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Abstract

In this paper, we study the design and analysis of optimal detection scheme for sensors that are

deployed to monitor the change in the environment and are powered by the energy harvested from

the environment. In this type of applications, detection delay is of paramount importance. We model

this problem as quickest change detection problem with a stochastic energy constraint. In particular,

a wireless sensor powered by renewable energy takes observations from a random sequence, whose

distribution will change at a certain unknown time. Such a change implies events of interest. The energy

in the sensor is consumed by taking observations and is replenished randomly. The sensor cannot take

observations if there is no energy left in the battery. Our goal is to design a power allocation scheme

and a detection strategy to minimize the worst case detection delay, which is the difference between the

time when an alarm is raised and the time when the change occurs. Two types of average run length

(ARL) constraint, namely an algorithm level ARL constraintand an system level ARL constraint, are

considered. We propose a low complexity scheme in which the energy allocation rule is to spend energy

to take observations as long as the battery is not empty and the detection scheme is the Cumulative Sum

test. We show that this scheme is optimal for the formulationwith the algorithm level ARL constraint

and is asymptotically optimal for the formulations with thesystem level ARL constraint.
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I. INTRODUCTION

Recently, the study of sensor networks powered by renewableenergy harvested from the

environment has attracted considerable attention [1]–[5]. Compared with the sensor networks

powered by batteries, the sensor networks powered by renewable energy have several unique

features such as unlimited life span and high dependence on the environment etc. Optimal

power management schemes for each individual sensor and scheduling protocols for the whole

network have been developed to maximize utility functions of communication related metrics

such as channel capacity, transmission delay or network throughput. However, besides these

communication related metrics, there are othersignal processing related performance metrics

that are also important for sensor networks targeted for certain applications. For example, if a

sensor network is deployed to monitor the health of a bridge,then the detection delay between

the time when a structural problem occurs and the time when analarm is raised is of interest.

As another example, if a sensor network is deployed for intruder detection, then the detection

delay and the false alarm probability are of interest.

Until now, these alternative but important performance metrics have not been investigated

for sensors powered renewable energy. In this paper, we focus on the design of optimal power

management schemes for such wireless sensor networks when the detection delay is of interest. In

particular, we focus on so called “quickest detection” problem. In the quickest detection problem,

wireless sensors are deployed to quickly detect the change (these terms will be precisely defined

in the sequel) in the environment. Such changes typically imply certain activities of interest. For

example, in the bridge monitoring, a change may imply that a certain structural problem has

occurred in the bridge. As the result, it is of paramount importance to minimize the detection

delay after the presence of such a change, hence the name of quickest detection. Besides this

application, quickest detection also has many other potential applications, such as the quality

control [6], network intrusion detection [7], cognitive radio [8], etc. We note that the detection

delay in the change point detection problem refers to the delay between the time when a change

occurs and the time when an alarm is raised. It is not the delayfrom time zero to the time when

an alarm is raised, since we are interested in the change.
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Non-Bayesian quickest detection is one of the most important formulations, which was first

studied by G. Lordon [9] and M. Pollak [10]. Under the non-Bayesian setup, a sensor sequentially

observes a random sequence{Xk, k = 1, 2, . . .} with a fixed but unknown change pointt.

Before the change pointt, the sequenceX1, . . . , Xt−1 are independent and identically distributed

(i.i.d.) with probability density function (pdf)f0, and aftert, the sequence are i.i.d. with pdff1.

Under an average run length (ARL) to false alarm constraint,namely the expected duration to

a false alarm is at leastγ, Lorden’s setup is to minimize the “worst-worst case” detection delay

supt esssupEt[(T − t + 1)+|X1, . . . , Xt−1], whereT is the stopping time at which an alarm is

raised, while Pollak’s setup is to minimize the “worst case”conditional average detection delay

supt Et[(T − t)|T ≥ t]. Since no prior information about the change point is required, these

non-Bayesian setups are very attractive for practical applications.

In the above mentioned classic setups, there is no energy constraint and the sensor can take

observations at every time slot. In this paper, we extend Lorden’s and Pollak’s problems to

sensors that are powered by renewable energy. In this case, the energy stored in the sensor is

replenished by a random process and consumed by taking observations. The sensor cannot take

observations if there is no energy left. Hence, the sensor cannot take observations at every time

instant anymore. The sensor needs to plan its use of power carefully. Moreover, the stochastic

nature of the energy replenishing process will certainly affect the performance of change detection

schemes. Since the energy collected by the harvester in eachtime instant is not a constant but

a random variable, this brings new optimization challenges.

We first consider the scenario in which a unit of energy arrives with probabilityp at each

time instant. For Lorden’s setup, two types of ARL constraint are considered in this paper.

The first type is an algorithm level ARL constraint, which puts a lower bound on the expected

number of observations taken by the sensor before it runs a false alarm. The algorithm level

ARL constraint is independent of the energy arriving probability p. Under this setup, we prove

that the optimal detection procedure is the well known cumulative sum (CUSUM) procedure

proposed in [9], and the optimal power allocation scheme is to allocate the energy as soon as it

is harvested. The second type ARL constraint is on a system level, which puts a lower bound on

the expected duration to a false alarm. This constraint is related to the energy arriving probability

p. In this case, we show that CUSUM procedure and the immediatepower allocation strategy

is asymptotically optimal when the system ARL goes to infinity. For Pollak’s setup, we discuss
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the problem only with the system level ARL in detail. As we cansee later, the immediate power

allocation coupled with CUSUM detection is actually asymptotically optimal for both the system

level ARL and the algorithm level ARL.

We then consider a more general energy arriving process in which more than one unit of

energy can arrive at each time instant. In this scenario, we show that a simple energy allocation

policy, in which the sensor takes samples as long as there is energy left at the battery, coupled

with CUSUM test is asymptotically optimal for both Lorden and Pollak’s setups when the system

level ARL goes to infinity.

There have been some existing works on the quickest change point detection problem that take

the sample cost into consideration. The first main line of existing work considers the problem

under a Bayesian setup. The main difference between the Bayesian setup and non-Bayesian setup

is that in the Bayesian setup, the change point is modeled as arandom variable with a known

distribution. No such assumption is made in the non-Bayesian setup. [7] considers the design of

detection strategy that strikes a balance between the detection delay, false alarm probability and

the number of sensors being active. In particular, [7] considers a wireless network with multiple

sensors monitoring the Bayesian change in the environment.Based on the observations from

sensors at each time slot, the fusion center decides how manysensors should be active in the

next time slot to save energy. [11] take the average number ofobservations into consideration,

and provides the optimal solution along with low-complexity but asymptotically optimal rules.

In [12], the authors propose a DE-CUSUM scheme for the non-Bayesian setup and show that it

is asymptotically optimal.

The remainder of this paper is organized as follows. The mathematical model is given in

Section II. Section III presents the optimal solution for Lorden’s problem under the algorithm

level ARL constraint and the performance analysis for the optimal solution. In Section IV, we

present asymptotically optimal solutions for Lorden’s andPollak’s problems under the system

level ARL constraint. Section V presents our results for a more general energy arriving model.

Numerical examples are given in Section VI to illustrate theresults obtained in this work. Finally,

Section VII offers concluding remarks.
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II. PROBLEM FORMULATION

Let {Xk, k = 1, 2, . . .} be a sequence of random variables whose distribution changes at a

fixed but unknown timet. Beforet, the{Xk}’s are i.i.d. with pdff0; after t, they are i.i.d. with

pdf f1. The pre-change pdff0 and post-change pdff1 are perfectly known by the sensor. We

usePt andEt to denote the probability measure and the expectation with the change happening

at t, respectively, and useP∞ andE∞ to denote the caset = ∞.

We assume that the energy arrives randomly at each time slot.To facilitate the presentation

and set up notation, we present the model for the case when theenergy arriving process is a

Bernoulli process with parameterp in this section. A more general model will be considered in

Section V. Specifically, we useν = {ν1, ν2, . . . , νk, . . . } to denote the energy arriving process

with νk ∈ {0, 1}, in which νk = 1 indicates that a unit of energy is collected by the energy

harvester at time slotk and νk = 0 means that no energy is harvested.{νk} is i.i.d. over k.

Moreover, we useP ν to denote its probability measure (correspondingly, we useE
ν to denote

the expectation according to the measureP ν), and we haveP ν(νk = 1) = p.

The sensor can decide how to allocate these collected energies. Letµ = {µ1, µ2, . . . , µk, . . . }

be the power allocation strategy, whereµk ∈ {0, 1}, in which µk = 1 means that the wireless

sensor spends a unit of energy on taking an observation at time slotk, while µk = 0 means that

no energy is spent at timek and hence no observation is taken.

The sensor’s battery has a finite capacityC. The energy arriving process and the energy

utilizing process will affect the amount of energy left in the battery. We useEk to denote the

energy left in the battery at the end of time slotk. Ek evolves according to:

Ek = min[C,Ek−1 + νk − µk].

The energy allocation policyµ must obey the causality constraint, namely the energy cannot

be used before it is harvested. The energy causality constraint can be written as

Ek ≥ 0 k = 1, 2, . . . . (1)

We useU to denote the set of allµ’s that satisfy (1).

The sensor spends energy to take observation. The observation sequence is denoted as
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{Zk, k = 1, 2, . . .}, where

Zk =







Xk if µk = 1

φ if µk = 0
. (2)

We call an observationZk a non-trivial observation ifµk = 1, i.e., if the observation is taken

from the environment.

{Zk}’s are not necessarily conditionally (conditioned on the change point) i.i.d. due to the

existence of{µk}. The distribution ofZk is related to bothµk andXk. Therefore, we useP µ
t

and E
µ
t to denote the probability measure and expectation of the observation sequence{Zk}

with the change happening att, respectively.

In this paper, we want to find a stopping timeT , at which the sensor will declare that a change

has occurred, and a power allocation ruleµ that jointly minimize the detection delay. Clearly,

the power allocation strategyµk depends causally on the observation process, the energy arriving

process and the energy utilization process:

µk = gk(Z
k−1
1 , νk

1 , µ
k−1
1 ),

in which Z
k−1
1 denotes the vector[Z1, . . . , Zk−1], νk

1 andµk−1
1 are defined similarly, andgk is

the power allocation function used at time slotk.

We consider three problem setups. The first one is Lorden’s quickest detection problem with

an algorithm level ARL constraint, which is formulated as

(P1) min
µ∈U ,T∈T

d(µ, T ),

s.t.E∞[N ] ≥ η, (3)

whereT is the set of all stopping time withEµ
t [T ] < ∞, N is the total number of non-trivial

observations taken by the sensor before it claims that the change has happened and

d(µ, T ) = sup
t≥1

dt(µ, T ),

dt(µ, T ) = esssupEµ
t

[

(T − t + 1)+|Ft−1

]

, (4)

whereFk is the set of all observations till timek, namelyFk = {Z1, · · · , Zk}. In this case, we

put a lower boundη on the average number of observations taken before a false alarm is raised.

The largerη is, the less frequent a false alarm will be raised. Since thisconstraint is independent
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of the power allocation schemeµ and energy arriving sequenceν, this problem setup is robust

against the variation of the ambient environment.

The second problem considered in this paper is Lorden’s quickest detection problem with a

system level ARL constraint, which is formulated as

(P2) min
µ∈U ,T∈T

d(µ, T ),

s.t.Eµ
∞[T ] ≥ γ. (5)

In this formulation, a lower bound is set on the expected duration to a false alarm. In contrast

to the previous case, this constraint depends on the power allocationµ, which is further related

to the energy arriving probabilityp. Therefore, this setup is more sensitive to the environment.

In some applications, Pollak’s formulation is of interest since its delay metric is less con-

servative than that of Lorden’s formulation. In our context, Pollak’s formulation can be written

as

(P3) min
µ∈U ,T∈T

sup
t≥1

E
µ
t [T − t|T ≥ t] ,

s.t.Eµ
∞[T ] ≥ γ. (6)

Even without the additional energy casuality constraint, the optimal solution for Pollak’s for-

mulation is still unknown. Therefore, in this paper, we discuss only the asymptotic solution for

Pollak’s formulation. In the sequel, we will see that the proposed asymptotically optimal solution

under the system level ARL constraint is also asymptotically optimal under the algorithm level

ARL constraint. Hence, in the paper, we discuss only the system level ARL constraint for Pollak’s

formulation in detail.

For an arbitrary realization of the power allocation schemeµ, we will use the following

notation throughout of the paper:

1) {ak, k = 1, 2, . . .} to denote the time instants at which the energy harvester harvests a unit

of energy, i.e.,νak = 1;

2) {bk, k = 1, 2, . . .} to denote the time instants at which the sensor takes observations, i.e.,

µbk = 1;

3)
{

X
(ak ,bk)
k , k = 1, 2, . . .

}

or
{

X̃k, k = 1, 2, . . .
}

to denote the non-trivial observation se-

quence, which is the subsequence of{Zk, k = 1, 2, . . .} with all its non-trivial elements.

In particular,X(ak ,bk)
k will be used when we want to emphasize the sampling time. Here
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X
(ak ,bk)
k is thekth non-trivial observation taken by the sensor at timebk using the energy

arriving at timeak.

Using above notation, the energy causality constraint indicates the following inequality:

bk ≥ ak, k = 1, 2, . . . . (7)

An example of the realization of the sensor sampling procedure (and corresponding notation)

is shown in Figure 1.

0 1 2 3 4 5 6 7 8 n-1 n n+1

0X 1X 2X 3X 4X 5X 6X 7X 8X

1 1a = 2 4a =
3 5a = 4 7a =

1 3b = 2 6b =
3 7b = 4 8b =

1nX − 1nX +n
X

≈

(1,3)

1X
(4,6)

2X
(5,7)

3X
(7,8)

4X

3X 6X 7X 8X 1nX +

{ }:k
a

{ }:k
X

{ }:k

{ }:k
Z

{ }:k
b

{ }( , )
:k k

a b

k
X

( 1, 1)n n

k
X

− +

1
k
a n= −

1
k
b n= +

φφφφφ φφ

Fig. 1: An example of the realization of the sampling procedure

III. OPTIMAL SOLUTION FOR LORDEN’ S FORMULATION WITH THE ALGORITHM LEVEL

ARL CONSTRAINT

In this section, we study the optimal solution for (P1). We use L(·) to denote the likelihood

ratio (LR), and usel(·) = logL(·) to denote the log likelihood ratio (LLR). For the observation

sequence{Zk}, LR is defined as

L(Zk) =







f1(Zk)
f0(Zk)

, if µk = 1

1, if µk = 0
. (8)

The CUSUM statistic and Page’s stopping time can be written as [9]

Sk = max
1≥q≥k

[

k
∏

i=q

L(Zi)

]

= max[Sk−1, 1]L(Zk),

and

Tp = inf{k ≥ 0|Sk ≥ B},

respectively.

Generally, for a given detection strategy pair(µ, T ), the detection delaydt(µ, T ) in (4) varies

from different change pointt. If there is an equalizer strategy which makesdt(µ, T ) be a constant
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over t, it might be a good candidate for the optimal strategy for theminmax problem. Similar to

the conclusion that Page’s stopping time is an equalizer rule for the classical Lorden’s problem

[13], we have following proposition:

Proposition 3.1: The power allocation schemeµ∗ = ν and Page’s stopping timeTp together

achieve an equalizer rule, i.e.,dt(µ∗, Tp) = d1(µ
∗, Tp), ∀t ≥ 1.

Proof: Sinceµ∗ = ν indicates that{µ∗
k}’s are i.i.d. overk, {Zk}’s are conditionally i.i.d.

given the change pointt.

Notice thatWk = max[Sk, 1] is a non-decreasing function ofSk, and on the event{Tp ≥ t},

Tp is a non-increasing function ofWt−1. Then we have

dt(µ
∗, Tp) = esssupEµ∗

t [Tp − t + 1|Ft−1]

= E
µ∗

t [Tp − t+ 1|Wt−1 = 1] . (9)

Since{Wk} is a homogeneous Markov chain under the power allocation schemeµ∗
k = νk, then,

dt(µ
∗, Tp) = d1(µ

∗, Tp).

Remark 3.2: µ∗ = ν indicatesµ∗
k = νk for every k, that is, the sensor spends the energy

taking observation immediately when it obtains an energy from the environment. Therefore, we

call µ∗ the immediate power allocation scheme in the sequel.

The next lemma shows that the immediate power allocation scheme along with the CUSUM

detection scheme is optimal for (P1).

Lemma 3.3: The optimal power allocation strategy for (P1) isµ∗, and the optimal stopping

time is Tp with the thresholdB being a constant such thatE∞[N ] = η.

Proof: The proof consists of two steps. The first step is to show that for an arbitrary but

given power allocationµ, Tp is the optimal stopping time. The second step is to show that under

Tp, µ∗ is the optimal power allocation scheme. A detailed proof is provided in Appendix A.

In the following, we analyze the performance of(µ∗, Tp) by determining the detection delay

and the algorithm level ARL. Since{Zk} is a conditionally i.i.d. sequence underµ∗, we can

apply Wald’s lemma [13] in our analysis. We have the following proposition:

Proposition 3.4: SupposeB > 1, then

E∞[N ] =
E∞[κ]

1− P∞(F0)
, (10)

d(µ∗, Tp) =
1

p

E1[κ]

1− P1(F0)
, (11)
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whereκ is the stopping time

κ = min

{

m ≥ 1

∣

∣

∣

∣

∣

m
∑

k=1

l
(

X̃k

)

6∈ (0, logB)

}

,

andF0 denotes the event
{

m
∑

k=1

l
(

X̃k

)

≤ 0

}

.

Proof: The proof follows closely that of Theorem 6.2 in [13]. A detailed proof is given in

Appendix B.

We note that in Proposition 3.4, ARL andd(µ∗, T c
h) are given as functions ofP∞(F0) and

P1(F0), whose precise values are difficult to evaluate. The following result, which is an extension

of Lorden’s asymptotical result [9], showsd(µ∗, T c
h) scales linear withlog η whenη → ∞.

Proposition 3.5: As η → ∞, we have

d(µ∗, Tp) ∼
1

p

| log η|

I
, (12)

in which I = I(f1, f0) is the KL divergence off1 andf0.

Proof: This statement can be shown by discussing the relationship between one-sided

sequential probability ratio test (SPRT) and CUSUM. The discussion is similar to the proof

of Lemma 4.2, therefore, we omit the proof for brevity.

IV. A SYMPTOTICALLY OPTIMAL SOLUTION UNDER THE SYSTEM LEVELARL CONSTRAINT

In this section, we consider (P2) and (P3). Since both the detection delay and the system

level ARL constraint are related to the power allocationµ, it is generally difficult to solve these

coupled problems. Inspired by the previous section, we propose to use the simple detection

strategy(µ∗, Tp). We will show that this simple strategy is asymptotically optimal for (P2) and

(P3) asγ → ∞.

The asymptotic optimality of(µ∗, Tp) in the rare false alarm region (γ → ∞) can be shown

by two steps. In the first step, we derive a lower bound on the detection delay for any power

allocation and detection scheme. In the second step, we showthat (µ∗, Tp) achieves this lower

bound, which then implies that(µ∗, Tp) is asymptotically optimal.

The following lemma presents our lower bound on the detection delay.
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Lemma 4.1: As γ → ∞,

inf{d(µ, T ) : Eµ
∞[T ] ≥ γ}

≥ inf

{

sup
t≥1

E
µ
t [T − t|T ≥ t] : Eµ

∞[T ] ≥ γ

}

≥
1

p

| log γ|

I
(1 + o(1)). (13)

Proof: Please see Appendix C.

This lower bound| log γ|(pI)−1(1+ o(1)) can be obtained by(µ∗, Tp) for both (P2) and (P3).

More specifically, we have

Lemma 4.2: (µ∗, Tp) is asymptotically optimal for (P2) asγ → ∞. Specifically,

d(µ∗, Tp) ∼
1

p

| log γ|

I
. (14)

Proof: Please see Appendix D.

Lemma 4.3: (µ∗, Tp) is asymptotically optimal for (P3) asγ → ∞. Specifically,

sup
t≥1

E
µ∗

t [Tp − t|Tp ≥ t] ∼
1

p

| log γ|

I
. (15)

Proof: Please see Appendix E.

As we mentioned in Section II, although we consider Pollak’sformulation only under the

system level ARL constraint in detail in this paper, the proposed strategy(µ∗, Tp) is also

asymptotically optimal for the formulation under the algorithm level ARL constraint, which

is stated in the following proposition:

Proposition 4.4: (µ∗, Tp) is asymptotically optimal for Pollak’s formulation under the algo-

rithm level ARL constraint asη → ∞, and we have

sup
t≥1

E
µ∗

t [Tp − t|Tp ≥ t] ∼
1

p

| log η|

I
. (16)

Proof: Following the similar argument used in Proposition 3.4, we have

E
µ∗

∞ [Tp] = E
µ∗

∞ [aN ] = E
µ∗

∞

[

N
∑

l=1

τl

]

=
1

p
E∞[N ].

That is, under the immediate power allocationµ∗, the algorithm level ARL constraintE∞[N ] ≥ η

can be equivalently converted into a system level ARL constraint Eµ∗

∞ [Tp]. Settingγ = η/p for

a givenp, η → ∞ is equivalent toγ → ∞. By Lemma 4.3,(µ∗, Tp) is asymptotically optimal

under the system level ARL constraint, hence it is asymptotically optimal under the algorithm

level ARL constraint.
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V. EXTENSION

In this section, we extend the original problem setup by assuming that the energy harvester

can receive more than one unit energy at each time slot. Specifically, we assume that the energy

arriving sequenceν = {ν1, . . . , νk, . . .} is i.i.d. overk. νk ∈ V = {0, 1, 2, . . .}, in which{νk = 0}

means that the energy harvester collects nothing at time slot k and {νk = i} means that the

energy harvester collectsi units of energy at timek. We usepi = P ν(νk = i) to denote its

probability mass function (pmf). Then the energy left in thebattery at the end of time slotk is

updated by

Ek = min{C,Ek−1 + νk − µk},

and the energy causality constraint indicatesEk ≥ 0.

Under this setup, we consider (P2) and (P3). We propose to usea generalized immediate

power allocation strategy:

µ̃∗
k =







1 if Ek−1 + νk ≥ 1

0 if Ek−1 + νk = 0
.

That is, the sensor keeps taking observations as long as the battery is not empty.

In the following, we show that this generalized immediate power allocationµ̃∗ combined

with Page’s stopping timeTp is asymptotically optimal for (P2) and (P3) in this random energy

arriving case. Corresponding to Lemma 4.1, Lemma 4.2 and Lemma 4.3, we have following two

lemmas:

Lemma 5.1: As γ → ∞,

inf{d(µ, T ) : Eµ
∞[T ] ≥ γ}

≥ inf

{

sup
t≥1

E
µ
t [T − t|T ≥ t] : Eµ

∞[T ] ≥ γ

}

≥
1

p̃

| log γ|

I
(1 + o(1)), (17)

wherep̃
.
= E

ν [µ̃∗].

Proof: Please see Appendix F.

Lemma 5.2: (µ̃∗, Tp) is asymptotically optimal for (P2) and (P3) asγ → ∞. Specifically,

d(µ̃∗, Tp) ∼
1

p̃

| log γ|

I
, (18)
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and

sup
t≥1

E
µ̃∗

t [Tp − t|Tp ≥ t] ∼
1

p̃

| log γ|

I
, (19)

Proof: Please see Appendix G.

VI. NUMERICAL SIMULATION

In this section, we give some numerical examples to illustrate the analytical results obtained

in this paper. In these numerical examples, we assume that the pre-change distributionf0 is zero

mean Gaussian with varianceσ2 and the post-change distributionf1 is zero mean Gaussian with

varianceP + σ2. In this case, the KL divergence isI(f1, f0) = 1
2

[

log 1
1+P/σ2 +

P
σ2

]

, and the

signal-to-noise ratio is defined asSNR = 10 logP/σ2.

In the first example, we illustrate the equalizer property of(µ∗, Tp) under Lorden’s formulation.

The equalizer property plays a critical role in the performance analysis, since it allows us to

study d(µ∗, Tp) through a relatively simple expressionEµ∗

1 [Tp]. In this example, we compare

our optimal strategy with a seemingly reasonable strategy:a save-test power allocation scheme

combined with CUSUM. The save-test power allocation is a two-threshold strategy: 1) The

sensor saves the collected energy for future use if the energy stored in the sensor is less than a

thresholdc1 and the CUSUM statistic is less than thresholdc2; and 2) the sensor takes observation

when either of these two thresholds is exceeded. This rule says that if the CUSUM statistic is

low (suggesting that a change has not happened yet) and the energy stored in the sensor is

low, the sensor saves its energy. On the other hand, if eitherthe sensor has enough energy, or

the CUSUM statistic is high, the sensor should take an observation. In this simulation, we set

σ2 = 1, SNR = 0dB, p = 0.5 andγ = 560. The simulation result is shown in Figure 2. In the

figure, the blue line with circles is the performance of(µ∗, Tp), the green dash line with stars is

the performance of the save-test power allocation with CUSUM. This simulation confirms our

analysis that(µ∗, Tp) is an equalizer rule, i.e.,d1(µ∗, Tp) = dt(µ
∗, Tp). However, the save-test

power allocation scheme along with CUSUM is not an equalizerrule. Actually, in the save-test

power allocation scheme,d1(µ, T ) is larger than others. This is due to the fact that in the first

time slot, both the CUSUM statistic and the energy stored in the sensor are zero, hence the

sensor chooses to store its energy. The sensor will not take observations until the stored energy

exceedsc2. The duration of this energy collection period is independent of the change point.
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Then, the worst case happens att = 1, and the detection delay caused by the energy collection

period is larger than that caused by the immediate power allocation. Since Lorden’s performance

metric focuses on the worst case, the save-test power allocation is not as good as the immediate

power allocation.

0 20 40 60 80 100
30

40

50

60

70

80

90

100

t

d t(T
hc )

 

 

immediate power allocation scheme
save−test power allocation scheme

Fig. 2: The change pointt vs dt(Tp)

In the second example, we illustrate the relationship between the detection delay and the

expected number of observations to false alarm with respectto the energy arriving probability

p under setup (P1). In this simulation, we setσ2 = 1, SNR = 0dB. The simulation result is

shown in Figure 3. In this figure, the blue line with circles isthe simulation result forp = 0.2,

the green line with stars and the red line with squares are theresults forp = 0.5 andp = 0.8,

respectively. The black dash line is the performance of the classical Lorden’s problem, which

serves as a lower bound since in this case the sensor can take observations at every time slot.

As we can see, for a givenη, the detection delay is in inverse proportion to the energy arriving

probability p. The largerp is, the closer is the performance to the lower bound.

In the third scenario, we examine the asymptotic optimalityof (µ∗, Tp) for (P2) and (P3). In this

simulation, we setp = 0.3, σ2 = 1 andSNR = 5dB. In this case, we haveI(f1, f0) = 0.8681.

The simulation result is shown in Figure 4. In this figure, theblue line with circles is the

performance of (P2). The red line with squares is the performance of (P3), and the black dash

is calculated by| log γ|/pI. Along all the scales, the red curve is below the blue one, which

indicates that Pollak’s detection delay is smaller than Lorden’s detection delay. We also notice

that these three curves are parallel to each other, which confirms that the proposed strategy,
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Fig. 3: Detection delay v.s. the algorithm level ARL
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Fig. 4: Detection delay v.s. the system level ARL

(µ∗, Tp), is asymptotically optimal since the difference between them is negligible asγ → ∞.

In the last scenario, we examine the asymptotic optimality of (µ̃∗, Tp) for (P2) and (P3) in the

extension case that the energy arrives randomly both in amount and in time. In the simulation,

we useC = 3, and we assume that the amount of energy arrives at each time slot takes values

in the setV = {0, 1, . . . , 4}. In this case, the probability transition matrix is given as

P =















p0 + p1, p2, p3, p4

p0, p1, p2, p3 + p4

0, p0, p1,
∑4

i=2 pi

0, 0, p0,
∑4

i=1 pi















, (20)
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In the simulation, we setp0 = 0.8, p1 = 0.1, p2 = 0.05, p3 = 0.025, p2 = 0.025, then the

stationary distribution is̃w = [0.0182, 0.0545, 0.2000, 0.7273]T and p̃ = 1− p0w̃0 = 0.9964.
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lo
g 10

 γ

 

 

Performance of (P2)
Performance of (P3)
|log γ|/E(µ*)I

Fig. 5: Detection delay v.s. the system level ARL

In this simulation, we setσ2 = 1 andSNR = 5dB. The simulation result is shown in Figure

5. In this figure the blue line with circles is the performanceof (P2). The red line with squares

is the performance of (P3), and the black dash is calculated by | log γ|/p̃I. Similar to the results

obtained in the third simulation scenario, along all the scales, Pollak’s detection delay is smaller

than Lorden’s detection delay, and these three curves are parallel to each other, which confirms

that the proposed strategy,(µ̃∗, Tp), is asymptotically optimal asγ → ∞.

VII. CONCLUSION

In this paper, we have studied the non-Bayesian quickest detection problem using a sensor

powered by the energy harvested from the environment. Sincethe energy harvester collected the

energy randomly, the quickest detection problem is subjected to a casual energy constraint. Three

non-Bayesian quickest detection problem setups, namely Lorden’s problem under the algorithm

level ARL, Lorden’s problem under the system level ARL and Pollak’s problem under the system

level ARL, have been considered. For the binary energy arriving model, we have shown that

the immediate power allocation scheme coupled with CUSUM detection procedure is optimal

for the first setup, and is asymptotically optimal for the second and the third setup as ARL

goes to infinity. For the more general energy arriving model,we have shown that the proposed
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generalized immediate power allocation coupled with CUSUMis still asymptotically optimal

for the second and third setups.

APPENDIX A

PROOF OFLEMMA 3.3

We first introduce a notion of quasi change point. For any realization of the power allocation

µ, the quasi change point of the non-trivial observation sequence is defined as

n = inf{k : X̃k ∼ f1} = inf{k : bk ≥ t}. (21)

This implies thatn can be viewed as the change point happening in the non-trivial observation

sequence
{

X
(ak ,bk)
k

}

. Therefore, a rule minimizing the detection delay(T − t)+ among{Zk} is

the same as the one minimizing(N − n)+ among
{

X
(ak ,bk)
k

}

. Specifically, the stopping rule is

decided by

min
N

sup
n≥1

esssupEn

[

(N − n+ 1)+|Fn−1

]

,

s.t.E∞[N ] ≥ η.

This is the classical Lorden’s quickest detection problem [9], and the optimal solution is given

as Page’s stopping timeTp in [14] with thresholdB, which is a constant solely related toη and

achievesE∞[N ] = η.

To prove the optimality ofµ∗, we examine the following problem:

min
µ∈U

E
µ
1 [Tp],

s.t.E∞[N ] = η. (22)

Notice that the objective function is the same asd1(µ, Tp). Since

E
µ
1 [Tp] = E

µ
1 [bN ]

(a)

≥ E
ν
1[aN ]

(b)
= E

µ∗

1 [Tp],

in which inequality (a) is due to (7), and equality (b) is truebecauseTp = aN underµ∗ = ν.

Therefore,µ∗ is optimal for the problem (22).

Since

min
µ,T

d1(µ, T ) = d1(µ
∗, Tp) = dt(µ

∗, Tp),
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in which the last equality is due to Proposition 3.1, we have

d(µ∗, Tp) = d1(µ
∗, Tp).

Combining this with the fact that

d(µ, T ) ≥ d1(µ, T ),

we know that(µ∗, Tp) is the optimal solution for (P1).

APPENDIX B

PROOF OFPROPOSITION3.4

We first examine the quantityE∞[N ]. Consider the non-trivial observation sequence
{

X
(ak,ak)
k

}

,

let Mj denote the indicator of the event that thejth repetition ofκ exits at the upper boundary.

That is Mj = 1 if the jth repetition exits at the upper boundary, andMj = 0 if the jth

repetition exits at the lower boundary. LetJ be a stopping time with respect to the sequence

(κ1,M1), (κ2,M2), . . ., which is i.i.d. underP∞, such thatJ = inf{j : Mj = 1}. One can check

thatN =
∑J

j=1 κj.

From Wald’s identity, we have

E∞[N ] = E∞

[

J
∑

j=1

κj

]

= E∞[J ]E∞[κ]. (23)

It is easy to see that, underP∞, J is a geometric random variable with

P∞(J = j) = [1− P∞(F0)] [P∞(F0)]
j−1 , j = 1, 2, . . . .

Then, we have

E∞[J ] =
1

1− P∞(F0)
. (24)

Substituting (24) into (23), we have (10).

Following the similar argument as above, we get

E1[N ] =
E1[κ]

1− P1(F0)
.

Denoteτi = ai − ai−1 as the time interval between two successive observations, the p.m.f. ofτi

is

P (τi = j) = (1− p)j−1p,



19

and the average of the time interval between two successive observations is

E
ν [τ ] =

1

p
.

For the average detection delay, we have

d(µ∗, Tp) = d1(µ
∗, Tp)

= E
µ∗

1 [Tp]

= E
µ∗

1 [aN ]

= E
µ∗

1

[

N
∑

i=1

τi

]

(a)
= E

ν [τ ]E1 [N ]

=
1

p
E1[N ].

Here, (a) is due to the Wald’s identity. Then (11) follows.

APPENDIX C

PROOF OFLEMMA 4.1

This proof relies on several supporting propositions and Theorem 1 of [15].

Proposition C.1: For an arbitrary but given power allocationµ, we have

lim
m→∞

esssupP µ
t

{

1

m
max
0<q≤m

t+q
∑

i=t

l(Zi) ≥ (1 + ε)I1

∣

∣

∣

∣

∣

Z1, . . . , Zt−1

}

→ 0 ∀ε > 0, (25)

whereI1 = pI.

Proof: We first show that the inequality

1

m

t+m−1
∑

i=t

l(Zi) ≤ I1, asm → ∞, (26)

holds almost surely underP µ
t for any t ≥ 1.

To show this, we first consider the immediate power allocation µ∗, by the strong law of large

numbers, we have

1

m

t+m−1
∑

i=t

µi
a.s.
→ p, asm → ∞,

1

m

n+m−1
∑

i=n

l
(

X̃i

)

a.s.
→ I(f1, f0), asm → ∞,
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in which n is the quasi change point defined in (21). Therefore, underµ∗, asm → ∞, we have

1

m

t+m−1
∑

i=t

l(Zi) =
m̂

m

1

m̂

n+m̂−1
∑

i=n

l
(

X̃i

)

a.s.
→ pI = I1, (27)

wherem̂ is the number of nonzero elements in
{

µ∗
t , . . . , µ

∗
t+m−1

}

.

For an arbitrary power allocationµ with lim supk→∞ µk = 1, we always havẽm ≤ m̂ + C

because of the causal energy constraint, wherem̃ denotes the number of nonzero elements in

{µt, . . . , µt+m−1}. Therefore, asm → ∞,

1

m

t+m−1
∑

i=t

l(Zi) =
m̃

m

1

m̃

n+m̃−1
∑

i=n

l
(

X̃i

)

≤
m̂+ C

m

1

m̃

n+m̃−1
∑

i=n

l
(

X̃i

)

a.s.
→ pI.

For the power allocation schemeµ with lim supk→∞ µk = 0, we have

lim
m→∞

1

m

t+m−1
∑

i=t

l(Zi) = 0 ≤ pI.

Therefore, inequality (26) holds for any arbitraryµ. Notice that i) (26) holds in the almost sure

sense, since (27) converges in the almost sure sense; and ii)(26) holds for any realization of

Z1, . . . , Zt−1.

For anyε > 0, define

T t
ε = sup

{

m ≥ 1

∣

∣

∣

∣

∣

1

m

t+m−1
∑

i=t

l(Zi) > (1 + ε)I1

}

.

Due to (26), we have

essinf P µ
t {T

t
ε < ∞|Z1, . . . , Zt−1} = 1,

which indicates

lim
m→∞

esssupP µ
t

{

1

m
max
0<q≤m

t+q
∑

i=t

l(Zi) ≥ (1 + ε)I1

∣

∣

∣

∣

∣

Z1, . . . , Zt−1

}

→ 0.

Note that Proposition C.1 holds for everyt ≥ 1, therefore

lim
m→∞

sup
t≥1

esssup P µ
t

{

1

m
max
0<q≤m

t+q
∑

i=t

l(Zi) ≥ (1 + ε)I1

∣

∣

∣

∣

∣

Z1, . . . , Zt−1

}

→ 0.

(28)



21

To prove Lemma 4.1, we need Theorem 1 in [15] , which is restated as follows:

Theorem C.2: ( [15]) Let {Zk} be a random variables sequence with a deterministic but

unknown change pointt. Under probability measurePt, the conditional distribution ofZk is

f0(·|Z
k−1
1 ) for k < t and isf1(·|Z

k−1
1 ) for k ≥ t. Denotel(Zk) as

l(Zk) = log
f1(Zk|Z

k−1
1 )

f0(Zk|Z
k−1
1 )

.

If the condition

lim
m→∞

sup
t≥1

esssup Pt

{

max
0<q≤m

t+q
∑

i=t

l(Zi) ≥ I1(1 + ε)m
∣

∣

∣
Z1, . . . , Zt−1

}

→ 0, ∀ε > 0 (29)

holds for some constantI1. Then, asγ → ∞,

inf{d(µ, T ) : E∞[T ] ≥ γ}

≥ inf

{

sup
t≥1

Et[T − t|T ≥ t] : E∞[T ] ≥ γ

}

≥ (I−1
1 + o(1)) log γ.

Proof: Please refer to [15].

In our case, for any arbitrary but given power allocationµ, the conditional density

fµ
0 (Zk|Z

k−1
1 ) = f0(Xk)P

(

{µk = 1} |Zk−1
1

)

+ δ(φ)P
(

{µk = 0} |Zk−1
1

)

,

whereδ(φ) is the Dirac delta function. Similarly, we have

fµ
1 (Zk|Z

k−1
1 ) = f1(Xk)P

(

{µk = 1} |Zk−1
1

)

+ δ(φ)P
(

{µk = 0} |Zk−1
1

)

.

Therefore, the log likelihood ratio in Theorem C.2

l(Zk) = log
fµ
1 (Zk|Z

k−1
1 )

fµ
0 (Zk|Z

k−1
1 )

=







log f1(Zk)
f0(Zk)

, if µk = 1

0, if µk = 0
,

which is consistent with the definition in (8). Moreover, (28) indicates that, for any arbitrary

power allocation, (29) holds for the constantI1 = pI. Therefore, the conclusion in Theorem C.2

indicates the result for our case:

inf{d(µ, T ) : Eµ
∞[T ] ≥ γ}

≥ inf

{

sup
t≥1

E
µ
t [T − t|T ≥ t] : Eµ

∞[T ] ≥ γ

}

≥ (I−1
1 + o(1)) log γ.
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APPENDIX D

PROOF OFLEMMA 4.2

First, a result similar to Proposition 3.1 still holds in this case. Specifically,

Proposition D.1: (µ∗, Tp) is an equalizer rule for (P2), i.e., we havedt(µ∗, Tp) = d1(µ
∗, Tp), ∀t ≥

1.

Proof: This proof is similar to that of Proposition 3.1. Hence, we omit the proof for brevity.

The rest of the proof can be shown by discussing the relationship between CUSUM and one

sided SPRT. Denote SPRT statistic as

Λ1:k =

k
∏

i=1

L(Zi), (30)

and the stopping time as

Ts,1 = inf {k ≥ 1|Λ1:k ≥ B} .

Since the CUSUM statistic

Sk = max
1≥q≥k

[

k
∏

i=q

L(Zi)

]

≥

k
∏

i=1

L(Zi) = Λ1:k,

we always have

E
µ∗

1 [Tp] ≤ E
µ∗

1 [Ts,1].

By the performance of SPRT (Proposition 4.11 in [13]), we have

E
µ∗

1 [Ts,1] ∼
| log γ|

pI
.

Noting thatd(µ∗, Tp) = d1(µ
∗, Tp) = E

µ∗

1 [Tp] and using Lemma 4.1, we have

d(µ∗, Tp) ∼
1

p

| log γ|

I
.

Moreover, by (10) in Theorem 2 of [9], the thresholdB = γ will guarantee

E
µ∗

∞ [Tp] ≥ γ.

The proof is complete.
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APPENDIX E

PROOF OFLEMMA 4.3

We again consider the one sided SPRT with the thresholdB = γ, which will guarantee

E
µ∗

∞ (Tp) ≥ γ.

Let Ts,t denote the stopping time of SPRT starting at time instantt, i.e.,

Ts,t = inf

{

m ≥ 1

∣

∣

∣

∣

∣

t+m−1
∏

i=t

L(Zi) ≥ B

}

,

then Page’s stopping time can be written as

Tp = inf {Ts,t + t− 1|t = 1, 2, . . .} . (31)

Note that

{Tp < t} = {Ts,1 < t} ∪ . . . ∪ {Ts,t−1 < 1} ∈ Ft−1,

therefore,

{Tp ≥ t} ∈ Ft−1.

Then, for an arbitraryt,

E
µ∗

t [Tp − t|Tp ≥ t]
(a)

≤ E
µ∗

t [Ts,t − 1|Tp ≥ t]

(b)
= E

µ∗

t [Ts,t]− 1

(c)
= E

µ∗

1 [Ts,1]− 1.

Here, (a) is due to (31), (b) is due to the fact thatTs,t is independent ofFt−1, and (c) is true

because{Zk}’s are conditionally i.i.d. underµ∗.

From Appendix D, we have

E
µ∗

1 [Ts,1] ∼
| log γ|

pI
.

Combining this with Lemma 4.1, we have

sup
t≥1

E
µ∗

t [Tp − t|Tp ≥ t] ∼
1

p

| log γ|

I
.
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APPENDIX F

PROOF OFLEMMA 5.1

We first have the following supporting proposition.

Proposition F.1: E
ν [µ̃∗] exists, and0 < E

ν [µ̃∗] ≤ 1.

Proof: We show thatEk is a regular Markov chain with a finite number of states. It is easy

to see thatEk have onlyC+1 possible states. If at the end of the previous time slot, the battery

has zero energy left, then the transition probability is given as

P ν(Ek+1 = 0|Ek = 0) = p0 + p1,

P ν(Ek+1 = j − 1|Ek = 0) = pj, for 1 < j ≤ C

P ν(Ek+1 = C|Ek = 0) =

∞
∑

j=C+1

pj .

If at the end of the previous time slot, the sensor hasi(1 ≤ i ≤ C) units of energy left, the

transition probability is given as

P ν(Ek+1 = i− 1|Ek = i) = p0,

P ν(Ek+1 = i+ j − 1|Ek = i) = pj , for 1 ≤ j ≤ C − i

P ν(Ek+1 = C|Ek = i) =
∞
∑

j=C−i+1

pj .

The above transition probability indicatesEk is a regular Markov chain. We denote the stationary

distribution asw̃ = [w̃0, w̃1, . . . , w̃C ]
T , wherew̃i is the stationary probability for the stateEk = i,

then we have

E
ν [µ̃∗

k] = P ν [µ̃∗
k = 1]

= 1− P ν [µ̃∗
k = 0]

= 1− P ν [νk = 0]P ν [Ek−1 = 0]

= 1− p0w̃0 ask → ∞

exists, and0 ≤ E
ν [µ̃∗

k] ≤ 1.

We denotep̃ = E
ν [µ̃∗]. The rest of the proof follows the one in Appendix C by replacing p

with p̃.
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APPENDIX G

PROOF OFLEMMA 5.2

We first prove the asymptotic optimality of(µ̃∗, Tp) for problem (P2). The proof relies on

some supporting propositions and Theorem 4 of [15].

Proposition G.1: For the power allocation schemẽu∗, we have

lim
m→∞

sup
k≥t≥1

esssup P µ̃∗

t

{

1

m

k+m
∑

i=k

l(Zi) ≤ p̃I − δ

∣

∣

∣

∣

∣

Z1, . . . , Zk−1

}

→ 0 ∀δ > 0. (32)

Proof: As we have shown in Proposition C.1, for any realization ofZ1, . . . , Zk−1, and

∀k ≥ t, under the power allocation schemeµ̃∗, we have

1

m

k+m−1
∑

i=k

l(Zi)
a.s.
→ p̃I, m → ∞.

Then

lim
m→∞

esssup P µ̃∗

t

{
∣

∣

∣

∣

∣

1

m

k+m
∑

i=k

l(Zi)− p̃I

∣

∣

∣

∣

∣

≥ δ

∣

∣

∣

∣

∣

Z1, . . . , Zk−1

}

→ 0 ∀δ > 0,

for all k ≥ t. Therefore

lim
m→∞

esssup P µ̃∗

t

{

1

m

k+m
∑

i=k

l(Zi) ≤ p̃I − δ

∣

∣

∣

∣

∣

Z1, . . . , Zk−1

}

→ 0

because the above the expression holds for everyk ≥ t. Then the proposition follows.

Proposition G.2: Under the power allocation schemeµ̃∗, Page’s stopping timeTp satisfies

sup
k≥1

P µ̃∗

∞ (k ≤ Tp < k +mα) ≤ α, (33)

where

lim inf
mα

| logα|
> (p̃I)−1,

but

logmα = o(logα) asα → 0.
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Proof: For anyk,

P µ̃∗

∞ (k ≤ Tp < k +mα)

=

k+mα−1
∑

k̂=k

P µ̃∗

∞ (Tp = k̂)

≤

k+mα−1
∑

k̂=k

P µ̃∗

∞







k̂
∏

i=k̂−j

L(Zi) ≥ B, ∃0 ≤ j ≤ k̂ − 1







(a)
=

k+mα−1
∑

k̂=k

P∞

{

k′
∏

i′=k′−j′

L(X̃i′) ≥ B, ∃0 ≤ j′ ≤ k′ − 1

}

(b)
=

k+mα−1
∑

k̂=k

P∞

{

k′′
∏

i′=1

L(X̃i′) ≥ B, ∃0 ≤ k′′ ≤ k′

}

(c)

≤
k+mα−1
∑

k̂=k

exp(− logB)

= mα exp(− logB). (34)

Here, (a) is true because the likelihood ratio of{Zi} and that of
{

X̃i

}

are the same. Then we

substitute{Zi} with
{

X̃i

}

, and change the probability measure correspondingly.i′, k′ andj′ are

the new indices in
{

X̃i

}

corresponding to the originali, k̂ andj in {Zi}. (b) holds because under

P∞,
{

X̃i

}

are i.i.d., then we reverse the sequence. (c) is due to Doob’smartingale inequality,

since underP∞,
{

L(X̃i)
}

is a martingale with expectation1.

By (34), we can simply choosemα = | logα|(p̃I)−1 + δ, and chooseB, the threshold of

CUSUM, such thatmα exp(− logB) = α.

To prove Lemma 5.2, we need Theorem 4 ii) of [15] , which is restated as follows:

Theorem G.3: ( [15]) Let {Zk} be a random variables sequence with a deterministic but

unknown change pointt. Under probability measurePt, the conditional distribution ofZk is

f0(·|Z
k−1
1 ) for k < t and isf1(·|Z

k−1
1 ) for k ≥ t. Denotel(Zk) as

l(Zk) = log
f1(Zk|Z

k−1
1 )

f0(Zk|Z
k−1
1 )

.

Denoteec as the threshold used in Page’s stopping time. Then

E∞[Tp] ≥ ec.
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DenoteĒt(T ) as Lorden’s detection delay, i.e.,

Ēt(T ) = sup
t≥1

esssupEt

[

(T − t + 1)+|Z1, . . . , Zt−1

]

.

If ∀δ > 0, the condition

lim
m→∞

sup
k≥t≥1

esssupPt

{

1

m

k+m
∑

i=k

l(Zi) ≤ I1 − δ

∣

∣

∣

∣

∣

Z1, . . . , Zk−1

}

→ 0

holds for some constantI1, and asα → 0, there exists somemα which dependents only onα

such that

sup
k≥1

P∞(k ≤ Tp ≤ k +mα) ≤ α,

where

lim inf
mα

| logα|
> I−1

1 ,

but,

logmα = o(logα) asα → 0.

Then,

Ēt(T ) ≤ (I−1
1 + o(1))c asc → ∞.

Proof: Please refer to [15].

By Proportion G.1 and G.2,(µ̃∗, Tp) is a strategy that satisfies the conditions in Theorem

G.3. Hence, if we choosec = log γ and I1 = p̃I in the theorem, it is easy to verify that

d(µ̃∗, Tp) ≤ ((p̃I)−1 + o(1))| log γ| with E
µ̃∗

∞ (Tp) ≥ γ. Therefore,(µ̃∗, Tp) is asymptotically

optimal for (P2).

In the rest of this appendix, we show the asymptotic optimality of (µ̃∗, Tp) for problem (P3).

Lemma G.4:

sup
t≥1

E
µ̃∗

t [Tp − t|Tp ≥ t] ∼
1

p̃

| log γ|

I
. (35)

Proof: Follow the similar argument in Appendx E, we have

E
µ̃∗

t [Tp − t|Tp ≥ t] ≤ E
µ̃∗

t [Ts,t − 1|Tp ≥ t]

= E
µ̃∗

t [Ts,t]− 1. (36)
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We claim that

E
µ̃∗

t [Ts,t|Et = i] ≤ E
µ̃∗

t [Ts,t|Et = 0] , for i = 1, . . . , C,

that is, at the change pointt, if there is energy left in the battery, the average detection delay tends

to be smaller than that of the case with an empty battery. Since E
µ̃∗

t [Ts,t] = E
µ̃∗

t

[

E
µ̃∗

t [Ts,t|Et]
]

,

we have

E
µ̃∗

t [Tp − t|Tp ≥ t] ≤ E
µ̃∗

t [Ts,t|Et = 0]− 1.

Let B = γ, we have

Ts,t = inf

{

m ≥ 1

∣

∣

∣

∣

∣

t+m
∑

i=t

l(Zi) ≥ log γ

}

.

We define a sequence of stopping times{T
(1)
s,t , . . . , T

(n)
s,t , . . .} in the following manner:

1) SetEt = 0. Define

T
(1)
s,t = inf

{

m ≥ 1

∣

∣

∣

∣

∣

t+m
∑

i=t

l(Zi) ≥ log γ

}

.

2) SetE
T

(n−1)
s,t

= 0. Define

T
(n)
s,t = inf











m ≥ 1

∣

∣

∣

∣

∣

T
(n−1)
s,t +m
∑

i=T
(n−1)
s,t +1

l(Zi) ≥ log γ











.

That is, at change pointt, we discard all the energy left in the battery and then start anew SPRT

under the power allocatioñµ∗. When the previous SPRT stops, we empty the battery again, and

start a new SPRT immediately. Then, this sequence of stopping time {T
(1)
s,t , . . . , T

(n)
s,t , . . . , } are

independent with the same distribution ofTs,t underEt = 0. Therefore, by the strong LLN, for

anN that large enough, we have

M

N
=

T
(1)
t + T

(2)
t + · · ·+ T

(N)
t

N

a.s.
→ E

µ̃∗

t [Ts,t|Et = 0],

whereM =
∑N

i=1 T
(i)
s,t . Since we have

t+M
∑

i=t

l(Zi) ≥ N log γ,

asγ → ∞, M → ∞, then

1

M

t+M
∑

i=t

l(Zi) ≥
N

M
log γ,
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that is

p̃I ≥
N

M
log γ or

M

N
≥

| log γ|

p̃I
.

If we ignore the overshoot, we will have

E
µ̃∗

t [Ts,t|Et = 0] ∼
| log γ|

p̃I
.

Then, we have

E
µ̃∗

t [Tp − t|Tp ≥ t] ≤
| log γ|

p̃I
(1 + o(1)).
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