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Abstract

In this paper, we study the design and analysis of optimaddiiein scheme for sensors that are
deployed to monitor the change in the environment and areepvby the energy harvested from
the environment. In this type of applications, detectiotaglés of paramount importance. We model
this problem as quickest change detection problem with ehststic energy constraint. In particular,
a wireless sensor powered by renewable energy takes obeasvérom a random sequence, whose
distribution will change at a certain unknown time. Such arae implies events of interest. The energy
in the sensor is consumed by taking observations and isnispked randomly. The sensor cannot take
observations if there is no energy left in the battery. Oualge to design a power allocation scheme
and a detection strategy to minimize the worst case detedtitay, which is the difference between the
time when an alarm is raised and the time when the change ©ctwo types of average run length
(ARL) constraint, namely an algorithm level ARL constraard an system level ARL constraint, are
considered. We propose a low complexity scheme in which tleegy allocation rule is to spend energy
to take observations as long as the battery is not empty anddtection scheme is the Cumulative Sum
test. We show that this scheme is optimal for the formulatidth the algorithm level ARL constraint

and is asymptotically optimal for the formulations with thgstem level ARL constraint.
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I. INTRODUCTION

Recently, the study of sensor networks powered by renewaidegy harvested from the
environment has attracted considerable attenfion [[L]-{sjmpared with the sensor networks
powered by batteries, the sensor networks powered by rdmevemergy have several unique
features such as unlimited life span and high dependenceéh@rerivironment etc. Optimal
power management schemes for each individual sensor aeddaig protocols for the whole
network have been developed to maximize utility functiofsammunication related metrics
such as channel capacity, transmission delay or netwodugput. However, besides these
communication related metrics, there are othgnal processing related performance metrics
that are also important for sensor networks targeted famiceapplications. For example, if a
sensor network is deployed to monitor the health of a bridgen the detection delay between
the time when a structural problem occurs and the time whealam is raised is of interest.
As another example, if a sensor network is deployed for dgruletection, then the detection
delay and the false alarm probability are of interest.

Until now, these alternative but important performance rirogthave not been investigated
for sensors powered renewable energy. In this paper, wesfoauhe design of optimal power
management schemes for such wireless sensor networks ddetection delay is of interest. In
particular, we focus on so called “quickest detection” peatn In the quickest detection problem,
wireless sensors are deployed to quickly detect the chahgeg terms will be precisely defined
in the sequel) in the environment. Such changes typicalplyroertain activities of interest. For
example, in the bridge monitoring, a change may imply thatdam structural problem has
occurred in the bridge. As the result, it is of paramount ingoace to minimize the detection
delay after the presence of such a change, hence the nameckésiudetection. Besides this
application, quickest detection also has many other pialeapplications, such as the quality
control [6], network intrusion detection![7], cognitivedia [8], etc. We note that the detection
delay in the change point detection problem refers to thaydeétween the time when a change
occurs and the time when an alarm is raised. It is not the deday time zero to the time when

an alarm is raised, since we are interested in the change.



Non-Bayesian quickest detection is one of the most impof@mulations, which was first
studied by G. Lordor [9] and M. Pollak [10]. Under the non-Bsian setup, a sensor sequentially
observes a random sequent&, k = 1,2,...} with a fixed but unknown change point
Before the change point the sequencg, ..., X; ; are independent and identically distributed
(i.i.d.) with probability density function (pdfY,, and aftert, the sequence are i.i.d. with pdf.
Under an average run length (ARL) to false alarm constraiamely the expected duration to
a false alarm is at least, Lorden’s setup is to minimize the “worst-worst case” daétectdelay
sup; esssup E,[(T'— t + 1)7| X, ..., X;_41], whereT is the stopping time at which an alarm is
raised, while Pollak’s setup is to minimize the “worst casehditional average detection delay
sup, E,[(T" — t)|T" > t]. Since no prior information about the change point is rexplitthese
non-Bayesian setups are very attractive for practicaliegipbns.

In the above mentioned classic setups, there is no energtraort and the sensor can take
observations at every time slot. In this paper, we extendd&as and Pollak’s problems to
sensors that are powered by renewable energy. In this dasenergy stored in the sensor is
replenished by a random process and consumed by takingvahises. The sensor cannot take
observations if there is no energy left. Hence, the sensunataake observations at every time
instant anymore. The sensor needs to plan its use of powefullgr Moreover, the stochastic
nature of the energy replenishing process will certainigafthe performance of change detection
schemes. Since the energy collected by the harvester inteaehnstant is not a constant but
a random variable, this brings new optimization challenges

We first consider the scenario in which a unit of energy asriwgth probabilityp at each
time instant. For Lorden’s setup, two types of ARL constraane considered in this paper.
The first type is an algorithm level ARL constraint, which gt lower bound on the expected
number of observations taken by the sensor before it rungsa &darm. The algorithm level
ARL constraint is independent of the energy arriving prolitgbp. Under this setup, we prove
that the optimal detection procedure is the well known cuativg sum (CUSUM) procedure
proposed in[[B], and the optimal power allocation scheme iallbcate the energy as soon as it
is harvested. The second type ARL constraint is on a systeeh Mhich puts a lower bound on
the expected duration to a false alarm. This constrainiaee to the energy arriving probability
p. In this case, we show that CUSUM procedure and the immegiatesr allocation strategy

is asymptotically optimal when the system ARL goes to infinkor Pollak’s setup, we discuss



the problem only with the system level ARL in detail. As we c@® later, the immediate power
allocation coupled with CUSUM detection is actually asyatigially optimal for both the system
level ARL and the algorithm level ARL.

We then consider a more general energy arriving process iohwiore than one unit of
energy can arrive at each time instant. In this scenario,heg ghat a simple energy allocation
policy, in which the sensor takes samples as long as theneeig) left at the battery, coupled
with CUSUM test is asymptotically optimal for both LordendaiRollak’s setups when the system
level ARL goes to infinity.

There have been some existing works on the quickest changedabection problem that take
the sample cost into consideration. The first main line obtaxg work considers the problem
under a Bayesian setup. The main difference between theseysetup and non-Bayesian setup
is that in the Bayesian setup, the change point is modeledrasdmm variable with a known
distribution. No such assumption is made in the non-Bayeséup. [7] considers the design of
detection strategy that strikes a balance between thetuetatelay, false alarm probability and
the number of sensors being active. In particular, [7] abes a wireless network with multiple
sensors monitoring the Bayesian change in the environnBaged on the observations from
sensors at each time slot, the fusion center decides how semgors should be active in the
next time slot to save energy. [11] take the average numbebsérvations into consideration,
and provides the optimal solution along with low-complgxiut asymptotically optimal rules.
In [12], the authors propose a DE-CUSUM scheme for the noyeBian setup and show that it
is asymptotically optimal.

The remainder of this paper is organized as follows. The ema#tical model is given in
Section[l. SectiomTll presents the optimal solution forrden’s problem under the algorithm
level ARL constraint and the performance analysis for thénogd solution. In Sectiof IV, we
present asymptotically optimal solutions for Lorden’s d@allak’s problems under the system
level ARL constraint. SectionlV presents our results for aemgeneral energy arriving model.
Numerical examples are given in Section VI to illustraterisgults obtained in this work. Finally,

Section V1] offers concluding remarks.



[I. PROBLEM FORMULATION

Let {X,,k=1,2,...} be a sequence of random variables whose distribution ckaaga
fixed but unknown time. Beforet, the { X.}'s are i.i.d. with pdff,; aftert, they are i.i.d. with
pdf fi. The pre-change pdf, and post-change pdf; are perfectly known by the sensor. We
use P, andE, to denote the probability measure and the expectation Wwi&hchange happening
at ¢, respectively, and us€,, andE_, to denote the case= ~c.

We assume that the energy arrives randomly at each timeTsldacilitate the presentation
and set up notation, we present the model for the case wheantgy arriving process is a
Bernoulli process with parameterin this section. A more general model will be considered in
Section[Y. Specifically, we use = {vy,1s,..., 1, ...} to denote the energy arriving process
with v, € {0, 1}, in which v, = 1 indicates that a unit of energy is collected by the energy
harvester at time slot and v, = 0 means that no energy is harvestédy} is i.i.d. overk.
Moreover, we use”” to denote its probability measure (correspondingly, weli¥séo denote
the expectation according to the meas&¥g, and we haveP” (v, = 1) = p.

The sensor can decide how to allocate these collected esetdgty = {u1, o, . - -, g, - - - }
be the power allocation strategy, wherg € {0, 1}, in which p;, = 1 means that the wireless
sensor spends a unit of energy on taking an observation atdiot%, while 1, = 0 means that
no energy is spent at time and hence no observation is taken.

The sensor’s battery has a finite capadity The energy arriving process and the energy
utilizing process will affect the amount of energy left inetbattery. We usé’, to denote the

energy left in the battery at the end of time skotE), evolves according to:
Ek == min[C, Ek—l + v — ,uk]

The energy allocation policy must obey the causality constraint, namely the energy ¢anno

be used before it is harvested. The energy causality camstan be written as
E,>0 k=1,2,.... Q)

We usel/ to denote the set of ajl’s that satisfy [(IL).

The sensor spends energy to take observation. The obsernsgguence is denoted as



{Zy,k=1,2,...}, where

o= Tl @
¢ if =0
We call an observatiot¥;, a non-trivial observation if,, = 1, i.e., if the observation is taken
from the environment.

{Z;}'s are not necessarily conditionally (conditioned on tharde point) i.i.d. due to the
existence of{y}. The distribution ofZ, is related to bothu, and X. Therefore, we usé}
and E}' to denote the probability measure and expectation of thergagon sequencé¢”;}
with the change happening gtrespectively.

In this paper, we want to find a stopping tifhie at which the sensor will declare that a change
has occurred, and a power allocation rulghat jointly minimize the detection delay. Clearly,
the power allocation strategy. depends causally on the observation process, the energyarr

process and the energy utilization process:
Hi = gk(Zlf_lv Vf? le_l)v

in which Z¥~! denotes the vectd,, ..., Z,_,], vF and ="' are defined similarly, ang, is
the power allocation function used at time skot
We consider three problem setups. The first one is Lordentkgst detection problem with

an algorithm level ARL constraint, which is formulated as
(P1)  min d(p.T),
S.t.E[N] =, 3)

whereT is the set of all stopping time witfi}'[T] < oo, N is the total number of non-trivial

observations taken by the sensor before it claims that thegs has happened and

d(:uv T) = sup dt(:uu T)7

t>1

di(p, T) = esssup B} [(T' —t + 1)*|F_1] (4)

where 7}, is the set of all observations till time, namely 7, = {Z;,--- , Z;}. In this case, we
put a lower bound; on the average number of observations taken before a falem & raised.

The largem is, the less frequent a false alarm will be raised. Sincedbistraint is independent



of the power allocation schemeand energy arriving sequence this problem setup is robust
against the variation of the ambient environment.
The second problem considered in this paper is Lorden’skgstcdetection problem with a

system level ARL constraint, which is formulated as
(P2) ,nin LA, T),
St.EL[T] > 7. (5)

In this formulation, a lower bound is set on the expected tilumato a false alarm. In contrast

to the previous case, this constraint depends on the povesatbn i, which is further related

to the energy arriving probability. Therefore, this setup is more sensitive to the environment
In some applications, Pollak’s formulation is of interesice its delay metric is less con-

servative than that of Lorden’s formulation. In our contéXollak’s formulation can be written

as

P3 i EX [T —¢|T >t
(P3) (AL Sup | T > 1],

S.t.EL[T] > . (6)

Even without the additional energy casuality constraing optimal solution for Pollak’s for-
mulation is still unknown. Therefore, in this paper, we dise only the asymptotic solution for
Pollak’s formulation. In the sequel, we will see that thegmsed asymptotically optimal solution
under the system level ARL constraint is also asymptofcafitimal under the algorithm level
ARL constraint. Hence, in the paper, we discuss only theesy$tvel ARL constraint for Pollak’s
formulation in detail.
For an arbitrary realization of the power allocation schemewne will use the following
notation throughout of the paper:
1) {ax,k =1,2,...} to denote the time instants at which the energy harvesteebtsa unit
of energy, i.e.p,, =1;
2) {bx,k =1,2,...} to denote the time instants at which the sensor takes oltg®rsai.e.,
My, = 1;
3) {X,ff”“’b’“),k; =1,2,.. } or {X’k,k = 1,2,...} to denote the non-trivial observation se-
quence, which is the subsequence{df,, k = 1,2,...} with all its non-trivial elements.

In particular,X,i“’“’b’“) will be used when we want to emphasize the sampling time. Here
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X,i‘”“b’“) is the k' non-trivial observation taken by the sensor at tibpausing the energy
arriving at timeay.

Using above notation, the energy causality constraintcatés the following inequality:
kaCLk, /{321,2, (7)

An example of the realization of the sensor sampling proeedand corresponding notation)

is shown in Figuréll.

Fig. 1: An example of the realization of the sampling progedu

[1l. OPTIMAL SOLUTION FORLORDEN S FORMULATION WITH THE ALGORITHM LEVEL

ARL CONSTRAINT

In this section, we study the optimal solution for (P1). We us-) to denote the likelihood
ratio (LR), and usé(-) = log L(-) to denote the log likelihood ratio (LLR). For the observatio
sequence 7.}, LR is defined as

P if gy =1
L(Z)={ P T (®)
The CUSUM statistic and Page’s stopping time can be write{Bh
k
Sy = max HL(Zi) = max[Sy_1, 1]L(Z),
1=q
and
T, = inf{k > 0|S; > B},
respectively.

Generally, for a given detection strategy pgit 7'), the detection delay,(u, T') in (4) varies
from different change point If there is an equalizer strategy which makigg:, 7') be a constant



overt, it might be a good candidate for the optimal strategy forrthemax problem. Similar to
the conclusion that Page’s stopping time is an equalizer fiard the classical Lorden’s problem
[13], we have following proposition:

Proposition 3.1: The power allocation scheme = v and Page’s stopping timg, together
achieve an equalizer rule, i.el,(u*,T,) = dy(u*,T,), Vt > 1.

Proof: Since p* = v indicates that{x}}'s are i.i.d. overk, {Z;}'s are conditionally i.i.d.

given the change poirit

Notice thatil, = max[Sk, 1] is a non-decreasing function 6f,, and on the even{7, > t},

T, is a non-increasing function d¥,_,. Then we have
di(p*,T,) = esssup Ef* [T, — t + 1| F;_1]

Since{WW,} is a homogeneous Markov chain under the power allocatioamsel; = v, then,
di(p, Tp) = do(p, T). L

Remark 3.2: p* = v indicatesy; = v, for every k, that is, the sensor spends the energy
taking observation immediately when it obtains an energyfthe environment. Therefore, we
call * the immediate power allocation scheme in the sequel.

The next lemma shows that the immediate power allocatioereehalong with the CUSUM
detection scheme is optimal for (P1).

Lemma 3.3: The optimal power allocation strategy for (P1),i$, and the optimal stopping
time is7,, with the thresholdB being a constant such that,[N] = 7.

Proof: The proof consists of two steps. The first step is to show thiath arbitrary but
given power allocation, 7, is the optimal stopping time. The second step is to show thdéu
T,, p* is the optimal power allocation scheme. A detailed proofrisvigled in AppendiX_A. B

In the following, we analyze the performance (@f*, 7,,) by determining the detection delay
and the algorithm level ARL. SincéZ,} is a conditionally i.i.d. sequence undgt, we can
apply Wald's lemmal[13] in our analysis. We have the follogvioroposition:

Proposition 3.4: SupposeB > 1, then

_ Ex[k]
Ex[N] = %, (20)
a1y = LBl (1)

pl— P (F)
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whererx is the stopping time

K = min{le

iz <Xk> ¢ (O,logB)},

and F, denotes the event

{Zz (%) < 0}.

Proof: The proof follows closely that of Theorem 6.2 in [13]. A déai proof is given in
Appendix[B. u
We note that in Proposition 3.4, ARL antiu*,7y) are given as functions oP,,(F,) and
Py (Fy), whose precise values are difficult to evaluate. The folhmaiesult, which is an extension
of Lorden’s asymptotical result[9], show&.*, T) scales linear witdogn whenn — oo.

Proposition 3.5: As n — oo, we have

1 |logn|
d(u*. T,) ~ =121
(W, T5) S

in which I = I(fi, fy) is the KL divergence off; and fj.

Proof: This statement can be shown by discussing the relationséiween one-sided

(12)

sequential probability ratio test (SPRT) and CUSUM. Thecassion is similar to the proof

of Lemmal4.2, therefore, we omit the proof for brevity. [ |

IV. ASYMPTOTICALLY OPTIMAL SOLUTION UNDER THE SYSTEM LEVELARL CONSTRAINT

In this section, we consider (P2) and (P3). Since both thectien delay and the system
level ARL constraint are related to the power allocatignt is generally difficult to solve these
coupled problems. Inspired by the previous section, we ggepto use the simple detection
strategy(u*, 7,,). We will show that this simple strategy is asymptoticallytiogal for (P2) and
(P3) asy — .

The asymptotic optimality of.*, 7},) in the rare false alarm region (— oo) can be shown
by two steps. In the first step, we derive a lower bound on thectien delay for any power
allocation and detection scheme. In the second step, we e *, 7,) achieves this lower
bound, which then implies thdj.*, 7},) is asymptotically optimal.

The following lemma presents our lower bound on the detadtielay.
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Lemma 4.1: As v — oo,

inf{d(p, T) : B~ [T] > v}

> inf {supEf[T — T >t]: EL[T] > 7}

t>1

1 |log~]|
> (1+o0(1)). (13)
Proof: Please see AppendiX C. [

This lower bound log v|(pI)~'(1+0(1)) can be obtained byu*, T,)) for both (P2) and (P3).
More specifically, we have
Lemma 4.2: (u*,T,) is asymptotically optimal for (P2) ag — co. Specifically,

. 1|lo
A, 1y) ~ 18, (14)
p I
Proof: Please see Appendix D. [
Lemma 4.3: (p*,T,) is asymptotically optimal for (P3) ag — co. Specifically,
. 111
supE}" [T, —t|T, > t] ~ —M. (15)
t>1 p I
Proof: Please see AppendiX E. [ |

As we mentioned in Sectionl Il, although we consider Polldkisnulation only under the
system level ARL constraint in detail in this paper, the m®gd strategy(yn*,7,) is also
asymptotically optimal for the formulation under the algfom level ARL constraint, which
is stated in the following proposition:

Proposition 4.4: (u*,T),) is asymptotically optimal for Pollak’s formulation unddret algo-

rithm level ARL constraint ag — oo, and we have

* 1 1
supE}" [T, —t|T, > t] L ogn|.
>1 p I

Proof: Following the similar argument used in Proposition] 3.4, veeeh

Zn] ~ 5.

That is, under the immediate power allocatjon the algorithm level ARL constraifit,,[N] > 7

(16)

BT, = EX [ay] = EX

can be equivalently converted into a system level ARL camstiE/ [T,]. Settingy = n/p for
a givenp, n — oo is equivalent toy — oo. By Lemmal4.B,(u*, T,) is asymptotically optimal
under the system level ARL constraint, hence it is asymgadi optimal under the algorithm

level ARL constraint. [ |
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V. EXTENSION

In this section, we extend the original problem setup by m&3g that the energy harvester
can receive more than one unit energy at each time slot. 8@y, we assume that the energy
arriving sequence = {vy,...,v,...} isiid.overk. v, € V ={0,1,2,...}, in which {v, = 0}
means that the energy harvester collects nothing at timekstnd {v, = i} means that the
energy harvester collectsunits of energy at time:.. We usep; = P”(v, = i) to denote its
probability mass function (pmf). Then the energy left in thetery at the end of time sldt is
updated by

Ey =min{C, Ey,_1 + vy — g},

and the energy causality constraint indicaigs> 0.
Under this setup, we consider (P2) and (P3). We propose taaugeneralized immediate
power allocation strategy:
1 if Ek_1 + v Z 1
0 ifEk_1+Vk:0 .

That is, the sensor keeps taking observations as long asatterybis not empty.

In the following, we show that this generalized immediateveo allocation;* combined
with Page’s stopping timé&,, is asymptotically optimal for (P2) and (P3) in this randonegy
arriving case. Corresponding to Lemmal4.1, Lenim& 4.2 andna@3, we have following two
lemmas:

Lemma 5.1: As v — oo,

inf{d(p, T) : BE[T] = ~}
> inf {supEf[T —t|T > t]: EL[T] > 7}
t>1

|log |

1

> -
> S (L o(D), (17)

wherep = E[1*].
Proof: Please see AppendiX F. [ |
Lemma 5.2: (4*,7,) is asymptotically optimal for (P2) and (P3) as— oco. Specifically,
o 1]lo

G, 1) ~ - 18] (18)

p I
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and

lo
ozl (19

Proof: Please see Appendix G. [

sup B [T, — t|T, > t] ~
t>1

el =

VI. NUMERICAL SIMULATION

In this section, we give some numerical examples to illistthe analytical results obtained
in this paper. In these numerical examples, we assume thgiréichange distributiofy, is zero
mean Gaussian with varianeé and the post-change distributigh is zero mean Gaussian with
variance P + o2. In this case, the KL divergence & f1, fo) = 3 [logﬁ + %1, and the
signal-to-noise ratio is defined @&VR = 10log P/o>.

In the first example, we illustrate the equalizer property.of 7,,) under Lorden’s formulation.
The equalizer property plays a critical role in the perfonce analysis, since it allows us to
study d(u*,T,) through a relatively simple expressidt{ [7,]. In this example, we compare
our optimal strategy with a seemingly reasonable stratagsave-test power allocation scheme
combined with CUSUM. The save-test power allocation is a-tweshold strategy: 1) The
sensor saves the collected energy for future use if the grstoged in the sensor is less than a
threshold:; and the CUSUM statistic is less than threshaldand 2) the sensor takes observation
when either of these two thresholds is exceeded. This ryle et if the CUSUM statistic is
low (suggesting that a change has not happened yet) and #rgyestored in the sensor is
low, the sensor saves its energy. On the other hand, if eitteesensor has enough energy, or
the CUSUM statistic is high, the sensor should take an observ In this simulation, we set
02=1,SNR = 0dB, p = 0.5 and~ = 560. The simulation result is shown in Figuré 2. In the
figure, the blue line with circles is the performance(pf, 7,), the green dash line with stars is
the performance of the save-test power allocation with CMSWhis simulation confirms our
analysis that(y*,T,) is an equalizer rule, i.ed,(y*,T,) = di(n*,T;,). However, the save-test
power allocation scheme along with CUSUM is not an equaliaés. Actually, in the save-test
power allocation scheme; (1, T") is larger than others. This is due to the fact that in the first
time slot, both the CUSUM statistic and the energy storedha ¢ensor are zero, hence the
sensor chooses to store its energy. The sensor will not tagereations until the stored energy

exceedse,. The duration of this energy collection period is indeperidef the change point.
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Then, the worst case happenstat 1, and the detection delay caused by the energy collection
period is larger than that caused by the immediate powecatilon. Since Lorden’s performance
metric focuses on the worst case, the save-test power alnda not as good as the immediate

power allocation.

100

T T T
—o6— immediate power allocation scheme

Y — * —save-test power allocation scheme
90 y

Fig. 2: The change poirttvs d;(7},)

In the second example, we illustrate the relationship betwihe detection delay and the
expected number of observations to false alarm with resjpettie energy arriving probability
p under setup (P1). In this simulation, we $ét= 1, SNR = 0dB. The simulation result is
shown in Figuré 3. In this figure, the blue line with circlesth® simulation result fop = 0.2,
the green line with stars and the red line with squares areethats forp = 0.5 andp = 0.8,
respectively. The black dash line is the performance of thesccal Lorden’s problem, which
serves as a lower bound since in this case the sensor canliakevations at every time slot.
As we can see, for a given the detection delay is in inverse proportion to the energyiag
probability p. The largerp is, the closer is the performance to the lower bound.

In the third scenario, we examine the asymptotic optimalityy.*, 7;,) for (P2) and (P3). In this
simulation, we sep = 0.3, 0> = 1 and SNR = 5dB. In this case, we havé(f;, f;) = 0.8681.
The simulation result is shown in Figuté 4. In this figure, thlae line with circles is the
performance of (P2). The red line with squares is the perdoce of (P3), and the black dash
is calculated byjlog~|/pI. Along all the scales, the red curve is below the blue onechvhi
indicates that Pollak’s detection delay is smaller thandeors detection delay. We also notice

that these three curves are parallel to each other, whickire@nthat the proposed strategy,
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—©—p=0.2
—#—p=0.5

—8—p=0.8 H
= = =classical Lorden case

log,on
N

55 i i i i
0 150 200 250 300
detection delay

350

Fig. 3: Detection delay v.s. the algorithm level ARL

—©— performance of (P2)
N —&— performance of (P3)
= ==logy/pl il

Iog10 \

5.5
5

10 15 20 25 30 35
detection delay

Fig. 4: Detection delay v.s. the system level ARL

(n*,T,), is asymptotically optimal since the difference betweegnitis negligible asy — oc.

In the last scenario, we examine the asymptotic optimalfity®, 7,,) for (P2) and (P3) in the
extension case that the energy arrives randomly both in atremd in time. In the simulation,
we useC = 3, and we assume that the amount of energy arrives at each linalses values

in the sety = {0,1,...,4}. In this case, the probability transition matrix is given as

Po _'_pla P2, D3, P4

) ) ) +
P — Po P1, P2 p34 P4 7 (20)
07 Po, D1, Zi:Zpi

4
07 07 Do, Zi:l Di ]
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In the simulation, we sep, = 0.8, p; = 0.1, po = 0.05, p3 = 0.025, p, = 0.025, then the
stationary distribution isv = [0.0182,0.0545,0.2000,0.7273]7 andp = 1 — pywy = 0.9964.

=@- Performance of (P2)
. =& Performance of (P3)
S
35 == = llog WE()!

.

60 70

20 30 0 50
detection delay

Fig. 5: Detection delay v.s. the system level ARL

In this simulation, we set? = 1 and SN R = 5dB. The simulation result is shown in Figure
[B. In this figure the blue line with circles is the performamdégP2). The red line with squares
is the performance of (P3), and the black dash is calculageddy | /pI. Similar to the results
obtained in the third simulation scenario, along all thdessaPollak’s detection delay is smaller
than Lorden’s detection delay, and these three curves aadlgdao each other, which confirms

that the proposed strategy;*, 7,,), is asymptotically optimal as — co.

VIlI. CONCLUSION

In this paper, we have studied the non-Bayesian quickesictieh problem using a sensor
powered by the energy harvested from the environment. Sirecenergy harvester collected the
energy randomly, the quickest detection problem is subgetd a casual energy constraint. Three
non-Bayesian quickest detection problem setups, hamelgdnts problem under the algorithm
level ARL, Lorden’s problem under the system level ARL andlds problem under the system
level ARL, have been considered. For the binary energy iagivnodel, we have shown that
the immediate power allocation scheme coupled with CUSURrat®n procedure is optimal
for the first setup, and is asymptotically optimal for the et and the third setup as ARL
goes to infinity. For the more general energy arriving mode,have shown that the proposed
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generalized immediate power allocation coupled with CUSUMtill asymptotically optimal

for the second and third setups.

APPENDIX A

PROOF OFLEMMA [3.3

We first introduce a notion of quasi change point. For anyizaibn of the power allocation

1, the quasi change point of the non-trivial observation seqa is defined as
n=inf{k: Xy ~ fi} = inf{k : b, > t}. (21)

This implies thatn can be viewed as the change point happening in the nonttabgervation
sequence{X,gak’b‘“)}. Therefore, a rule minimizing the detection del@— ¢)™ among{Z;} is
the same as the one minimizifgy — n)™" among{X,ga’“b’“)}. Specifically, the stopping rule is
decided by

minsup esssup E, [(N —n + 1) |F,_q]

N p>1

S.L.EG[N]| > .

This is the classical Lorden’s quickest detection probl®i &nd the optimal solution is given
as Page’s stopping timg, in [14] with thresholdB, which is a constant solely related 4oand
achievesE [N] = 7.

To prove the optimality of.*, we examine the following problem:

St.EL[N]=n. (22)
Notice that the objective function is the samedatu, 7,,). Since

(a) b *
EY(T,) = BXby] > EYay] 2 BY (1),

in which inequality (a) is due td[7), and equality (b) is trloecausel, = ay underp* = v.
Therefore,;* is optimal for the problem{22).

Since

Tflﬂjfl dl(:uv T) = dl(:u*v Tp) = dt(:u*v Tp)v
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in which the last equality is due to Proposition]3.1, we have
d(p*, Tp) = di(p", Tp).
Combining this with the fact that
d(p, T) = di(p, T),

we know that(x*, 7},) is the optimal solution for (P1).

APPENDIX B

PROOF OFPROPOSITIONB.4

We first examine the quantifi,,[N]. Consider the non-trivial observation sequer{dé,ﬁ“’““’“) }
let M; denote the indicator of the event that tfi& repetition ofr exits at the upper boundary.
That is M; = 1 if the j repetition exits at the upper boundary, and = 0 if the ;"
repetition exits at the lower boundary. Létbe a stopping time with respect to the sequence
(k1, My), (K2, Ms), ..., which is i.i.d. underP, such that/ = inf{j : M; = 1}. One can check
that N =37 x;.

From Wald's identity, we have

Eoo[N] = Es = Eoo[J]Es[K]. (23)

J
>t
j=1
It is easy to see that, undét,, J is a geometric random variable with

Po(J=3)=[1 = Pu(F)] [Po(F) ", j=1,2,....

Then, we have

1
11— Po(Fy)’

Substituting [(2K) into[(23), we have(10).
Following the similar argument as above, we get

_ B[R]
1-— Pl(F())

Denoter; = a; — a;_; as the time interval between two successive observatibasp.im.f. ofr;

Eoo[J] (24)

E1[N]

is
P(ri=j)=1-p) 'p,
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and the average of the time interval between two successisereations is
1

For the average detection delay, we have

d(,u*, Tp) = d (N*7 Tp)

Here, (a) is due to the Wald's identity. Thén11) follows.

APPENDIX C

PROOF OFLEMMA 4.1

This proof relies on several supporting propositions andofem 1 of [[15].

Proposition C.1: For an arbitrary but given power allocation we have

m—0o0

t+q
1
lim esssup P} {— max (Z)>1+e)

Zl,...,Zt_l} — 0 V€>O, (25)

wherel, = pl.
Proof: We first show that the inequality

t+m—1

1
— E Z(ZZ) < I, asm — oo, (26)
m

1=t

holds almost surely unddp/ for any¢ > 1.
To show this, we first consider the immediate power allocatit, by the strong law of large

numbers, we have
t+m—1
1 a.s.
E Ui — p, asm — 0o,

i=t

m
n+m—1
1

Z Z<XZ> = I(f1, fo), asm — oo,

=n

m
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in which n is the quasi change point defined inl(21). Therefore, updeasm — oo, we have

t+m—1 m 1 n+m—1 ~
- Z (Z:) = l <X) “ ol = I, 27)
wherer is the number of nonzero elements{ip;, ..., ;. }-

For an arbitrary power allocation with lim sup,_, . ux = 1, we always haven < m + C
because of the causal energy constraint, wherdenotes the number of nonzero elements in

{pty -+ -y erm—1}. Therefore, asn — oo,

t+m—1 n+m—1

.- )
- Z (z) = 2= l(XZ-)
mm i—n
N 1 n+m—1 ~ e
< m+C1 l(XZ) "3 0T,
m m

For the power allocation schemewith lim sup,_, ., px = 0, we have

t+m—1
Tim E Z 1(Z;) =0 < pl.
Therefore, inequality[(26) holds for any arbitrary Notice that i) [26) holds in the almost sure
sense, sincd_(27) converges in the almost sure sense; af@B)iholds for any realization of
Ziveo o Ty

For anye > 0, define

Tet:sup{m>1

t+m—1
Zz 1+a)]}

Due to [26), we have
essinf P/{T! < co|Zy,..., Zy 1} =1,

which indicates

t+q
1
i H) >
WlLl—r)I;o osssup Pt {m Orgjégfn - Z(ZZ) o (1 i E)]l

1=t

Z17~~~>Zt—1} — 0.

Note that Proposition Cl.1 holds for every> 1, therefore

t+q
1
lim sup esssup P/ {— max (Z)>(1+¢e)y
M—00 t>1 m 0<g<m —

Zl,...,Zt_l} — 0.

(28)
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To prove Lemma 4]1, we need Theorem 1[in|[15] , which is redtatefollows:

Theorem C.2: ( [[15]) Let {Z;} be a random variables sequence with a deterministic but
unknown change point. Under probability measuré;, the conditional distribution ofZ;, is
fo(-|Z41) for k < t and isf,(-|Z}!) for k > t. Denotel(Z,) as

7 Zk—l
1(Z;,) = log M
fo(Zk|Zy™7)
If the condition

t+q
lim sup esssup P {Or<na<x ZZ(ZZ-) >L(1+e)m|Zy,. .., Zt_1} —0, Ve>0 (29)
=T

m—0o0 t21

holds for some constadt. Then, asy — oo,
inf{d(p,T) : Eeo[T] >~}
> inf {supEt[T —t|T >t Ex[T] > 7}
t>1

> (I +o(1))log .

Proof: Please refer td [15]. [

In our case, for any arbitrary but given power allocatigrthe conditional density
F(ZHZY) = fo(Xi) P ({ux = 1} |ZY71) + 6(0) P ({pu = 0} |Z77Y)
whered(¢) is the Dirac delta function. Similarly, we have
(2257 = LX) P ({e = 1HZ7) +6(0) P ({px = 0} |Z57") .
Therefore, the log likelihood ratio in Theordm C.2

fzzE) ) los g if =1
(225 0, ifu=0

which is consistent with the definition if](8). Moreovdr, ) 28dicates that, for any arbitrary

[(Zk) = log

power allocation,[(29) holds for the constdnt= pI. Therefore, the conclusion in Theorém1C.2
indicates the result for our case:

inf{d(u,T) : EL[T] > ~}

> inf {supEf[T —t|T' >t EL[T] > 7}

t>1
> (I;7' 4 0(1)) log .



APPENDIX D

PROOF OFLEMMA 4.2

First, a result similar to Propositidn 3.1 still holds inghiase. Specifically,

22

Proposition D.1: (p*,T),) is an equalizer rule for (P2), i.e., we hail¢y*, 7)) = di(u*, T,), ¥t >

Proof: This proof is similar to that of Propositidn 3.1. Hence, weitoiime proof for brevity.

The rest of the proof can be shown by discussing the reldtiprizetween CUSUM and one

sided SPRT. Denote SPRT statistic as
k
A =[] L(2Z),
=1

and the stopping time as
Ts,l = inf {]{7 2 1‘A1;k Z B} .

Since the CUSUM statistic

Si = max [H L(Z;)

1>q>k

k
> H L(Z;) = Ay,
i=1

1=q

we always have
E{[T,) < EY [Teq).

By the performance of SPRT (Proposition 4.11[in/[13]), weéhav

| log |
pl

Noting thatd(u*, T,) = dy(p*, T,) = B4 [T,] and using Lemm&4.1, we have

IE!f* [Ts,l] ~

. 1[logy
(i, Ty) ~ 120871

p I
Moreover, by (10) in Theorem 2 of ][9], the threshdltl= ~ will guarantee

Eé‘; [Tp] > .

The proof is complete.

(30)
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APPENDIX E
PROOF OFLEMMA 4.3

We again consider the one sided SPRT with the threslidle- ~, which will guarantee

E’;; (Tp> 2.
Let T, ; denote the stopping time of SPRT starting at time instane.,

t+ﬁ1L<Zi) . B} |

1=t

T, = inf {m > 1

then Page’s stopping time can be written as

T,=inf{T,,+t—1]t=1,2,...}. (31)

Note that
{Tp < t} = {TSJ < t} U...u {Ts,t—l < 1} € ft—l,
therefore,
{T, >t} € Fi1.
Then, for an arbitrary,
Eéﬁ [Tp - t|Tp 2 t] < E#* [T&t - 1|Tp 2 t]
(:b) Eéﬁ [Ts7t] - 1

G A

Here, (a) is due to(31), (b) is due to the fact that is independent ofF;_,, and (c) is true

because( 7, }'s are conditionally i.i.d. under*.

From Appendix{DD, we have

- log 7|
Ef [Ty 1] ~ | .
1 [ 71] p[
Combining this with Lemm&4l1, we have
. 111
ﬂmﬂﬁﬂ—ﬂEZﬂN‘|?ﬂ'
p

t>1
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APPENDIX F
PROOF OFLEMMA
We first have the following supporting proposition.
Proposition F.1: E”[i*] exists, and) < E”[p*] < 1.
Proof: We show thatt, is a regular Markov chain with a finite number of states. Itasye
to see thatf), have onlyC'+ 1 possible states. If at the end of the previous time slot, Higehy

has zero energy left, then the transition probability isegias
P"(Eys1 = 0|E = 0) = po + p1,
PY(Egy1 =7 — 1By =0)=p;, for 1 <j<C

P(Bps1 =C|E,=0)= > p;.
j=C+1

If at the end of the previous time slot, the sensor fds< i < () units of energy left, the
transition probability is given as
PY(Eyp =1 —1|Ep = 1) = po,

PV(Ek+1:i+j—1‘Ek:i):pj, fOflS]SC—Z

PV(E]H_l == C|Ek == Z) = Z pj.

j=C—i+1
The above transition probability indicatés is a regular Markov chain. We denote the stationary
distribution asw = [wy, 101, . . . , W], wherew; is the stationary probability for the statg. = i,
then we have
E) = PVl = 1]

= 1-P[fi;=0]

= 1—PV[Vk:O]PV[Ek_1 :O]

= 1—powg ask — oo
exists, and) < E[;] < 1. [

We denotep = E¥[i1*]. The rest of the proof follows the one in Appendix C by reptacp
with p.
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APPENDIX G
PROOF OFLEMMA

We first prove the asymptotic optimality @f:*,7,) for problem (P2). The proof relies on
some supporting propositions and Theorem 4_of [15].
Proposition G.1: For the power allocation schemg, we have

k+m
(1
li Pl < — (Z) <pl—9
im sup esssup P {m ;:k (Z;) <p

m—ro0 thZl

Z17~~~>Zk—1} —0 V>0 (32)

Proof: As we have shown in Propositidn_C.1, for any realization4f. .., 7,_;, and

Vk > t, under the power allocation schemg we have

Then

k+m
11
. “ ~
n}bl_rgoesssup P} {’E gk (Z;)—pl| >¢

Zl,...,Zk_l}—)O Yo > 0,

for all kK > t. Therefore

k+m
1
. M ~
Agréoesssup Py {E E WZ) <pl—5¢
i—k

Zl,---azk—l} — 0

because the above the expression holds for ekeryt. Then the proposition follows. [ |

Proposition G.2: Under the power allocation scheme, Page’s stopping timé,, satisfies

sup P (k < T, < k+my) < a, (33)
k>1
where
lim inf —*— pI)~t
imin Togal > (pI)~,
but

logm, = o(log @) asa — 0.
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Proof: For anyk,

PPk <T,<k+mg)

k+mea—1
= ). PE(T,=k
k=k

VAN
Eal
+
b
Q
AN
3%
- N
Il
=k
=
N
vV
jes
L
o
A
<o
IN
x>
|
—_
~—

= mgexp(—log B). (34)

Here, (a) is true because the likelihood ratio{df;} and that of{f(l} are the same. Then we
substitute{ Z;} with {X’Z} and change the probability measure correspondirigly. and j’ are
the new indices ir{X’Z} corresponding to the origina) k& and; in {Z;}. (b) holds because under
P, {XZ} are i.i.d., then we reverse the sequence. (c) is due to Danaitingale inequality,
since underP,, {L(X’Z-)} is a martingale with expectatioh

By (34), we can simply choosei, = |loga|(pl)~' + §, and chooseB, the threshold of
CUSUM, such thain, exp(—log B) = «. [

To prove Lemma 5]2, we need Theorem 4 ii) [ofl[15] , which isatet as follows:

Theorem G.3: ( [15]) Let {Z,} be a random variables sequence with a deterministic but
unknown change point. Under probability measuré;, the conditional distribution o7, is
fo(-|Z41) for k < t and isf,(-|Z}!) for k > t. Denotel(Z,) as
fi(Zi|Z7 ™)
fo(Zi|Zi™Y)

Denotee’ as the threshold used in Page’s stopping time. Then

(Zk) = log

Ex[T,] > €.
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DenoteE,(7T') as Lorden’s detection delay, i.e.,

E(T) = supesssupE, [(T —t +1)"|Z1,..., Zi_1] .

t>1

If V& > 0, the condition

k+m
lim sup esssup P, { Zl )< I —

Zl,...,Zk_l} —0

holds for some constart, and asa — 0, there exists some:, which dependents only on
such that

sup Poo(k < T, < k+m,) < a,
k>1

where
liminf — 2 > [T,
| log cv|
but,
logm, = o(loga) asa — 0.
Then,
E(T) < (I +o(1))e  asc — oo.
Proof: Please refer td [15]. [

By Proportion[G.IlL and"Gl2(1*,7},) is a strategy that satisfies the conditions in Theorem
[G.3. Hence, if we choose = log~y and I; = pI in the theorem, it is easy to verify that
d(i*,T,) < ((pI)~' + o(1))|log~| with EZ (T,) > ~. Therefore,(ii*,T,) is asymptotically
optimal for (P2).

In the rest of this appendix, we show the asymptotic optityaif (;i*,7},) for problem (P3).

Lemma G.4:

ok 1 1
ammﬂn—ﬂnzﬂ~j|%w. (35)

t>1 p I
Proof: Follow the similar argument in AppendX E, we have

E [T, —t|T, >t] < E[ [T,,—1|T, >1{]

= E} [T,,]-1. (36)
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We claim that
EY [T, Ey = i) <EF [T,,|E, =0], fori=1,...,C,

that is, at the change poititif there is energy left in the battery, the average detedliglay tends
to be smaller than that of the case with an empty battery.eSitc [T, ,] = E¥ [Eff [T&t\Et]},
we have

B [T, — t|T, > ] <Ef [T,4|E, = 0] - 1.

Let B = v, we have

st—lnf{m>1

t+m
Zl ) > logv}

We define a sequence of stopping tin@}, ..., 7.7, ...} in the following manner:

1) SetE, = 0. Define
= inf {m >1

T‘fzil)+m

> U(Zi) = logy

=T 41

t+m
Zl ) > logv}

2) SetE -1 = 0. Define

TS(;L) =infd{m>1

That is, at change poirit we discard all the energy left in the battery and then stagva SPRT
under the power allocatiop*. When the previous SPRT stops, we empty the battery agaih, an
start a new SPRT immediately. Then, this sequence of stgppme{ 5t ,...,Ts(fj), ..., are

independent with the same distribution’Gf, under E;, = 0. Therefore, by the strong LLN, for
an N that large enough, we have

M 1O+ TP 4T
N = ¢ ¢ N t — E# [Tsﬂg‘Et — 0],

where M = "V 7. Since we have

t+M

Zl ) > Nlog~,

as~vy — oo, M — oo, then

t+M

—Zl >—log7,
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that is

. N M _ |log~|
> —1 or — > .
PE= 8T NN = T

If we ignore the overshoot, we will have

w log 7|
Ef [T, |, = 0] ~ 11287
¢ (Toel Be = 0]~ =

Then, we have

|log |
ol

EY [T, — [T, > 1] < (14 0(1)).
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