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Abstract—We consider a multiple-input multiple-output  pragmatic approach that leads to an achievable region er inn
(MIMO) interference channel (IC), where a single data strem  pound of the capacity region is based on two assumptions. i)
per user is transmitted and each receiver treats interferene as The class of encoding strategies are constrained to usemand
noise. The paper focuses on the open problem of computing . .
the outermost boundary (so-called Pareto boundary-PB) ofhe _Gaussmn codebooks; "_) The c_iecoders ‘T"re restricted totfrea
achievable rate region under linear transceiver design. Th Pareto  interference as Gaussian noise. Herein, based on these two

boundary consists of the strict PB and non-strict PB. For the assumptions, we desire to find tkemplete achievable rate
two user case, we compute the non-strict PB and the two ending region by linear transceiver design.

points of the strict PB exactly. For the strict PB, we formulae Form the perspective of optimization, it is well-known
the problem to maximize one rate while the other rate is fixed . N Lo ' .
such that a strict PB point is reached. To solve this non-corex that @ bi/multi-objective optimization problem usuallynaits

optimization problem which results from the hard-coupled two  infinite number ofnoninferior solutions (theoretical limits),
transmit beamformers, we propose an alternating optimizaion  which form the outermost boundary of achievable perforreanc
algorithm. Furthermore, we extend the algorithm to the multi- region, so-calledPareto boundary]. A noninferior solution

user scenario and show convergence. Numerical simulations "o pareto houndary is considered to be Pareto-optimal
illustrate that the proposed algorithm computes a sequencef

well-distributed operating points that serve as a reasondle and 1" the sense that no other solution can improve the perfor-
complete inner bound of the strict PB compared with existing mance of some objectives without reducing other objective(

methods. Generally, it is hard to find the Pareto boundary efficiently,
Index Terms—multiple-input multiple-output (MIMO) inter-  But it is significant to study it in order to determine optimal
ference channel (IC), Pareto boundary, alternating optimzation, ~System operations based on Pareto-optimal rate tuplesaird t
semidefinite programming, fractional programming. associated strategies. In this paper, we propose an dligorit
compute the complete Pareto bounﬂef[y the two/multi-user
I. INTRODUCTION MIMO single-stream IC through linear transceiver design.

How to design linear transceiver schemes to achieve the
i areto boundary has attracted intensive research foralever
cells share the same time-frequency resource for co

T ; - scades. A brief, comprehensive, yet non-exhaustive wevie
munication in order to increase the spectral efficiency an

o . : of the related works is given as follows.
occupancy level, while inter-cell interference brings @rsg Parameterization Approaches: The Pareto boundary is
inter-cell coupling and limits the performance. In this pap ) y

we consider first a two-cell environment, where each Ceqparac_tenzed by a few parameters. For a two-user multiple-
mgut single-output (MISO) IC, the authors proposed a neces

has a base station (BS) with multiple antennas and a mobil dition for Paret imal t b ¢ )
station (MS) with multiple antennas. Each BS is intended iy con Itl)(')n t_or arfe o-opf|ma.1 ra;ls:ml deam Ormess, It'
communicate with the MS in its own cell while simultaneousl near °_°”.‘ Inations of zero-torcing (_ ) and maximumaati
interferes the MS in the other cell. And then a multi-ceff@"SM!SSion (MRT) beamformers with two, 1]-parameters

scenario consisting of multiple interfering BS-MS linksllwi 2). This parameterization is later used to derive a charit-

be also considered later. These scenarios are modeled as at't%] with only a single parameter inl[3L1[4]. A general frame

or multi-user MIMO interference channel (IC). The IC is c-harWork for parameterizing Pareto-optimal transmit stratagor

acterized by its capacity region, defined as the set of Iarg%'éilt"user MISO IC was proposed ial[5], which is applicable
t

I N wireless cellular systems, multiple sectors of differerB

rates that can be simultaneously achieved by the users in en the utility functions of the systems are monotonic in

system while making the error probability arbitrary small. € recel_ved_ power gains. I.” [6], the authors proposed a
parametrization to characterize the Pareto boundary of the
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ization schemes, another approach is to compute a Pamteere the case is studied in which the interference-plus-
boundary point directly. One branch is to maximize the rateise covariance matrix of each user approaches an identity
of one user for a fixed rate of the other users (e.g., in twmatrix and the rate region becomes convex. A main branch
user MISO IC [T] and in two-user MIMO ICL[8]). Another of cooperative algorithms is the interference-pricing duhs
important branch is to find the intersection point betweean timethod, where each user updates its own strategy to maximize
Pareto boundary and a ray from the origin (e.g., so-calle&l rats own utility minus the interference cost determined bg th
profiles approach in the multi-user MISO IC| [9],_[10]). Thenterference prices, which reflect the marginal changeilityut
computations approaches are able to computevti@ePareto per unit interference power. This distributed interferenc
boundary, if the optimization problems are solved optisnall pricing algorithm has been used to solve (weighted) sum-rat

Weighted Sum Maximization Approaches: A standard maximization problems for the multi-user SISO and MISO IC
technique for generating the Pareto-optimal solutionsudtim [24], multi-user single-stream MIMO 1C [25], two-user MIMO
objective optimization problems is to maximize weightethsu IC [14]. A different pricing scheme is to balance the egoisti
of the different objectives for various different settingé and altruistical strategies with different weights (ijerices),
the weights. Generally, the weighted sum rate maximizatieng., for the two-user MISO 1C_[4]/ [26] and for the multi-
problem for multi-user IC is non-convex. For the multi-useuser single-stream MIMO ICL[16]. In_[16], the suboptimal
SISO IC, the MAPEL algorithm proposed in ]11] transformedhaximum sum rate is achieved, although no convergence
the weighted sum rate maximization into a generalized li@nalysis is provided. However, most distributed coopeeati
ear fractional programming problem, which can be solvetigorithms for the MIMO IC (e.g., distributed pricing based
optimally. In [12], the authors jointly utilized the monetic algorithms [14], [25]) focus on maximizing (weighted) sum-
optimization and rate profile techniques to solve the weidhtutility rather than computing the whole utility region.
sum rate maximization optimally at the cost of computation In fact, most approaches of parameterization, computation
load in multi-user SISO/MISO/SIMO IC. However, it is NP-and weighted sum maximization are coordinated/cooperativ
hard to obtain a global optimal solution of the weighted sumlgorithms, although they are not described in a game tkieore
rate maximization for a multi-user MIMO IC (e.g., ih_[13]).way.

In particular, most algorithms focus on finding only a single For the MIMO IC, the achievable rate depends on both
sum-rate maximum point, e.g., for the two-user MIMO IQransmit and receive strategies involved in a more hard-
based on pricing in[[14], for the two-user MIMO IC basedoupling and complex expression than the MISO IC such
on approximation of sum rate in_[15], for the single-streartat it is not straightforward to extend tlmplicit or explicit
MIMO IC based on balancing the egoistic and the altruistiechemes achieving the complete Pareto boundary for the MISO
behavior in [16], and for the multi-user MIMO IC basedC to the MIMO IC. In order to illustrate theomplete Pareto

on interference alignment in [17]. However, it is well-know boundary we formulate a computation problem to maximize
that the weighted sum maximization method has two majone rate while keeping the rate of the other users unchanged
drawbacks[[18]: i) If the Pareto boundary is not convex,¢hesuch that one rate can increase always along the same alirecti
does not exist any weight corresponding to the points @m the rate region until the boundary is reached. However
the nonconvex part. Increasing the number of steps of tiethis computation problem, the hard-coupled beamformers
weighting factor does not resolve this problem; i) Everhiét exist not only in the objective but also in the constraints,
Pareto boundary is convex, an even spread of weights degsich makes this beamformers optimization problems non-
not produce an even spread of points on the Pareto boundapnvex (even NP-hard). Therefore in this paper, as most
Therefore, weighted sum rate maximization is not a prorgisircurrent references on the MIMO IC, we focus on finding
method to performhe complete Pareto boundargspecially high quality sub-optimal operating points efficiently. Guain

the non-convex boundary. contributions are described as follows.

Game Theoretic Approaches:Game theory as a useful i) First, the two-user single-stream MIMO IC is firstly
tool has been widely applied to resource allocation in multi  studied: a) We propose an equivalent form of the SINR
user IC by studying the conflicting or cooperative behavior expression based on the Hermitian angle (Proposition 1 in
of the users. Distributed optimization algorithms based on Section II-B), which gains more insight into the coupling
iterative water-filling for the MIMO IC (e.g.[[19],.[20]) can of the transmit beamformers; b) We prove that the strict
be modeled as non-cooperative games, where each user is Pareto-optimal transmit power allocation policy is full
considered as a player that attempts to maximize its owityutil power allocation at both the transmitters (Proposition 2
selfishly. Such approaches may not converge in general or in Section Ill-A); ¢) The non-strict Pareto boundary, two
may converge to the Nash equilibrium (NE). It is well known  ending points of strict Pareto boundary, and certain ZF
that the Nash equilibrium i®ften not Pareto-optimall[21], points are computed exactly. (Section IlI-B).
since the best achievable performance characterized legdParii) To compute the strict Pareto boundary of the two-user
boundary represents the set of optimal trade-offs amorggthe  single-stream MIMO IC, we formulate a problem to

conflicting/competing users’ objectives. The trade-offdiff maximize one rate while the other rate is fixed. This non-
ferent users needs to be optimized by cooperative algosithm convex optimization problem is solved by the proposed
to achieve their joint outcomé [22]. alternating optimization algorithm [27] such that a con-

A direct improvement from NE to Nash bargaining (NB)  vergent point is guaranteed to be achieved (Section IV
by cooperation for the MIMO IC has been studied [inl[23], A-C).
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iif) The proposed optimization algorithm can be extended ®INR,(w;, w2, g,) becomes
the multi-user scenario (Section IV-D).
Notation: (-)*, ()T, (¥, (-)T, Rank(-) and Tr(-) denote
complex conjugate, transpose, Hermitian and Moore-Penros
pseudo inverse, rank and trace, respectivelyl, R(-), and

j denote the absolute value, the real part of a complex- . )

VxHz and @ = -%- denote the vector 2-norm and vectofnatrices and product of matrices) causes a hard-coupling

T : - : :
direction, respectively.L, || and }f denote perpendicularity, Problem ofw; andws, in the SINR in (2). which makes it

parallelity and unparallelity, respectivelg\/(0, X) denotes dif_‘ficult to_analyze the SINR directly. To ga_in an insightdnt
a complex circularly-symmetric jointly-Gaussian probapi this coupling problem, we propose an equivalent form of the
density function with zero mean and covariance mafix S/NR expression.
X = 0or X >~ 0 meansX is a positive semidefinite matrix proposition 1 For the two-user single-beam MIMO IC, the
or a positive definite matrix;(X) and u;(X) denote the SINR in [2) can be reformulated as
i-th largest eigenvalue of X and its corresponding eigen-
vector, respectively);(X,Y’) andu;(X,Y’) denote the-th SINR; (w1, w2) =
largest generalized eigenvalue &f, Y and its corresponding 5 ||15[iiwi||2 ) ||15[Z.l.wl.||2

: ; A Hy\—1 v H sin“(0p ) ———— +cos“(Op;)) ————,
eigenvector, respectiveflx = X (X7 X) 'X" denotes o2 o2 + | H pwg|)?

the orthogonal projection onto the column spaceXof and '

H
% 2 I — IIx denotes the orthogonal projection onto thevherecos(0 ;) = ’Hiiwi ~Hkiwk] andfy; € [0,7/2].0

orthogonal complement of the column spaceXof

SINRZ (’LUl7 ’LUQ)
=w Hjf (671 + Hki’wkwkHHkiH)ilHii w;.  (2)

24, (wy)

®3)

Proof: See Appendix A. ]
Note that theSINR,(w;,w2) can be considered as a
2 2
II. SYSTEM MODEL combination of lEuwil gng IHuwidll” _ \with the weights

A Sianal Model sin?(fy.;) and cosQ(iGHyi). Th;ﬁlfjé?ﬁlk{”;(wl,wg depends
- >lgnal Mode not only on the desired signal powdtH ;;w,||* and the
Consider a two-user MIMO IC denoted BYX; — RX;,i = interference powet|H;wy||°, but also on the Hermitian
1,2, where each transmittérX; and each receiveRX; are anglefy ; between the direction#f,;w; and Hj,wy. The
equipped withNy > 2 and Ny > 2 antennas and a single dateSINR is coupled in a difficult way because of the existence of
stream is transmitted in each user. In this IC, the receiatd d6 ;. This is why it is more difficult to analyze the SINR of
at RX; is modeled as a MIMO IC than that of a MISO IC.

yi =g (Hywiz; + Hywprg +n;), 0, k€ {1,2}, k#i
) ) [1l. PARETO BOUNDARY AND COMPUTATION OF SOME
wherez; ~ CN(0,1) is the transmitted symbol of'X; by KEY POINTS

the transmit beamformap; € CN7*1, At RX;, g, € CNrx!

is the receive beamformer, ang, ¢ CN#*1 ~ CN(0,021) A. Pareto Boundary

is the additive white Gaussian noise (AWGN) vector. The The achievable rate region is defined as a set of the

matricesH ;;, Hy; € CVN#*N1 denote the flat fading channel-achievable rate pairs with all the feasible beamformers

matrix of the direct linkTX; — RX; and the cross-talk A

link TX; +— RX,;, respectively. Each transmitter has a R = U (R1(wy, w2), Rao(w1, ws)) .

power constraint that we, without loss of generality, set to w1, wa €W

1 and define the set of feasible transmit beamformers ste that the achievable rate regidd is not the capacity

W & {wechrx1, Hw||2 <1y. region. Its outermost boundary is called Pareto boundary in
this paper, which can be denoted by a Rt 2 U(RT, RS)
where (R3, R3) is a Pareto-optimal point. More precisely,

B. Rate with MMSE Receiver Pareto-optimality is defined as follows.

Assume that the interference from the other transmitt¥efinition 1 A rate pair (R}, R5) € R is [strict] Pareto-
is treated as additive Gaussian noise at each receiver. Bpgimal iff there does not exist another rate pai;, Ry) >
achievable rate of the linK'X; — RX; is given by: (R%,R%) [(R1,R2) > (R}, R%) and (Ry, Ry) # (R}, R3)]

Ri(wi,ws, g,) = log, (1 + SINR; (w1, wz,gi)), 1) with (R1, R2) € R, where the inequality is component-wise.

g™ Hiywi|? . As shown in Fig[L, the Pareto boundary consists ofstniet
where SINR; (w1, w2,9;) = = img, oz I the linear pareto boundarythe upperright part graphically, denoted by
transceiver design, it is well known that the MMSE filterstrict PB”) and thenon-strict Pareto boundargincluding the
is the optimal receiver for given transmit strategies. |i$thver'[ica| part and the horizontal part graphica”y' dend[gd
paper, the MMSE filterg, = (oI + Hyw;w;" H;" + "non-strict PB"), divided by "E1” and "E2". "E1” and "E2",
H;ﬂ-wkwkHH;ﬂ-H)_lHiiwi is employed atRX;. Then, "SU1” and "SU2” mean two ending points of the strict Pareto
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Ry "altruistic” strategy to create no interference to the othe
receiver and simultaneously to maximize its own rate and the
other transmitter operates "egoistically”. FBi (R1, R,), we
easily find from[(8) that; ; = 7/2 results in no interference

in the cross-talk linkI'X, — RX;. How to find the "altruistic”

strategyws'!* is shown as follows.

Proposition 3 E1(R;, R,) can be achieved bfw?°, w4t),
whereR; and w™?° are in (@) and

SU2

Rj

R, = log, (1 + w‘;lt’HAg(wfgo)wg”t),

Alt _ 7L 1
'11)2 _HHngllleQOul (Bl’HHngllwfgo)7 (5)
Fig. 1. Achievable rate region and Pareto boundary in twer-gase . A
with By £ 1L g0 Ao (Wi IONIL Bgo- O
H3\ Hyw, H3\ Hyw,
Proof: See Appendix C. [ ]

boundary and two single user points, which will be studied Similarly, E2(R;,R,) with (w{’,w3°) can be easily

in Section I1I-B. More precisely, for an arbitrary point onet obtained by interchanging the indices.

strict Pareto boundary, it is impossible to improve one rate3) Non-strict Pareto-Optimal Points (Rj, R5): For the
without simultaneously decreasing the other. For a poirthen hon-strict Pareto boundary, either the horizontal parther t
non-strict Pareto boundary, one rate can be further improveertical part starts and ends with a single user point and an
while the other rate remains the maximum rate. In particul&nding point. Therefore, an arbitrary poifR}, %) on the

the strict Pareto boundary can be characterized as follows.hon-strict Pareto boundary can be computed as

Proposition 2 For the two-user single-stream MIMO IC, all R; =~v-R; and Rj =Ry, Vi, k€ {1,2}, k#i

the operating points on the strict Pareto boundary can bv%herez’ — 1 andi = 2 correspond to the horizontal part and

_achieved 2onIy Whe2n both the transmitters spend the full POWE . \ertical part, respectively. The scalasatisfiesy € [0, 1).
Le [lwa 7= [lwz "= 1. - The point(R7, R%) becomes a single-user point or an ending
Proof: See Appendix B. m point wheny = 0 or v = 1, respectively. The associated non-

Remark 1 In fact, Proposition 2 has solved a strict Pareto-StrICt Pareto-optimal transmit strategies are
FEgo

optimal transmit power allocation problem in this scenario wi =7 -wi and wj =w;?,
When the strict Pareto-optimal power allocation policy i ) . o

employed, i.e., both the transmitters spend the full pother, ?rom V\{h'Ch we find dthfat” It 1S not .neﬁessary 1;or bOtthhe
two strict Pareto-optimal transmit beamformers desigruees ansSmitters to spend full power simuftaneously to achieve

to the optimization of two transmit beamforming patterfs. the_ hon-strict Pareto _bounda_lry. _Thu_s, the non-strict Ba_ret
optimal power allocation policy is different from the stric

Here, we define a set of all the beamformers with full transnareto-optimal power allocation policy (Proposition 2).

power asWzp 2 {w € CNrx1 . ||w||> =1} Note that all ~ 4) Zero-Forcing (ZF) Points ZF(RZ¥, RZT): ZF points

the strict Pareto-optimal transmit beamformers shouldrbe are achieved when there is no interference between ditferen
the setWxrp. users. Although these points are not on the Pareto boundary,
it is still interesting to study ZF strategies if there essit
an additional requirement (like interference temperatore

B. Computation of Some Key Points ; , .
_ ) secrecy constraints) that each transmitter does not leakin
In this part, we compute exactly the non-strict Paretggnaﬂ to other receivers.

boundary, two ending points of the strict Pareto boundady an ", @), we find thatfy, = 6Oyo = =/2 results in

certain ZF operating points. no interference in the cross-talk link§X, — RX; and

1) Single-User Points SUl_(El,O)_ and SU2(0,R2): A TX, s RX, simultaneously. The ZF conditions are
single-user point can be easily achieved when only ©xg

works and simultaneously operates "egoistically” to maxen Oy =7/2 & H11w1H - Hoywy =0
its own rate. The maximum achievable ra of the link
TX; — RX; and its associated "egoistic” strategyfg" are "
Ogo=7/2 Hows -Hipzaw; =0
= /\1 (HZIH”) Ego _ HHH vi H,2 / 22W2 12W1 Y
i = 1089 1+72 » Wy _ul( it ii) z. <:>H22w2J_H12w1<:>w2J_H22H12w1, (6)

0;

H
= H11w1 1 H21w2 <~ W2 1 H21H11w1,

(4)  from which and under a sufficient (and necessary only when

2) Ending Points of Strict Pareto Boundary E1(R;, Ry) Nr = Ng = 2) conditioff, i.e., Hj} Huyw: || H3,Hizwi,
and E2(Ry, R»): Eagh ending point of the.St”Ct Pareto 2tyis condition is the same as that i [15], while we deriverdni a
boundary can be achieved when one transmitter employs diferent perspective (Hermitian angle @ (3)).
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we obtain some of the ZF transmit strategies The transformatiorfa) is based on the matrix inverse lemma.

The transformatior{b) is due to|lw;||>= 1. In the transfor-
ZF __ H H
wi" = uy(HyyHuo, Hy Hy ), VE€ (1,2, N}, mation (c), the nonnegative left-hand side dfl (9a) demands

Nr—1 HrrH 2 * : g H
wZF — Z gty (IT- ) @) w2.H22H22w2 > 05SINR3, and C is a Hermitian matrix
2 = O H HywiF ) defined as
=1
A rrH HyrH
_ o C(w2) = HigaHopwowy Hyy H
where {¢,}Y*;"! are complex-valued numbers and satisfy (w2) 128822702702 A2 012

év:Tfl |C€|2 =1

The ZF(R#¥, RZF) can be achieved bjw? w%!) as

— (wi HY Hoyws — 03SINRY) - (021 + HLH ). (10)

Then,w; can be optimized by

2
RZF (w?F wi) =log, [ 1+ M Vi. (8) max  wi A (wy)w,
3 i o 2 2 12 (Pl) { w1 EWrp
s.t. leC(wQ)wl =0

V. COMPUTATION OF THESTRICT PARETO BOUNDARY  whereC(ws) and A;(w,) are Hermitian matrices. Observe

Since the rate region of the two-user single-beam MIM&'at_ the problerrt(Pl) is a homogeneous quad_rati<_:ally con-
IC is always a normal regiinaccording to Proposition 2, Strained quadratic program (QCQP) and the objective fancti
there exists only one intersection point between the lifgCONVex butthe convexity of constraints is unclear. Galer
R;(wi,ws) = R* where Rf € (R, R:) and the strict it is difficult to solve this non-convex problem.

? (2 (3 =1

Pareto boundary. Thus, an arbitrary point on the strictt®are Note thatw Xw; = Tr(X W) for any matrixX, where
boundary can be uniquely determined when one rate is fix8d; = w,w’ is a rank-one Hermitian positive semidefinite
and the other rate is maximized. This motivates us to propasetrix. By the semidefinite programming and rank relaxation

the following optimization problem (SDR) method(P1) can be transformed to
|
(PO) { w17£%)15\}f79 SINR; (w17 w2) VI&I]B;E(O Tr (Al (’LUQ)Wl)
s.t. SINRQ(wl,’LUg) = SINR; (P2) s.t. Tr (C(wQ)Wl) =0
where SINR; € (282 — 1,282 — 1) is a Tr (W1) = 1.

SINR constraint, and w;,ws should be in Wxp
according to Proposition 2. Then,(R7,R}) =

,(bg?rs,l + (SjIEerEwT’u_’g))l’ 1Og|2 (1 +§IN*R2(wT’w5))) based on Weierstrass’ Theorem. Its optimal solufi®f{ is
is achieved by the optimal solutioaw}, w3) to (P0). efficiently obtained by a convex optimization toolbox, e.g.

For (P0), direct joint optimization ofw, andw; is @na-  gepymi”[28] or CVX [29]. However, the rank obW* to
lytically intractable due to the hard-coupling problem loémn (P2) is u-sually more than one because we have discarded

in both .the 0b_jet_:tiv§ and thg con§traints. TO, sol¥), an  the rank constrainRank(W,) = 1. Therefore, we need to
alternating optlmlza_tlon algor|thn_1 [27] is a_pplled to apize extract an optimal rank-one solutian, to (P1) from W*. If
w; and ws alternatively by solving two smgle—beamformerRank(WD — 1, it is clearw; = u;(W?). Otherwise, other

optimization problems at each iteration. In the followiN@W {51 matrix rank-one decomposition methods are needed. In
to solve each single-beamformer problem is studied. [30], Ai et al. have proven a matrix rank-one decomposition

theorem and used it to show thtéte SDRs of a large class
A. Optimization ofw; of complex-valued homogeneous QCQPs with not more than
4 constraints are in fact tight Since the probleniP1) as a
homogeneous QCQP with 2 constraints, an optimalto the
QCQP(P1) can be reconstructed fro#} to the SDR(P2)
based on the theorem and algorithm of the matrix rank-one
decomposition in[[30].

Observe that the SDRP2) is convex and solvable, i.e., its
respective finite optimal solutions exist for a feasihle,

For a givenfeasible ws (the feasibility of wy will be
studied in Proposition 4), the problefR0) becomes a single-
beamformer optimization problem w.rdv;. Its constraint is

ngg (GSI + H12'w1'w1HH12H)71H22'w2 = SINRE
Remark 2 In (P1), if C(w-) is a positive/negative semidef-

@) H |wi Hyy Hipw: e N L ;

Swi Hy\Hows — — 7 - = 03SINR;, inite matrix without full rank,w; should and must be in
i 52 ;H 12w the null space ofC(w-) to satisfy wi C(wsz)w; = 0.

®w1” Hyy Hapwywsy Hy, Hypw, According to the proof in Appendix Gy, can be expressed
wi (631 + H{, Hop)w, by U,U{'p, whereU; € CNrx(Nr—Rank(C(w2))) consists

= wl HY Hyow, — 02SINR}, (9a) of Ny — Rank(C(w»)) eigenvectors corresponding to zero

gwflC(wQ)wl =0 and wi HY, Hyowy > 02SINRS.
(9b)
“Note that the application of Theorem 2.2 and Theorem 2.30j} fi@eds

3A setG C R, is called a normal region if for any two poinis€ G,#’ € Ny > 3. It implies that TX,, Vk should haveN; > 3 antennas in our
R;" such that ifz’ < x, thenz’ € G, too. scenario.
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eigenvalues oC'(w-). Then,(P1) is equivalent to

plU U Ay (ws)U U{' p,

max
piU U p,

PIGCNT X1

(11)

from which it is easy to derive the optimal solutigf”*
uy (U U Ay (w2)UUY U, UY). Therefore, the optimal
I

solution to(P1) is w, = U, U p?". O

B. Optimization ofw-

For a givenfeasible w;, (P0) becomes another single-
beamformer optimization problem w.rizo. Maximization of
its objective function is

max w!i HY
w2EWFP

-1
2 HrrH
(01I+H21w2w2 H21) Hyw,
HyrH 2
|w1 H11H21’LU2|
2 H
o7 + wQHH21H21w2
, lwi HE H oy w, |2
< min 5 yo
w2EWFp o1+ ’UJQHH21H21’LU2

w2H01 ('11)1)’11]2

<= max w{IHﬁHllwl—
woEWFp

<— min

w2EWrp wg—ICQ'I.UQ

12)

Wherecl(wl) é Hleuwlw{iHﬁHgl andCQ é O'%I-i-
Hlegl are Hermitian matrices.
Then,w- can be optimized by

min ’l.UQHCl(’LUl)'LUQ
(P?)) w2 EWFp 'wag’wQ
s.t. ngQ(wl)wQ = SINR;.

Observe thatP3) is a fractional QCQP problem. The ob-
jective function is not even a quasi-convex function due twwhere C(w-) is defined in[{100).
the convexity of both the nominator function and denominato

function. To deal with this problem, we transform it by thel_hat

SDR to

T (Cr(w)W>)
min ey e ——
P4) Wy=0 TI'(CQWQ)
( s.t. TI‘(AQ (wl)WQ) = SINR;
To (W) = 1,

which is still a non-convex problem. Fortunately, the fracal
structure can be removed by a variation of the Charnes-Coo
variable transformatiori [31]. Define the transformed Jalga
Q = sWy with s = #) Then,(P4) becomes

2

Tr(C'z
glin Tr(C1(w1)Q)

st. Tr(Az(w1)Q) = s - SINR;
Tr(CQQ) =1, Tr(Q) =35
1 1

Q=0 M(Ca) <s< W (Ca)’

which is a convex problem w.r.€ ands and solvable (see the

(P5)

Appendix D). By a convex optimization toolbox, we can obtain

the optimal solution(Q*, s*). Then, the optimal solution to
(P4) can be easily obtained B3 = <-. Observe thatP3)

Therefore, by the matrix rank-one decomposition method, an
optimal rank-one solutionw, to (P3) can be extracted from
W3 whenRank(W?3) > 1.

Remark 3 In (P3), if D As(wy) — SINR; - I is a
positive/negative semidefinite matrix without full rank;
should and must be in the null space @ to satisfy
wi Dw, = 0. According to the proof in Appendix @y, can
be expressed b¥/, UL p, where U, € CNx(Nr—Rank(D))
consists ofV; —Rank(D) eigenvectors corresponding to zero
eigenvalues oD. Then,(P3) is equivalent to

plU U C1(w1)UU p,
peChtxt  pHUUXCLU, U p,

from which it is easy to derive the optimal solu-
tion pgpt = u (UgUgICl('UJl)UgUg,UQU;ICQUQUHg )

H_opt
2 Py U

(13)

)

Therefore, the optimal solution {#3) is wy = UU

C. Algorithm

In this section, algorithm discussions are given to gainesom
insights into the proposed alternating optimization aiktpon.

1) Algorithm Description: A feasible initial wo for opti-
mization of TX; can be obtained as follows.

Proposition 4 For a given SINR} e (28 — 1,28 — 1),
(w1, ws) is always a feasible solution pair tP0) if w; €
Wrp, wa € Wz with

Wr 2 {w2 € Wrep : wi HE Hopw, > 02SINRS,

A (C(w2)) - Ang (Cws)) < 0}, (14)
O
Proof: See Appendix E. [ ]

is,(P1) equivalent to/P0) with a fixedw, € Wx always
has at least one feasible poit; in Wxp (more analysis of
initialization will be given in Section IV-C-2).

The proposed alternating optimization algorithm with any
initial we € Wy is described in pseudo-code as Algorithin 1:

Algorithm 1 Two-User Alternating Optimization Algorithm

fput: w wy?°, an arbitrary RS € (R,,R»), and

SINR} = 272 — 1,
Output: A convergent poin(Rgé),Rg) by (
begin
Initialization: Set a feasiblevéo) € Wr, £=0.
while some convergence criterion is not satisfal
L+ +.
Givenw!/ ™", obtain an optimal¥’, to (P2).
Extract an optimah)gé) from W to (P1);
Given wgl), obtain an optimalQ, s) to (P5) and an
optimal W, = < to (P4).
Extract an optimah)gg) from W to (P3).
ComputeR” = log, (1 + w{”" A; (wi)w

Alt
2

@ .0

wi, Wy

).

()

2 1

).

s*

is equivalent to a homogeneous QCQP with 3 constrain

ts.
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2) Algorithm Analysis: In this section, we discuss the prothe global optimal solution tqP0) by (w7, w3). Take an
posed algorithm in the following aspects: i) the convergencextreme example, ifwgo) = w3, we can obtain the global

i) the quality of the solution, iii) the implementation,)ithe optimum w* = @ w'® directly due to the optimality

. 2
complexity. of ®(-). Therefore, a good initial beamformer could lead to

i) Convergence AnalysisBased on the results in Sectionyjon performance. However generally, it is difficult to find a

I\./'AI arl;d Sefctlon IV'B.’ a gl_obal og?mal SOI“(;'OE to eaCIgbood initial pointefficientlyfor such a complex multi-variable
single-beamformer optimization proble(®1) and (P3) can oo4imization problem. In order to improve the performaree,

be obtained at e(a}g:h |(tgratégn. We W'”_ show that the. SEommon way in references is to implement the alternating
quence{SINRl(wl » W )},3:1 by Algorithm[1 monotoni- optimization algorithm with multiple random initializatns
cally increases and converges, iﬁNRl(ng),wgg“)) > and then select the one with the best performance. In this

SINRl(wgé),wy)) 73 paper, we desire to design a scheme to generate a good
Denote the optimization ofv; and the optimization ofv, initialization efficiently
by the mapping functionsv; = ®(w2) and wy = O(w,), Inspired by the idea ir [2]/[16], we heuristically propose a
respectively. Then, the procedure of Algorithin 1 at fhelth transmit beamformer design scheme by balancing the "egois-
iteration is shown as tic” and "altruistic” strategies as
(QIN() wiV=e (wf?) (e+1) _ (6) (e ) — o anB90 | e o All .
SINR; (wi?, wi) — SINR; (w{™, w{") w;i(&i1,6i2) = &aw " + pw, =12, (15)

w;’f“):ﬂwg”l)) (€r1)  (et1) where¢; ; and¢; » are complex-valued parameters satisfying
SINRi(wy "7, wy "), |& 1] + |& 2| = 1. In fact, this tradeoff scheme is reasonable.
For instance, it is necessary to be Pareto optimal for the two
) 0 = J user MISO IC [2], and its a similar form still provides a
of (P1) includesw;” and additionally the global optimal 4,64 performance in sum-rate maximization for the multirus
;olugon to (P1) (fflr)‘ b‘a) obtained bycb(-),(;)t ob\ggc))usly single-stream MIMO IC[16]. The following simulation ressi|
implies SINR; (w; 7, wy ) = SINRy(® (w2 )vwz ) > show that this characterization cannot exactly achieve the
SINR; (w'”, w'). Similarly, it is also easily verified Whole strict Pareto boundary for the two-user MIMO IC but
SINR, (w§5+1)’ wé”l)) — SINR, (w§z+1)7 o (wgzﬂ))) > stll_l has a promising performance. In particular, the twcmag
) (0 (e11) (e11) point of strict Pareto boundar¥1 and £2 can be achieved
SINRyi(wy 7wy 7)) by wy 7 = ©(w; ) due to the exactly by (w,(1,0), w(0,1)) and (w1 (0,1), ws(1,0)), re-
optimality of ©(-). As a consequence, the sequence @pectively.
¢ O\ > . . .
{SINRl(wg ) w} ))}lﬂ monotonicallyincreases as the it-  |f (w{” w”) corresponds to the bound f{15) or of ran-
eration number incrgases. In addition, since the sequena®dm beamforming, then the proposed algorithm must improve
{SINRl(wgé),wy))} is upper-bounded by the single-(Or at least keep) the bound 6f{15) or of random beamforming.
o (H:ilu) _ However, it is not efficient to find those beamforming pairs
user SINR, i.e.,=—=14—== in (@), the convergence of theschieving the bound achieved by {15) or by the random
sequence{SINRl(wgw, wg@))}m , and thus the convergencePeamforming. Therefo_re, there is.n_o_ guarantee to say tleat th
) ) £=1 S - (0) proposed algorithm wittonly one initial beamformealways
of A-Igorlthm[] is guaranteed for any feasible |n.|t|al pom§ - achieves aruter boundary than the bound df{15) or of ran-
Since thehard-couplediwo beamformers exist not only in yom peamforming, but its performance will increase with the
the objective but also in the constraints(iR0), the conven- nmper of initial beamformers (i.e., multiple initializas).
tional convergence analysis for the block coordinate descesjnce the2 N--dimensional real space of each complex
algorithm [32] that requires that the constraints separable 5, beapproximatelyeduced to 3-dimensional real space (i.e.,
among the variables is not applicable to our scenario. TheTgi 1|, |&.2| and the difference of the phases ©f and¢,; .
fore, it is unclear whethergthe %roposed ?Igori;hm CONVBIYR (15) without significant performance loss. Therefores th
to a stationary poin(Rl(wg Jw), Ro(w§ )7w§))) where proposed algorithm with the proposed initialization 15
w!” and w!" satisfy the KKT conditions of the original IS more efficient or likelyto achieve a good performance
problem(P0). compared with a random initialization.
i) Quality of Solutions: Due to the convergence of To further enhance the efficiency of initialization ty (1),
the proposed algorithm, the limit point of sequence dgeal constant parameter (i.e., the proportion of the "agdis
{SINRl(wy), wy))} for an arbitrary feasible initial”) ~ Strategy) is employed to redude [15) to

~—

In wy“) = @(wgé)), since the feasible point set ab,

can be achieved by wi=C w4y (1-¢)-wi, =12 (16)
: (0) (0 .
glif?o SINR: (w7, w,”) where ¢ = % is a constant for a giveR;. If wy ¢
R, .
:SINR1(<I> (@ ( ((I) (wgo))))) ,0 ( (wéo)))). Wyr, we reset{ € % + [~v,v] with 0 < v <
_ =2
It implies that the performance of the alternating optirtiza min {%:gj, %:zz} until wa € Wge. If ws is still infeasi-

algorithm depends on the initial beamformex(zo). Denote ble, we choose a randomly generated € Wx directly.
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Note that the characterization ih{16)rectly corresponds  Without loss of generality, the optimization problegff0)
to its own bound. Thus, our proposed algorithm with thi the two-user case can be generaliz@ to
initialization by [16) always outperforms the bound hy]l(16)
which can serve as a lower bound of the proposed algorithm. {%?}),(C SINR: ({wi}x)

i) Implementation with Transmitter Cooperatioffor the (Q0)< . SINRy ({w;}x) = SINR}, Vke K\{1}.
purpose of implementation without an authdfjtye assume H .

. . w;w; <1, Vielk,

that each transmitter knows perfect global CSI in a block- ]
fading environment through training and feedback and it wilVhere{SINR  }ic\ (1, are assumed to be feasible. The problem
ing to cooperate with each other transmitter for informatio(Q0) is & non-convex problem ofw; }ic.
exchange via backhaul links. For the optimizationwof at ~ To extend the proposed algorithm 1®0), we derive
TX;, TX; solving (P1) based on the updatad, from TX,. equivalent expressions SINRy({w}«) in (L4) by defining
Similarly, TX, optimizesws by solving (P3) based on the D(w—i—x) = >y, Hovwow" Ho™ + 07T
updatedw; from TX;. The algorithm can be terminated onc
TX; finds that convergence criterion is satisfied. %INRk({wi}'C) .

iv) Complexity AnalysisEor the proposed algorithm shown = wkHHka (D(w_i_k) + HikwiwiHHikH) Hwy
in Algorithm [1, each iteration involves solving two convex ., .
semidefinite relaxation (SDR) problems (i.é02) and (P5)) = wf HjD(w_i—;)  Hppwi—
and two implementations of the matrix rank-one decompo- Fr(w_;)
sition of W,. In [33], it is shown that the complexity of
solving the SDR ispolynomial in the problem size (i.e.,

wfl HgD(’w_k_i)_lHkk’wkwach(w_i_k)_lHik w;

Nr) and the number of constraints (denoted hw), ie., L+ wH Hyp"D(w_iy) ' Hy w;
O(max (m, Nr)* N1/ log(1/€)) given a solution accuracy Cr(mr)
e > 0. In this paper, we havé&v; > 3, andm = 2 in (P2) (18)

andm = 3 in (P5). Thus, the complexity of solvingP2) ) )
and (P5) is O(N25log(1/e)). In terms of the complexity of Wher.e the transforn:atlonia) is based on the Sherman-
the matrix rank-one decompositidn [34], the rank-one oyt Morrison Formulal[35] ando . = {welic\fiky-

can be extracted ipolynomial-timeif Rank(W;) > 3; If Ther_efore, maximization qf the (_)bjectlve function (i60)
Rank(W;) > 2, it is sufficient to seek for a rank-one solutionV:I-t: different beamformers is equivalent to

to a sequence of linear matrix equations within a slightly; 4~ SINR (
expanded range space W ,. If Rank(W;) = 1, only eigen- w1
decomposition of¥; is needed. max SINRy ({w;} )& min wipT Fr(w_g)wy,

In the following simulations, the average time of an itevati  w» ! ik wr 1+ wp? Gr(w_1_g)wy’
of Algorithm [ is 0.6180 seconds by running the MATLAB Vk € K\{1}, (19)
7.10 on the computer with AMD Athlon(TM) 64 Processor = | o ]
3200+, 2.01 GHZ and 2GB RAM. Additionally, the fastand individual SINR constraint is equivalent to
convergent behavio_r of the proposed_ algqrithm is implied SINR; ({w; }x) = SINR
numerically (e.g., Fig[ 2(b) with 8.55 iterations on averag
and Fig[3(H0) with 5.16 iterations on average). Therefdre, t

proposed algorithm has reasonable complexity. PON wlEL(w_)w; =yw(w_;), Yi#k (20)

{w;}r) = I?Uaix w7 A (w_q)w,

= w" Ap(w_i)wi = SINR},

where E,(w_;) andv,(w—;) are defined as

D. Extension to the multi-user MIMO IC A
der th | h th Bulw-0) = w0
Consider theK-user single-stream MIMO IC. With the HorH 1 N _
MMSE receiver, the achievable rate of the K}, — RXj is (wk HjjD(w—p—)  Hppwi — SINRk) Gr(w—i—);
expressed aRk({’wk};c) = 1og2 (1 +SINRk({wk}K)) Vk € 'Yk('wfi) é wa]ggD(wfkfi)ilHkkwk _ SINRZ.
K=1{1,.., K}, where

The equivalencéd) in both [19) and[(20) is based dn (18).

SINRy, ({wi}ic) = 1) Optimization ofw;: Given the fixedw_; and based
wh Hﬁ(z HywwHy" + 021 'Hywy. (17) on the equivalence results i {19) and](2@)0) W.r.t. w; is
i£k equivalent to
Ap(w_i) max leAl(w_l)wl
. . w1
is the SINR expression of theith user. w_, denotes (Q1){ w1 By (w1 )wy = y(w_1), Vk € K\{1}.

w; .
{ }K\{k} lewl <1

5The proposed algorithm can be also implemented in a cergdhlivay
with the aid of an authority who does the optimization of bath and wo 8For multi-user case, an arbitrary Pareto-optimal pointhef atility region
based on the global CSlI collected through feedback links. can be achieved by maximizing one user’s utility while fixiiig others.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MON YEAR 9

Observe that{Q1) is a homogeneous QCQP. By the SDRparametric programming problem

(Ql) is relaxed to -F(Mk) — mmin {Tr(Fk('w,k)Wk)

ppax Tr(Ay(w-1)Wh) WiESw,
Q1) st Tr(Ep(w_1)W1) = ye(w_1), k€ K\{1} ik (14 Tr(Gr(wo1 )W) | (22)
Tr(W;) <1 where Sy, denotes the constraint set ;, consisting of

whereW; = w,w!. Now, (Q1’) becomes a convex problema" the constraints iQk’), and it is obvious thatSyy, is
L B . . *
w.r.t. W 1. The optimalW™ to (Q1’) can be efficiently solved & COnvex set. Assume the optimal solution(Qk’) is W.
. . 1 | * TI"(Fk(’w—k)W;;) t i | ]: ) = ) Th
by a convex optimization toolbox. Hi = T T@nw_wr) It implies F(ui) = 0. Thus,
solving (Qk’) is equivalent to finding the root of the equation
If Rank(W7) = 1, the optimal rank-one solution i@, = ]:(“_k) =0. _ o
u1 (W?). Otherwise, we observe théh1) as a homogeneous CNeN/u, @Disa convex optimization problem w.i&;,
QCQP hask constraints, and thus an optimal to (Q1) can and its optimal solutionW (u) can be efficiently solved.
be reconstructed frofV ] for K < 4 by the matrix rank-one Therefore, 7 () = 0 can be further formulated as
e e e e 0 =Pl W
. " _ * . * —
and the randomization method) to extractapproximatew; i (L4 Tr(Gr(wo1 k)W) =0, (22)
from W7. Although these approximation methods are ndtrom [36], we know thatF(u;) is continuous, concave,
tight, intensive research show that they provide promisirgrictly decreasing ims andF (i) = 0 has a unique solution.
performance (the interested readers could refer to theysisal Additionally, we find that— (1 + Tr(Gr(w_1-)W7})) is a
of approximation accuracy bounds [n_[33]). subgradient ofF (i) for any u. Thus, [22) can be solved by
a generalized Newton method (also known as the Dinkelbach
algorithm) described in Algorithrin] 2.

2) Optimization ofwy, Vk # 1: Given the fixedw_; and

basgdlont ihe equivalence results in](19) and (2QN) is  Algorithm 2 The generalized Newton method to solzel (21)
equivalent to

Input: ;L,(CO) satisfying]-'(u,(co)) < 0, tolerancee.

min wi Ty (w_p)wy, Output: Optimal u, and W
wy 14+ wpHGr(w_1_p)wy begin
k s.t. wkHAk(w_k)wk = SINR} =0
(Qk) . g while | F(1{?)] > ¢ do
Wi Eg(w,k)wk = W(w,k), VY e K\{l, k} . © ) ©
wilwy, < 1. Given ., solve optimalW (") to (21);
- (1) _ _ Te(Frw- ) Wim?) [
Observe that the objective function belongs to fractiona| Mk T (G (w1 )W)
program, while it is not a quasi-convex function due to the i+ +.
convexity of both the nominator function and the denominato| . = /L;f) and Wi = Wi (u}).

function. To deal with this problem, we transform the proble —
(Qk) via the SDR to

The algorithm as a Newton procedure to determine the

min Tr(Fy(w_r )W) root of the equatior(nj) = 0 has superlinear convergence.
Wizol + Tr(Gr(w-1-x)Wy) By the Algorithm[2, the optimal; and Wi (u}) to (1)
(QK') s.b. Tr(Ag(w_g)Wy) = SINR] is obtained. EquivalentlyW 7 (n}) is an optimal solution to

Tr(Eo(w_)Wi) = ve(w_y), V0 € K\{1,k} (Qk’) [36]. Then, a tight (forK” < 4) or an approximate (for
Te(Wy) < 1 K > 5) solutionwy, to (Qk) can be extracted frorfiVy.

’jq - Above all, the proposed alternating optimization algarith
where W, = wjwy’. It is known that full power trans- extended to solvéQ0) can be described as Algorithm 3.
mission is not always Pareto-optimal for the general multi- ) o _
user MIMO/MISO IC (related to the number of users anfemark 4 The proposed alternating optimization algor_|thm
transmit/receive antennas), which is different from the-tw ¢an be extended to th&'-user MIMO IC. For K < 4, it
user Pareto-optimal full power transmission (Propositin

"This generalized Newton iterative update is from
Tr(Fk(w,k)Wk) Tr(Fk(w,k)Wk)
It leads to T (G (w1 )W) #* TG (w_ )W) D A (0 _ F(ul?) N O
Thus, the Charnes-Cooper variable transformation useldein " k — (TG (w o )W) k
optimization problemP4) in the two-user case is not appli- T(Fx(w_ Wi () ))—ul” (147G (w_1 ) Wi ")) B
cable to(Qk’) any longer. Nevertheless, we observe that both — (TG (w 1) WEWRY))

the nominator function and the denominator function of the Tr(Fx(w_ ) Wi (u”))

- . ) : . . I GIN
objective function are non-negative, differentiable affthe ' (Gk(w_1_k) Wi Gy ) _
This condition is to make sure that a better (at least the pawiation

with Wk.. By introducing a real scalar parameter > 0, 1o (Qk) (only for K > 5) is always obtained in each iteration such that the
the fractional programming problei@Qk’) is equivalent to a objective function’s non-decreasing convergence is guaeal.
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Algorithm 3 K-User Alternating Optimization Algorithm

=
o

N — o R rand by 200 Random Initializations
InpUt : {RE}K\U} Where RZ - 1Og2 (1 + SINRZ) and 1.05¢ - P;rformance Mean of 200 Rl.rand
SINRz S (O, U%Al (HkkaHk)} . - _— R1 ref by Initialization Eq.(16)
k ® ,
Output: A convergent point R(E), R3,...,R3) with %ﬁ ' o Lo 0o’ o0
p o g p ( 1 2 K ) < %g)%) C?O; Q)%O@% OOO ;)@OZ @%%o C% %C@O@@%g
bedi {wi "}k El0.95__0_0_0_0209?__6%_@9_S’.go_oe___o_%_c,_o_o__
egin « O ) o o
g--- S ; 0) ,_ S e, 000 009 o o2 g
Initialization: Set a feasiblev™"y, £ = 0. 2 oot o & 0% o &g, |
while some convergence criterion is not satisfeal = ° o °% o @ o @0 G° Cpoo o
{4 +. ossl O ¢
for k=1— K do ° ‘ ‘ °
Givenw'’, "), obtain an optimab¥}, to (QK'); 0 0 taieions 200
Extract a tight/approximatew; from W, to @
(Qk).
if K > 5 and SINRl (w](f)’w(flzl)/(l)) < % -Nu‘mberofRandc‘)m Initializatioﬁs
SINR, 'wgfil) w(f;l)/(l))ﬁ then 2 el 711 Initialization by Eq. (16)
) — 2
¢ 0-1). ki
L 'w;c) = w;e ) S 20t
0 _ () 3
ComputeR;”’ = log, (1 + SINR4 ({w,C },c)). £1s
£
2

o

is the same as the two-user case that each optimal single-
beamformer can be obtained in each iteration. Hgr > 5,

each approximate optimal single-beamformer is obtained in
each iteration. Following the same line of the proof of the (b)

Algorithm[1’s convergence in Section IV-C-2, the convetgen

. . Fig. 2. Performance of Algorithi] 1 by different initializats at Ry =
of the Algorlthn[B is also guaranteed. U 5.6398: Performance comparison of 200 random initializatiersl 1

initialization by Eq. [Z6)[{H) Convergence behavior of aighm[l.

o

5 10 15 20
Iterations for Convergence

V. ILLUSTRATIONS AND DISCUSSIONS

To illustrate the achievable rate region by the proposeflen r; = R, + 1. (R; — R,) = 6.2898 (corresponding to
algorithm, we consider a two-user Gaussian MIMO IC, whekfe middle of strict Pareto boundary). Similarly, Hig. Béad
N =3 and Ng = 2. The transmit power budget is set t0 Irjg [3(b) also show that initialization bif{1L6) has a promisi
for the two users, and noise powef = o5 = 10~ 10 where performance and fast convergence behavior. Thereforei-sim
SNR=10dB. The channelfl1,, H1,, H5, and H; are lation results imply tha{{16) is a good choice for initiafon.

—0.3034 + 1.90961%

—0.3790 + 0.4201%
—0.6358 — 0.80301%

0.0357 4 0.73371%
—0.7881 — 0.12731% ’

0.7534 + 0.83487

—0.6758 + 0.1040%
—2.1621 + 0.54041

0.3999 4 0.1567%
0.5494 — 0.46481%
—0.0308 — 0.11331%
—1.4947 — 1.86761

—0.5949 — 0.03441
—0.0037 4 0.66271%

0.3798 — 0.56197
1.1971 — 0.52974%

0.0433 — 0.33131%
—0.9430 4 0.57047

0.4311 + 0.9658%
0.8611 + 1.2318:

—0.1005 4 0.2836%
—0.7271 4 0.21147

0.3047 — 1.21571%
—1.3328 4 1.4638

)
)

)

B. Performance Comparison

Fig. [4 illustrates the achievable boundary by the pro-
posed algorithm, i.e., Algorithril 1, compared with the ex-
isting methods. The term "Proposdd9” denotes the best
result obtained by running Algorithi 1 with 1 initializatio

in (I8) and 9 random initializations, while "Proposdd

A. Convergence and Performance of Initialization by Eqg).(16epresents the result only with 1 initialization ih_[16).

. . .The SINR targets arSINR; = 272~!s where R} =
To study the convergence rate of the alternating optlrmznanE2 +on (Bs— Ry), n = 1,2,...,49. Similarly, the term

algorithm and evaluate the effectiveness of the initigilcrain MMSE_10” denotes the weighted sum rate maximization

, we respectively us 6) and 200 randomly generated . o N
%Egible norrr?alized \};ectc%s)initiaig. Then. we rgngAIgo— algorithm [13] with 10 random initializations, where wetgh

) . _ sum rate is expressed as- R 1 - - Ry. with the
rithm [ until |R{” — R{"Y| < 10-3. u IS Exp 1+ (1 —w)- Ry. wi

. 1 . weights ws in [0.05 : 0.05 : 0.95]. "WMMSE_1" denotes

Fig.[2 and Fig[B show the performance of the alternatingy "o 1t only with 1 initialization by[{16), i.e, settinget
optimization algorithm by different initializations. Merpre- ©) Fgo T
cisely, Fig[2 is for a giverRy — R, + 2 - (Ro—R,) = 5.6398 initial beamformers asw;”’ = w-w; " + (1 —w) - wj
(close to the ending pointR;, R,)). Fig. [2(@) shows that and w!” = w- w9 + (1 — w) - wAl. The curve denoted
the achievedR; with initialization by [16) nearly always by "RandBeaml1Omil” means the outermost boundary of
outperforms that with 200 random initializations. Fjg. R(bthe rate region achieved by 10 million random normalized
implies the convergence rate of the algorithm. Eig. 3 is fortaansmit beamformer pairs (each receiver is the MMSE filter)
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To further evaluate the performance of "WMMSH)” and

1.02
2 o ° "Proposed1+9” on illustrating the Pareto boundary, another
o ©90°° ° o o 08 simulation is done and shown in Fid. 5. Even with fine weights
- Op O . . .
5 098fos o B0 o%oooémo o & ‘%O °90 ws in [0.05 : 0.005 : 0.95], we find that there exists a large
[e] . .
ERW > - g2 bl Sl 5859 jump between the points "P3” and "P4” by "WMMSEOQ” so
2 0.96 o . . .
g Yo 3007 o8 @0 B %0 % that the rate region cannot be illustrated effectively.
9_: 0.9al Ie) ° 000 [e]e) o]
o
% 0ooll © R rang PY 200 Random Initializations
@ - - - Performance Mean of 200 RUand 6.85
0.9/ —R, by Initialization Eq.(16)
6.6
0.88 y - -
0 50 100 150 200
Initializations 6.41

(@

Il Number of Random Initializations
711 Initialization by Eq. (16)

301

Number of Related Initializations
N
(=]

=
o

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iterations for Convergence

(b)

R2 [bits/channel use]

< WMMSE_10
* - Eq.(16)
x - Eq.(15)

RandBeam_10mil | o

—+— SimpleReceiver
© - Proposed_1+9
<« Ending point E1
V¥ Ending point E2
¢ ZF Points

—+#— Proposed_1
o WMMSE_1

4.8 5 5.2 5.4 5.6 5.8
R1 [bits/channel use]

Fig. 4. Achievable boundary with SNR=10dB and = 3, Nz = 2 for a
random Gaussian channel data

- e —Proposed_1+9
-+ —RandBeam_10mil
3 < WMMSE_10

Fig. 3. Performance of Algorithril 1 by different initializats at Ry = 550 N ) .
6.2898: Performance comparison of 200 random initializatiamsl 1 ' o, < Ending point E1
initialization by Eq. [I6) [{H) Convergence behavior of aighm[1. % Vv Ending point E2

Theoretically, if exhaustiverandom beamforming pairs are
chosen, its bound is exactly the Pareto boundary. However,
there exist infinite random beamforming pairs so that we
choose as many as 100 million random beamforming pairs in 4r
the simulations to serve as approximate Pareto boundary 25
The term "SimpleReceiver” is the outermost boundary of the

region achieved byl [7] where each receiver is fixed as the _ _
largest left singular vector of the corresponding directratel ;]go'tsér rggggen\gagzuggg;dgrémgr (fal\t'g{:mdB andy =3, N = 2 for
matrix. The curve denoted by "EQ.(15)” is the outermost
boundary of the achieved region By {15) with complex-valued
parameters by 3-dimensional grid search. The boundary
"Eq.(18)" illustrates [(IB) with¢ = 22, n = 1,.., N + 1
where N = 100. "ZF points” denotes two outmost points o
the ZF points by Eq[{8).

If we consider the curve by "Proposedt+9” as a nearly
optimal boundary, we find that "Proposdd has a promis-
ing/robust performance only with one initialization Hy §16
Also observe that the proposed algorithm "Propode®”
and "Proposedl”, and "WMMSE_10" yield a similar per-
formance at convex parts of boundary and outperform t
others under the same accuracy for convergence. Howev
since the weighted sum maximization method cannot achiet/
the non-convex boundary, and even the achieved points on the ) )
convex boundary are still unevenly distributed. This is wh- lllustration of the multi-user case
the "WMMSE_10" as a weighted sum maximization method In order to evaluate the performance of Algoritiith 3 for
does not achieve the part between "P1” and "P2” in Elg. 4.the multi-user MIMO IC, a three-user MIMO IC example is

~
3

R2 [bits/channel use]
(&)

35 4 4.5
R, [bits/channel use]

1ln fact, only through the results by "WMMSHEOQ", we

0 not know what the part between "P1” and "P2” in Fig.
g] and the part between "P1” and "P2” in Fig. 5 look like.

If they are concave parts, the degree of concavity is still
unknown. For our proposed algorithm, although its curve
denoted by "Proposed+9” is not guaranteed to exactly be
the strict Pareto boundary, it has a even better performance
than theapproximate Pareto boundargi.e., "Rand 10mil”
curves in Fig.[® and Fidg.]5). Thus, it is able to serve as
more reasonable/complete inner bound of the whole strict
reto boundary, especially the non-convex part. This iaiam
vantage of the proposed algorithm to the existing algorst
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simulated. Fig[$6 shows the fast convergence behavior whigng. rate requirements of primary links in overlay cogmiti

R, is maximized with(Rs, R2) = (0.2700,2.3720) and the radio environments or for private messages); 2) For thetstri
convergence thresholth—. In Fig. [, a three dimensional Pareto boundary, this algorithm is able to compute a high
rate region is illustrated after computiity for 65 samples of quality suboptimal operating point satisfying arbitragter

(R3, R2) and interpolation. requirements. A series of well-distributed rate requiretae
can lead to a sequence wfell-distributed operating points,
which can serve as a reasonable and complete inner bound of
the strict Pareto boundary.

The proposed algorithm requires that each transmitter know
perfect global CSI, which is challenging for distributedssy
tems. However, this work provides a benchmark for the
algorithms that only imperfect/partial CSI is available at
transmitters. Future work should focus on developing rbbus
cooperative algorithms for the multi-user MIMO IC.

31

Y
Y

APPENDIXA
3 4
Iterations PROOF OFPROPOSITION1

Fig. 6. Convergence behavior of AlgoritHth 3 for three-usdM@ IC with ) )
SNR=0dB andNy = 3, N = 2. Proof: Given beamformersv; andw., according to the

matrix inversion lemma[35][{2) can be rewritten as:
SINRl (wl, ’GDQ)

1 Hy, Hy, H
g (- Htaomy

o7 (07 + [ Hyiwgl|?)

) H;;w;

o?
2
) | Hiwil* |(Hiaw:)" Hyws|
3 o} o7 (07 + || Hpiwi|[?)
H 2
5. || H ;)2 Hw; " 'Hki'wk‘ | H pwg ||?
- S ek U2 A S T
" o? o7+ [Hyaw, 2
0 H 2\ |Hiw,|
° 1 = 1_’Hii'wi 'Hki'wk’ S
R, [bpeu] 2 33 2 .
| H iiw |

2

. . . . 0 + | Hwg|*
Fig. 7. Achievable rate region for three-user MIMO IC with B&DdB and i kitk

Np = 3, Ngr = 2. The color bar shows the sum rate. .
r=50R For two complex vectora andb, the cosine of the complex-

valued angle betweea and b is defined as[[37Fos(6¢) =
% wherecos(0¢) = pe¥ with = |cos(fc)| < 1 and
VI. CONCLUSIONS AND FUTURE WORK —m < fc < m is called pseudo angle betweanandb.
In this paper, the non-strict Pareto boundary and two endingThe Hermitian angle between andb is defined as
points of strict Pareto boundary of the two-user scenario laH b|
are computed exactly. To find the strict Pareto boundary for cos(frr) = [ cos(fc)| = ma 0<0p <m/2
the two/multi-user single-beam MIMO IC, we formulate an
optimization problem to maximize the rate of one user whilg implies ‘HiiwiH : H;”»wkyz = cos?(0y,;) because of
the rates of the other users are fixed such that a bound pqrﬂiiwiHQ — HHkiwkHQ — 1. Thus, [2B) becomes
is reached. This problem is different from the traditiona
problems (e.g., maximize (weighted) sum-rate and max-miftNRi (w1, wa)

rate) and there exists little work on this type of problemhia t (0 HHii'wiH2 209 HHii'wiH2
MIMO IC. We propose an alternating optimization algorithm = S (0#.i) o7 +cos™(0r4) - o2 + |Hpw|*

to solve this non-convex problem. The convergence of the pro N
posed algorithm is guaranteed and a high quality suboptinydterefz.; € [0,7/2] denotes the Hermitian angle between the
solution is obtained. Furthermore, the proposed Comp]natideSil’ed signal directiod ;;w; and the interference direction
algorithm has two main advantages: 1) This algorithm can Bér;w;. at RX;. Obviously, whenH;w; | Hyswy (or
applied to those optimization problems with rate constsainH ;;w; 1 H;,wy), we havefy ; =0 (or Og,; = 7/2). [ |




IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MON YEAR 13

APPENDIXB Case 2.Rank(H12) = Np < Ng:
PROOF OFPROPOSITION2

. . L . . Itis impossible to nullify the perturbation directly as @as
Proof: Our idea is to show that it is impossible for a stric

. A A A
t_l.. Defmevl = Hpwq, vs = ngdp and vy = Hosws.

Pareto-optimal point achieved by the transmit beamformeﬁ;1en [26) becomes
with less than full power. The proof works by contradiction.

Assume that a strict Pareto-optimal  point [(v1 +v5)Tvo|? ooy (28)
(Rl(wl,wg),Rg(wl,wg)) is achieved by (wl,wg) 0-% + ”'Ul +'06H2 0_5 + ”leg-
where |Jw1]|?< 1 and ||wz||?< 1. We consider whether
there exists anoutefl point (R, (1211171112), Rg(ﬁ)la ws)) Assume thaw; is a combination of two orthogonal vectors
achieved by (i, w2) where |w:|?< [J@q]?< 1 and .

L N - A N

H’lD2H2§ 1. If it exists, e.g.,Rl(wl,wg) > Rl(wl,’lUg) Vs = ||'U¢S||(\/ﬁ Hiz’vl ++/1-n- Hruz'Ul), (29)
and Ro(wi,w2) = Rao(wi,ws2), we can improve the

A _ H
Ry (w1, ws) only by consuming more transmit power whildNote thatlly, v, = v3 - ¢ 7o whereg, = arg(vy vs). Now,
keeping Ra(wi,w») unchanged. Thus, the existence of rémains to find whether there isw in the plane spanned

—
an outer operating point contradicts the assumption thdty I3, v1 andIL,,v; satisfying [28).

(R1(wy,ws), Ro(w1, wy)) is a strict Pareto-optimal point. N . .
Definew; = w; + d,. To guarantee the Pareto improve- Substituting [2B) into[(28) yields

ment, we need to show the existence of a nonzero perturbation [vfvs + |vs|| - VI =1 €791 - ||vg]] |2
vectord, satisfying: ) ( — . _>) 2
03+ ||or + vl (i - Ty, w1 + VT =77 -39 - }) |
(01 +8,)" Asfwn)ws + 6) > wl Asfwrywn @4 I -
VU
wi As(wy + 8,)wy = wf As(wr)w, (24b) = ﬁf” (30)
g v
[wi + 8, > [Jw: |? (24c) R _ _
[y + 8,|°< 1 (24d) Define the right-hand side and the left-hand side[of (30) as
! pib =" Rsiqe andLg;q.(n), respectively. It is still hard to get a closed-
An arbitrary nonzer@, can be expressed as form solution ofy by solving [30) directly. Observe that the
e = denominator ofL;4.(n) is always positive for € [0,1], and
op = [|6p]-€’™ - & (25) Lsiqe(n) as a function ofy is continuous over the interval

[0, 1]. Therefore, if( Ryige — Lside(1))(Rside — Lsiae(0)) <0,

%
It means that we should fin , ¢ andd,, to satisfy all the ) : i
5, &5 b fy there must exist as(n) with at least a certaim € [0, 1]

conditions in [[24) simultaneously. The proof of the exiseen =~~~
of ¢s is similar to that for the two-u_s}er MISO IC in_[22]. satisfying [3D).

However, it is more difficult to find &, for the MIMO IC Whenn = 1, the termL;q.(n) becomes
because the cross-talk channel matrix (rather than a vactor

— H 2
the MISO IC case) does not always have a null space for Lyiae(1) = [v1 02| .
We give the proof_i>n detail as follows. o2 + |lvy + ||vs]| L vy |
. v
1. Existence ofé,, |'UH1;22|2
1

By the matrix inverse lemma[35], the condition [n{24b) is =— 5 5 n .
equivalent to o3 + [[v1]” + [lvs]|* + 2([vs]| - [Ty, 01|

Observe that|vs||? + 2||vs| - [|II5,v1]|> 0. Thus, we have
(26) Lside(l) < Rside-

(w1 +8,)" HigHapws|* _ |wi' Hiy Hopw,|?

0} + | Hiz(wy + 6,)||° 0} + | Hypwy|*
It is difficult to solve &, directly. In fact, we only need to When# =0, the termLiq.(n) becomes
prove the existence af, satisfying [26). Losse(0) = vl vy + Jvs|| - 39 - [Joa]| |
Case 1.Np < Np or Rank(H12) < Ny < Ng: side o2 1 o1 + [[vs] - 9% .175”2

We always haveH 126, = 0 if
’ ol ol + [loal® (losl2 + 2]vs] - [0 T3

£
IR o3 + o+ (s 2 + 2ol - o 23))
Gp= > awilllgy), (27)  where|[vs]|? +2- |vs]| - [vF B3] > 0. If Lysqe(0) > Ruae, we
i=1 need||vz||*> Rige. Furthermore Rg;q. is bounded by
wherea;,: =1, ..., Rank(Hf;{T ) are complex-valued numbers loH s, |2 [ENEAENE [ va2 )
Rank(IT, ;- ) B Rside = — ! 5 S T = 3 < Jva||”.
and>,_; 2" |a;|? = 1. Then, [26) always holds because of + [Jvd]| o3 + [lvd| T T1

any d, in the null space of the cross-talk chantddl, does

. Thus, we have.;4.(0) > Rgide.
not cause extra interference RX,. side (0) > Rside

Due to Lgjqe(1) < Rsige < Lsiqe(0), there exists at least
9A point p’ € R} is called an outer point thap € R;, if p’ dominates side(1) side side(0)

p, i.e.,p’ > p andp’ # p where the inequality is component-wise. TheON€ Mo € (O, 1)_ SatiSfying Lside(no) = Riide- In _this case, .
improvement fromp to p’ is called Pareto improvement. H,, has an inverse/Moore-Penrose pseudo-inverse matrix
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HIQ. Then, we have The condition[(24d) is equivalent to
— N —
8 = ool Lo (Vi Tp,o1 +VT=m - ayol). g1, 18,12 +215 8y | cos(s + 63)118, |+l 21 < 0,
i s a i~
= 18, 7% - 5, L8, le (0, — [l 5| cos( s + ds)
where ;= ol depends on -\ wlf52 cos? (65 + 63) — (w [-1). (35)
Hle (\/7770'“#21114-\/1—770'1_1@21)1 1% )

but has no requirement fod,||. Therefore,vs with any

N where the transf_o}rmation (a) is based|fn, ||< 1 ancL|L6,,|\>
16,/ andd,, = e=%s- H, (\/fo - g v1 + T — 1 - y,v1) 0. For arbitraryd, and ¢;, any anyd, = [|d,[|-¢/#s 8, with

satisfies[(28). |6, in (35) will satisfy the_c>ondition[(24d) .
N Above all, the existence @, ¢s and||d, || has been proved.
Therefore, anyd,, = ||8,[-e7?¢ - §,, with That is, there always exists sorfig = ||d,||-¢7%3-§,, satisfying
Rank(IT% 7 ) Rank(IT2 1) gll the condl'qons |r; [(24). Thean(wl,wQ) can §t|ll be
1z N 1z ) improved until ||w;]|*= 1, while R;(w;,w2) remains un-
Z aiui(HHg)a Z la;]” =1, changed simultaneously. This contradicts the assumptian t
N i=1 i=1 (Ri(w1, ws), Ro(w1, wy)) is on the strict Pareto boundary.
d0p = when Ng < Nr or Rank(H12) < Nr < Nr  Therefore, Proposition 2 holds. [
e7% - Hi, (o - Tk, vi + /1 =10 - My,w1), APPENDIXC
when Rank(H12) = Ny < Ng, PROOF OFPROPOSITION3
o . (32) Proof: For the ending poinf1(R;, R,), to achieve the
satisfies the conditior (24b). maximum rate of inkI'X; — RX;, i.e., R, in (@a), (w1, w>)
should satisfy the following conditions
2. Existence ofgg Beo "
w1 :'Ll)lg :ul(HllHll), (363)
Substituting [(Zb) into[(24a) yields 01 =7/2 e wy | HY Hijw. (36b)
(w1 + 6,)" A (w2) (w1 + 8,) > wil Ay (w2)w: This meanaw, should be in the null space di%, H, w!°

= r 5 to cause no interference RX;. All wy € Wxp satisfying
&|6,]%6,7 A 5, +2[|6,||R(wl A 8,67%) >0 ! 2 P
10,170, As(w2)3 + 23, | (w1 1(w2)3e ) (36) form a set of the ZF strategies, definedsls . Then,
o, = - =
@H 2p||5pHA1(w2)5p + \w{[Al(wg)ép] cos(¢s + h2) > 0 any wo € Wz can be expressed by

- - ol
_ [0l ) 6, Ai(ws)d,, (33) w2 = HHngwagO”?v (37)

—
2 |wi Ay (ws)d,] wherev, € CN7*1 andw, )y HE Hyyw°.
. — . fo} t . .
A o = To achieve(R;, R,), we need to findvy”" which maxi-
whereg, = arg(wy A1 (w2)d)). mizesSINR, (w!’?°, w,) simultaneously. Here, we define the
optimal "altruistic” strategyw3'’* as

< cos(¢s + P2) >

At the same time, substituting(25) inla_{24c) yields

Alt A H Ego (a)
s + 8, 7> [l | Wi Sere g, e Aa(wi e S
2 HE' jo HypL.H EgoyyrL
= 18,07 +2]8, % (wi 8,67 ) > 0 O L T it T
5 16,1 2R T LT i v
e ]w{iép‘ cos(¢s + ¢3) > —Tp 2 VU HEH wP  HE H w902
AN
> cos(¢s + ¢3) > —M—a (34) e 73; —
2wi’d| (b) vy Iy HqugoA2(w1 J )HHH Hyyw?Po0 U2
P 21 1 21 1
A = — argmax SHTIL 0
where¢s = arg(wy' d,). 2 U gn by wPoo V2
=Uui Bl,l_[l Ego ) (38)
Define¢s + ¢z € [01, 0] and¢s + ¢3 € [03,04]. Since both ( HE Hw, ™ )
the right-hand side of(33) an@(34) are negative, the rangéere trqnsformatlonL(%) is based dnl(37) and transforma-
[61,05] and [05,64] are strictly wider thanr. In addition, the tion (b) is due Il . s = H;HHqugo and
. . . . 21 1 21 1
intersection of two angular ranges wider thans nonempty. HL?HHwEHDH;ng oo = IIE s00. Substituting

Then, for arbitrary|d, || andd,, anyd,, = [|6,-¢’**6, in (25) into we obtlgi)rl] the o tiﬁ%lb’r’lallﬁﬁistic" strate
with ¢5 € [0, 02]N 03, 04] always satisfies the conditiorE[33)) @)’ P 9y

and simultaneously. Alt _ 1L I
()] Yy wy " = HHgllHlllegoul(BlvHHzHlHuleQO)'

3. Existence of||d,,|| Therefore,E1(Ry, R,) is achieved by(w?%’, wi*). =
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APPENDIXD
SOLVING THE SDRPROBLEM (P4)

Lemma 1 Both the fractional probleniP4) and the problem
(P5) are solvable. O
Proof: For the fractional probleniP4), its constraint set
Q={Wy=0:Tr(Ws) =1, Tr(As(w)W>) = SINR}}
is nonempty and compact.
In (P4), the denominator of the objective ov@rsatisfies
O’% + /\NT(Hglngl) = /\NT(CQ) S TI'(CQWQ)
<M (C3) = o} + M (Hy Hoy),
and the numerator obviously satisfies
0 S TI‘(Cl(’wl)Wg) S Al(HnglHﬁHgl).
This implies that the objectivéP4) over ) is bounded by
Tr(Cr(w)Ws) _ \(H3 HyuHi Ho)

0< .
T Te(C.Wo) 02+ Ay, (HE Hoy)

(39)

Based on Weierstrass’ Theorem, the probl@m) always
has an optimal solution.
Assume thatW3 is an optimal solution tdP4), we know

* 1 * — * * H
that s* = 7%(02“/5) and Q™ = s*W7 are feasible forP5).

15

APPENDIXE
PROOF OFPROPOSITION4

Proof: We need to find a feasible se¥» such that there
exists at least one solutiow, € Wxp to problem(P0) by
fixing ws € Wg.

In @b), we derive that the constraint GP0) is equivalent
to wi HY Hyow, > 03SINR} and

wi C(wy)w, = 0. (40)

To guarantee the existencewf € Wxp in (@0), a feasible
wz should be determined in a way such tHdt (9b) holds.

By the eigen-decompositionC(w2) can be rewrit-
ten asy % \i(C(w2))ui(C(ws))ul (C(ws)). We analyze
C(w,) for two cases.

Case 1. When C(ws) is a full rank matrix, i.e.,
Ai(C(ws)) #0,Vi =1,..., Np. If C(ws) is a positive or neg-
ative definite matrix, it is clear that there is no nonzeroteec
w; satisfying [@D). OtherwiseC(w,) has;(C(ws)) > 0
and Ay, (C(w2)) < 0, a sufficient solution to[(40) is

we — ANy (C(w2))
! A (C(w3)) — An, (C(ws))
n \/ A1 (C(ws))
A1 (C(w2)) — Ang (C(w2))

j-ui(C(w2))

ung (C(ws)).

Also note that the objective is bounded By ](39). Similarly, Case 2. When C(w:) is not a full rank matrix, i.e.,

(P5) is solvable according to Weierstrass’ Theorem. ®

Lemma 2 The problemgP4) and (P5) have the same value.

Furthermore, ifW73 solves(P4), then s* and

-1
R X o T(Cows)
Q" = s* - W, solves(P5); if Q" and s* solve (P5), then
W3 =2 solves(P4). O

Proof: Assume thafi¥; is an optimal solution tqP4),

andv(p,, andvfp;) are the optimal values of the objective

-1
Tr(Cows)
Q = sW; are feasible fo{P5). The value of the objective
of (P5) at this feasible point is

U(p5) = Tl“(Cl (wl)Q)

of (P4) and (P5), respectively. Thuss = and

oy T(Ciw)W3)
:T . = 7 =
r(Cl(wl)(s WQ)) Tr(Cz ;) U(pa)
> 'UZ(P5)-

On the other hand, suppose tl@t ands* are the optimal
solutions to(P5). Sinces* is always positiveW, = Q: is
also feasible fofP4). Then, the value of the objective GP4)
at this feasible point is

v . Tr(C’l('wl)Wg) . T&"(Cl(wl)?:)
(P4) N Tr(CQWQ) B TI‘(CQ ?:)
Tr(Cr(w1)Q” -
= W = TI"(Cl('wl)Q ) = Y(ps)
> v(*P4).

Above all, we have*

(Pa) = V{ps)-

Ai(C(ws)) = 0forsomei € {1, ..., Nr}. In this caseC (w2)
always has null space fap; to satisfy [40).

Above all, the sufficient and necessary condition0f
satisfying [4D) isA; (C(w2)) - An, (C(wz)) < 0. That is,
any ws € Wy is always feasible fo {9b) whernd/x is

Wr é{’wg EWrp : ngHéiQHQQ'LUQ > O’%SINRE,

AL (C(w2) - Awy (C(w2)) <0}
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