple antennas and a mobile
station (MS) with multiple antennas. Each BS is intended to
communicate with the MS in its own cell while simultaneously
interferes the MS in the other cell. And then a multi-cell
scenario consisting of multiple interfering BS-MS links will
be also considered later. These scenarios are modeled as a two
or multi-user MIMO interference channel (IC). The IC is char-
acterized by its capacity region, defined as the set of largest
rates that can be simultaneously achieved by the users in the
system while making the error probability arbitrary small.A
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pragmatic approach that leads to an achievable region or inner
bound of the capacity region is based on two assumptions. i)
The class of encoding strategies are constrained to use random
Gaussian codebooks; ii) The decoders are restricted to treat the
interference as Gaussian noise. Herein, based on these two
assumptions, we desire to find thecomplete achievable rate
region by linear transceiver design.

Form the perspective of optimization, it is well-known
that a bi/multi-objective optimization problem usually admits
infinite number ofnoninferior solutions (theoretical limits),
which form the outermost boundary of achievable performance
region, so-calledPareto boundary[1]. A noninferior solution
on the Pareto boundary is considered to be Pareto-optimal
in the sense that no other solution can improve the perfor-
mance of some objectives without reducing other objective(s).
Generally, it is hard to find the Pareto boundary efficiently,
but it is significant to study it in order to determine optimal
system operations based on Pareto-optimal rate tuples and their
associated strategies. In this paper, we propose an algorithm to
compute the complete Pareto boundary1 for the two/multi-user
MIMO single-stream IC through linear transceiver design.

How to design linear transceiver schemes to achieve the
Pareto boundary has attracted intensive research for several
decades. A brief, comprehensive, yet non-exhaustive review
of the related works is given as follows.

Parameterization Approaches: The Pareto boundary is
characterized by a few parameters. For a two-user multiple-
input single-output (MISO) IC, the authors proposed a neces-
sary condition for Pareto-optimal transmit beamformers, i.e.,
linear combinations of zero-forcing (ZF) and maximum-ratio
transmission (MRT) beamformers with two[0, 1]-parameters
[2]. This parameterization is later used to derive a characteriza-
tion with only a single parameter in [3], [4]. A general frame-
work for parameterizing Pareto-optimal transmit strategies for
multi-user MISO IC was proposed in [5], which is applicable
when the utility functions of the systems are monotonic in
the received power gains. In [6], the authors proposed a
parametrization to characterize the Pareto boundary of the
multi-cell MIMO performance region under an assumption
that each receiver has only a single effective antenna, while
this limiting assumption, in fact, degrades the MIMO IC to
the MISO IC.

Computation Approaches: Different from the parameter-

1When referring to Pareto boundary, we mean the Pareto boundary of
achievable rate region unless otherwise specified hereafter.
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ization schemes, another approach is to compute a Pareto
boundary point directly. One branch is to maximize the rate
of one user for a fixed rate of the other users (e.g., in two-
user MISO IC [7] and in two-user MIMO IC [8]). Another
important branch is to find the intersection point between the
Pareto boundary and a ray from the origin (e.g., so-called rate
profiles approach in the multi-user MISO IC [9], [10]). The
computations approaches are able to compute thewholePareto
boundary, if the optimization problems are solved optimally.

Weighted Sum Maximization Approaches: A standard
technique for generating the Pareto-optimal solutions to multi-
objective optimization problems is to maximize weighted sums
of the different objectives for various different settingsof
the weights. Generally, the weighted sum rate maximization
problem for multi-user IC is non-convex. For the multi-user
SISO IC, the MAPEL algorithm proposed in [11] transformed
the weighted sum rate maximization into a generalized lin-
ear fractional programming problem, which can be solved
optimally. In [12], the authors jointly utilized the monotonic
optimization and rate profile techniques to solve the weighted
sum rate maximization optimally at the cost of computation
load in multi-user SISO/MISO/SIMO IC. However, it is NP-
hard to obtain a global optimal solution of the weighted sum
rate maximization for a multi-user MIMO IC (e.g., in [13]).
In particular, most algorithms focus on finding only a single
sum-rate maximum point, e.g., for the two-user MIMO IC
based on pricing in [14], for the two-user MIMO IC based
on approximation of sum rate in [15], for the single-stream
MIMO IC based on balancing the egoistic and the altruistic
behavior in [16], and for the multi-user MIMO IC based
on interference alignment in [17]. However, it is well-known
that the weighted sum maximization method has two major
drawbacks [18]: i) If the Pareto boundary is not convex, there
does not exist any weight corresponding to the points on
the nonconvex part. Increasing the number of steps of the
weighting factor does not resolve this problem; ii) Even if the
Pareto boundary is convex, an even spread of weights does
not produce an even spread of points on the Pareto boundary.
Therefore, weighted sum rate maximization is not a promising
method to performthe complete Pareto boundary, especially
the non-convex boundary.

Game Theoretic Approaches:Game theory as a useful
tool has been widely applied to resource allocation in multi-
user IC by studying the conflicting or cooperative behavior
of the users. Distributed optimization algorithms based on
iterative water-filling for the MIMO IC (e.g. [19], [20]) can
be modeled as non-cooperative games, where each user is
considered as a player that attempts to maximize its own utility
selfishly. Such approaches may not converge in general or
may converge to the Nash equilibrium (NE). It is well known
that the Nash equilibrium isoften not Pareto-optimal [21],
since the best achievable performance characterized by Pareto
boundary represents the set of optimal trade-offs among these
conflicting/competing users’ objectives. The trade-off ofdif-
ferent users needs to be optimized by cooperative algorithms
to achieve their joint outcome [22].

A direct improvement from NE to Nash bargaining (NB)
by cooperation for the MIMO IC has been studied in [23],

where the case is studied in which the interference-plus-
noise covariance matrix of each user approaches an identity
matrix and the rate region becomes convex. A main branch
of cooperative algorithms is the interference-pricing based
method, where each user updates its own strategy to maximize
its own utility minus the interference cost determined by the
interference prices, which reflect the marginal change in utility
per unit interference power. This distributed interference-
pricing algorithm has been used to solve (weighted) sum-rate
maximization problems for the multi-user SISO and MISO IC
[24], multi-user single-stream MIMO IC [25], two-user MIMO
IC [14]. A different pricing scheme is to balance the egoistic
and altruistical strategies with different weights (i.e.,prices),
e.g., for the two-user MISO IC [4], [26] and for the multi-
user single-stream MIMO IC [16]. In [16], the suboptimal
maximum sum rate is achieved, although no convergence
analysis is provided. However, most distributed cooperative
algorithms for the MIMO IC (e.g., distributed pricing based
algorithms [14], [25]) focus on maximizing (weighted) sum-
utility rather than computing the whole utility region.

In fact, most approaches of parameterization, computation
and weighted sum maximization are coordinated/cooperative
algorithms, although they are not described in a game theoretic
way.

For the MIMO IC, the achievable rate depends on both
transmit and receive strategies involved in a more hard-
coupling and complex expression than the MISO IC such
that it is not straightforward to extend theimplicit or explicit
schemes achieving the complete Pareto boundary for the MISO
IC to the MIMO IC. In order to illustrate thecomplete Pareto
boundary, we formulate a computation problem to maximize
one rate while keeping the rate of the other users unchanged
such that one rate can increase always along the same direction
in the rate region until the boundary is reached. However
in this computation problem, the hard-coupled beamformers
exist not only in the objective but also in the constraints,
which makes this beamformers optimization problems non-
convex (even NP-hard). Therefore in this paper, as most
current references on the MIMO IC, we focus on finding
high quality sub-optimal operating points efficiently. Ourmain
contributions are described as follows.

i) First, the two-user single-stream MIMO IC is firstly
studied: a) We propose an equivalent form of the SINR
expression based on the Hermitian angle (Proposition 1 in
Section II-B), which gains more insight into the coupling
of the transmit beamformers; b) We prove that the strict
Pareto-optimal transmit power allocation policy is full
power allocation at both the transmitters (Proposition 2
in Section III-A); c) The non-strict Pareto boundary, two
ending points of strict Pareto boundary, and certain ZF
points are computed exactly. (Section III-B).

ii) To compute the strict Pareto boundary of the two-user
single-stream MIMO IC, we formulate a problem to
maximize one rate while the other rate is fixed. This non-
convex optimization problem is solved by the proposed
alternating optimization algorithm [27] such that a con-
vergent point is guaranteed to be achieved (Section IV
A-C).



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MONTH YEAR 3

iii) The proposed optimization algorithm can be extended to
the multi-user scenario (Section IV-D).

Notation: (·)∗, (·)T , (·)H , (·)†, Rank(·) andTr(·) denote
complex conjugate, transpose, Hermitian and Moore-Penrose
pseudo inverse, rank and trace, respectively.| · |, ℜ(·), and
j denote the absolute value, the real part of a complex-
valued number, and the imaginary unit, respectively.‖x‖=√
xHx and−→x = x

‖x‖ denote the vector 2-norm and vector
direction, respectively.⊥, ‖ and ∦ denote perpendicularity,
parallelity and unparallelity, respectively.CN (0,X) denotes
a complex circularly-symmetric jointly-Gaussian probability
density function with zero mean and covariance matrixX.
X � 0 or X ≻ 0 meansX is a positive semidefinite matrix
or a positive definite matrix.λi(X) and ui(X) denote the
i-th largest eigenvalue ofX and its corresponding eigen-
vector, respectively.λi(X ,Y ) andui(X ,Y ) denote thei-th
largest generalized eigenvalue ofX,Y and its corresponding
eigenvector, respectively.ΠX

∆
= X(XHX)−1XH denotes

the orthogonal projection onto the column space ofX, and
Π⊥

X

∆
= I − ΠX denotes the orthogonal projection onto the

orthogonal complement of the column space ofX.

II. SYSTEM MODEL

A. Signal Model

Consider a two-user MIMO IC denoted byTXi 7→ RXi, i =
1, 2, where each transmitterTXi and each receiverRXi are
equipped withNT ≥ 2 andNR ≥ 2 antennas and a single data
stream is transmitted in each user. In this IC, the received data
at RXi is modeled as

yi = gHi (Hiiwixi +Hkiwkxk + ni) , i, k ∈ {1, 2}, k 6= i

wherexi ∼ CN (0, 1) is the transmitted symbol ofTXi by
the transmit beamformerwi ∈ CNT×1. At RXi, gi ∈ CNR×1

is the receive beamformer, andni ∈ CNR×1 ∼ CN (0, σ2
i I)

is the additive white Gaussian noise (AWGN) vector. The
matricesHii,Hki ∈ CNR×NT denote the flat fading channel-
matrix of the direct linkTXi 7→ RXi and the cross-talk
link TXk 7→ RXi, respectively. Each transmitter has a
power constraint that we, without loss of generality, set to
1 and define the set of feasible transmit beamformers as
W ∆

=
{

w ∈ CNT×1 : ‖w‖2 ≤ 1
}

.

B. Rate with MMSE Receiver

Assume that the interference from the other transmitter
is treated as additive Gaussian noise at each receiver. The
achievable rate of the linkTXi 7→ RXi is given by:

Ri(w1,w2, gi) = log2
(
1 + SINRi(w1,w2, gi)

)
, (1)

where SINRi(w1,w2, gi) =
|gH

i Hiiwi|2
σ2
i +|gH

i Hkiwk|2 . In the linear
transceiver design, it is well known that the MMSE filter
is the optimal receiver for given transmit strategies. In this
paper, the MMSE filtergi =

(
σ2
i I + Hiiwiwi

HH ii
H +

Hkiwkwk
HHki

H
)−1

Hiiwi is employed atRXi. Then,

SINRi(w1,w2, gi) becomes

SINRi(w1,w2)

= wH
i HH

ii

(
σ2
i I +Hkiwkwk

HHki
H
)−1

H ii
︸ ︷︷ ︸

∆
=Ai(wk)

wi. (2)

The complex mathematical structure (inverse of the sum of
matrices and product of matrices) causes a hard-coupling
problem ofw1 andw2 in the SINR in (2), which makes it
difficult to analyze the SINR directly. To gain an insight into
this coupling problem, we propose an equivalent form of the
SINR expression.

Proposition 1 For the two-user single-beam MIMO IC, the
SINR in (2) can be reformulated as

SINRi(w1,w2) =

sin2(θH,i)
‖Hiiwi‖2

σ2
i

+ cos2(θH,i)
‖Hiiwi‖2

σ2
i + ‖Hkiwk‖2

, (3)

wherecos(θH,i) =
∣
∣
−−−−→
Hiiwi

H
· −−−−→Hkiwk

∣
∣ and θH,i ∈ [0, π/2].�

Proof: See Appendix A.
Note that theSINRi(w1,w2) can be considered as a

combination of‖Hiiwi‖2

σ2
i

and ‖Hiiwi‖2

σ2
i +‖Hkiwk‖2 with the weights

sin2(θH,i) and cos2(θH,i). That is,SINRi(w1,w2) depends
not only on the desired signal power‖Hiiwi‖2 and the
interference power‖Hkiwk‖2, but also on the Hermitian
angle θH,i between the directions

−−−−→
H iiwi and

−−−−→
Hkiwk. The

SINR is coupled in a difficult way because of the existence of
θH,i. This is why it is more difficult to analyze the SINR of
a MIMO IC than that of a MISO IC.

III. PARETO BOUNDARY AND COMPUTATION OF SOME

KEY POINTS

A. Pareto Boundary

The achievable rate region is defined as a set of the
achievable rate pairs with all the feasible beamformers

R ∆
=

⋃

w1,w2∈W
(R1(w1,w2), R2(w1,w2)) .

Note that the achievable rate regionR is not the capacity
region. Its outermost boundary is called Pareto boundary in
this paper, which can be denoted by a setR⋆ ∆

=
⋃
(R⋆1, R

⋆
2)

where (R⋆1, R
⋆
2) is a Pareto-optimal point. More precisely,

Pareto-optimality is defined as follows.

Definition 1 A rate pair (R⋆1 , R
⋆
2) ∈ R is [strict] Pareto-

optimal iff there does not exist another rate pair(R1, R2) >
(R⋆1, R

⋆
2) [(R1, R2) ≥ (R⋆1, R

⋆
2) and (R1, R2) 6= (R⋆1 , R

⋆
2)]

with (R1, R2) ∈ R, where the inequality is component-wise.�

As shown in Fig. 1, the Pareto boundary consists of thestrict
Pareto boundary(the upperright part graphically, denoted by
”strict PB”) and thenon-strict Pareto boundary(including the
vertical part and the horizontal part graphically, denotedby
”non-strict PB”), divided by ”E1” and ”E2”. ”E1” and ”E2”,
”SU1” and ”SU2” mean two ending points of the strict Pareto
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R1

R2

SU1

E1

E2
SU2

R
⋆
2

R⋆
1

strict
P
B

non-strict PB

Fig. 1. Achievable rate region and Pareto boundary in two-user case

boundary and two single user points, which will be studied
in Section III-B. More precisely, for an arbitrary point on the
strict Pareto boundary, it is impossible to improve one rate
without simultaneously decreasing the other. For a point onthe
non-strict Pareto boundary, one rate can be further improved
while the other rate remains the maximum rate. In particular,
the strict Pareto boundary can be characterized as follows.

Proposition 2 For the two-user single-stream MIMO IC, all
the operating points on the strict Pareto boundary can be
achieved only when both the transmitters spend the full power,
i.e., ‖w1‖2= ‖w2‖2= 1. �

Proof: See Appendix B.

Remark 1 In fact, Proposition 2 has solved a strict Pareto-
optimal transmit power allocation problem in this scenario.
When the strict Pareto-optimal power allocation policy is
employed, i.e., both the transmitters spend the full power,the
two strict Pareto-optimal transmit beamformers design reduces
to the optimization of two transmit beamforming patterns.�

Here, we define a set of all the beamformers with full transmit
power asWFP

∆
=
{

w ∈ CNT×1 : ‖w‖2 = 1
}

Note that all
the strict Pareto-optimal transmit beamformers should be in
the setWFP .

B. Computation of Some Key Points

In this part, we compute exactly the non-strict Pareto
boundary, two ending points of the strict Pareto boundary and
certain ZF operating points.

1) Single-User Points SU1(R1, 0) and SU2(0, R2): A
single-user point can be easily achieved when only oneTXi
works and simultaneously operates ”egoistically” to maximize
its own rate. The maximum achievable rateRi of the link
TXi 7→ RXi and its associated ”egoistic” strategywEgo

i are

Ri = log2

(

1 +
λ1(H

H
iiHii)

σ2
i

)

, w
Ego
i = u1(H

H
iiHii) ∀i.

(4)

2) Ending Points of Strict Pareto Boundary E1(R1, R2)
and E2(R1, R2): Each ending point of the strict Pareto
boundary can be achieved when one transmitter employs an

”altruistic” strategy to create no interference to the other
receiver and simultaneously to maximize its own rate and the
other transmitter operates ”egoistically”. ForE1(R1, R2), we
easily find from (3) thatθH,1 = π/2 results in no interference
in the cross-talk linkTX2 7→ RX1. How to find the ”altruistic”
strategywAlt

2 is shown as follows.

Proposition 3 E1(R1, R2) can be achieved by(wEgo
1 ,wAlt

2 ),
whereR1 andw

Ego
1 are in (4) and

R2 = log2

(

1 +w
Alt,H
2 A2(w

Ego
1 )wAlt

2

)

,

wAlt
2 =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Π⊥

HH
21H11w

Ego
1

u1

(

B1,Π
⊥
HH

21H11w
Ego
1

)

, (5)

with B1
∆
= Π⊥

HH
21H11w

Ego
1

A2(w
Ego
1 )Π⊥

HH
21H11w

Ego
1

. �

Proof: See Appendix C.
Similarly, E2(R1, R2) with (wAlt

1 ,wEgo
2 ) can be easily

obtained by interchanging the indices.
3) Non-strict Pareto-Optimal Points (R⋆1, R

⋆
2): For the

non-strict Pareto boundary, either the horizontal part or the
vertical part starts and ends with a single user point and an
ending point. Therefore, an arbitrary point(R⋆1, R

⋆
2) on the

non-strict Pareto boundary can be computed as

R⋆i = γ ·Ri and R⋆k = Rk, ∀i, k ∈ {1, 2}, k 6= i

wherei = 1 and i = 2 correspond to the horizontal part and
the vertical part, respectively. The scalarγ satisfiesγ ∈ [0, 1).
The point(R⋆1 , R

⋆
2) becomes a single-user point or an ending

point whenγ = 0 or γ = 1, respectively. The associated non-
strict Pareto-optimal transmit strategies are

w⋆
i =

√
γ ·wAlt

i and w⋆
k = w

Ego
k ,

from which we find that it is not necessary for both the
transmitters to spend full power simultaneously to achieve
the non-strict Pareto boundary. Thus, the non-strict Pareto-
optimal power allocation policy is different from the strict
Pareto-optimal power allocation policy (Proposition 2).

4) Zero-Forcing (ZF) Points ZF (RZF1 , RZF2 ): ZF points
are achieved when there is no interference between different
users. Although these points are not on the Pareto boundary,
it is still interesting to study ZF strategies if there exsits
an additional requirement (like interference temperatureor
secrecy constraints) that each transmitter does not leak its own
signal to other receivers.

In (3), we find that θH,1 = θH,2 = π/2 results in
no interference in the cross-talk linksTX2 7→ RX1 and
TX1 7→ RX2 simultaneously. The ZF conditions are

θH,1 = π/2 ⇔ −−−−→
H11w1

H
· −−−−→H21w2 = 0

⇔ H11w1 ⊥ H21w2 ⇔ w2 ⊥ HH
21H11w1,

θH,2 = π/2 ⇔ −−−−→
H22w2

H
· −−−−→H12w1 = 0

⇔ H22w2 ⊥ H12w1 ⇔ w2 ⊥ HH
22H12w1, (6)

from which and under a sufficient (and necessary only when
NT = NR = 2) condition2, i.e., HH

21H11w1 ‖ HH
22H12w1,

2This condition is the same as that in [15], while we derive it from a
different perspective (Hermitian angle in (3)).
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we obtain some of the ZF transmit strategies

wZF
1 = uℓ(H

H
22H12,H

H
21H11), ∀ℓ ∈ {1, 2, ..., NT},

wZF
2 =

NT−1∑

ℓ=1

cℓuℓ(Π
⊥
HH

21H11w
ZF
1

), (7)

where {cℓ}NT−1
ℓ=1 are complex-valued numbers and satisfy

∑NT−1
ℓ=1 |cℓ|2 = 1.
TheZF (RZF1 , RZF2 ) can be achieved by(wZF

1 ,wZF
2 ) as

RZFi (wZF
i ,wZF

2 ) = log2

(

1 +
‖Hiiw

ZF
i ‖2

σ2
i

)

∀i. (8)

IV. COMPUTATION OF THESTRICT PARETO BOUNDARY

Since the rate region of the two-user single-beam MIMO
IC is always a normal region3 according to Proposition 2,
there exists only one intersection point between the line
Ri(w1,w2) = R⋆i where R⋆i ∈ (Ri, Ri) and the strict
Pareto boundary. Thus, an arbitrary point on the strict Pareto
boundary can be uniquely determined when one rate is fixed
and the other rate is maximized. This motivates us to propose
the following optimization problem

(P0)

{
max

w1,w2∈WFP

SINR1(w1,w2)

s.t. SINR2(w1,w2) = SINR⋆2.

where SINR⋆2 ∈ (2R2 − 1, 2R2 − 1) is a
SINR constraint, and w1,w2 should be in WFP
according to Proposition 2. Then,(R⋆1, R

⋆
2) =

(log2 (1 + SINR1(w
⋆
1,w

⋆
2)) , log2 (1 + SINR⋆2(w

⋆
1,w

⋆
2)))

is achieved by the optimal solution(w⋆
1,w

⋆
2) to (P0).

For (P0), direct joint optimization ofw1 andw2 is ana-
lytically intractable due to the hard-coupling problem of them
in both the objective and the constraints. To solve(P0), an
alternating optimization algorithm [27] is applied to optimize
w1 and w2 alternatively by solving two single-beamformer
optimization problems at each iteration. In the following,how
to solve each single-beamformer problem is studied.

A. Optimization ofw1

For a given feasible w2 (the feasibility of w2 will be
studied in Proposition 4), the problem(P0) becomes a single-
beamformer optimization problem w.r.t.w1. Its constraint is

wH
2 HH

22

(
σ2
2I +H12w1w1

HH12
H
)−1

H22w2 = SINR⋆2

(a)⇔wH
2 HH

22H22w2 −
|wH

2 HH
22H12w1|2

σ2
2 + ‖H12w1‖2

= σ2
2SINR

⋆
2,

(b)⇔w1
HHH

12H22w2w
H
2 HH

22H12w1

wH
1 (σ2

2I +HH
12H12)w1

= wH
2 HH

22H22w2 − σ2
2SINR

⋆
2, (9a)

(c)⇔wH
1 C(w2)w1 = 0 and wH

2 HH
22H22w2 ≥ σ2

2SINR
⋆
2.

(9b)

3A setG ⊆ R+
n is called a normal region if for any two pointsx ∈ G,x′ ∈

R+
n such that ifx′ ≤ x, thenx′ ∈ G, too.

The transformation(a) is based on the matrix inverse lemma.
The transformation(b) is due to‖w1‖2= 1. In the transfor-
mation (c), the nonnegative left-hand side of (9a) demands
wH

2 HH
22H22w2 ≥ σ2

2SINR
⋆
2, andC is a Hermitian matrix

defined as

C(w2)
∆
= HH

12H22w2w
H
2 HH

22H12

− (wH
2 HH

22H22w2 − σ2
2SINR

⋆
2) · (σ2

2I +HH
12H12). (10)

Then,w1 can be optimized by

(P1)

{
max

w1∈WFP

wH
1 A1(w2)w1

s.t. w1
HC(w2)w1 = 0

whereC(w2) andA1(w2) are Hermitian matrices. Observe
that the problem(P1) is a homogeneous quadratically con-
strained quadratic program (QCQP) and the objective function
is convex but the convexity of constraints is unclear. Generally,
it is difficult to solve this non-convex problem.

Note thatwH
1 Xw1 = Tr(XW 1) for any matrixX, where

W 1 = w1w
H
1 is a rank-one Hermitian positive semidefinite

matrix. By the semidefinite programming and rank relaxation
(SDR) method,(P1) can be transformed to

(P2)







max
W 1�0

Tr (A1(w2)W 1)

s.t. Tr (C(w2)W 1) = 0

Tr (W 1) = 1.

Observe that the SDR(P2) is convex and solvable, i.e., its
respective finite optimal solutions exist for a feasiblew2,
based on Weierstrass’ Theorem. Its optimal solutionW ⋆

1 is
efficiently obtained by a convex optimization toolbox, e.g.,
SeDuMi [28] or CVX [29]. However, the rank ofW ⋆

1 to
(P2) is usually more than one because we have discarded
the rank constraintRank(W 1) = 1. Therefore, we need to
extract an optimal rank-one solutionw1 to (P1) from W ⋆

1. If
Rank(W ⋆

1) = 1, it is clearw1 = u1(W
⋆
1). Otherwise, other

tight matrix rank-one decomposition methods are needed. In
[30], Ai et al. have proven a matrix rank-one decomposition
theorem and used it to show thatthe SDRs of a large class
of complex-valued homogeneous QCQPs with not more than
4 constraints are in fact tight4. Since the problem(P1) as a
homogeneous QCQP with 2 constraints, an optimalw1 to the
QCQP(P1) can be reconstructed fromW ⋆

1 to the SDR(P2)
based on the theorem and algorithm of the matrix rank-one
decomposition in [30].

Remark 2 In (P1), if C(w2) is a positive/negative semidef-
inite matrix without full rank,w1 should and must be in
the null space ofC(w2) to satisfy wH

1 C(w2)w1 = 0.
According to the proof in Appendix C,w1 can be expressed

by
−−−−−−→
U1U

H
1 p1 whereU1 ∈ CNT×(NT−Rank(C(w2))) consists

of NT − Rank(C(w2)) eigenvectors corresponding to zero

4Note that the application of Theorem 2.2 and Theorem 2.3 in [30] needs
NT ≥ 3. It implies thatTXk ∀k should haveNT ≥ 3 antennas in our
scenario.
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eigenvalues ofC(w2). Then,(P1) is equivalent to

max
p1∈CNT ×1

pH1 U1U
H
1 A1(w2)U1U

H
1 p1

pH1 U1U
H
1 p1

, (11)

from which it is easy to derive the optimal solutionpopt1 =
u1

(
U1U

H
1 A1(w2)U1U

H
1 ,U1U

H
1

)
. Therefore, the optimal

solution to(P1) is w1 =
−−−−−−−→
U1U

H
1 p

opt
1 . �

B. Optimization ofw2

For a given feasible w1, (P0) becomes another single-
beamformer optimization problem w.r.t.w2. Maximization of
its objective function is

max
w2∈WFP

wH
1 HH

11

(

σ2
1I +H21w2w

H
2 HH

21

)−1

H11w1

⇐⇒ max
w2∈WFP

wH
1 HH

11H11w1 −
|wH

1 HH
11H21w2|2

σ2
1 +w2

HHH
21H21w2

⇐⇒ min
w2∈WFP

|wH
1 HH

11H21w2|2
σ2
1 +w2

HHH
21H21w2

⇐⇒ min
w2∈WFP

w2
HC1(w1)w2

wH
2 C2w2

(12)
whereC1(w1)

∆
= HH

21H11w1w
H
1 HH

11H21 andC2
∆
= σ2

1I+
HH

21H21 are Hermitian matrices.
Then,w2 can be optimized by

(P3)







min
w2∈WFP

w2
HC1(w1)w2

wH
2 C2w2

s.t. wH
2 A2(w1)w2 = SINR⋆2.

Observe that(P3) is a fractional QCQP problem. The ob-
jective function is not even a quasi-convex function due to
the convexity of both the nominator function and denominator
function. To deal with this problem, we transform it by the
SDR to

(P4)







min
W 2�0

Tr
(
C1(w1)W 2

)

Tr
(
C2W 2

)

s.t. Tr
(
A2(w1)W 2

)
= SINR⋆2

Tr
(
W 2

)
= 1,

which is still a non-convex problem. Fortunately, the fractional
structure can be removed by a variation of the Charnes-Cooper
variable transformation [31]. Define the transformed variable
Q = sW 2 with s = 1

Tr
(
C2W 2

) . Then,(P4) becomes

(P5)







min
Q, s

Tr
(
C1(w1)Q

)

s.t. Tr
(
A2(w1)Q

)
= s · SINR⋆2

Tr
(
C2Q

)
= 1, Tr

(
Q
)
= s

Q � 0,
1

λ1(C2)
≤ s ≤ 1

λN (C2)
.

which is a convex problem w.r.t.Q ands and solvable (see the
Appendix D). By a convex optimization toolbox, we can obtain
the optimal solution(Q⋆, s⋆). Then, the optimal solution to
(P4) can be easily obtained byW ⋆

2 = Q⋆

s⋆ . Observe that(P3)
is equivalent to a homogeneous QCQP with 3 constraints.

Therefore, by the matrix rank-one decomposition method, an
optimal rank-one solutionw2 to (P3) can be extracted from
W ⋆

2 whenRank(W ⋆
2) > 1.

Remark 3 In (P3), if D
∆
= A2(w1) − SINR⋆2 · I is a

positive/negative semidefinite matrix without full rank,w1

should and must be in the null space ofD to satisfy
wH

2 Dw2 = 0. According to the proof in Appendix C,w2 can

be expressed by
−−−−−−→
U2U

H
2 p2 whereU2 ∈ CNT×(NT−Rank(D))

consists ofNT−Rank(D) eigenvectors corresponding to zero
eigenvalues ofD. Then,(P3) is equivalent to

max
p2∈CNT ×1

pH2 U2U
H
2 C1(w1)U2U

H
2 p2

pH2 U2U
H
2 C2U2U

H
2 p2

, (13)

from which it is easy to derive the optimal solu-
tion p

opt
2 = u1

(
U2U

H
2 C1(w1)U2U

H
2 ,U2U

H
2 C2U2U

H
2

)
.

Therefore, the optimal solution to(P3) isw2 =
−−−−−−−→
U2U

H
2 p

opt
2 .�

C. Algorithm

In this section, algorithm discussions are given to gain some
insights into the proposed alternating optimization algorithm.

1) Algorithm Description: A feasible initialw2 for opti-
mization ofTX1 can be obtained as follows.

Proposition 4 For a given SINR⋆2 ∈ (2R2 − 1, 2R2 − 1),
(w1,w2) is always a feasible solution pair to(P0) if w1 ∈
WFP , w2 ∈ WF with

WF
∆
=
{

w2 ∈ WFP : wH
2 HH

22H22w2 ≥ σ2
2SINR

⋆
2,

λ1

(
C(w2)

)
· λNT

(
C(w2)

)
≤ 0
}

, (14)

whereC(w2) is defined in (10). �

Proof: See Appendix E.
That is,(P1) equivalent to(P0) with a fixedw2 ∈ WF always
has at least one feasible pointw1 in WFP (more analysis of
initialization will be given in Section IV-C-2).

The proposed alternating optimization algorithm with any
initial w2 ∈ WF is described in pseudo-code as Algorithm 1:

Algorithm 1 Two-User Alternating Optimization Algorithm

Input : wAlt
2 , w

Ego
2 , an arbitrary R⋆2 ∈

(
R2, R2

)
, and

SINR⋆2 = 2R
⋆
2 − 1.

Output : A convergent point(R(ℓ)
1 , R⋆2) by (w

(ℓ)
1 ,w

(ℓ)
2 ).

begin
Initialization: Set a feasiblew(0)

2 ∈ WF , ℓ = 0.
while some convergence criterion is not satisfieddo

ℓ ++.
Givenw

(ℓ−1)
2 , obtain an optimalW 1 to (P2).

Extract an optimalw(ℓ)
1 from W 1 to (P1);

Given w
(ℓ)
1 , obtain an optimal(Q, s) to (P5) and an

optimalW 2 = Q
s to (P4).

Extract an optimalw(ℓ)
2 from W 2 to (P3).

ComputeR(ℓ)
1 = log2

(
1 +w

(ℓ),H
1 A1(w

(ℓ)
2 )w

(ℓ)
1

)
.
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2) Algorithm Analysis: In this section, we discuss the pro-
posed algorithm in the following aspects: i) the convergence,
ii) the quality of the solution, iii) the implementation, iv) the
complexity.

i) Convergence Analysis:Based on the results in Section
IV-A and Section IV-B, a global optimal solution to each
single-beamformer optimization problem(P1) and (P3) can
be obtained at each iteration. We will show that the se-
quence

{

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )
}∞

ℓ=1
by Algorithm 1 monotoni-

cally increases and converges, i.e.,SINR1(w
(ℓ+1)
1 ,w

(ℓ+1)
2 ) ≥

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 ) ∀ℓ.

Denote the optimization ofw1 and the optimization ofw2

by the mapping functionsw1 = Φ(w2) andw2 = Θ(w1),
respectively. Then, the procedure of Algorithm 1 at theℓ+1th
iteration is shown as

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )

w
(ℓ+1)
1 =Φ

(

w
(ℓ)
2

)

−→ SINR1(w
(ℓ+1)
1 ,w

(ℓ)
2 )

w
(ℓ+1)
2 =Θ

(

w
(ℓ+1)
1

)

−→ SINR1(w
(ℓ+1)
1 ,w

(ℓ+1)
2 ),

In w
(ℓ+1)
1 = Φ(w

(ℓ)
2 ), since the feasible point set ofw1

of (P1) includesw(ℓ)
1 and additionally the global optimal

solution to (P1) can be obtained byΦ(·), it obviously

implies SINR1(w
(ℓ+1)
1 ,w

(ℓ)
2 ) = SINR1(Φ

(

w
(ℓ)
2

)

,w
(ℓ)
2 ) ≥

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 ). Similarly, it is also easily verified

SINR1(w
(ℓ+1)
1 ,w

(ℓ+1)
2 ) = SINR1(w

(ℓ+1)
1 ,Θ

(

w
(ℓ+1)
1

)

) ≥
SINR1(w

(ℓ+1)
1 ,w

(ℓ)
2 ) by w

(ℓ+1)
2 = Θ(w

(ℓ+1)
1 ) due to the

optimality of Θ(·). As a consequence, the sequence of
{

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )
}∞

ℓ=1
monotonicallyincreases as the it-

eration numberℓ increases. In addition, since the sequence{

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )
}∞

ℓ=1
is upper-bounded by the single-

user SINR, i.e.,λ1(H
H
11H11)

σ2
1

in (4), the convergence of the

sequence
{

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )
}∞

ℓ=1
, and thus the convergence

of Algorithm 1 is guaranteed for any feasible initial pointw
(0)
2 .

Since thehard-coupledtwo beamformers exist not only in
the objective but also in the constraints in(P0), the conven-
tional convergence analysis for the block coordinate descent
algorithm [32] that requires that the constraints areseparable
among the variables is not applicable to our scenario. There-
fore, it is unclear whether the proposed algorithm converges
to a stationary point

(

R1(w
(ℓ)
1 ,w

(ℓ)
2 ), R2(w

(ℓ)
1 ,w

(ℓ)
2 )
)

where

w
(ℓ)
1 and w

(ℓ)
2 satisfy the KKT conditions of the original

problem(P0).
ii) Quality of Solutions: Due to the convergence of

the proposed algorithm, the limit point of sequence of{

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )
}∞

ℓ=0
for an arbitrary feasible initialw(0)

2

can be achieved by

lim
ℓ→∞

SINR1(w
(ℓ)
1 ,w

(ℓ)
2 )

=SINR1

(

Φ
(

Θ
(

...
(

Φ
(

w
(0)
2

))))

,Θ
(

...
(

w
(0)
2

)))

.

It implies that the performance of the alternating optimization
algorithm depends on the initial beamformerw

(0)
2 . Denote

the global optimal solution to(P0) by (w⋆
1,w

⋆
2). Take an

extreme example, ifw(0)
2 = w⋆

2, we can obtain the global

optimum w⋆
1 = Φ

(

w
(0)
2

)

directly due to the optimality

of Φ(·). Therefore, a good initial beamformer could lead to
high performance. However generally, it is difficult to find a
good initial pointefficientlyfor such a complex multi-variable
optimization problem. In order to improve the performance,a
common way in references is to implement the alternating
optimization algorithm with multiple random initializations
and then select the one with the best performance. In this
paper, we desire to design a scheme to generate a good
initialization efficiently.

Inspired by the idea in [2], [16], we heuristically propose a
transmit beamformer design scheme by balancing the ”egois-
tic” and ”altruistic” strategies as

wi(ξi,1, ξi,2) =
−−−−−−−−−−−−−−→
ξi,1w

Ego
i + ξi,2w

Alt
i , i = 1, 2, (15)

whereξi,1 and ξi,2 are complex-valued parameters satisfying
|ξi,1|+ |ξi,2| = 1. In fact, this tradeoff scheme is reasonable.
For instance, it is necessary to be Pareto optimal for the two-
user MISO IC [2], and its a similar form still provides a
good performance in sum-rate maximization for the multi-user
single-stream MIMO IC [16]. The following simulation results
show that this characterization cannot exactly achieve the
whole strict Pareto boundary for the two-user MIMO IC but
still has a promising performance. In particular, the two ending
point of strict Pareto boundaryE1 andE2 can be achieved
exactly by(w1(1, 0),w2(0, 1)) and (w1(0, 1),w2(1, 0)), re-
spectively.

If (w
(0)
1 ,w

(0)
2 ) corresponds to the bound of (15) or of ran-

dom beamforming, then the proposed algorithm must improve
(or at least keep) the bound of (15) or of random beamforming.
However, it is not efficient to find those beamforming pairs
achieving the bound achieved by (15) or by the random
beamforming. Therefore, there is no guarantee to say that the
proposed algorithm withonly one initial beamformeralways
achieves anouter boundary than the bound of (15) or of ran-
dom beamforming, but its performance will increase with the
number of initial beamformers (i.e., multiple initializations).
Since the2NT -dimensional real space of each complexwi

can beapproximatelyreduced to 3-dimensional real space (i.e.,
|ξi,1|, |ξi,2| and the difference of the phases ofξi,1 and ξi,2
in (15) without significant performance loss. Therefore, the
proposed algorithm with the proposed initialization in (15)
is more efficient or likelyto achieve a good performance
compared with a random initialization.

To further enhance the efficiency of initialization by (15),a
real constant parameter (i.e., the proportion of the ”egoistic”
strategy) is employed to reduce (15) to

wi =
−−−−−−−−−−−−−−−−−−→
ζ ·wEgo

i + (1 − ζ) ·wAlt
i , i = 1, 2, (16)

where ζ =
R⋆

2−R2

R2−R2

is a constant for a givenR⋆2. If w2 /∈
WF , we reset ζ ∈ R⋆

2−R2

R2−R2

+ [−ν, ν] with 0 < ν ≤
min

{
R⋆

2−R2

R2−R2

,
R2−R⋆

2

R2−R2

}

until w2 ∈ WF . If w2 is still infeasi-
ble, we choose a randomly generatedw2 ∈ WF directly.
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Note that the characterization in (16)directly corresponds
to its own bound. Thus, our proposed algorithm with the
initialization by (16) always outperforms the bound by (16),
which can serve as a lower bound of the proposed algorithm.

iii) Implementation with Transmitter Cooperation:For the
purpose of implementation without an authority5, we assume
that each transmitter knows perfect global CSI in a block-
fading environment through training and feedback and is will-
ing to cooperate with each other transmitter for information
exchange via backhaul links. For the optimization ofw1 at
TX1, TX1 solving (P1) based on the updatedw2 from TX2.
Similarly, TX2 optimizesw2 by solving (P3) based on the
updatedw1 from TX1. The algorithm can be terminated once
TX1 finds that convergence criterion is satisfied.

iv) Complexity Analysis:For the proposed algorithm shown
in Algorithm 1, each iteration involves solving two convex
semidefinite relaxation (SDR) problems (i.e.,(P2) and (P5))
and two implementations of the matrix rank-one decompo-
sition of W i. In [33], it is shown that the complexity of
solving the SDR ispolynomial in the problem size (i.e.,
NT ) and the number of constraints (denoted bym), i,e.,
O(max (m,NT )

4
N

1/2
T log(1/ǫ)) given a solution accuracy

ǫ > 0. In this paper, we haveNT ≥ 3, andm = 2 in (P2)
and m = 3 in (P5). Thus, the complexity of solving(P2)
and (P5) is O(N4.5

T log(1/ǫ)). In terms of the complexity of
the matrix rank-one decomposition [34], the rank-one solution
can be extracted inpolynomial-timeif Rank(W i) ≥ 3; If
Rank(W i) ≥ 2, it is sufficient to seek for a rank-one solution
to a sequence of linear matrix equations within a slightly
expanded range space ofW i. If Rank(W i) = 1, only eigen-
decomposition ofW i is needed.

In the following simulations, the average time of an iteration
of Algorithm 1 is 0.6180 seconds by running the MATLAB
7.10 on the computer with AMD Athlon(TM) 64 Processor
3200+, 2.01 GHZ and 2GB RAM. Additionally, the fast
convergent behavior of the proposed algorithm is implied
numerically (e.g., Fig. 2(b) with 8.55 iterations on average
and Fig. 3(b) with 5.16 iterations on average). Therefore, the
proposed algorithm has reasonable complexity.

D. Extension to the multi-user MIMO IC

Consider theK-user single-stream MIMO IC. With the
MMSE receiver, the achievable rate of the linkTXk 7→ RXk is
expressed asRk({wk}K) = log2

(
1+SINRk({wk}K)

)
∀k ∈

K = {1, ...,K}, where

SINRk({wi}K) =
wH
k HH

kk(
∑

i6=k
Hikwiwi

HH ik
H + σ2

kI)
−1Hkk

︸ ︷︷ ︸

Ak(w−k)

wk. (17)

is the SINR expression of thekth user. w−k denotes
{wi}K\{k}.

5The proposed algorithm can be also implemented in a centralized way
with the aid of an authority who does the optimization of bothw1 andw2

based on the global CSI collected through feedback links.

Without loss of generality, the optimization problem(P0)
in the two-user case can be generalized to6

(Q0)







max
{wi}K

SINR1({wi}K)

s.t. SINRk({wi}K) = SINR⋆k, ∀k ∈ K\{1}.
wH
i wi ≤ 1, ∀i ∈ K,

where{SINR⋆i }K\{1} are assumed to be feasible. The problem
(Q0) is a non-convex problem of{wi}K.

To extend the proposed algorithm to(Q0), we derive
equivalent expressions ofSINRk({wi}K) in (17) by defining
D(w

−i−k) =
∑

ℓ 6=k,iHℓkwℓwℓ
HHℓk

H + σ2
kI:

SINRk({wi}K)

= wH
k HH

kk

(

D(w
−i−k)+Hikwiwi

HHik
H
)−1

Hkkwk

(a)
= wH

k HH
kkD(w−k−i)

−1
Hkkwk−

wH
i

F k(w−i)
︷ ︸︸ ︷

HH
ikD(w−k−i)

−1
Hkkwkw

H
k HH

kkD(w−i−k)
−1

H ikwi

1 +wi
H Hik

HD(w−i−k)
−1

H ik
︸ ︷︷ ︸

Gk(w−i−k)

wi

(18)

where the transformation(a) is based on the Sherman-
Morrison Formula [35] andw−i−k = {wℓ}K\{i,k}.

Therefore, maximization of the objective function in(Q0)
w.r.t. different beamformers is equivalent to

max
w1

SINR1({wi}K) ⇐⇒ max
w1

w1
HA1(w−1)w1

max
wk

SINR1({wi}K)
(b)⇐⇒ min

wk

wk
HF k(w−k)wk

1 +wk
HGk(w−1−k)wk

,

∀k ∈ K\{1}, (19)

and individual SINR constraint is equivalent to

SINRk({wi}K) = SINR⋆k

⇐⇒ wk
HAk(w−k)wk = SINR⋆k,

(b)⇐⇒ wi
HEk(w−i)wi = γk(w−i), ∀i 6= k (20)

whereEk(w−i) andγk(w−i) are defined as

Ek(w−i)
∆
= F k(w−i)−

(

wH
k HH

kkD(w−k−i)
−1

Hkkwk − SINR⋆k

)

Gk(w−i−k);

γk(w−i)
∆
= wH

k HH
kkD(w−k−i)

−1
Hkkwk − SINR⋆k.

The equivalence(b) in both (19) and (20) is based on (18).
1) Optimization ofw1: Given the fixedw−1 and based

on the equivalence results in (19) and (20),(Q0) w.r.t. w1 is
equivalent to

(Q1)







max
w1

w1
HA1(w−1)w1

s.t. w1
HEk(w−1)w1 = γk(w−1), ∀k ∈ K\{1}.

w1
Hw1 ≤ 1.

6For multi-user case, an arbitrary Pareto-optimal point of the utility region
can be achieved by maximizing one user’s utility while fixingthe others.
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Observe that(Q1) is a homogeneous QCQP. By the SDR,
(Q1) is relaxed to

(Q1′)







max
W 1�0

Tr(A1(w−1)W 1)

s.t. Tr(Ek(w−1)W 1) = γk(w−1), ∀k ∈ K\{1}
Tr(W 1) ≤ 1

whereW 1 = w1w
H
1 . Now, (Q1′) becomes a convex problem

w.r.t. W 1. The optimalW ⋆
1 to (Q1′) can be efficiently solved

by a convex optimization toolbox.

If Rank(W ⋆
1) = 1, the optimal rank-one solution isw1 =

u1(W
⋆
1). Otherwise, we observe that(Q1) as a homogeneous

QCQP hasK constraints, and thus an optimalw1 to (Q1) can
be reconstructed fromW ⋆

1 for K ≤ 4 by the matrix rank-one
decomposition method in [30]. WhenK ≥ 5, there exist sev-
eral approaches (e.g., the eigenvector approximation method
and the randomization method) to extract anapproximatew1

from W ⋆
1. Although these approximation methods are not

tight, intensive research show that they provide promising
performance (the interested readers could refer to the analysis
of approximation accuracy bounds in [33]).

2) Optimization ofwk, ∀k 6= 1: Given the fixedw−k and
based on the equivalence results in (19) and (20),(Q0) is
equivalent to

(Qk)







min
wk

wk
HF k(w−k)wk

1 +wk
HGk(w−1−k)wk

s.t. wk
HAk(w−k)wk = SINR⋆k

wk
HEℓ(w−k)wk = γℓ(w−k), ∀ℓ ∈ K\{1, k}

wk
Hwk ≤ 1.

Observe that the objective function belongs to fractional
program, while it is not a quasi-convex function due to the
convexity of both the nominator function and the denominator
function. To deal with this problem, we transform the problem
(Qk) via the SDR to

(Qk′)







min
W k�0

Tr(F k(w−k)W k)

1 + Tr(Gk(w−1−k)W k)

s.t. Tr(Ak(w−k)W k) = SINR⋆k

Tr(Eℓ(w−k)W k) = γℓ(w−k), ∀ℓ ∈ K\{1, k}
Tr(W k) ≤ 1.

where W k = wkw
H
k . It is known that full power trans-

mission is not always Pareto-optimal for the general multi-
user MIMO/MISO IC (related to the number of users and
transmit/receive antennas), which is different from the two-
user Pareto-optimal full power transmission (Proposition2).
It leads to Tr(F k(w−k)W k)

1+Tr(Gk(w−1−k)W k)
6= Tr(F k(w−k)W k)

Tr((I+Gk(w−1−k))W k)
.

Thus, the Charnes-Cooper variable transformation used in the
optimization problem(P4) in the two-user case is not appli-
cable to(Qk′) any longer. Nevertheless, we observe that both
the nominator function and the denominator function of the
objective function are non-negative, differentiable and affine
with W k. By introducing a real scalar parameterµk ≥ 0,
the fractional programming problem(Qk′) is equivalent to a

parametric programming problem

F(µk) = min
W k∈SWk

{

Tr(F k(w−k)W k)

− µk (1 + Tr(Gk(w−1−k)W k))
}

, (21)

whereSW k
denotes the constraint set ofW k consisting of

all the constraints in(Qk′), and it is obvious thatSW k
is

a convex set. Assume the optimal solution to(Qk′) is W ⋆
k.

If µ⋆k =
Tr(F k(w−k)W

⋆
k)

1+Tr(Gk(w−1−k)W ⋆
k
) , it implies F(µ⋆k) = 0. Thus,

solving (Qk′) is equivalent to finding the root of the equation
F(µk) = 0.

Givenµk, (21) is a convex optimization problem w.r.t.W k,
and its optimal solutionW ⋆

k(µk) can be efficiently solved.
Therefore,F(µk) = 0 can be further formulated as

F(µ⋆k) =Tr(F k(w−k)W
⋆
k)

− µ⋆k · (1 + Tr(Gk(w−1−k)W
⋆
k)) = 0, (22)

From [36], we know thatF(µk) is continuous, concave,
strictly decreasing inµk andF(µk) = 0 has a unique solution.
Additionally, we find that− (1 + Tr(Gk(w−1−k)W

⋆
k)) is a

subgradient ofF(µk) for anyµk. Thus, (22) can be solved by
a generalized Newton method (also known as the Dinkelbach
algorithm) described in Algorithm 2.

Algorithm 2 The generalized Newton method to solve (21)

Input : µ(0)
k satisfyingF(µ

(0)
k ) ≤ 0, toleranceǫ.

Output : Optimalµ⋆k andW ⋆
k.

begin
ℓ = 0
while |F(µ

(ℓ)
k )| > ǫ do

Givenµ
(ℓ)
k , solve optimalW ⋆

k(µ
(ℓ)
k ) to (21);

µ
(ℓ+1)
k =

Tr(F k(w−k)W
⋆
k(µ

(ℓ)
k

))

1+Tr(Gk(w−1−k)W ⋆
k
(µ

(ℓ)
k

))

7;

ℓ ++.

µ⋆k = µ
(ℓ)
k andW ⋆

k = W ⋆
k(µ

⋆
k).

The algorithm as a Newton procedure to determine the
root of the equationF(µ⋆k) = 0 has superlinear convergence.
By the Algorithm 2, the optimalµ⋆k and W ⋆

k(µ
⋆
k) to (21)

is obtained. Equivalently,W ⋆
k(µ

⋆
k) is an optimal solution to

(Qk′) [36]. Then, a tight (forK ≤ 4) or an approximate (for
K ≥ 5) solutionwk to (Qk) can be extracted fromW ⋆

k.
Above all, the proposed alternating optimization algorithm

extended to solve(Q0) can be described as Algorithm 3.

Remark 4 The proposed alternating optimization algorithm
can be extended to theK-user MIMO IC. For K ≤ 4, it

7This generalized Newton iterative update is from

µ
(ℓ+1)
k

∆
= µ

(ℓ)
k

−
F(µ

(ℓ)
k

)

−

(

1+Tr(Gk(w−1−k)W
⋆
k
(µ

(ℓ)
k

))
) = µ

(ℓ)
k

−

Tr(F k(w−k)W⋆
k(µ

(ℓ)
k

))−µ
(ℓ)
k

(

1+Tr(Gk(w−1−k)W⋆
k(µ

(ℓ)
k

))
)

−

(

1+Tr(Gk(w−1−k)W ⋆
k
(µ

(ℓ)
k

))
) =

Tr(F k(w−k)W
⋆
k(µ

(ℓ)
k

))

1+Tr(Gk(w−1−k)W⋆
k
(µ

(ℓ)
k

))
.

8This condition is to make sure that a better (at least the same) solution
to (Qk) (only for K ≥ 5) is always obtained in each iteration such that the
objective function’s non-decreasing convergence is guaranteed.
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Algorithm 3 K-User Alternating Optimization Algorithm

Input : {R⋆k}K\{1} where R⋆k = log2 (1 + SINR⋆k) and

SINR⋆k ∈
(

0, 1
σ2
k

λ1(HkkH
H
kk)
]

.

Output : A convergent point (R
(ℓ)
1 , R⋆2, ..., R

⋆
K) with

{w(ℓ)
i }K.

begin
Initialization: Set a feasiblew(0)

−1, ℓ = 0.
while some convergence criterion is not satisfieddo

ℓ++.
for k = 1 → K do

Givenw
(ℓ−1)
−k , obtain an optimalW k to (Qk′);

Extract a tight/approximatewk from W k to
(Qk).

if K ≥ 5 and SINR1

(

w
(ℓ)
k ,w

(ℓ−1)/(ℓ)
−k

)

<

SINR1

(

w
(ℓ−1)
k ,w

(ℓ−1)/(ℓ)
−k

)
8 then

w
(ℓ)
k = w

(ℓ−1)
k ;

ComputeR(ℓ)
1 = log2

(

1 + SINR1

(

{w(ℓ)
k }K

))

.

is the same as the two-user case that each optimal single-
beamformer can be obtained in each iteration. ForK ≥ 5,
each approximate optimal single-beamformer is obtained in
each iteration. Following the same line of the proof of the
Algorithm 1’s convergence in Section IV-C-2, the convergence
of the Algorithm 3 is also guaranteed. �

V. I LLUSTRATIONS AND DISCUSSIONS

To illustrate the achievable rate region by the proposed
algorithm, we consider a two-user Gaussian MIMO IC, where
NT = 3 andNR = 2. The transmit power budget is set to 1
for the two users, and noise powerσ2

1 = σ2
2 = 10−

SNR
10 where

SNR=10dB. The channelsH11,H12,H21 andH22 are
(
−0.3034 + 1.9096i −0.3790 + 0.4201i 0.0357 + 0.7337i
−0.6358 − 0.8030i −0.7881 − 0.1273i 0.7534 + 0.8348i

)
,

(
−0.6758 + 0.1040i −0.5949 − 0.0344i 0.4311 + 0.9658i
−2.1621 + 0.5404i −0.0037 + 0.6627i 0.8611 + 1.2318i

)
,

(
0.3999 + 0.1567i 0.3798 − 0.5619i −0.1005 + 0.2836i

−0.5494 − 0.4648i 1.1971 − 0.5297i −0.7271 + 0.2114i

)
,

(
−0.0308 − 0.1133i 0.0433 − 0.3313i 0.3047 − 1.2157i
−1.4947 − 1.8676i −0.9430 + 0.5704i −1.3328 + 1.4638i

)
.

A. Convergence and Performance of Initialization by Eq.(16)

To study the convergence rate of the alternating optimization
algorithm and evaluate the effectiveness of the initialization in
(16), we respectively use (16) and 200 randomly generated
feasible normalized vectors as initialw2. Then, we run Algo-
rithm 1 until |R(ℓ)

1 −R
(ℓ−1)
1 | ≤ 10−3.

Fig. 2 and Fig. 3 show the performance of the alternating
optimization algorithm by different initializations. More pre-
cisely, Fig. 2 is for a givenR⋆2 = R2+

2
19 ·(R2−R2) = 5.6398

(close to the ending point(R1, R2)). Fig. 2(a) shows that
the achievedR1 with initialization by (16) nearly always
outperforms that with 200 random initializations. Fig. 2(b)
implies the convergence rate of the algorithm. Fig. 3 is for a
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Fig. 2. Performance of Algorithm 1 by different initializations atR⋆
2 =

5.6398: (a) Performance comparison of 200 random initializationsand 1
initialization by Eq. (16); (b) Convergence behavior of Algorithm 1.

givenR⋆2 = R2 +
11
19 ·
(
R2 −R2

)
= 6.2898 (corresponding to

the middle of strict Pareto boundary). Similarly, Fig. 3(a)and
Fig. 3(b) also show that initialization by (16) has a promising
performance and fast convergence behavior. Therefore, simu-
lation results imply that (16) is a good choice for initialization.

B. Performance Comparison

Fig. 4 illustrates the achievable boundary by the pro-
posed algorithm, i.e., Algorithm 1, compared with the ex-
isting methods. The term ”Proposed1+9” denotes the best
result obtained by running Algorithm 1 with 1 initialization
in (16) and 9 random initializations, while ”Proposed1”
represents the result only with 1 initialization in (16).
The SINR targets areSINR⋆2 = 2R

⋆
2−1s where R⋆2 =

R2 + n
50 · (R2 −R2), n = 1, 2, ..., 49. Similarly, the term

”WMMSE 10” denotes the weighted sum rate maximization
algorithm [13] with 10 random initializations, where weighted
sum rate is expressed asw · R1 + (1 − w) · R2. with the
weights ws in [0.05 : 0.05 : 0.95]. ”WMMSE 1” denotes
the result only with 1 initialization by (16), i.e, setting the

initial beamformers asw(0)
1 =

−−−−−−−−−−−−−−−−−−−→
w ·wEgo

1 + (1− w) ·wAlt
1

and w
(0)
2 =

−−−−−−−−−−−−−−−−−−−→
w ·wEgo

2 + (1− w) ·wAlt
2 . The curve denoted

by ”RandBeam10mil” means the outermost boundary of
the rate region achieved by 10 million random normalized
transmit beamformer pairs (each receiver is the MMSE filter).
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Fig. 3. Performance of Algorithm 1 by different initializations atR⋆
2 =

6.2898: (a) Performance comparison of 200 random initializationsand 1
initialization by Eq. (16) ; (b) Convergence behavior of Algorithm 1.

Theoretically, if exhaustiverandom beamforming pairs are
chosen, its bound is exactly the Pareto boundary. However,
there exist infinite random beamforming pairs so that we
choose as many as 100 million random beamforming pairs in
the simulations to serve as anapproximate Pareto boundary.
The term ”SimpleReceiver” is the outermost boundary of the
region achieved by [7] where each receiver is fixed as the
largest left singular vector of the corresponding direct channel
matrix. The curve denoted by ”Eq.(15)” is the outermost
boundary of the achieved region by (15) with complex-valued
parameters by 3-dimensional grid search. The boundary of
”Eq.(16)” illustrates (16) withζ = n−1

N , n = 1, ..., N + 1
whereN = 100. ”ZF points” denotes two outmost points of
the ZF points by Eq. (8).

If we consider the curve by ”Proposed1+9” as a nearly
optimal boundary, we find that ”Proposed1” has a promis-
ing/robust performance only with one initialization by (16).
Also observe that the proposed algorithm ”Proposed1+9”
and ”Proposed1”, and ”WMMSE 10” yield a similar per-
formance at convex parts of boundary and outperform the
others under the same accuracy for convergence. However,
since the weighted sum maximization method cannot achieve
the non-convex boundary, and even the achieved points on the
convex boundary are still unevenly distributed. This is why
the ”WMMSE 10” as a weighted sum maximization method
does not achieve the part between ”P1” and ”P2” in Fig. 4.

To further evaluate the performance of ”WMMSE10” and
”Proposed1+9” on illustrating the Pareto boundary, another
simulation is done and shown in Fig. 5. Even with fine weights
ws in [0.05 : 0.005 : 0.95], we find that there exists a large
jump between the points ”P3” and ”P4” by ”WMMSE10” so
that the rate region cannot be illustrated effectively.
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Fig. 4. Achievable boundary with SNR=10dB andNT = 3, NR = 2 for a
random Gaussian channel data
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Fig. 5. Achievable boundary with SNR=10dB andNT = 3, NR = 2 for
another random Gaussian channel data

In fact, only through the results by ”WMMSE10”, we
do not know what the part between ”P1” and ”P2” in Fig.
4 and the part between ”P1” and ”P2” in Fig. 5 look like.
If they are concave parts, the degree of concavity is still
unknown. For our proposed algorithm, although its curve
denoted by ”Proposed1+9” is not guaranteed to exactly be
the strict Pareto boundary, it has a even better performance
than theapproximate Pareto boundary(i.e., ”Rand 10mil”
curves in Fig. 4 and Fig. 5). Thus, it is able to serve as
a more reasonable/complete inner bound of the whole strict
Pareto boundary, especially the non-convex part. This is a main
advantage of the proposed algorithm to the existing algorithms.

C. Illustration of the multi-user case

In order to evaluate the performance of Algorithm 3 for
the multi-user MIMO IC, a three-user MIMO IC example is
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simulated. Fig. 6 shows the fast convergence behavior when
R1 is maximized with(R3, R2) = (0.2700, 2.3720) and the
convergence threshold10−4. In Fig. 7, a three dimensional
rate region is illustrated after computingR1 for 65 samples of
(R3, R2) and interpolation.
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Fig. 6. Convergence behavior of Algorithm 3 for three-user MIMO IC with
SNR=0dB andNT = 3, NR = 2.

Fig. 7. Achievable rate region for three-user MIMO IC with SNR=0dB and
NT = 3, NR = 2. The color bar shows the sum rate.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, the non-strict Pareto boundary and two ending
points of strict Pareto boundary of the two-user scenario
are computed exactly. To find the strict Pareto boundary for
the two/multi-user single-beam MIMO IC, we formulate an
optimization problem to maximize the rate of one user while
the rates of the other users are fixed such that a bound point
is reached. This problem is different from the traditional
problems (e.g., maximize (weighted) sum-rate and max-min
rate) and there exists little work on this type of problem in the
MIMO IC. We propose an alternating optimization algorithm
to solve this non-convex problem. The convergence of the pro-
posed algorithm is guaranteed and a high quality suboptimal
solution is obtained. Furthermore, the proposed computation
algorithm has two main advantages: 1) This algorithm can be
applied to those optimization problems with rate constraints

(e.g. rate requirements of primary links in overlay cognitive
radio environments or for private messages); 2) For the strict
Pareto boundary, this algorithm is able to compute a high
quality suboptimal operating point satisfying arbitrary rate
requirements. A series of well-distributed rate requirements
can lead to a sequence ofwell-distributed operating points,
which can serve as a reasonable and complete inner bound of
the strict Pareto boundary.

The proposed algorithm requires that each transmitter knows
perfect global CSI, which is challenging for distributed sys-
tems. However, this work provides a benchmark for the
algorithms that only imperfect/partial CSI is available at
transmitters. Future work should focus on developing robust
cooperative algorithms for the multi-user MIMO IC.

APPENDIX A
PROOF OFPROPOSITION1

Proof: Given beamformersw1 andw2, according to the
matrix inversion lemma [35], (2) can be rewritten as:

SINRi(w1,w2)

= (Hiiwi)
H

(
1

σ2
i

I − Hkiwk(Hkiwk)
H

σ2
i (σ

2
i + ‖Hkiwk‖2)

)

Hiiwi

=
‖Hiiwi‖2

σ2
i

−
∣
∣(H iiwi)

HHkiwk

∣
∣
2

σ2
i (σ

2
i + ‖Hkiwk‖2)

=
‖Hiiwi‖2

σ2
i

·




1−

∣
∣
∣
−−−−→
Hiiwi

H · −−−−→Hkiwk

∣
∣
∣

2

· ‖Hkiwk‖2

σ2
i + ‖Hkiwk‖2






=

(

1−
∣
∣
∣
−−−−→
Hiiwi

H · −−−−→Hkiwk

∣
∣
∣

2
)

· ‖Hiiwi‖2
σ2
i

+
∣
∣
∣
−−−−→
Hiiwi

H · −−−−→Hkiwk

∣
∣
∣

2

· ‖Hiiwi‖2

σ2
i + ‖Hkiwk‖2

. (23)

For two complex vectorsa andb, the cosine of the complex-
valued angle betweena and b is defined as [37]cos(θC) =

aHb
‖a‖·‖b‖ wherecos(θC) = µejψ with µ = | cos(θC)| ≤ 1 and
−π ≤ θC ≤ π is called pseudo angle betweena andb.

The Hermitian angle betweena andb is defined as

cos(θH) = | cos(θC)| =
|aHb|
‖a‖·‖b‖ , 0 ≤ θH ≤ π/2.

It implies
∣
∣
−−−−→
Hiiwi

H · −−−−→Hkiwk

∣
∣
2

= cos2(θH,i) because of
∥
∥
−−−−→
Hiiwi

∥
∥
2
=
∥
∥
−−−−→
Hkiwk

∥
∥
2
= 1. Thus, (23) becomes

SINRi(w1,w2)

= sin2(θH,i) ·
‖Hiiwi‖2

σ2
i

+ cos2(θH,i) ·
‖Hiiwi‖2

σ2
i + ‖Hkiwk‖2

,

whereθH,i ∈ [0, π/2] denotes the Hermitian angle between the
desired signal direction

−−−−→
Hiiwi and the interference direction−−−−→

Hkiwk at RXi. Obviously, when
−−−−→
H iiwi ‖ −−−−→

Hkiwk (or−−−−→
Hiiwi ⊥

−−−−→
Hkiwk), we haveθH,i = 0 (or θH,i = π/2).
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APPENDIX B
PROOF OFPROPOSITION2

Proof: Our idea is to show that it is impossible for a strict
Pareto-optimal point achieved by the transmit beamformers
with less than full power. The proof works by contradiction.

Assume that a strict Pareto-optimal point
(
R1(w1,w2), R2(w1,w2)

)
is achieved by (w1,w2)

where ‖w1‖2< 1 and ‖w2‖2≤ 1. We consider whether
there exists anouter9 point

(
R1(ŵ1,w2), R2(ŵ1,w2)

)

achieved by (ŵ1,w2) where ‖w1‖2< ‖ŵ1‖2≤ 1 and
‖w2‖2≤ 1. If it exists, e.g.,R1(ŵ1,w2) > R1(w1,w2)
and R2(ŵ1,w2) = R2(w1,w2), we can improve the
R1(w1,w2) only by consuming more transmit power while
keeping R2(w1,w2) unchanged. Thus, the existence of
an outer operating point contradicts the assumption that
(
R1(w1,w2), R2(w1,w2)

)
is a strict Pareto-optimal point.

Define ŵ1 = w1 + δp. To guarantee the Pareto improve-
ment, we need to show the existence of a nonzero perturbation
vectorδp satisfying:

(w1 + δp)
HA1(w2)(w1 + δp) > wH

1 A1(w2)w1 (24a)

wH
2 A2(w1 + δp)w2 = wH

2 A2(w1)w2 (24b)

‖w1 + δp‖2> ‖w1‖2 (24c)

‖w1 + δp‖2≤ 1. (24d)

An arbitrary nonzeroδp can be expressed as

δp = ‖δp‖·ejφδ · −→δp. (25)

It means that we should find‖δp‖, φδ and
−→
δp to satisfy all the

conditions in (24) simultaneously. The proof of the existence
of φδ is similar to that for the two-user MISO IC in [22].
However, it is more difficult to find a

−→
δp for the MIMO IC

because the cross-talk channel matrix (rather than a vectorin
the MISO IC case) does not always have a null space for

−→
δp.

We give the proof in detail as follows.
1. Existence of

−→
δp

By the matrix inverse lemma [35], the condition in (24b) is
equivalent to

|(w1 + δp)
HHH

12H22w2|2
σ2
2 + ‖H12(w1 + δp)‖2

=
|wH

1 HH
12H22w2|2

σ2
2 + ‖H12w1‖2

. (26)

It is difficult to solve δp directly. In fact, we only need to
prove the existence ofδp satisfying (26).

Case 1.NR < NT or Rank(H12) < NT ≤ NR:
We always haveH12δp = 0 if

−→
δp =

Rank(Π⊥

HT
12

)
∑

i=1

aiui(Π
⊥
HT

12
), (27)

whereai, i = 1, ...,Rank(Π⊥
HT

12
) are complex-valued numbers

and
∑Rank(Π⊥

HT
12

)

i=1 |ai|2 = 1. Then, (26) always holds because
any δp in the null space of the cross-talk channelH12 does
not cause extra interference toRX2.

9A point p′ ∈ R+
n is called an outer point thanp ∈ R+

n , if p
′ dominates

p, i.e., p′ ≥ p and p
′ 6= p where the inequality is component-wise. The

improvement fromp to p
′ is called Pareto improvement.

Case 2.Rank(H12) = NT ≤ NR:

It is impossible to nullify the perturbation directly as Case
1. Definev1

∆
= H12w1, vδ

∆
= H12δp and v2

∆
= H22w2.

Then (26) becomes

|(v1 + vδ)
Hv2|2

σ2
2 + ‖v1 + vδ‖2

=
|vH1 v2|2

σ2
2 + ‖v1‖2

. (28)

Assume thatvδ is a combination of two orthogonal vectors

vδ
∆
= ‖vδ‖·

(√
η ·

−−−−→
Π⊥

v2
v1 +

√

1− η · −−−−→Πv2
v1

)
, (29)

Note that
−−−−→
Πv2

v1 = −→v2 · e−jφ1 whereφ1 = arg(vH1 v2). Now,
it remains to find whether there is avδ in the plane spanned

by
−−−−→
Π⊥

v2
v1 and

−−−−→
Πv2

v1 satisfying (28).

Substituting (29) into (28) yields
∣
∣vH1 v2 + ‖vδ‖ ·

√
1− η · ejφ1 · ‖v2‖

∣
∣
2

σ2
2 +

∥
∥
∥v1 + ‖vδ‖

(√
η ·

−−−−→
Π⊥

v2
v1 +

√
1− η · e−jφ1 · −→v2

)
∥
∥
∥

2

=
|vH1 v2|2

σ2
2 + ‖v1‖2

. (30)

Define the right-hand side and the left-hand side of (30) as
Rside andLside(η), respectively. It is still hard to get a closed-
form solution ofη by solving (30) directly. Observe that the
denominator ofLside(η) is always positive forη ∈ [0, 1], and
Lside(η) as a function ofη is continuous over the interval
[0, 1]. Therefore, if(Rside−Lside(1))(Rside−Lside(0)) ≤ 0,
there must exist avδ(η) with at least a certainη ∈ [0, 1]
satisfying (30).

Whenη = 1, the termLside(η) becomes

Lside(1) =
|vH1 v2|2

σ2
2 + ‖v1 + ‖vδ‖ ·

−−−−→
Π⊥

v2
v1‖

2

=
|vH1 v2|2

σ2
2 + ‖v1‖2 + ‖vδ‖2 + 2‖vδ‖ · ‖Π⊥

v2
v1‖

.

Observe that‖vδ‖2 + 2‖vδ‖ · ‖Π⊥
v2
v1‖> 0. Thus, we have

Lside(1) < Rside.

Whenη = 0, the termLside(η) becomes

Lside(0) =

∣
∣vH1 v2 + ‖vδ‖ · ejφ1 · ‖v2‖

∣
∣
2

σ2
2 + ‖v1 + ‖vδ‖ · e−jφ1 · −→v2‖2

=
|vH1 v2|2 + ‖v2‖2·(‖vδ‖2 + 2‖vδ‖ · |vH1 −→v2|)
σ2
2 + ‖v1‖2+(‖vδ‖2 + 2‖vδ‖ · |vH1 −→v2|)

,

where‖vδ‖2+2 · ‖vδ‖ · |vH1 −→v2| > 0. If Lside(0) > Rside, we
need‖v2‖2> Rside. Furthermore,Rside is bounded by

Rside =
|vH1 v2|2

σ2
2 + ‖v1‖2

≤ ‖v1‖2·‖v2‖2
σ2
2 + ‖v1‖2

=
‖v2‖2
σ2
2

‖v1‖2 + 1
< ‖v2‖2.

Thus, we haveLside(0) > Rside.

Due toLside(1) < Rside < Lside(0), there exists at least
one η0 ∈ (0, 1) satisfyingLside(η0) = Rside. In this case,
H12 has an inverse/Moore-Penrose pseudo-inverse matrix
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H
†
12. Then, we have

δp = ‖vδ‖·H†
12

(√
η0 ·

−−−−→
Π⊥

v2
v1 +

√

1− η0 ·
−−−−→
Πv2v1

)
,

= ‖δp‖·ejφδ · −→δp,
(31)

where ‖vδ‖= ‖δp‖∥
∥H

†
12

(√
η0·

−−−−→
Π⊥

v2
v1+

√
1−η0·

−−−−→
Πv2v1

)∥
∥

depends on

but has no requirement for‖δp‖. Therefore,vδ with any

‖δp‖ and
−→
δp = e−jφδ ·

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
H

†
12

(√
η0 ·

−−−−→
Π⊥

v2
v1 +

√
1− η0 ·

−−−−→
Πv2

v1

)

satisfies (28).

Therefore, anyδp = ‖δp‖·ejφδ · −→δp with

−→
δp =







Rank(Π⊥

HT
12

)
∑

i=1

aiui(Π
⊥
HT

12
),

Rank(Π⊥

HT
12

)
∑

i=1

|ai|2 = 1,

when NR < NT or Rank(H12) < NT ≤ NR

e−jφδ ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
H

†
12

(√
η0 ·

−−−−→
Π⊥

v2
v1 +

√

1− η0 ·
−−−−→
Πv2

v1

)
,

when Rank(H12) = NT ≤ NR,
(32)

satisfies the condition (24b).

2. Existence ofφδ

Substituting (25) into (24a) yields

(w1 + δp)
HA1(w2)(w1 + δp) > wH

1 A1(w2)w1

⇔‖δp‖2
−→
δp
HA1(w2)

−→
δp + 2‖δp‖ℜ

(

wH
1 A1(w2)

−→
δpe

jφδ

)

> 0

⇔‖δp‖
2

−→
δp
HA1(w2)

−→
δp +

∣
∣wH

1 A1(w2)
−→
δp
∣
∣ cos(φδ + φ2) > 0

⇔ cos(φδ + φ2) > −‖δp‖
2

·
−→
δp
HA1(w2)

−→
δp

∣
∣wH

1 A1(w2)
−→
δp
∣
∣
, (33)

whereφ2
∆
= arg(wH

1 A1(w2)
−→
δp).

At the same time, substituting (25) into (24c) yields

‖w1 + δp‖2> ‖w1‖2

⇐⇒ ‖δp‖2+2‖δp‖ℜ
(

wH
1

−→
δpe

jφδ

)

> 0

⇐⇒
∣
∣wH

1

−→
δp
∣
∣ cos(φδ + φ3) > −‖δp‖

2

⇐⇒ cos(φδ + φ3) > − ‖δp‖
2|wH

1

−→
δp|

, (34)

whereφ3
∆
= arg(wH

1

−→
δp).

Defineφδ+φ2 ∈ [θ1, θ2] andφδ+φ3 ∈ [θ3, θ4]. Since both
the right-hand side of (33) and (34) are negative, the range
[θ1, θ2] and [θ3, θ4] are strictly wider thanπ. In addition, the
intersection of two angular ranges wider thanπ is nonempty.
Then, for arbitrary‖δp‖ and

−→
δp, anyδp = ‖δp‖·ejφδ

−→
δp in (25)

with φδ ∈ [θ1, θ2]∩[θ3, θ4] always satisfies the conditions (33)
and (34) simultaneously.

3. Existence of‖δp‖

The condition (24d) is equivalent to

‖δp‖2+2|wH
1

−→
δp| cos(φδ + φ3)‖δp‖+‖w1‖2−1 ≤ 0,

(a)⇐⇒ ‖δp‖∈
(

0,−|wH
1

−→
δp| cos(φδ + φ3)

+

√

|wH
1

−→
δp|2 cos2(φδ + φ3)− (‖w1‖2−1)

)

, (35)

where the transformation (a) is based on‖w1‖≤ 1 and‖δp‖>
0. For arbitrary

−→
δp andφδ, any anyδp = ‖δp‖·ejφδ

−→
δp with

‖δp‖ in (35) will satisfy the condition (24d) .
Above all, the existence of

−→
δp, φδ and‖δp‖ has been proved.

That is, there always exists someδp = ‖δp‖·ejφδ ·−→δp satisfying
all the conditions in (24). Then,R1(w1,w2) can still be
improved until ‖w1‖2= 1, while R1(w1,w2) remains un-
changed simultaneously. This contradicts the assumption that
(
R1(w1,w2), R2(w1,w2)

)
is on the strict Pareto boundary.

Therefore, Proposition 2 holds.

APPENDIX C
PROOF OFPROPOSITION3

Proof: For the ending pointE1(R1, R2), to achieve the
maximum rate of linkTX1 7→ RX1, i.e.,R1 in (4a),(w1,w2)
should satisfy the following conditions

w1 = w
Ego
1 = u1(H

H
11H11), (36a)

θH,1 = π/2 ⇔ w2 ⊥ HH
21H11w1. (36b)

This meansw2 should be in the null space ofHH
21H11w

Ego
1

to cause no interference toRX1. All w2 ∈ WFP satisfying
(36) form a set of the ZF strategies, defined asWZF . Then,
anyw2 ∈ WZF can be expressed by

w2 =
−−−−−−−−−−−→
Π⊥

HH
21H11w

Ego
1

v2, (37)

wherev2 ∈ CNT×1 andv2 ∦ HH
21H11w

Ego
1 .

To achieve(R1, R2), we need to findvopt2 which maxi-
mizesSINR2(w

Ego
1 ,w2) simultaneously. Here, we define the

optimal ”altruistic” strategywAlt
2 as

wAlt
2

∆
= arg max

w2∈WZF

wH
2 A2(w

Ego
1 )w2

(a)⇐⇒

v
opt
2 = argmax

v2

vH2 Π⊥,H
HH

21H11w
Ego
1

A2(w
Ego
1 )Π⊥

HH
21H11w

Ego
1

v2

vH2 Π⊥,H
HH

21H11w
Ego
1

Π⊥
HH

21H11w
Ego
1

v2

(b)
= argmax

v2

vH2

∆
=B1

︷ ︸︸ ︷

Π⊥
HH

21H11w
Ego
1

A2(w
Ego
1 )Π⊥

HH
21H11w

Ego
1

v2

vH2 Π⊥
HH

21H11w
Ego
1

v2

=u1

(
B1,Π

⊥
HH

21H11w
Ego
1

)
, (38)

where transformation (a) is based on (37) and transforma-
tion (b) is due to Π⊥,H

HH
21H11w

Ego
1

= Π⊥
HH

21H11w
Ego
1

and

Π⊥,H
HH

21H11w
Ego
1

Π⊥
HH

21H11w
Ego
1

= Π⊥
HH

21H11w
Ego
1

. Substituting

(38) into (37), we obtain the optimal ”altruistic” strategy

wAlt
2 =

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Π⊥

HH
21H11w

Ego
1

u1(B1,Π
⊥
HH

21H11w
Ego
1

).

Therefore,E1(R1, R2) is achieved by(wEgo
1 ,wAlt

1 ).
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APPENDIX D
SOLVING THE SDR PROBLEM (P4)

Lemma 1 Both the fractional problem(P4) and the problem
(P5) are solvable. �

Proof: For the fractional problem(P4), its constraint set

Ω = {W 2 � 0 : Tr
(
W 2

)
= 1, Tr

(
A2(w1)W 2

)
= SINR⋆2}

is nonempty and compact.
In (P4), the denominator of the objective overΩ satisfies

σ2
1 + λNT

(HH
21H21) = λNT

(C2) ≤ Tr
(
C2W 2

)

≤ λ1(C2) = σ2
1 + λ1(H

H
21H21),

and the numerator obviously satisfies

0 ≤ Tr
(
C1(w1)W 2

)
≤ λ1(H

H
21H11H

H
11H21).

This implies that the objective(P4) overΩ is bounded by

0 ≤ Tr
(
C1(w1)W 2

)

Tr
(
C2W 2

) ≤ λ1(H
H
21H11H

H
11H21)

σ2
1 + λNT

(HH
21H21)

. (39)

Based on Weierstrass’ Theorem, the problem(P4) always
has an optimal solution.

Assume thatW ⋆
2 is an optimal solution to(P4), we know

that s⋆ = 1

Tr
(
C2W

⋆
2

) andQ⋆ = s⋆W ⋆
2 are feasible for(P5).

Also note that the objective is bounded by (39). Similarly,
(P5) is solvable according to Weierstrass’ Theorem.

Lemma 2 The problems(P4) and(P5) have the same value.
Furthermore, ifW ⋆

2 solves(P4), thens⋆ = 1

Tr
(
C2W

⋆
2

) and

Q⋆ = s⋆ · W ⋆
2 solves(P5); if Q⋆ and s⋆ solve (P5), then

W ⋆
2 =Q⋆

s⋆ solves(P4). �

Proof: Assume thatW ⋆
2 is an optimal solution to(P4),

and v⋆(P4) and v⋆(P5) are the optimal values of the objective
of (P4) and (P5), respectively. Thus,s = 1

Tr
(
C2W

⋆
2

) and

Q = sW ⋆
2 are feasible for(P5). The value of the objective

of (P5) at this feasible point is

v(P5) = Tr
(
C1(w1)Q

)

= Tr
(
C1(w1)(s ·W ⋆

2)
)
=

Tr
(
C1(w1)W

⋆
2

)

Tr
(
C2W

⋆
2

) = v⋆(P4)

≥ v⋆(P5).

On the other hand, suppose thatQ⋆ ands⋆ are the optimal
solutions to(P5). Sinces⋆ is always positive,W 2 = Q⋆

s⋆ is
also feasible for(P4). Then, the value of the objective of(P4)
at this feasible point is

v(P4) =
Tr
(
C1(w1)W 2

)

Tr
(
C2W 2

) =
Tr
(
C1(w1)

Q⋆

s⋆

)

Tr
(
C2

Q⋆

s⋆

)

=
Tr
(
C1(w1)Q

⋆
)

Tr
(
C2Q

⋆
) = Tr

(
C1(w1)Q

⋆
)
= v⋆(P5)

≥ v⋆(P4).

Above all, we havev⋆(P4) = v⋆(P5).

APPENDIX E
PROOF OFPROPOSITION4

Proof: We need to find a feasible setWF such that there
exists at least one solutionw1 ∈ WFP to problem(P0) by
fixing w2 ∈ WF .

In (9b), we derive that the constraint of(P0) is equivalent
to wH

2 HH
22H22w2 ≥ σ2

2SINR
⋆
2 and

wH
1 C(w2)w1 = 0. (40)

To guarantee the existence ofw1 ∈ WFP in (40), a feasible
w2 should be determined in a way such that (9b) holds.

By the eigen-decomposition,C(w2) can be rewrit-
ten as

∑NT

i=1 λi(C(w2))ui(C(w2))u
H
i (C(w2)). We analyze

C(w2) for two cases.
Case 1. When C(w2) is a full rank matrix, i.e.,

λi(C(w2)) 6= 0, ∀i = 1, ..., NT . If C(w2) is a positive or neg-
ative definite matrix, it is clear that there is no nonzero vector
w1 satisfying (40). Otherwise,C(w2) hasλ1(C(w2)) > 0
andλNT

(C(w2)) < 0, a sufficient solution to (40) is

w1 =

√

λNT
(C(w2))

λ1(C(w2))− λNT
(C(w2))

j · u1(C(w2))

+

√

λ1(C(w2))

λ1(C(w2))− λNT
(C(w2))

· uNT
(C(w2)).

Case 2. When C(w2) is not a full rank matrix, i.e.,
λi(C(w2)) = 0 for somei ∈ {1, ..., NT}. In this case,C(w2)
always has null space forw1 to satisfy (40).

Above all, the sufficient and necessary condition ofw2

satisfying (40) isλ1 (C(w2)) · λNT
(C(w2)) ≤ 0. That is,

anyw2 ∈ WF is always feasible for (9b) whereWF is

WF
∆
=
{

w2 ∈ WFP : wH
2 HH

22H22w2 ≥ σ2
2SINR

⋆
2,

λ1 (C(w2)) · λNT
(C(w2)) ≤ 0

}

.
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