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Rank regularization and Bayesian inference
for tensor completion and extrapolation†

Juan Andŕes Bazerque, Gonzalo Mateos, and Georgios B. Giannakis (contact author)∗

Abstract—A novel regularizer of the PARAFAC decomposition
factors capturing the tensor’s rank is proposed in this paper,
as the key enabler for completion of three-way data arrays
with missing entries. Set in a Bayesian framework, the tensor
completion method incorporates prior information to enhance its
smoothing and prediction capabilities. This probabilistic approach
can naturally accommodate general models for the data distribu-
tion, lending itself to various fitting criteria that yield o ptimum
estimates in the maximum-a-posteriori sense. In particular, two
algorithms are devised for Gaussian- and Poisson-distributed
data, that minimize the rank-regularized least-squares error and
Kullback-Leibler divergence, respectively. The proposedtech-
nique is able to recover the “ground-truth” tensor rank when
tested on synthetic data, and to complete brain imaging and yeast
gene expression datasets with50% and 15% of missing entries
respectively, resulting in recovery errors at−10dB and −15dB.

Index Terms—Tensor, low-rank, missing data, Bayesian infer-
ence, Poisson process.

I. I NTRODUCTION

Imputation of missing data is a basic task arising in various
Big Data applications as diverse as medical imaging [12],
bioinformatics [3], as well as social and computer networking
[10], [17]. The key idea rendering recovery feasible is the
“regularity” present among missing and available data. Low
rank is an attribute capturing this regularity, and can be
readily exploited when data are organized in a matrix. A
natural approach tolow-rank matrix completionproblem is
minimizing the rank of a target matrix, subject to a constraint
on the error in fitting the observed entries [4]. Since rank
minimization is generally NP-hard [26], the nuclear norm has
been advocated recently as a convex surrogate to the rank [11].
Beyond tractability, nuclear-norm minimization enjoys good
performance both in theory as well as in practice [4].

The goal of this paper is imputation of missing entries of
tensors (also known as multi-way arrays), which are high-order
generalizations of matrices frequently encountered in chemo-
metrics, medical imaging, and networking [8], [16]. Leveraging
the low-rank structure for tensor completion is challenging,
since even computing the tensor rank is NP-hard [14]. Defining
a nuclear norm surrogate is not obvious either, since singular
values as defined by the Tucker decomposition are not gen-
erally related with the rank. Traditional approaches to finding
low-dimensional representations of tensors include unfolding
the multi-way data and applying matrix factorizations such
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as the singular-value decomposition (SVD) [3], [7], [25] or,
employing the parallel factor (PARAFAC) decomposition [9],
[24]. In the context of tensor completion, an approach falling
under the first category can be found in [12], while imputation
using PARAFAC was dealt with in [2].

The imputation approach presented in this paper builds on
a novel regularizer accounting for the tensor rank, that relies
on redefining the matrix nuclear norm in terms of its low-rank
factors. The contribution is two-fold. First, it is established that
the low-rank inducing property of the regularizer carries over
to tensors by promoting sparsity in the factors of the tensor’s
PARAFAC decomposition. In passing, this analysis allows for
drawing a neat connection with the atomic-norm in [5]. The
second contribution is the incorporation of prior information,
with a Bayesian approach that endows tensor completion with
extra smoothing and prediction capabilities. A parallel analysis
in the context of reproducing kernel Hilbert spaces (RKHS)
further explains these acquired capabilities, provides analter-
native means of obtaining the prior information, and establishes
a useful connection with collaborative filtering approaches [1]
when reduced to the matrix case.

While least-squares (LS) is typically utilized as the fitting
criterion for matrix and tensor completion, implicitly assuming
Gaussian data, the adopted probabilistic framework supports
the incorporation of alternative data models. Targeting count
processes available in the form of network traffic data, genome
sequencing, and social media interactions, which are modeled
as Poisson distributed, the maximum a posteriori (MAP) es-
timator is expressed in terms of the Kullback-Leibler (K-L)
divergence [10].

The remainder of the paper is organized as follows. Section
II offers the necessary background on nuclear-norm regular-
ization for matrices, the PARAFAC decomposition, and the
definition of tensor rank. Section III presents the tensor com-
pletion problem, establishing the low-rank inducing property of
the proposed regularization. Prior information is incorporated
in Section IV, with Bayesian and RKHS formulations of the
tensor imputation method, leading to the low-rank tensor-
imputation (LRTI) algorithm. Section V develops the method
for Poisson tensor data, and redesigns the algorithm to min-
imize the rank-regularized K-L divergence. Finally, Section
VI presents numerical tests carried out on synthetic and real
data, including expression levels in yeast, and brain magnetic
resonance images (MRI). Conclusions are drawn in Section
VII, while most technical details are deferred to the Appendix.

The notation adopted throughout includes bold lowercase
and capital letters for vectorsa and matricesA, respectively,
with superscriptT denoting transposition. Tensors are under-
lined as e.g.,X, and their slices carry a subscript as inXp;
see also Fig. 1. Both the matrix and tensor Frobenius norms
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are represented by‖ · ‖F . Symbols⊗, ⊙, ⊛, and ◦, denote
the Kroneker, Kathri-Rao, Hadamard (entry-wise), and outer
product, respectively.

II. PRELIMINARIES

A. Nuclear-norm minimization for matrix completion

Low-rank approximation is a popular method for estimating
missing values of a matrixZ ∈ R

N×M , which capitalizes on
“regularities” across the data [11]. For the imputation to be
feasible, a binding assumption that relates the available entries
with the missing ones is required. An alternative is to postulate
thatZ has low rankR≪ min(N,M). The problem of finding
matrix Ẑ with rank not exceedingR, which approximatesZ in
the given entries specified by a binary matrix∆ ∈ {0, 1}N×M ,
can be formulated as

Ẑ = argmin
X

‖(Z−X)⊛∆‖2F s. to rank(X) ≤ R . (1)

The low-rank property of matrixX implies that the vectors(X)
of its singular values is sparse. Hence, the rank constraintis
equivalent to‖s(X)‖0 ≤ R, where theℓ0-(pseudo)norm‖ · ‖0
equals the number of nonzero entries of its vector argument.

Aiming at a convex relaxation of the NP-hard problem (1),
one can leverage recent advances in compressive sampling [11]
and surrogate theℓ0-norm with theℓ1-norm, which here equals
the nuclear norm ofX defined as‖X‖∗ := ‖s(X)‖1. With this
relaxation, the Lagrangian counterpart of (1) is

Ẑ = argmin
X

1

2
‖(Z−X)⊛∆‖2F + µ‖X‖∗ (2)

whereµ ≥ 0 is a rank-controlling parameter. Problem (2) can
be further transformed by considering the following character-
ization of the nuclear norm [23]

‖X‖∗ = min
{B,C}

1

2
(‖B‖2F + ‖C‖2F ) s. to X = BCT . (3)

For an arbitrary matrixX with SVD X = UΣVT , the mini-
mum in (3) is attained forB = UΣ1/2 andC = VΣ1/2. The
optimization in (3) is over all possible bilinear factorizations
of X, so that the number of columns ofB and C is also
a variable. Building on (3), one can arrive at the following
equivalent reformulation of (2) [17]

Ẑ′ =arg min
{X,B,C}

1

2
‖(Z−X)⊛∆‖2F +

µ

2
(‖B‖2F + ‖C‖2F )

s. to X = BCT . (4)

The equivalence implies that by finding the global minimum
of (4), one can recover the optimal solution of (2). However,
since (4) isnonconvex, it may have multiple stationary points.
Interestingly, the next result provides conditions for these
stationary points to be globally optimal (parts a) and b) are
proved in the Appendix, while the proof for c) can be found
in [17].)

Proposition 1: Problems(2) and (4) are equivalent, in the
sense that:

a) global minima coincide:̂Z = Ẑ′;
b) all local minima of (4) are globally optimal; and,
c) stationary pointsX of (4) satisfying‖(X−Z)⊛∆‖2 ≤ µ

are globally optimal.

Fig. 1. Tensor slices along the row, column, and tube dimensions.

This result plays a critical role in this paper, as the
Frobenius-norm regularization for controlling the rank in(4),
will be useful to obtain its tensor counterparts in Section III.

B. PARAFAC decomposition

The PARAFAC decomposition of a tensorX ∈ R
M×N×P is

at the heart of the proposed imputation method, since it offers
a means to define its rank [9], [24]. GivenR ∈ N, consider
matricesA ∈ R

N×R, B ∈ R
M×R, andC ∈ R

P×R, such that

X(m,n, p) =

R
∑

r=1

A(m, r)B(n, r)C(p, r). (5)

The rank ofX is the minimum value ofR for which this
decomposition is possible. ForR∗ := rank(X), the PARAFAC
decomposition is given by the corresponding factor matrices
{A,B,C} (all with R∗ columns), so that (5) holds withR =
R∗.

To appreciate why the aforementioned rank definition is
natural, rewrite (5) asX =

∑R
r=1

ar◦br◦cr, wherear, br, and
cr represent ther-th columns ofA, B, andC, respectively;
and the outer productsOr := ar ◦ br ◦ cr ∈ R

M×N×P have
entriesOr(m,n, p) := A(m, r)B(n, r)C(p, r). The rank of a
tensor is thus the minimum number of outer products (rank one
factors) required to represent the tensor. It is not uncommon
to adopt an equivalent normalized representation

X =

R
∑

r=1

ar ◦ br ◦ cr =

R
∑

r=1

γr(ur ◦ vr ◦wr) (6)

by defining unit-norm vectorsur := ar/‖ar‖, vr := br/‖br‖,
wr := cr/‖cr‖, and weightsγr := ‖ar‖‖br‖‖cr‖, r =
1, . . . , R.

Let Xp, p = 1, . . . , P denote thep-th slice ofX along its
third (tube) dimension, such thatXp(m,n) := X(m,n, p);
see Fig. 1. The following compact form of the PARAFAC
decomposition in terms of slice factorizations will be usedin
the sequel

Xp = Adiag
[

eTp C
]

B, p = 1, . . . , P (7)

where the diagonal matrix diag[u] has the vectoru on its diag-
onal, andeTp is thep-th row of theP ×P identity matrix. The
PARAFAC decomposition is symmetric [cf. (5)], and one can
also writeXm = Bdiag

[

eTmA
]

C, or, Xn = Cdiag
[

eTnB
]

A

in terms of slices along the first (row), or, second (column)
dimensions.
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III. R ANK REGULARIZATION FOR TENSORS

Generalizing the nuclear-norm regularization technique (2)
from low-rank matrix to tensor completion is not straightfor-
ward, since singular values of a tensor (given by the Tucker
decomposition) are not related to the rank [16]. Fortunately,
the Frobenius-norm regularization outlined in Section II-A
offers a viable option for low-rank tensor completion under
the PARAFAC model, by solving

Ẑ :=arg min
{X,A,B,C}

1

2
‖(Z−X)⊛∆‖2F +

µ

2

(

‖A‖2F +‖B‖2F +‖C‖2F
)

s. to Xp = Adiag
[

eTp C
]

B, p = 1, . . . , P (8)

where the Frobenius norm of a tensor is defined as‖X‖2F :=
∑

m

∑

n

∑

p X
2(m,n, p), and the Hadamard product as

(X⊛∆)(m,n, p) := X(m,n, p)∆(m,n, p).
Different from the matrix case, it is unclear whether the

regularization in (8) bears any relation with the tensor rank.
Interestingly, the following analysis corroborates the capability
of (8) to produce a low-rank tensor̂Z, for sufficiently largeµ.
In this direction, consider an alternative completion problem
stated in terms of the normalized tensor representation (6)

Ẑ
′
:= arg min
{X,γ,{ur},{vr},{wr}}

1

2
‖ (Z−X)⊛∆‖2F +

µ

2
‖γ‖2/3

2/3

s. to X =

R
∑

r=1

γr(ur ◦ vr ◦wr) (9)

whereγ := [γ1, . . . , γR]
T ; the nonconvexℓ2/3 (pseudo)-norm

is given by‖γ‖2/3 := (
∑R

r=1
|γr|2/3)3/2; and the unit-norm

constraint on the factors’ columns is left implicit. Problems
(8) and (9) are equivalent as established by the following
proposition (its proof is provided in the Appendix.)

Proposition 2: The solutions of(8) and (9) coincide, i.e.,̂Z
′
=

Ẑ, with optimal factors related bŷar = 3
√
γ̂rûr, b̂r = 3

√
γ̂rv̂r,

and ĉr = 3
√
γ̂rŵr, r = 1, . . . , R.

To further stress the capability of (8) to produce a low-rank
approximant tensorX, consider transforming (9) once more
by rewriting it in the constrained-error form

Ẑ
′′
:= arg min

{X,γ,{ur},{vr},{wr}}
‖γ‖2/3 (10)

s. to || (Z−X)⊛∆||2F ≤ σ2, X =

R
∑

r=1

γr(ur ◦ vr ◦wr).

For any value ofσ2 there exists a corresponding Lagrange
multiplier λ such that (9) and (10) yield the same solution,
under the identityµ = 2/λ. [Since f(x) = x2/3 is an
increasing function, the exponent of‖γ‖2/3 can be safely elim-
inated without affecting the minimizer of (10).] Theℓ2/3-norm
‖γ‖2/3 in (10) produces a sparse vectorγ when minimized [6],
sharing this well-documented property of theℓ1-norm as their
norm-one balls, depicted in Fig. 2, share the “pointy geometry”
which is responsible for inducing sparsity.

With (8) equivalently rewritten as in (10), its low-rank
inducing property is now revealed. Asγ in (10) becomes
sparse, some of its entriesγr are zeroed, and the corresponding
outer-productsγr(ar ◦br ◦ cr) drop from the sum in (6), thus
lowering the rank ofX.

Fig. 2. Theℓ2/3-norm ball compared to theℓ0- and ℓ1-norm balls

The next property is a direct consequence of the low-rank
promoting property of (8) as established in Proposition 2.

Corollary 1: If Ẑ denotes the solution to problem(8) , and
µ ≥ µmax := ‖∆⊛Z‖4/3F , thenẐ = 0M×N×P .

Corollary 1 asserts that if the penalty parameter is cho-
sen large enough, the rank is reduced to the extreme case
rank(Ẑ) = 0. To see why this is a non-trivial property, it is
prudent to think of ridge-regression estimates where similar
quadratic regularizers are adopted, but an analogous property
does not hold. In ridge regression one needs to letµ→∞ in
order to obtain an all-zero solution. Characterization ofµmax

is also of practical relevance as it provides a frame of reference
for tuning the regularization parameter.

Using (10), it is also possible to relate (8) with the atomic
norm in [5]. Indeed, the infimumℓ1-norm ofγ is a proper norm
for X, named atomic norm, and denoted by‖X‖A := ‖γ‖1 [5].
Thus, by replacing‖γ‖2/3 with ‖X‖A, (10) becomes convex
in X. Still, the complexity of solving such a variant of (10)
resides in that‖X‖A is generally intractable to compute [5].
In this regard, it is remarkable that arriving to (10) had the
sole purpose of demonstrating the low-rank inducing property,
and that (8) is to be solved by the algorithm developed in
the ensuing section. Such an algorithm will neither require
computing the atomic norm or PARAFAC decomposition of
X, nor knowing its rank. The number of columns inA, B,
andC can be set to an overestimate of the rank ofZ, such as
the upper bound̄R := min{MN,NP, PM} ≥ rank(Z), and
the low-rank ofX will be induced by regularization as argued
earlier. To carry out a fair comparison, only convergence toa
stationary point of (8) will be guaranteed in this paper.
Remark 1: These insights foster future research directions for
the design of a convex regularizer of the tensor rank. Specif-
ically, substitutingρ(A,B,C) :=

∑R
r=1

(‖ar‖3 + ‖br‖3 +
‖cr‖3) for the regularization term in (8), turns‖γ‖2/3 into
‖γ‖1 = ‖X‖A in the equivalent (10). It is envisioned that
with such a modification in place, the acquired convexity of
(10) would enable a reformulation of Proposition 1, providing
conditions for global optimality of the stationary points of (8).

Still, a limitation of (8) is that it does not allow for incor-
porating side information that could be available in addition to
the given entries∆⊛Z.
Remark 2: In the context of recommender systems, a de-
scription of the users and/or products through attributes (e.g.,
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gender, age) or measures of similarity, is typically available.
It is thus meaningful to exploit both known preferences and
descriptions to model the preferences of users [1]. In three-way
(samples, genes, conditions) microarray data analysis, the rel-
ative position of single-nucleotide polymorphisms in the DNA
molecule implies degrees of correlation among genotypes [22].
These correlations could be available either through a pre-
scribed model, or, through estimates obtained using a reference
tensorŽ. A probabilistic approach to tensor completion capable
of incorporating such types of extra information is the subject
of the ensuing section.

IV. BAYESIAN LOW-RANK TENSOR APPROXIMATION

A. Bayesian PARAFAC model

A probabilistic approach is developed in this section in order
to integrate the available statistical information into the tensor
imputation setup. To this end, suppose that the observation
noise is zero-mean, white, Gaussian; that is

Zmnp = Xmnp + emnp; such thatemnp ∼ N (0, σ2), i.i.d..
(11)

Since vectorsar in (6) are interchangeable, identical dis-
tributions are assigned acrossr = 1, . . . , R, and they are
modeled as independent from each other, zero-mean Gaussian
distributed with covariance matrixRA ∈ R

M×M . Similarly,
vectorsbr and cr are uncorrelated and zero-mean, Gaussian,
with covariance matrixRB andRC , respectively. In addition
ar, br, andcr are assumed mutually uncorrelated. And since
scale ambiguity is inherently present in the PARAFAC model,
vectorsar, br, andcr are set to have equal power; that is,

θ := Tr(RA) = Tr(RB) = Tr(RC). (12)

Under these assumptions, the negative of the posterior dis-
tribution can be readily written asexp(−L(X)), with

L(X) =
1

2σ2
‖(Z−X)⊛∆‖2F

+
1

2

R
∑

r=1

(

aTr R
−1

A ar + bT
r R

−1

B br + cTr R
−1

C cr
)

=
1

2σ2
‖(Z−X)⊛∆‖2F +

1

2

[

Tr
(

ATR−1

A A
)

+Tr
(

BTR−1

B B
)

+ Tr
(

CTR−1

C C
)]

.

Correspondingly, the MAP estimator ofX is

Ẑ := arg min
{X,A,B,C}

1

2σ2
‖(Z−X)⊛∆‖2F +

1

2

[

Tr
(

ATR−1

A A
)

+Tr
(

BTR−1

B B
)

+ Tr
(

CTR−1

C C
)]

s. to Xp = Adiag
[

eTp C
]

BT , p = 1, . . . , P (13)

reducing to (8) whenRA = IM , RB = IN , andRC = IP .
This Bayesian approach interprets the regularization parameter
µ [cf. (8)] as the noise variance, which is useful in practice
to selectµ. The ensuing section explores the advantages of
incorporating prior information to the imputation method.

B. Nonparametric tensor decomposition

Incorporating the information conveyed byRA, RB, and
RC , together with a practical means of finding these matrices
can be facilitated by interpreting (13) in the context of RKHS
[27]. In particular, the analysis presented next will use the
Representer Theorem, interpreted as an instrument for finding
the best interpolating function in a Hilbert space spanned
by kernels, just as interpolation with sinc-kernels is carried
out in the space of bandlimited functions for the purpose of
reconstructing a signal from its samples [19].

In this context, it is instructive to look at a tensorf :M×
N×P → R as a function of three variablesm,n, andp, living
in measurable spacesM,N , andP , respectively. Generalizing
(8) to this nonparametric framework, low-rank functionsf are
formally defined to belong to the following family

FR :={f :M×N×P→R : f(m,n, p) =
R
∑

r=1

ar(m)br(n)cr(p)

such thatar(m) ∈ HM, br(n) ∈ HN , cr(p) ∈ HP}
whereHM, HN , andHP are Hilbert spaces constructed from
specified kernelskM, kN and kP , defined overM, N , and
P , while R is an initial overestimate of the rank off .

The following nonparametric fitting criterion is adopted for
finding the bestf̂R interpolating data{zmnp : δmnp = 1}

f̂R := arg min
f∈FR

M
∑

m=1

N
∑

n=1

P
∑

p=1

δmnp(zmnp − f(m,n, p))2

+
µ

2

R
∑

r=1

(

‖ar‖2HM
+ ‖br‖2HN

+ ‖cr‖2HP

)

. (14)

It is shown in the Appendix that leveraging the Representer
Theorem, the minimizer of (14) admits a finite dimensional
representation in terms ofkM, kN andkP ,

f̂R(m,n, p) = kT
M(m)K−1

MAdiag
[

kT
P(p)K

−1

P C
]

BTK−1

N kN (n)
(15)

where vector kM(m) and matrix KM have entries
kM(m,m′), m,m′ = 1, . . . ,M ; and wherekN (n), KN ,
kP(p), andKP are correspondingly defined in terms ofkN
andkP . It is also shown in the Appendix that the coefficient
matricesA, B, andC can be found by solving

min
A,B,C

P
∑

p=1

∥

∥

(

Zp −Adiag
[

eTp C
]

BT
)

⊛∆p

∥

∥

2

F

+
µ

2

(

Tr(ATK−1

MA)+Tr(BTK−1

N B)+Tr(CTK−1

P C)
)

s. toA ∈ R
M×R, B ∈ R

N×R, C ∈ R
P×R. (16)

Problem (16) reduces to (8) when the side information is
discarded by selectingkM, kN and kP as Kronecker deltas,
in which caseKM, KN , and KP are identity matrices. In
the general case, (16) yields the sought nonlinear low-rank
approximation method forf(m,n, p) when combined with
(15), evidencing the equivalence between (14) and (13).

Interpreting (14) as an interpolator renders (13) a natural
choice for tensor imputation, where in general, missing entries
are to be inserted by connecting them to surrounding points on
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the three-dimensional arrangement. Relative to (8), this RKHS
perspective also highlights (13)’s extra smoothing and extrap-
olation capabilities. Indeed, by capitalizing on the similarities
captured byKM, KN andKP , (16) can recover completely
missing slices. This feature is not shared by imputation meth-
ods that leverage low-rank only, since these require at least one
point in the slice to build on colinearities. Extrapolationis also
possible in this sense. If for instanceKM can be expanded to
capture a further pointM + 1 not in the original set, then
a new slice of data can be predicted by (15) based on its
correlationkM(M +1) with the available entries. These extra
capabilities will be exploited in Section VI, where correlations
are leveraged for the imputation of MRI data. The method
described by (13) and (16) can be applied to matrix completion
by just setting entries ofC to one, and can be extended to
higher-order dimensions with a straightforward alteration of
the algorithms and theorems throughout this paper.

Identification of covariance matricesRA, RB, andRC with
kernel matricesKM, KN andKP is the remaining aspect to
clarify in the connection between (13) and (16). It is apparent
from (13) and (16) that correlations between columns of the
factors are reflected in similarities between the tensor slices,
giving rise to the opportunity of obtaining one from the other.
This aspect is explored next.

C. Covariance estimation

To implement (13), matricesRA, RB, and RC must be
postulated a priori, or alternatively replaced by their sample
estimates. Such estimates need a training set of vectorsa, b,
and c abiding to the Bayesian model just described, and this
requires PARAFAC decomposition of training data. In order
to abridge this procedure, it is convenient to inspect howRA,
RB, andRC are related to their kernel counterparts.

Based on the equivalence between the standard RKHS
interpolator and the linear mean-square error estimator [21],
it is useful to re-visit the probabilistic framework and identify
kernel similarities between slices ofX with their mutual
covariances. Focusing on the tube dimension ofX, one can
write KP(p

′, p) := E(Tr(XT
p′Xp)), that is, the covariance

between slicesXp′ and Xp taking 〈X,Y〉 := Tr(XTY) as
the standard inner product in the matrix space. Under this
alternative definition forKP , and corresponding definitions for
KN , andKM, it is shown in the Appendix that

KM = θ2RA, KN = θ2RB, KP = θ2RC (17)

and thatθ is related to the second-order moment ofX by

E‖X‖2F = Rθ3. (18)

Since sample estimates forKM, KN , KP , and E‖X‖F
can be readily obtained from the tensor data, (17) and (18)
provide an agile means of estimatingRA, RB, andRC without
requiring PARAFAC decompositions over the set of training
tensors.

This strategy remains valid when kernels are not estimated
from data. One such case emerges in collaborative filtering
of user preferences [1], where the similarity of two users is
modeled as a function of attributes; such age or income.

D. Block successive upper-bound minimization algorithm

An iterative algorithm is developed here for solving (13), by
cyclically minimizing the cost overA, B, andC. In the first
step of the cycle the cost in (13) is minimized with respect to
(w.r.t.) A consideringB and C as parameters. Accordingly,
the partial cost to minimize reduces to

f(A) :=
1

2
‖ (Z−X)⊛∆‖2F +

µ

2
Tr
(

ATR−1

A A
)

(19)

whereµ was identified with and substituted forσ2. Function
(19) is quadratic inA and can be readily minimized after re-
writing it in terms ofa := vec(A) [see (47) in the Appendix].
However, such an approach becomes computationally infea-
sible for other than small datasets, since it involves storing
P matrices of dimensionsNM ×MR, and solving a linear
system ofMR×MR equations. The alternative pursued here to
overcome this obstacle relies on the so-called block successive
upper-bound minimization (BSUM) algorithm [20].

In BSUM one minimizes a judiciously chosen upper-bound
g(A, Ā) of f(A), which: i) depends on the current iterate
Ā; ii) should be simpler to optimize; and iii) satisfies certain
local-tightness conditions; see also [20] and properties i)-iii)
below.

For Ā given, consider the function

g(A, Ā) :=
1

2
‖ (Z−X)⊛∆‖2F (20)

+ µ

(

λ

2
Tr
(

ATA
)

− Tr(ΘTA) +
1

2
Tr(ΘT Ā)

)

whereλ := λmax(R
−1

A ) is the maximum eigenvalue ofR−1

A ,
and Θ := λI − R−1

A . The following properties ofg(A, Ā)
imply that it majorizesf(A) at Ā, satisfying the technical
conditions required for the convergence of BSUM (properties
i)-iii) are established in the the proof of Lemma 1 in the
Appendix).

i) f(Ā) = g(Ā, Ā);
ii) d

dAf(A)|A=Ā = d
dAg(A, Ā)|A=Ā; and,

iii) f(A) ≤ g(A, Ā), ∀A.

The computational advantage of minimizingg(A, Ā) in
place of f(A) comes fromg(A, Ā) being separable across
rows of A. To see this, consider the Kathri-Rao product
Π := C ⊙ B := [c1 ⊗ b1, . . . cR ⊗ bR], defined by the
column-wise Kronecker productscr ⊗ br. Let also matrix
Z := [Z1, . . . ,ZP ] ∈ N

M×NP denote the unfolding ofZ along
its tube dimension, and likewise for∆ := [∆1, . . . ,∆P ] ∈
{0, 1}M×NP andX := [X1, . . . ,XP ] ∈ R

M×NP
+ . Then, using

the following identity [10]

X := [X1, . . . ,XP ] = AΠT . (21)

it is possible to rewrite (20) as

g(A, Ā) :=
1

2
‖
(

Z−AΠT
)

⊛∆‖2F

+ µ

(

λ

2
Tr
(

ATA
)

− Tr(ΘTA) +
1

2
Tr(ΘT Ā)

)
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Algorithm 1 : Low-rank tensor imputation (LRTI)
1: function UPDATE FACTOR(A,R,Π,∆,Z, µ)
2: Setλ = λmax(R

−1)
3: Unfold ∆ andZ over dimension ofA into ∆ andZ
4: SetΘ = (λI−R

−1)A
5: for m = 1, . . . ,M do
6: Select rowszTm, δT

m, andθT
m, and setDm = diag(δm)

7: Computeam = (ΠT
DmΠ+λµI)−1(ΠT

Dmzm+µθm)
8: UpdateA with row a

T
m

9: end for
10: return A

11: end function
12: Initialize A, B andC randomly.
13: while |cost− cost old| < ǫ do
14: A = UPDATE FACTOR(A,RA, (C⊙B),∆,Z, µ)
15: B = UPDATE FACTOR(B,RB , (A⊙C),∆,Z, µ)
16: C = UPDATE FACTOR(C,RC , (B⊙A),∆,Z, µ)
17: Recalculate cost in (13)
18: end while
19: return X with slicesX̂p = Adiag(eT

p C)BT

which can be decomposed as

g(A, Ā) =
M
∑

m=1

[

1

2
‖δm⊛zm − diag(δm)Πam‖22

+
µ

2

(

λ‖am‖2 + θT
mam + θT

mām
)

]

(22)

where zTm, aTm, δTm, θT
m, and āT

m
, represent them-th rows

of matricesZ, A, ∆, Θ, and Ā, respectively. Not only (22)
evidences the separability of (20) across rows ofA, but it
also presents each of its summands in a standardized quadratic
form that can be readily minimized by equating its gradient
to zero. Accordingly, the majorization strategy reduces the
computational load toR systems ofM equations that can be
solved in parallel. Collecting the solution of such quadratic
programs into the rows of a matrixA∗ yields the minimizer
of (20), and the updateA ← A∗ for the BSUM cycle. Such
a procedure is presented in Algorithm 1, where analogous
updates forB andC are carried out cyclically.

By virtue of properties i)-iii) in Lemma 1, convergence of
Algorithm 1 follows readily from that of the BSUM algo-
rithm [20].

Proposition 3: The iterates forA, B and C generated by
Algorithm 1 converge to a stationary point of(13).

V. I NFERENCE FOR LOW-RANK POISSON TENSORS

Adoption of the LS criterion in (8) assumes in a Bayesian
setting that the randomZ is Gaussian distributed. This section
deals with a Poisson-distributed tensorZ, a natural alternative
to the Gaussian model when integer-valued data are obtained
by counting independent events [10]. Suppose that the entries
zmnp of Z are Poisson distributed, with probability mass
function

P (zmnp = k) =
xk
mnpe

−xmnp

k!
(23)

and means given by the corresponding entries in tensorX. For
mutually-independent{zmnp}, the log-likelihoodl∆(Z;X) of

X given dataZ only on the entries specified by∆, takes the
form

l∆(Z;X) =

M
∑

m=1

N
∑

n=1

P
∑

p=1

δmnp[zmnp log(xmnp)− xmnp]

(24)

after dropping termslog(zmnp!) that do not depend onX.
The choice of the Poisson distribution in (23) over a Gaus-

sian one for counting data, prompts minimization of the K-L
divergence (24) instead of LS as a more suitable criterion [10].
Still, the entries ofX are not coupled in (24), and a binding
PARAFAC modeling assumption is natural for feasibility of the
tensor approximation task under missing data. Mimicking the
method for Gaussian data, (nonnegative) Gaussian priors are
assumed for the factors of the PARAFAC decomposition. Ac-
cordingly, the MAP estimator ofX given Poisson-distributed
data (entries ofZ indexed by∆) becomes

Ẑ := argmin
{X,A,B,C}∈T

M
∑

m=1

N
∑

n=1

P
∑

p=1

δmnp(xmnp − zmnp log(xmnp))

+
µ

2

[

Tr
(

ATR−1

A A
)

+Tr
(

BTR−1

B B
)

+Tr
(

CTR−1

C C
)]

(25)

over the feasible setT :={X,A,B,C : A ≥ 0,B ≥ 0,C ≥
0, Xp = Adiag

[

eTp C
]

BT , p = 1, . . . , P}, where the symbol
≥ should be understood to imply entry-wise nonegativity.

With the aid of Representer’s Theorem, it is also possible
to interpret (25) as a variational estimator in RKHS, with K-L
analogues to (14)-(16), so that the conclusions thereby regard-
ing smoothing, prediction and prior covariance estimationcarry
over to the low-rank Poisson imputation method (25).

A. Block successive upper-bound minimization algorithm

A K-L counterpart of the LRTI algorithm is developed in this
section, that provably converges to a stationary point of (25),
via an alternating-minimization iteration which optimizes (25)
sequentially w.r.t. one factor matrix, while holding the others
fixed.

In the sequel, the goal is to arrive at a suitable expression
for the cost in (25), when viewed only as a function of e.g.,
A. To this end, let matrixZ := [Z1, . . . ,ZP ] ∈ N

M×NP

denote the unfolding ofZ along its tube dimension, and
likewise for ∆ := [∆1, . . . ,∆P ] ∈ {0, 1}M×NP andX :=
[X1, . . . ,XP ] ∈ R

M×NP
+ . Based on these definitions, (24) can

be written as

l∆(Z;X) = 1T
M (∆⊛[X− Z⊛ log(X)])1NP (26)

where1M , 1NP are all-one vectors of dimensionsM andNP
respectively, andlog(·) should be understood entry-wise. The
log-likelihood in (26) can be expressed in terms ofA, and the
Kathri-Rao productΠ := B ⊙ C by resorting again to (21).
Substituting (21) into (26) one arrives at the desired expression
for the cost in (25) as a function ofA, namely

f(A) := 1T
M (∆⊛[AΠ− Z⊛ log(AΠT )])1NP

+
µ

2
Tr
(

ATR−1

A A
)

.

A closed-form minimizerA⋆ for f(A) is not available, but
since f(A) is convex one could in principle resort to an
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Algorithm 2 : Low-rank Poisson-tensor imputation (LRPTI)
1: function UPDATE FACTOR(A,R,Π,∆,Z, µ)
2: Setλ = λmax(R

−1)
3: Unfold ∆ andZ over dimension ofA into ∆ andZ
4: ComputeS = A

λµ
⊛
(

∆⊛Z

AΠT Π
)

(element-wise division)
5: ComputeT = 1

2λµ

(

µ(λI−R
−1)A−∆Π

)

6: UpdateA with entriesamr = tmr +
√
t2mr + smr

7: return A

8: end function
9: Initialize A, B andC randomly.

10: while |cost− cost old| < ǫ do
11: A = UPDATE FACTOR(A,RA, (C⊙B),∆,Z, µ)
12: B = UPDATE FACTOR(B,RB , (A⊙C),∆,Z, µ)
13: C = UPDATE FACTOR(C,RC , (B⊙A),∆,Z, µ)
14: Recalculate cost in (25)
15: end while
16: return X with slicesX̂p = Adiag(eT

p C)BT

iterative procedure to obtainA⋆. To avoid extra inner iterations,
the approach here relies again on the BSUM algorithm [20].

For Ā given, consider the separable function

g(A, Ā) :=µλ

M,R
∑

m,r=1

(a2mr

2
− 2tmramr − smr log(amr) + umr

)

(27)

whereλ := λmax(R
−1

A ) is the largest eigenvalue ofR−1

A , and
the parameterssrm, trm, andurm are defined in terms of̄A,
Z, ∆, Π, andΘ :=

(

λI−R−1

A

)

Ā by

smr :=
1

λµ

NP
∑

k=1

δmkzmkāmrπkr
∑R

r′=1
āmr′πkr′

,

tmr :=
1

2λµ

(

µθmr −
NP
∑

k=1

πkrδmk

)

and umr := 1

λµ

(

θmrāmr +
∑NP

k=1
δmkzmkāmrπkrυmrk

)

,

with υmrk := log(āmrπkr/
∑R

r′=1
āmr′πkr′ )/

∑R
r′=1

āmr′πkr′ .
As asserted in the following lemma,g(A, Ā) majorizesf(A)
at Ā and satisfies the technical conditions required for the
convergence of BSUM (see the Appendix for a proof.)

Lemma 1: Functiong(A, Ā) satisfies the following properties
i) f(Ā) = g(Ā, Ā);
ii) d

dAf(A)|A=Ā = d
dAg(A, Ā)|A=Ā; and,

iii) f(A) ≤ g(A, Ā), ∀A.
Moreover, g(A, Ā) is minimized atA = A⋆

g with entries
a⋆g,mr := tmr +

√

t2mr + smr.
Lemma 1 highlights the reason behind adoptingg(A, Ā) in the
proposed block-coordinate descent algorithm: it is separable
across the entries of its matrix argument [cf. (27)], and hence
it admits a closed-form minimizer given by theMR scalars
a⋆g,mr. The updatesA ← A∗

g are tabulated under Algorithm
2 for solving (25), where analogous updates forB andC are
carried out cyclically.

By virtue of properties i)-iii) in Lemma 1, convergence
of Algorithm 2 follows readily from the general convergence
theory available for the BSUM algorithm [20].

Proposition 4: The iterates forA, B and C generated by
Algorithm 2 converge to a stationary point of(25).
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Fig. 3. Performance of the low-rank tensor imputation method as function
of the regularizing parameterµ; (top) rank of the tensor as recovered by (8)
averaged over 100 test repetitions, (bottom) relative recovery error.

A related algorithm, abbreviated as CP-APR can be found
in [10], where the objective is to find the tensor’s low-rank
factors per se. The LRPTI algorithm here generalizes CP-APR
by focusing on recovering missing data, and incorporating
prior information through rank regularization. In terms of
convergence to a stationary point, the added regularization
allows for lifting the assumption on the linear independence of
the rows ofΠ, as required by CP-APR [10] - an assumption
without a straightforward validation since iteratesΠ are not
accessible beforehand.

VI. N UMERICAL TESTS

A. Simulated Gaussian data

Synthetic tensor-data of dimensionsM × N × P = 16 ×
4× 4 were generated according to the Bayesian tensor model
described in Section IV. Specifically, entries ofZ consist of
realizations of Gaussian random variables generated according
to (11), with means specified by entries ofX and variance
scaled to yield an SNR of−20dB . TensorX is constructed
from factorsA, B andC, as in (7). MatricesA, B, andC

haveR = 6 columns containing realizations of independent
zero-mean, unit-variance, Gaussian random variables.

A quarter of the entries ofZ were removed at random and
reserved to evaluate performance. The remaining seventy five
percent of the data were used to recoverZ considering the
removed data as missing entries. Method (8) was employed
for recovery, as implemented by the LRTI Algorithm, with
regularizationµ

2
(‖A‖2F+‖B‖2F+‖C‖2F ) resulting from setting

RA = IM , RB = IN , andRC = IP .
The relative recovery error between̂Z and dataZ was

computed, along with the rank of the recovered tensor, as a
measure of performance. Fig. 3 depicts these figures of merit
averaged over100 repetitions of the experiment, across values
of µ varying on the interval10−5µmax to µmax, which is
computed as in Corollary 1. Fig 3 (bottom) shows that the
LRTI algorithm is successful in recovering the missing entries



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 7

10
−2

10
−1

10
0

10
1

10
2

0

2

4

6

8

10

12

14

16

ra
nk

(X
)

µ

10
−2

10
−1

10
0

10
1

10
2

−14

−12

−10

−8

−6

−4

−2

er
ro

r ∆
(Z

,X
)

dB

µ

Fig. 4. Performance of the low-rank Poisson imputation method as function
of the regularizing parameterµ; (top) rank of the recovered tensor averaged
over 100 test repetitions, (bottom) relative recovery error.

of Z up to−10dB for a wide range of values ofµ, presenting
a minimum atµ = 10−2µmax. This result is consistent with
Fig. 3 (top), which shows that rankR∗ = 6 is approximately
recovered at the minimum error. Fig. 3 (top) also corroborates
the low-rank inducing effect of (8), with the recovered rank
varying from the upper bound̄R = NP = 16 to R = 0, asµ
is increased, and confirms that the recovered tensor is null at
µmax as asserted by Corollary 1.

B. Simulated Poisson data

The synthetic example just described was repeated for the
low-rank Poisson-tensor model described in Section V. Specif-
ically, tensor data of dimensionsM × N × P = 16 × 4 × 4
were generated according to the low-rank Poisson-tensor model
of Section V. Entries ofZ consist of realizations of Poisson
random variables generated according to (23), with means
specified by entries ofX. TensorX is again constructed as
in (7) from factorsA, B and C having R = 6 columns,
containing the absolute value of realizations of independent
Gaussian random variables scaled to yieldE[xmnp] = 100.
Half of the entries ofZ were considered missing to be
recovered from the remaining half. Method (25) was employed
for recovery, as implemented by the LRPTI Algorithm, with
regularizationµ

2
(‖A‖2F + ‖B‖2F + ‖C‖2F ).

Fig. 4 shows the estimated rank and recovery error over100
realizations of the experiment, forµ in the interval0.01 to
100. The recovery error in Fig. 4 (bottom) exhibits a minimum
of −15dB at µ = 1, where the rankR∗ = 6 is recovered
[cf. Fig. 4 (top).] The low-rank inducing effect of (8) is again
corroborated by the decreasing trend in Fig. 4 (top), but in this
case the rank is lower bounded byR = 1, because the K-L
fitting criterion prevents (25) from yielding a null estimate Ẑ.

C. MRI data

Estimator (14) was tested against a corrupted version of the
MRI brain data set 657 from the Internet brain segmentation

repository [15]. The tensorZ to be estimated corresponds to
a three-dimensional MRI scan of the brain comprising a set
of P = 18 images, each ofM × N = 256 × 196 pixels.
Fifty percent of the data is removed uniformly at random
together with the whole sliceZn, n = 50. Fig. 5 depicts the
results of applying estimator (14) to the remaining data, which
yields a reconstruction error of−10.54dB. The original slice
Zp, p = 5, its corrupted counterpart, and the resulting estimate
are shown on top and center left. Covariance matricesKM,
KN andKP are estimated from six additional tensor samples
containing complementary scans of the brain also availableat
[15]. Fig. 5 (center right) represents the covariance matrix KN

for column slices perpendicular toZp, showing a structure
that reflects symmetries of the brain. This correlation is the
key enabler for the method to recover the missing slice up
to −9.60dB (see Fig. 5 (bottom)) by interpolating its a priori
similar parallel counterparts.

All in all, the experiment evidences the merits of low-rank
PARAFAC decomposition for modeling a tensor, the ability of
the Bayesian estimator (13) in recovering missing data, andthe
usefulness of incorporating correlations as side information.

On account of the comprehensive analysis of three-way MRI
data arrays in [8], and the nonnegative PARAFAC decompo-
sition advanced thereby, inference of tensors with nonnegative
continuous entries will be pursued as future research, combin-
ing methods and algorithms in sections IV and V of this paper.

D. RNA sequencing data

The RNA-Seq method described in [18] exhaustively counts
the number of RNA transcripts from yeast cells. The reverse
transcription of RNA molecules into cDNA is achieved by
P = 2 alternative methods, differentiated by the use of oligo-
dT, or random-hexonucleotide primers. These cDNA molecules
are sequenced to obtain counts of RNA molecules across
M = 6, 604 genes on the yeast genome. The experiment was
repeated in [18] for a biological and a technological replicate
of the original sample totallingN = 3 instances per primer
selection. The data are thus organized in a tensor of dimensions
6, 604× 3× 2 as shown in Fig. 6 (top), with integer data that
are modeled as Poisson counts. Fifteen percent of the data is
removed and reserved for assessing performance. The missing
data are represented in white in Fig. 6 (center).

The LRPTI algorithm is run with the data available in Fig.
6 (center) producing the recovered tensor depicted in Fig. 6
(bottom). The recovery error for this experiment was−15dB.

VII. C ONCLUDING SUMMARY

It was shown in this paper that regularizing with the
Frobenius-norm square of the PARAFAC decomposition fac-
tors, controls the tensor’s rank by inducing sparsity in the
vector of amplitudes of its rank-one components. A Bayesian
method for tensor completion was developed based on this
property, introducing priors on the tensor factors. It was ar-
gued, and corroborated numerically, that this prior information
endows the completion method with extra capabilities in terms
of smoothing and extrapolation. It was also suggested through
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Fig. 5. Results of applying (14) to the MRI brain data set 657.(top) original
and recovered fibersZp and Ẑp for p = 5. (center) input fiberZp, p = 5

with missing data, and covariance matrixKN . (bottom) original and recovered
columnsZn and Ẑn for the positionn = 50 in which the whole input slice
is missing )

a parallelism between Bayesian and RKHS inference, that
the prior covariance matrices can be obtained from (sample)
correlations among the tensor’s slices. In such a probabilis-
tic context, generic distribution models for the data lead to
multiple fitting criteria. Gaussian and Poisson processes were
especially considered by developing algorithms that minimize
the regularized LS and K-L divergence, respectively.

Numerical tests on synthetic data corroborated the low-rank
inducing property, and the ability of the completion methodto
recover the “ground-truth” rank, while experiments with brain
images and gene expression levels in yeast served to evaluate
the method’s performance on real datasets.

Although the results and algorithms in this paper were
presented for three-way arrays, they are readily extendible to
higher-order tensors or reducible to the matrix case.

APPENDIX

I. Proof of Proposition 1
Proof: a) The equivalence of (2) and (4) results immedi-

Fig. 6. Imputation of sequencing count data via LRPTI; (top)original data;
(center) data with missing entries; (bottom recovered tensor.

ately from (3). Indeed, if (4) is minimized in two steps

min
X

1

2
min
B,C
‖(Z−X)⊛∆‖2F +

µ

2
(‖C‖2F + ‖B‖2F )

s. toCBT = X (28)

it is apparent that the LS part of the cost does not depend on
the inner minimization variables. Hence, (28) can be rewritten
as

min
X

1

2
‖(Z−X)⊛∆‖2F + min

B,C

s. toCB
T
=X

µ

2
(‖C‖2F + ‖B‖2F ) (29)

and by recognizing (3) as the inner problem in (29), the
equivalence follows.

b) Consider the cost in (4) at the local minimum(B̄, C̄)

U(B̄, C̄) :=
1

2
‖(Z− X̄)⊛∆‖2F +

µ

2
(‖C̄‖2F + ‖B̄‖2F )

where X̄ := B̄C̄T . Arguing by contradiction, suppose that
there is a different local minimum(B,C) such thatU(B,C) 6=
U(B̄, C̄), and without loss of generality setU(B,C) <
U(B̄, C̄), so thatdU := U(B,C) − U(B̄, C̄) < 0, which
can be expanded to

dU = Tr
[(

∆⊛(Z− X̄)
) (

∆⊛(X̄−X)
)]

+ ‖∆⊛(X̄−X)‖2F
+

µ

2

(

‖C‖2F − ‖C̄‖2F + ‖B‖2F − ‖B̄‖2F
)

< 0. (30)

Setting this inequality aside for now, consider the augmented
matrix Q in terms of genericB andC matrices:

Q :=

[

B

C

]

[

BT CT
]

=

(

BBT X

XT CCT

)

(31)

and the correspondinḡQ defined in terms of̄B andC̄.
For each value ofθ ∈ (0, 1) consider the convex combination

Qθ := Q̄+ θ(Q− Q̄). (32)

As bothQ andQ̄ are positive semi-definite, so isQθ and by
means of the Choleski factorization one obtains

Qθ :=

[

Bθ

Cθ

]

[

B′
θ C′

θ

]

=

(

BθB
′
θ Xθ

X′
θ CθC

′
θ

)

. (33)
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which definesBθ, Cθ andXθ.
Expanding the cost differencedUθ as in (30) results in

dUθ := U(Bθ,Cθ)− U(B̄, C̄)

= Tr
[(

∆⊛(Z− X̄)
) (

∆⊛(X̄−Xθ)
)]

+
µ

2

(

‖Cθ‖2F − ‖C̄‖2F + ‖Bθ‖2F − ‖B̄‖2F
)

+ ‖∆⊛(X̄−Xθ)‖2F .
From the definitions (31)-(33) it follows that̄X − Xθ =

θ(X̄−X), ‖Bθ‖2F−‖B̄‖2F = θ(‖B‖2F−‖B̄‖2F ), and‖Cθ‖2F −
‖C̄‖2F = θ(‖C‖2F − ‖C̄‖2F ), so that

dUθ := θTr
[(

∆⊛(Z− X̄)
) (

∆⊛(X̄−X)
)]

+
µθ

2

(

‖C‖2F − ‖C̄‖2F + ‖B‖2F − ‖B̄‖2F
)

+ θ2‖∆⊛(X̄−Xθ)‖2F
and thus, it can be put in terms of (30) as in

dUθ := θ
(

dU − ‖∆⊛(X̄−Xθ)‖2F
)

+ θ2‖∆⊛(X̄−Xθ)‖2F .
If dU were strictly negative, so woulddU − ‖∆⊛(X̄ −

Xθ)‖2F , and hence

lim
θ→0

1

θ
dUθ =

(

dU − ‖∆⊛(X̄−Xθ)‖2F
)

< 0.

but then there is in every neighborhood of(B̄, C̄) a point
(Bθ,Cθ) such thatU(Bθ,Cθ) < U(B̄, C̄), B̄, C̄ cannot be a
local minimum. This contradiction implies thatU(B,C) =
U(B̄, C̄) for any pair of local minima, which proves the
statement in part b) of Proposition 1.

II-Equivalence of tensor completion problems
Proof: The Frobenius square-norms ofA, B, andC are

separable across columns; hence, the penalty in (8) can be
rewritten as

‖A‖2f + ‖B‖2F + ‖C‖2F =

R
∑

r=1

‖ar‖2 + ‖br‖2 + ‖cr‖2

=

R
∑

r=1

a2r + b2r + c2r (34)

by defining ar := ‖ar‖, br := ‖br‖ , cr := ‖cr‖, r =
1, . . . , R.

On the other hand,X can be expressed w.l.o.g. in terms of
the normalized outer products (6) withγr := arbrcr. Substi-
tuting (6) and (34) for the tensor and the penalty respectively,
(8) reduces to

min
{û},{v̂},{ŵ}

min
γ

min
{ar},{br},{cr}

1

2
|| (Z−X)⊛∆||2F

+
µ

2

R
∑

r=1

a2r + b2r + c2r

s. to X =
R
∑

r=1

γr(ur ◦ vr ◦wr)

γr = arbrcr. (35)

Focusing on the inner minimization w.r.t. normsar, br,
and cr for arbitrary fixed directions{ur}, {vr}, and {wr},
and fixed productsγr := arbrcr. The constraints and hence

the LS part of the cost depend onγr only, and not on their
particular factorizationsarbrcr. Thus, the penalty is the only
term that varies whenγr is constant, rendering the inner-most
minimization in (35) equivalent to

min
ar,br ,cr

a2r + b2r + c2r

γr = arbrcr. (36)

The arithmetic geometric-mean inequality gives the solution
to (36), as it states that for scalarsa2r , b2r andb2r, it holds that

3

√

a2rb
2
rc

2
r ≤ (1/3)(a2r + b2r + c2r)

with equality whena2r = b2r = c2r, so that the minimum of (36)
is attained ata2r = b2r = c2r = γ

2/3
r .

Substituting the corresponding
∑R

r=1
(a2r + b2r + c2r) =

3
∑R

r=1
γ
2/3
r = 3‖γ‖2/3

2/3 into (35) yields (9). Equivalence of
the optimization problems is transitive; hence, by showingthat
both (9) and (8) equivalent to (35) proves them equivalent to
each other, as desired.

III. Proof of Corollary 1
Proof: The following result on the norm of the matrix

inverse will be used in the proof of the corollary.

Lemma 2: [13, p.58] If E ∈ Rm×m satisfies‖E‖F ≤ 1, then
I+E is invertible, and

∥

∥(I+ E)−1
∥

∥

F
≤ (1− ‖E‖F )−1.

Another useful inequality holds for any value ofµ, and for
A, B, andC being the minimizers of (8)

µ
(

‖A‖2F + ‖B‖2F + ‖C‖2F
)

≤ ‖∆⊛Z‖2F (37)

as it follows from comparing the cost at such a minimum, and
at the feasible point(A,B,C) = (0,0,0).

A second characterization of the minimum of (8) will be
obtained by equating the gradient to zero. By vectorizing
matrix A, the cost in (8) can be rewritten as

P
∑

p=1

1

2

∥

∥diag[δp]
(

zp − (Bdiag[eTp C]⊗ I))a
)∥

∥

2

2
+

µ

2
‖a‖22

(38)

wherezp, δp, anda denote the vector rearrangements of ma-
tricesZp, Dp , andA, respectively. Additional regularization
that vanishes when taking derivatives w.r.t.A were removed
from (38). Setting the gradient of (38) w.r.t.a to zero, yields

a = (I+E)−1ζ

with

E :=
1

µ

P
∑

p=1

(

BTdiag[eTp C]⊗ I
)

diag[δp]
(

Bdiag[eTp C]⊗ I
)

ζ :=
1

µ

P
∑

p=1

(

BTdiag[eTp C]⊗ I
)

diag[δp]zp.

The norms ofE and ζ can be bounded by using the sub-
multiplicative property of the norm, and the Cauchy-Schwarz
inequality, which results in

‖E‖F ≤
1

µ
‖B‖2F‖C‖2F

‖ζ‖F ≤
1

µ
‖∆⊛Z‖F ‖B‖F‖C‖F .
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Then according to the previous lemma, ifµ is chosen large
enough so that‖E‖F ≤ 1 then the norm ofA is bounded by

‖A‖F = ‖a‖2 ≤ (µ− ‖B‖2F‖C‖2F )−1‖B‖F‖C‖F‖∆⊛Z‖F
(39)

which constitutes the sought second characterization of the
minimum of (8).

Yet a third characterization was obtained during the proof of
Proposition 2, in which the norm of the factor columns were
shown equal to each other, so that

‖A‖F = ‖B‖F = ‖C‖F . (40)

Substituting (40) into (37) and (39) yields

‖A‖2F ≤ ‖∆⊛Z‖2F /3µ (41)

‖A‖F ≤ (µ− ‖A‖4F )−1‖A‖2F‖∆⊛Z‖F . (42)

Form (42), two cases are found possible:

case 1:‖A‖F = 0; and

case 2:1 ≤ (1− ‖A‖4F/µ)−1‖A‖F ‖∆⊛Z‖F/µ. (43)

To argue that the second case is impossible, substitute (41)
into (43) and square the result to obtain

1 ≤ (1 − ‖∆⊛Z‖4F/9µ3)−2‖∆⊛Z‖4F /3µ3 (44)

But by hypothesisµ ≥ ‖∆⊛Z‖4/3F so that‖∆⊛Z‖4F /µ3 ≤ 1,
and the right-hand side of (44) is bounded by0.43, so that the
inequality does not hold. This implies that the first case in (43);
i.e., ‖A‖F = 0, must hold, which in accordance with (40),
further implies a null solution of (8). That was the object ofthis
proof. Still, the bound at0.43 can be pushed to one by further
reducingµ, and the proof remains valid under the slightly
relaxed conditionµ > (18/(5 +

√
21))−1/3‖∆⊛Z‖4/3F ≃

0.81‖∆⊛Z‖4/3F .
IV-RKHS imputation
Recursive application of Representer’s Theorem yields finite

dimensional representations for the minimizersar, br, andcr
of (14), given by

âr(m) =
∑M

m′=1
αrm′kM(m′,m)

b̂r(n) =
∑N

n′=1
βrn′kN (n′, n)

ĉr(p) =
∑P

p′=1
γrp′kP(p

′, p).

Defining vectorskT
M(m) := [kM(1,m), . . . , kM(M,m)], and

correspondinglykT
N (n) := [kN (1, n), . . . , kN (N,n)], and

kT
P(p) := [kP(1, p), . . . , kP(P, p)], along with matricesÂ ∈

R
M×R : Â(m, r) := αmr, B̂ ∈ R

N×R : B̂(n, r) := βnr, and
Ĉ ∈ R

P×R : Ĉ(p, r) := γpr, it follows that

f̂R(m,n, p) =

R
∑

r=1

âr(m)b̂r(n)ĉr(p)

= kT
M(m)Âdiag

[

kT
P(p)Ĉ

]

B̂TkN (n). (45)

MatricesÂ, B̂, andĈ are further obtained by solving

min
Â,Ĉ,B̂

P
∑

p=1

∥

∥

(

Zp −KMAdiag
[

eTp KPC
]

BTKN

)

⊛∆p

∥

∥

2

F

+
µ

2

(

trace(ATKMA)+trace(BTKNB)+trace(CTKPC)
)

s. toA ∈ R
M×R, B ∈ R

N×R, C ∈ R
P×R

which is transformed into (16) by changing variablesA =
KMÂ, B = KN B̂, andC = KPĈ, just as (45) becomes
(15).

V-Covariance estimation
Inspection of the entries ofKP(p, p

′) := E
[

Tr
(

XT
p Xp′

)]

under the PARAFAC model, yields

KP(p, p
′) := E

[

Tr

(

R
∑

r=1

brcr(p)a
T
r

R
∑

r′=1

ar′cr′(p
′)br′

)]

=

R
∑

r=1

R
∑

r′=1

E
(

cTr (p)cr′(p
′)
)

E
(

bT
r′br

)

E
(

aTr ar′
)

=

R
∑

r=1

E (cr(p)cr(p
′))E‖br‖2E‖ar‖2

=

R
∑

r=1

RC(p, p
′)Tr(RB)Tr(RA)

= R RC(p, p
′)Tr(RB)Tr(RA)

which, after summing overp′ = p, yields

E‖X‖2F =

P
∑

p=1

E‖Xp‖2F =

P
∑

p=1

RP(p, p)

= RTr(RC)Tr(RB)Tr(RA). (46)

In addition, by incorporating the equal power assumption
(12), equation (46) further simplifies to

E‖X‖2F = Rθ3

as stated in (18).
VI - Vector form of (19)
The vec operator can be combined with the Kronecker

product to factorize vec(AQT ) = (Q ⊗ I)vec(A), and with
the Hadamard product to convert it to a standard matrix
product vec(∆⊛A) = diag(vec(∆))vec(A). Using these two
properties, (19) can be put in terms ofa := vec(A) as in

f(a) :=
1

2

P
∑

p=1

||diag(vec(∆p))
(

vec(Zp)−Bdiag(eTPC)a
)

||22

+
µ

2
a(I ⊗R−1

A ).a (47)

VII - Proof of Lemma 1
Proof: Functiong(A, Ā) in (27) is formed fromf(A) af-

ter substitutingg1(A, Ā) for f1(A), andg2(A, Ā) for f2(A),
respectively, as defined by

f1(A) := Tr
(

ATR−1

A A
)

(48)

g1(A, Ā) := λTr
(

ATA
)

− 2Tr(ΘTA) + Tr(ΘT Ā) (49)
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whereλ := λmax(R
−1

A ) andΘ := λI−R−1

A , and

f2(A) := −1M∆⊛Z log(AΠT )1NP (50)

g2(A, Ā) := −
M
∑

m=1

NP
∑

k=1

δmkzmkαmkr log

(

amrπkr

αmkr

)

(51)

with αmkr := āmr′πkr′/
∑R

r′=1
āmr′πkr′ .

Hence, properties i)-iii) will be satisfied by the pair of
functions g(A, Ā) and f(A) in Lemma 1, as long as they
are satisfied both by the pair in (48)-(49) and that in (50)-(51).

Focusing on the first pair, both functions are separable per
column ofA andĀ, and their difference takes the form

g1(A, Ā)−f1(A)=

R
∑

r=1

[λaTr ar − 2θT
r ar + θT

r ār − āTr R
−1

A ār ]

=

R
∑

r=1

(ar − ār)
T (λI −R−1

A )(ar − ār)

which is positive and, together with its gradient, vanish atĀ.
This establishes that properties i)-iii) are satisfied byg1(A, Ā)
and f1(A)), and thus they are so for functionsg(A, Ā) and
f(A)) in (20) and (19).

Considering the second pair, and expandingf2(A) yields

f2(A) = −
M
∑

m=1

NP
∑

k=1

δmkzmk log

(

R
∑

r′=1

amr′πkr′

)

(52)

where the logarithm can be rewritten as (see also [10])

log

(

R
∑

r′=1

amr′πkr′

)

= log

(

R
∑

r′=1

αmkr′
amr′πkr′

αmkr′

)

(53)

≥
R
∑

r=1

αmkr log

(

R
∑

r′=1

amr′πkr′

αmkr

)

(54)

and the inequality holds because of the concavity of the
logarithm with an argument being a convex combination with
coefficients{αmkr}Rr=1 summing up to one.

Since substituting (54) for (53) in (52) results in (51), it
follows that g2(A, Ā) and f2(A) satisfy property iii). The
proof is complete after evaluating at the pair of functions and
their derivatives atA to confirm that properties i) and ii) hold
too.

The minimuma⋆g,mr := tmr+
√

t2mr + smr is obtained read-
ily after equating to zero the derivative of the corresponding
summand in (22), and selecting the nonnegative root.
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