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Abstract—Distributed adaptive filtering has been considered
as an effective approach for data processing and estimationover
distributed networks. Most existing distributed adaptive filtering
algorithms focus on designing different information diffusion
rules, regardless of the nature evolutionary characteristic of a
distributed network. In this paper, we study the adaptive network
from the game theoretic perspective and formulate the distributed
adaptive filtering problem as a graphical evolutionary game. With
the proposed formulation, the nodes in the network are regarded
as players and the local combiner of estimation informationfrom
different neighbors is regarded as different strategies selection.
We show that this graphical evolutionary game framework is very
general and can unify the existing adaptive network algorithms.
Based on this framework, as examples, we further propose
two error-aware adaptive filtering algorithms. Moreover, we use
graphical evolutionary game theory to analyze the information
diffusion process over the adaptive networks and evolutionarily
stable strategy of the system. Finally, simulation resultsare shown
to verify the effectiveness of our analysis and proposed methods.

Index Terms—Adaptive filtering, graphical evolutionary game,
distributed estimation, adaptive networks, data diffusion.

I. I NTRODUCTION

Recently, the concept of adaptive filter network derived
from the traditional adaptive filtering was emerging, where
a group of nodes cooperatively estimate some parameters of
interest from noisy measurements [1]. Such a distributed esti-
mation architecture can be applied to many scenarios, such as
wireless sensor networks for environment monitoring, wireless
Ad-hoc networks for military event localization, distributed
cooperative sensing in cognitive radio networks and so on
[2], [3]. Compared to the classical centralized architecture,
the distributed one is not only more robust when the center
node may be dysfunctional, but also more flexible when the
nodes are with mobility. Therefore, distributed adaptive filter
network has been considered as an effective approach for the
implementation of data fusion, diffusion and processing over
distributed networks [4].

In a distributed adaptive filter network, at every time instant
t, node i receives a set of data{di(t),ui,t} that satisfies a
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linear regression model as follow

di(t) = ui,tw
0 + vi(t), (1)

wherew0 is a deterministic but unknownM × 1 vector,di(t)
is a scalar measurement of some random processdi, ui,t is
the 1 × M regression vector at timet with zero mean and
covariance matrixRui

= E
(

u∗
i,tui,t

)

> 0, and vi(t) is the
random noise signal at timet with zero mean and varianceσ2

i .
Note that the regression dataui,t and measurement processdi

are temporally white and spatially independent, respectively
and mutually. The objective for each node is to use the data
set{di(t),ui,t} to estimate parameterw0.

In the literatures, many distributed adaptive filtering algo-
rithms have been proposed for the estimation of parameter
w0. The incremental algorithms, in which nodei updatesw,
i.e., the estimation ofw0, through combining the observed
data sets of itself and nodei − 1, were proposed, e.g.,
the incremental LMS algorithm [5]. Unlike the incremental
algorithms, the diffusion algorithms allow nodei to com-
bine the data sets from all neighbors, e.g., diffusion LMS
[6], [7] and diffusion RLS [8]. Besides, the projection-based
adaptive filtering algorithms were summarized in [9], e.g.,the
projected subgradient algorithm [10] and the combine-project-
adapt algorithm [11]. In [12], the authors considered the node’s
mobility and analyzed the mobile adaptive networks.

While achieving promising performance, these traditional
distributed adaptive filtering algorithms mainly focused on
designing different information combination rules or diffu-
sion rules among the neighborhood by utilizing the network
topology information and/or nodes’ statistical information.
For example, the relative degree rule considers the degree
information of each node [8], and the relative degree-variance
rule further incorporates the variance information of each
node [6]. However, most of the existing algorithms are some-
how intuitively designed to achieve some specific objective,
sort of like bottom-up approaches to the distributed adaptive
networks. There is no existing work that offers a design
philosophy to explain why combination and/or diffusion rules
are developed and how they are related in a unified view.
Is there a general framework that can reveal the relationship
among the existing rules and provide fundamental guidance
for better design of distributed adaptive filtering algorithms? In
our quest to answer the question, we found that in essence the
parameter updating process in distributed adaptive networks
follows similarly the evolution process in natural ecological
systems. Therefore, based on the graphical evolutionary game,
in this paper, we propose a general framework that can offer
a unified view of existing distributed adaptive algorithms,and
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provide possible clues for new future designs. Unlike the
traditional bottom-up approaches that focus on some specific
rules, our framework provide a top-down design philosophy to
understand the fundamental relationship of distributed adaptive
networks.

The main contributions of this paper are summarized as
follows.

1) We propose a graphical evolutionary game theoretic
framework for the distributed adaptive networks, where
nodes in the network are regarded as players and the
local combination of estimation information from dif-
ferent neighbors is regarded as different strategies selec-
tion. We show that the proposed graphical evolutionary
theoretic framework can unify existing adaptive filtering
algorithms as special cases.

2) Based on the proposed framework, as examples, we
further design two simple error-aware distributed adap-
tive filtering algorithms. When the noise variance is
unknown, our proposed algorithm can achieve similar
performance compared with existing algorithms but with
lower complexity, which immediately shows the advan-
tage of the proposed general framework.

3) Using the graphical evolutionary game theory, we ana-
lyze the information diffusion process over the adaptive
network, and derive the diffusion probability of infor-
mation from good nodes.

4) We prove that the strategy of using information from
good nodes is evolutionarily stable strategy either in
complete graphs or incomplete graphs.

The rest of this paper is organized as follows. We summarize
the existing works in Section II. In Section III, we describe
in details how to formulate the distributed adaptive filtering
problem as a graphical evolutionary game. We then discuss
the information diffusion process over the adaptive network
in Section IV, and further analyze the evolutionarily stable
strategy in Section V. Simulation results are shown in Section
VI. Finally, we draw conclusions in Section VII.

II. RELATED WORKS

Let us consider an adaptive filter network withN nodes.
If there is a fusion center that can collect information from
all nodes, then global (centralized) optimization methodscan
be used to derive the optimal updating rule for the parameter
w, wherew is a deterministic but unknownM × 1 vector for
estimation, as shown in the left part of Fig. 1. For example,
in the global LMS algorithm, the parameter updating rule can
be written as [6]

wt+1 = wt + µ
N
∑

i=1

u∗
i,t

(

di(t)− ui,twt

)

, (2)

whereµ is the step size and{·}∗ denotes complex conjugation
operation. With (2), we can see that the centralized LMS
algorithm requires the information of{di(t),ui,t} across the
whole network, which is generally impractical. Moreover, such
a centralized architecture highly relies on the fusion center and
will collapse when the fusion center is dysfunctional or some
data links are disconnected.

node

Fusion 

Center

node i

t
di (t) , ui

t
di (t) , ui
i

w0

w0

Fig. 1. Left: centralized model. Right: distributed model.

If there is no fusion center in the network, then each node
needs to exchange information with the neighbors to update
the parameter as shown in the right part of Fig. 1. In the litera-
ture, several distributed adaptive filtering algorithms have been
introduced, such as distributed incremental algorithms [5],
distributed LMS [6], [7], and projection-based algorithms[10],
[11]. These distributed algorithms are based on the classical
adaptive filtering algorithms, where the difference is thatnodes
can use information from neighbors to estimate the parameter
w0. Taking one of the distributed LMS algorithms, Adapt-
then-Combine Diffusion LMS (ATC) [6], as an example, the
parameter updating rule for nodei is














χi,t+1 = wi,t + µi

∑

j∈Ni

oiju
∗
j,t

(

dj(t)− uj,twj,t

)

,

wi,t+1 =
∑

j∈Ni

aijχj,t+1,
(3)

whereNi denotes the neighboring nodes set of nodei (includ-
ing nodei itself), oij andaij are linear weights satisfying the
following conditions











oij = aij = 0, if j /∈ Ni,

N
∑

j=1

oij = 1,
N
∑

j=1

aij = 1.
(4)

In a practical scenario, since the exchange of full raw data
{di(t),ui,t} among neighbors is costly, the weightoij is
usually set asoij = 0, if j 6= i, as in [6]. In such a case,
for node i with degreeni (including nodei itself, i.e., the
cardinality of setNi) and neighbour set{i1, i2, . . . , ini

}, we
can write the general parameter updating rule as

wi,t+1 = Ai,t+1

(

F (wi1,t), F (wi2,t), ..., F (wini
,t)
)

,

=
∑

j∈Ni

Ai,t+1(j)F (wj,t), (5)

where F (·) can be any adaptive filtering algorithm, e.g.
F (wi,t) = wi,t + µu∗

i,t(di(t) − ui,twi,t) for the LMS al-
gorithm,Ai,t+1(·) represents some specific linear combination
rule. The (5) gives a general form of existing distributed adap-
tive filtering algorithms, where the combination ruleAi,t+1(·)
mainly determines the performance. Table I summarizes the
existing combination rules, where for all rulesAi,t+1(j) = 0,
if j /∈ Ni.

From Table I, we can see that the weights of the first four
combination rules are purely based on the network topology.
The disadvantage of such topology-based rules is that, theyare
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TABLE I
DIFFERENTCOMBINATION RULES.

Name Rule: Ai(j) =

Uniform [11][13] 1

ni
, for all j ∈ Ni

Maximum degree [8][14]











1

N
, for j 6= i,

1− ni−1

N
, for j = i.

Laplacian [15][16]











1

nmax
, for j 6= i

1− ni−1

nmax
, for j = i.

Relative degree [8]
nj∑

k∈Ni
nk

, for all j ∈ Ni

Relative degree-variance [6]
njσ

−2
j

∑
k∈Ni

nkσ
−2
k

, for all j ∈ Ni

Metropolis [16][17]











1

max{|Ni|,|Nj |}
, for j 6= i,

1−
∑

k 6=i Ai(k), for j = i.

Hastings [17]















σ2
j

max{|Ni|σ
2
i
,|Nj |σ

2
j
}
, for j 6= i,

1−
∑

k 6=i Ai(k), for j = i.

sensitive to the spatial variation of signal and noise statistics
across the network. The relative degree-variance rule shows
better mean-square performance than others, which, however,
requires the knowledge of all neighbors’ noise variances. As
discussed in Section I, all these distributed algorithms are only
focusing on designing the combination rules. Nevertheless, a
distributed network is just like a natural ecological system and
the nodes are just like individuals in the system, which may
spontaneously follow some nature evolutionary rules, instead
of some specific artificially predefined rules. Besides, although
various kinds of combination rules have been developed,
there is no general framework which can reveal the unifying
fundamentals of distributed adaptive filtering problems. In the
sequel, we will use graphical evolutionary game theory to
establish a general framework to unify existing algorithmsand
give insights of the distributed adaptive filtering problem.

III. G RAPHICAL EVOLUTIONARY GAME FORMULATION

A. Introduction of Graphical Evolutionary Game

Evolutionary game theory (EGT) is originated from the
study of ecological biology [18], which differs from the
classical game theory by emphasizing more on the dynamics
and stability of the whole population’s strategies [19], instead
of only the property of the equilibrium. EGT has been widely
used to model users’ behaviors in image processing [20],
as well as communication and networking area [21][22],
such as congestion control [23], cooperative sensing [24],
cooperative peer-to-peer (P2P) streaming [25] and dynamic
spectrum access [26]. In these literatures, evolutionary game
has been shown to be an effective approach to model the
dynamic social interactions among users in a network.

EGT is an effective approach to study how a group of
players converges to a stable equilibrium after a period of
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Fig. 2. Graphical evolutionary game model.

strategic interactions. Such an equilibrium strategy is defined
as the Evolutionarily Stable Strategy (ESS). For an evolution-
ary game withN players, a strategy profilea∗ = (a∗1, ..., a

∗
N ),

wherea∗i ∈ X andX is the action space, is an ESS if and
only if, ∀a 6= a

∗, a∗ satisfies following [19]:

1) Ui(ai, a
∗
−i) ≤ Ui(a

∗
i , a

∗
−i), (6)

2) if Ui(ai, a
∗
−i) = Ui(a

∗
i , a

∗
−i),

Ui(ai, a−i) < Ui(a
∗
i , a−i), (7)

whereUi stands for the utility of playeri anda−i denotes the
strategies of all players other than playeri. We can see that
the first condition is the Nash equilibrium (NE) condition, and
the second condition guarantees the stability of the strategy.
Moreover, we can also see that a strict NE is always an ESS.
If all players adopt the ESS, then no mutant strategy could
invade the population under the influence of natural selection.
Even if a small part of players may not be rational and take
out-of-equilibrium strategies, ESS is still a locally stable state.

Let us consider an evolutionary game withm strategies
X = {1, 2, ...,m}. The utility matrix,U , is anm×m matrix,
whose entries,uij , denote the utility for strategyi versus
strategyj. The population fraction of strategyi is given by
pi, where

∑m

i=1 pi = 1. The fitness of strategyi is given
by fi =

∑m

j=1 pjuij . For the average fitness of the whole
population, we haveφ =

∑m

i=1 pifi. The Wright-Fisher model
has been widely adopted to let a group of players converge to
the ESS [27], where the strategy updating equation for each
player can be written as

pi(t+ 1) =
pi(t)fi(t)

φ(t)
. (8)

Note that one assumption in the Wright-Fisher model is that
when the total population is sufficiently large, the fraction of
players using strategyi is equal to the probability of one
individual player using strategyi. From (8), it can be seen
that the strategy updating process in the evolutionary game
is similar to the parameter updating process in adaptive filter
problem. It is intuitive that we can use evolutionary game to
formulate the distributed adaptive filter problem.

The classical evolutionary game theory considers a pop-
ulation of M individuals in a complete graph. However,
in many scenarios, players’ spatial locations may lead to
an incomplete graph structure. Graphical evolutionary game
theory is introduced to study the strategies evolution in such a
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TABLE II
CORRESPONDENCEBETWEEN GRAPHICAL EGT AND DISTRIBUTED

ADAPTIVE NETWORK.

Graphical EGT Distributed adaptive network

N Players N Nodes in the network

Pure strategy of playeri with
ni neighbors{i1, i2, ..., ini

}
Node i combines information from
one of its neighbors{i1, i2, ..., ini

}

Mixed strategy of playeri with
ni neighbors{p1, p2, ..., pni

}
Node i’s combiner (Weight)
{Ai(1), Ai(2), ...,Ai(ni)}

Mixed strategy update of playeri Combiner update of nodei

Equilibrium Convergence network state

finite structured population [28], where each vertex represents
a player and each edge represents the reproductive relationship
between valid neighbors, i.e.,θij denotes the probability that
the strategy of nodei will replace that of nodej, as shown
in Fig. 2. Graphical EGT focuses on analyzing the ability of a
mutant gene to overtake a group of finite structured residents.
One of the most important research issues in graphical EGT
is how to compute the fixation probability, i.e., the probability
that the mutant will eventually overtake the whole structured
population [29]. In the following, we will use graphical EGT
to formulate the dynamic parameter updating process in a
distributed adaptive filter network.

B. Graphical Evolutionary Game Formulation

In graphical EGT, each player updates strategy according to
his/her fitness after interacting with neighbors in each round.
Similarly, in distributed adaptive filtering, each node updates
its parameterw through incorporating the neighbors’ informa-
tion. In such a case, we can treat the nodes in a distributed filter
network as players in a graphical evolutionary game. For node
i with ni neighbors, it hasni pure strategies{i1, i2, ..., ini

},
where strategyj means updatingwi,t+1 using the updated
information from its neighborj, Ai,t+1(j). We can see that (5)
represents the adoption of mixed strategy. In such a case, the
parameter updating in distributed adaptive filter network can
be regarded as the strategy updating in graphical EGT. TableII
summarizes the correspondence between the terminologies in
graphical EGT and those in distributed adaptive network.

We first discuss how players’ strategies are updated in
graphical EGT, which is then applied to the parameter updating
in distributed adaptive filtering. In graphical EGT, the fitness
of a player is locally determined from interactions with all
adjacent players, which is defined as [30]

f = (1− α) · B + α · U, (9)

whereB is the baseline fitness, which represents the player’s
inherent property. For example, in a distributed adaptive
network, a node’s baseline fitness can be interpreted as the

Selection for birthInitial population ReplaceSelection for death

(a) BD update rule.

Selection for deathInitial population ReplaceSelection for birth

(b) DB update rule.

Selection for updateInitial population ImitationSelection for imitation

(c) IM update rule.

Fig. 3. Three different update rules, where death selections are shown in
dark blue and birth selections are shown in red.

quality of its noise variance.U is the player’s utility which is
determined by the predefined utility matrix. The parameterα
represents the selection intensity, i.e., the relative contribution
of the game to fitness. The caseα → 0 represents the limit
of weak selection [31], whileα = 1 denotes strong selection,
where fitness equals utility. There are three different strategy
updating rules for the evolution dynamics, called as birth-death
(BD), death-birth (DB) and imitation (IM) [32].

• BD update rule: a player is chosen for reproduction
with the probability being proportional to fitness (Birth
process). Then, the chosen player’s strategy replaces one
neighbor’s strategy uniformly (Death process), as shown
in Fig. 3-(a).

• DB update rule: a random player is chosen to abandon
his/her current strategy (Death process). Then, the chosen
player adopts one of his/her neighbors’ strategies with
the probability being proportional to their fitness (Birth
process), as shown in Fig. 3-(b).

• IM update rule: each player either adopts the strategy
of one neighbor or remains with his/her current strategy,
with the probability being proportional to fitness, as
shown in Fig. 3-(c).

These three kinds of strategy updating rules can be matched
to three different kinds of parameter updating algorithms in
distributed adaptive filtering. Suppose that there areN nodes
in a structured network, where the degree of nodei is ni. We
useN to denote the set of all nodes andNi to denote the
neighborhood set of nodei, including nodei itself.

For the BD update rule, the probability that nodei adopts
strategyj, i.e., using updated information from its neighbor
nodej, is

Pj =
fj

∑

k∈N fk

1

nj

, (10)

where the first term fj∑
k∈N fk

is the probability that the neigh-
boring nodej is chosen to reproduction, which is proportional



5

to its fitnessfj , and the second term1
nj

is the probability that
nodei is chosen for adopting strategyj. Note that the network
topology information (nj) is required to calculate (10). In such
a case, the equivalent parameter updating rule for nodei can
be written by

wi,t+1 =
∑

j∈Ni\{i}

(

fj
∑

k∈N fk

1

nj

)

F (wj,t) +

(

1−
∑

j∈Ni\{i}

(

fj
∑

k∈N fk

1

nj

)

)

F (wi,t).(11)

Similarly, for the DB updating rule, we can obtain the corre-
sponding parameter updating rule for nodei as

wi,t+1 =
1

ni

∑

j∈Ni\{i}

(

fj
∑

k∈Ni
fk

)

F (wj,t) +

(

1− 1

ni

∑

j∈Ni\{i}

(

fj
∑

k∈Ni
fk

)

)

F (wi,t). (12)

For the IM updating rule, we have

wi,t+1 =
∑

j∈Ni

(

fj
∑

k∈Ni
fk

)

F (wj,t). (13)

Note that (11), (12) and (13) are expected outcome of BD,
DB and IM updated rules, which can be referred in [35], [37].

The performance of adaptive filtering algorithm is usually
evaluated by two measures: mean-square deviation (MSD) and
excess-mean-square error (EMSE), which are defined as

MSD = E||wt −w0||2, (14)

EMSE = E
∣

∣ut(wt−1 −w0)
∣

∣

2
. (15)

Using (11), (12) and (13), we can calculate the network MSD
and EMSE of these three update rules according to [6].

C. Relationship to Existing Distributed Adaptive Filtering
Algorithms

In Section II, we have summarized the existing distributed
adaptive filtering algorithms in (5) and Table I. In this sub-
section, we will show that all these algorithms are the special
cases of the IM update rule in our proposed graphical EGT
framework. Compare (5) and (13), we can see that different
fitness definitions are corresponding to different distributed
adaptive filtering algorithms in Table I. For the uniform rule,
the fitness can be uniformly defined asfi = 1 and using the
IM update rule, we have

wi,t+1 =
∑

j∈Ni

1

ni

F (wj,t), (16)

which is equivalent to the uniform rule in Table I. Here,
the definition offi = 1 means the adoption of fixed fitness
and weak selection (α << 1). For the Laplacian rule, when
updating the parameter of nodei, the fitness of nodes inNi

can be defined as

fj =

{

1, for j 6= i,
nmax− ni + 1, for j = i.

(17)

TABLE III
DIFFERENTFITNESSDEFINITIONS.

Name Fitness: fj =

Uniform [11][13] 1, for all j ∈ Ni

Maximum






1, for j 6= i,

N − ni + 1, for j = i.degree [8][14]

Laplacian [15][16]







1, for j 6= i

nmax− ni + 1, for j = i.

Relative degree [8] nj , for all j ∈ Ni

Relative
njσ

−2

j , for all j ∈ Ni
degree-variance [6]

Metropolis [16][17]





1−
∑

k 6=i Ai(k)
1

max{|Ni|,|Nj |}

1

max{|Ni|,|Nj |}
1−

∑

k 6=j Aj(k)





Hastings [17]









1−
∑

k 6=i Ai(k)
σ2
(i,j)

max{|Ni|σ
2
i
,|Nj |σ

2
j
}

σ2
(j,i)

max{|Ni|σ
2
i
,|Nj |σ

2
j
}

1−
∑

k 6=j Aj(k)









From (17), we can see that each node gives more weight to
the information from itself through enhancing its own fitness.
Similarly, for the Relative-degree-variance rule, the fitness can
be defined as

fj = njσ
−2
j , for all j ∈ Ni. (18)

For the metropolis rule and Hastings rule, the correspond-
ing fitness definitions are based on strong selection model
(α → 1), where utility plays a dominant role in (9). For the
metropolis rule, the utility matrix of nodes can be defined as

Node i Nodej 6= i

Nodei ( 1−∑k 6=i Ai(k)
1

max{|Ni|,|Nj|}
)

Node j 6= i 1
max{|Ni|,|Nj|}

1−∑k 6=j Aj(k)

(19)

For the Hastings rule, the utility matrix can be defined as

Node i Nodej 6= i

Node i ( 1−∑k 6=i Ai(k)
σ2
(i,j)

max{|Ni|σ2
i
,|Nj |σ2

j
}
)

Nodej 6= i
σ2
(j,i)

max{|Ni|σ2
i
,|Nj|σ2

j
}

1−∑k 6=j Aj(k)

(20)

Table III summarizes different fitness definitions correspond-
ing to different combination rules in Table I. Therefore, we
can see that the existing algorithms can be summarized into
our proposed graphical EGT framework with corresponding
fitness definitions.

D. Error-aware Distributed Adaptive Filtering Algorithm

To illustrate our graphical EGT framework, as examples, we
further design two distributed adaptive algorithms by choosing
different fitness functions. As discussed in Section II, the
existing distributed adaptive filtering algorithms eitherrely on
the prior knowledge of network topology or the requirement
of additional network statistics. All of them are not robust
to a dynamic network, where a node location may change
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and the noise variance of each node may also vary with
time. Considering these problems, we propose error-aware
algorithms based on the intuition that neighbors with low
mean-square-error (MSE) should be given more weight while
neighbors with high MSE should be given less weight. The
instantaneous error of nodei, denoted by̺ i, can be calculated
by

̺i,t = |di(t)− ui,twi,t−1|2 , (21)

where only local data{di(t),ui,t} are used. The approximated
MSE of nodei, denoted byβi, can be estimated by following
update rule in each time slot,

βi,t = (1− νi,t)βi,t−1 + νi,t̺i,t, (22)

whereνi,t is a positive parameter. We assume that nodes can
exchange their instantaneous MSE information with neighbors.
Based on the estimated MSE, we design two kinds of fitness:
exponential form and power form as follows:

Power: fi = β−λ
i , (23)

Exponential: fi = e−λβi , (24)

whereλ is a positive coefficient. Note that the fitness defined
in (23) and (24) are just two examples of our proposed frame-
work, while many other forms of fitness can be considered,
e.g.,fi = log(λβ−1

i ). Using the IM update rule, we have

wi,t+1 =
∑

j∈Ni

β−λ
j,t

∑

k∈Ni
β−λ
k,t

F (wj,t), (25)

wi,t+1 =
∑

j∈Ni

e−λβj,t

∑

k∈Ni
e−λβk,t

F (wj,t). (26)

From (25) and (26), we can see that the proposed algorithms
do not directly depend on any network topology information.
Moreover, they can also adapt to a dynamic environment when
the noise variance of nodes are unknown or suddenly change,
since the weights can be immediately adjusted accordingly.
In [33], a similar algorithm was also proposed based on the
instantaneous MSE information, which is a special case of our
error-aware algorithm with power form ofλ = 2. Note that
the deterministic coefficients are adopted when implementing
(25) and (26), instead of using random combining efficient
with some probability. However, the algorithm can also be
implemented using a random selection with probabilities.
There will be no performance loss since the expected outcome
is the same, but the efficiency (convergence speed) will be
lower. In Section V, we will verify the performance of the
proposed algorithm through simulation.

IV. D IFFUSION ANALYSIS

In a distributed adaptive filter network, there are nodes with
good signals, i.e., lower noise variance, as well as nodes with
poor signals. The principal objective of distributed adaptive
filtering algorithms is to stimulate the diffusion of good signals
to the whole network to enhance the network performances. In
this section, we will use the EGT to analyze such a dynamic
diffusion process and derive the close-form expression forthe
diffusion probability. In the following diffusion analysis, we
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r
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r

r

r
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Fig. 4. Graphical evolutionary game model.

assume that all nodes have the same regressor statisticsRu,
but different noise statistics.

In a graphical evolutionary game, the structured population
are either residents or mutants. An important concept is the
fixation probability, which represents the probability that the
mutant will eventually overtake the whole population [34].Let
us consider a local adaptive filter network as shown in Fig. 4,
where the hollow points denote common nodes, i.e., nodes
with common noise varianceσ2

r ; and the solid points denote
good nodes, i.e., nodes with a lower noise varianceσ2

m. σ2
r and

σ2
m satisfy thatσ2

r >> σ2
m. Here, we adopt the binary signal

model to better reveal the diffusion process of good signals. If
we regard the common nodes as residents and the good nodes
as mutants, the concept of fixation probability in EGT can be
applied to analyze the diffusion of good signals in the network.
According to the definition of fixation probability, we define
the diffusion probability in a distributed filter network asthe
probability that a good signal can be adopted by all nodes to
update parameters in the network.

A. Strategies and Utility Matrix

As shown in Fig. 4, for the node at the center, its neighbors
include both common nodes and good nodes. When the center
node updates its parameterwi, it has the following two
possible strategies:
{

Sr, using information from common nodes,

Sm, using information from good nodes.
(27)

In such a case, we can define the utility matrix as follow:

Sr Sm

Sr

(

π−1(σr , σr) π−1(σm, σr)
)

Sm π−1(σr, σm) π−1(σm, σm)
=

(

u1 u2

)

u3 u4

, (28)

whereπ(x, y) represents the steady EMSE of node with noise
variancex2 using information from node with noise variance
y2. For example,π(σr , σm) is the steady EMSE of node
with noise varianceσ2

r adopting strategySm, i.e., updating
its w using information from node with noise varianceσ2

m

which in turn adopts strategySr. In our diffusion analysis,
we assume that only two players are interacting with each
other at one time instant, i.e., there are two nodes exchanging
and combining information with each other at one time instant.
In such a case, the payoff matrix is two-user case. Note that
a node chooses one specific neighbor with some probability,
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which is equivalent to the weight that the node gives to that
neighbor.

Since the steady EMSEπ(x, y) in the utility matrix is
determined by the information combining rule, there is no
general expressions forπ(x, y). Nevertheless, by intuition,
we know that the steady EMSE of node with varianceσ2

r

should be larger than that of node with varianceσ2
m since

σ2
r >> σ2

m, and adopting strategySm should be more
beneficial than adopting strategySr since the node can obtain
better information from others, i.e.,π(σr , σr) > π(σr , σm) >
π(σm, σr) > π(σm, σm). Therefore, we assume that the utility
matrix defined in (28) has the quality as follow

u1 < u3 < u2 < u4. (29)

Here, we use an example in [17] to have a close-form
expression forπ(x, y) to illustrate and verify this intuition.
According to [17], with sufficiently small step sizeµ, the
optimalπ(x, y) can be calculated by

π(x, y) = c1σ
2
1 + c2

x4

σ2
2

, (30)







c1 = µTr(Ru)
4 , c2 = µ2||ζ||2

2 ,

σ2
1 = 2x2y2

x2+y2 , σ2
2 = x2y2

2 ,
(31)

where ζ = col{ζ1, ..., ζN} consists of the eigenvalues of
Ru (recall thatRu is the covariance matrix of the observed
regression dataut). According to (30) and (31), we have

π(σr , σr) = c1σ
2
r + 2c2, (32)

π(σr , σm) = c1
2σ2

mσ2
r

σ2
m + σ2

r

+ 2c2
σ2
r

σ2
m

, (33)

π(σm, σr) = c1
2σ2

mσ2
r

σ2
m + σ2

r

+ 2c2
σ2
m

σ2
r

, (34)

π(σm, σm) = c1σ
2
m + 2c2. (35)

Supposeσ2
m = τσ2

r , through comparing (32-35), we can derive
the condition forπ(σr , σr) > π(σr , σm) > π(σm, σr) >
π(σm, σm) as follows

µ <
τTr(Ru)σ

2
r

4(1 + τ)||ζ||2 . (36)

According to [17], the derivation of optimalπ(x, y) in (30)
and (31) is based on the assumption thatµ is sufficiently small.
Therefore, the condition ofµ in (36) holds. In such a case,
we can conclude thatπ(σr , σr) > π(σr, σm) > π(σm, σr) >
π(σm, σm), which implies thatu1 < u3 < u2 < u4.

In the following, we will analyze the diffusion process of
strategySm, i.e., the ability of good signals diffusing over
the whole network. We consider an adaptive filter network
based on a homogenous graph with general degreen and
adopt the IM update rule for the parameter update [35]. Let
pr and pm denote the percentages of nodes using strategies
Sr andSm in the population, respectively. Letprr, prm, pmr

and pmm denote the percentages of edge, whereprm means
the percentage of edge on which both nodes use strategySr

and Sm. Let qm|r denote the conditional probability of a
node using strategySm given that the adjacent node is using

strategySr, similar we haveqr|r, qr|m and qm|m. In such a
case, we have

pr + pm = 1, qr|X + qm|X = 1, (37)

pXY = pY · qX|Y , prm = pmr, (38)

whereX and Y are eitherr or m. The equations (37-38)
imply that the state of the whole network can be described by
only two variables,pm and qm|m. In the following, we will
calculate the dynamics ofpm andqm|m under the IM update
rule.

B. Dynamics of pm and qm|m

In order to derive the diffusion probability, we first need
to analyze the diffusion process of the system. As discussed
in the previous subsection, the system dynamics under IM
update rule can be represented by parameterspm and qm|m.
Thus, in this subsection, we will first analyze the dynamics of
pm andqm|m to understand the dynamic diffusion process of
the adaptive network. According to the IM update rule, a node
using strategySr is selected for imitation with probabilitypr.
As shown in the left part of Fig. 4, among itsn neighbors (not
including itself), there arenr nodes using strategySr andnm

nodes using strategySm, respectively, wherenr + nm = n.
The percentage of such a configuration is

(

n
nm

)

qnm

m|rq
nr

r|r. In
such a case, the fitness of this node is

f0 = (1− α) + α(nru1 + nmu2), (39)

where the baseline fitness is normalized as1. We can see
that (39) includes the normalized baseline fitness and also
the fitness from utility, which is the standard definition of
fitness used in the EGT filed, as shown in (9). Among those
n neighbors, the fitness of node using strategySm is

fm = (1−α)+α
(

[

(n−1)qr|m+1
]

u3+(n−1)qm|mu4

)

, (40)

and the fitness of node using strategySr is

fr = (1−α)+α
(

[

(n−1)qr|r+1
]

u1+(n−1)qm|ru2

)

. (41)

In such a case, the probability that the node using strategySr

is replaced bySm is

Pr→m =
nmfm

nmfm + nrfr + f0
. (42)

Therefore, the percentage of nodes using strategySm, pm,
increases by1/N with probability

Prob
(

∆pm =
1

N

)

= pr
∑

nr+nm=n

(

n

nm

)

qnm

m|rq
nr

r|r

· nmfm
nmfm + nrfr + f0

. (43)

Meanwhile, the edges that both nodes use strategySm increase
by nm, thus, we have

Prob
(

∆pmm =
2nm

nN

)

= pr

(

n

nm

)

qnm

m|rq
nr

r|r

· nmfm
nmfm + nrfr + f0

. (44)
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Similar analysis can be applied to the node using strategy
Sm. According to the IM update rule, a node using strategy
Sm is selected for imitation with probabilitypm. As shown
in the right part of Fig. 4, we also assume that there arenr

nodes using strategySr and nm nodes using strategySm

among itsn neighbors. The percentage of such a phenomenon
is
(

n
nm

)

qnm

m|mqnr

r|m. Thus, the fitness of this node is

g0 = (1− α) + α(nru2 + nmu3). (45)

Among thosen neighbors, the fitness of node using strategy
Sm is

gm = (1−α)+α
(

(n−1)qr|mu3+
[

(n−1)qm|m+1
]

u4

)

, (46)

and the fitness of node using strategySr is

gr = (1−α)+α
(

(n−1)qr|ru1+
[

(n−1)qm|r+1
]

u2

)

. (47)

In such a case, the probability that the node using strategySm

is replaced bySr is

Pm→r =
nrgr

nmgm + nrgr + g0
. (48)

Therefore, the percentage of nodes using strategySm, pm,
decreases by1/N with probability

Prob
(

∆pm = − 1

N

)

= pm
∑

nr+nm=n

(

n

nm

)

qnm

m|mqnr

r|m

· nrgr
nmgm + nrgr + g0

. (49)

Meanwhile, the edges that both nodes use strategySm de-
crease bynm, thus, we have

Prob
(

∆pmm = −2nm

nN

)

= pm

(

n

nm

)

qnm

m|mqnr

r|m

· nrgr
nmgm + nrgr + g0

. (50)

Combining (43) and (49), we have the dynamic ofpm as

ṗm =
1

N
Prob

(

∆pm =
1

N

)

− 1

N
Prob

(

∆pm = − 1

N

)

=
αn(n− 1)prm
N(n+ 1)2

(γ1u1 + γ2u2 + γ3u3 + γ4u4)+O(α2),(51)

where the second equality is according to Taylor’s Theorem
and weak selection assumption withα goes to zero [36], and
the parametersγ1, γ2, γ3 andγ4 are given as follows:

γ1 = −qr|r[(n− 1)(qr|r + qm|m) + 3], (52)

γ2 = −qm|m − qm|r[(n− 1)(qr|r + qm|m) + 2]− 2

n−1
,(53)

γ3 = qr|r + qr|m[(n− 1)(qr|r + qm|m) + 2] +
2

n−1
, (54)

γ4 = qm|m[(n− 1)(qr|r + qm|m) + 3]. (55)

In (51), the dot notationṗm represents the dynamic ofpm,
i.e., the variation ofpm within a tiny period of time. In such
a case, the utility obtained from the interactions is considered
as limited contribution to the overall fitness of each player.
On one hand, the results derived from weak selection often
remain as valid approximations for larger selection strength
[31]. On the other hand, the weak selection limit has a

long tradition in theoretical biology [37]. Moreover, the weak
selection assumption can help achieve a close-form analysis
of diffusion process and better reveal how the strategy diffuses
over the network. Similarly, by combining (44) and (50), we
have the dynamics ofpmm as

ṗmm =

n
∑

nm=0

2nm

nN
Prob

(

∆pmm =
2nm

nN

)

−
n
∑

nm=0

2nm

nN
Prob

(

∆pmm = −2nm

nN

)

=
2prm

(n+ 1)N

(

1 + (n− 1)(qm|r−qm|m)
)

+O(α).(56)

Besides, we can also have the dynamics ofqm|m as

q̇m|m =
d

dt

(pmm

pm

)

=
2

(n+ 1)N

prm
pm

(

1 + (n− 1)(qm|r − qm|m)
)

+O(α). (57)

C. Diffusion Probability Analysis

The dynamic equation ofpm in (51) reflects the the dynamic
of nodes updatingw using information from good nodes,
i.e., the diffusion status of good signals in the network. A
positive ṗm means that good signals are diffusing over the
network, while a negativėpm means that good signals have not
been well adopted. The diffusion probability of good signals
is closely related to the noise variance of good nodesσm.
Intuitively, the lower σm, the higher probability that good
signals can spread the whole network. In this subsection,
we will analyze the close-form expression for the diffusion
probability.

As discussed at the beginning of Section IV, the state of
whole network can be described by onlypm and qm|m. In
such a case, (51) and (57) can be re-written as functions of
pm andqm|m

ṗm = α ·G1(pm, qm|m) +O(α2), (58)

q̇m|m = G2(pm, qm|m) +O(α). (59)

From (58) and (59), we can see thatqm|m converges to
equilibrium in a much faster rate thanpm under the assumption
of weak selection. At the steady state ofqm|m, i.e., q̇m|m = 0,
we have

qm|m − qm|r =
1

n− 1
. (60)

In such a case, the dynamic network will rapidly converge onto
the slow manifold, defined byG2(pm, qm|m) = 0. Therefore,
we can assume that (60) holds in the whole convergence
process ofpm. According to (37)-(38) and (60), we have

qm|m = pm +
1

n− 1
(1− pm), (61)

qm|r =
n− 2

n− 1
pm, (62)

qr|m =
n− 2

n− 1
(1− pm), (63)

qr|r = 1− n− 2

n− 1
pm. (64)
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Therefore, the diffusion process can be characterized by only
pm. Thus, we can focus on the dynamics ofpm to derive the
diffusion probability, which is given by followingTheorem 1.

Theorem 1: In a distributed adaptive filter network which
can be characterized by aN -node regular graph with degree
n, suppose there are common nodes with noise varianceσr

and good nodes with noise varianceσm, where each common
node has connection edge with only one good node. If each
node updates its parameterw using the IM update rule, the
diffusion probability of the good signal can be approximated
by

Pdiff =
1

n+ 1
+

αnN

6(n+ 1)3
(ξ1u1+ξ2u2+ξ3u3+ξ4u4), (65)

where the parametersξ1, ξ2, ξ3 andξ4 are as follows:

ξ1 = −2n2 − 5n+ 3, ξ2 = −n2 − n− 3, (66)

ξ3 = 2n2 + 2n− 3, ξ4 = n2 + 4n+ 3. (67)

Proof: See Appendix.
UsingTheorem 1, we can calculate the diffusion probability

of the good signals over the network, which can be used
to evaluate the performance of an adaptive filter network.
Similarly, the diffusion dynamics and probabilities underBD
and DB update rules can also be derived using the same
analysis. The following theorem shows an interesting result,
which is based on an important theorem in [29], stating that
evolutionary dynamics under BD, DB, and IM are equivalent
for undirected regular graphs.

Theorem 2: In a distributed adaptive filter network which
can be characterized by aN -node regular graph with degreen,
suppose there are common nodes with noise varianceσr and
good nodes with noise varianceσm, where each common node
has connection edge with only one good node. If each node
updates its parameterw using the IM update rule, the diffusion
probabilities of good signals under BD and DB update rules
are same with that under the IM update rule.

V. EVOLUTIONARILY STABLE STRATEGY

In the last section, we have analyzed the information diffu-
sion process in an adaptive network under the IM update rule,
and derived the diffusion probability of strategySm that using
information from good nodes. On the other hand, considering
that if the whole network has already chosen to adopt this
favorable strategySm, is the current state a stable network
state, even though a small fraction of nodes adopt the other
strategySr? In the following, we will answer these questions
using the concept of evolutionarily stable strategy (ESS) in
evolutionary game theory. As discussed in Section III-A, the
ESS ensures that one strategy is resistant against invasionof
another strategy [38]. In our system model, it is obvious that
Sm, i.e., using information from good nodes, is the favorable
strategy and a desired ESS in the network. In this section, we
will check whether strategySm is evolutionarily stable.

A. ESS in Complete Graphs

We first discuss whether strategySm is an ESS in complete
graphs, which is shown by the following theorem.

Theorem 3: In a distributed adaptive filter network that can
be characterized by complete graphs, strategySm is always
an ESS strategy.

Proof: In a complete graph, each node meets every other
node equally likely. In such a case, according to the utility
matrix in (28), the average utilities of using strategiesSr and
Sm are given by

Ur = pru1 + pmu2, (68)

Um = pru3 + pmu4, (69)

where pr and pm are the percentages of population using
strategiesSr andSm, respectively. Consider the scenario that
the majority of the population adopt strategySm, while a small
fraction of the population adoptSr which is considered as
invasion,pr = ǫ. In such a case, according to the definition
of ESS in (7), strategySm is evolutionary stable ifUm > Ur

for (pr, pm) = (ǫ, 1− ǫ), i.e.,

ǫ(u3 − u1) + (1− ǫ)(u4 − u2) > 0. (70)

For ǫ → 0, the left hand side of (70) is positive if and only if

“u4 > u2” or “u4 = u2 andu3 > u1” . (71)

The (71) gives the sufficient evolutionary stable conditionof
strategySm. In our system, we haveu4 > u2 > u3 > u1,
which means that (71) always holds. Therefore, strategySm

is always an ESS if the adaptive filter network is a complete
graph.

B. ESS in Incomplete Graphs

Let us consider an adaptive filter network which can be
characterized by an incomplete regular graph with degreen.
The following theorem shows that strategySm is always an
ESS in such an incomplete graph.

Theorem 4: In a distributed adaptive filter network which
can be characterized by a regular graph with degreen, strategy
Sm is always an ESS strategy.

Proof: Using the pair approximation method [32], the
replicator dynamics of strategiesSm andSr on a regular graph
of degreen can be approximated simply by

ṗr = pr(pru
′
1 + pmu′

2 − φ), (72)

ṗm = pm(pru
′
3 + pmu′

4 − φ), (73)

whereφ = prpru
′
1+prpm(u′

2+u′
3)+pmpmu′

4 is the average
utility, and u′

1, u
′
2, u′

3 andu′
4 are given as follows:



























u′
1 = u1,

u′
2 = u2 + u′,

u′
3 = u3 − u′,

u′
4 = u4.

(74)

The parameteru′ depends on the three update rules (IM, BD
and DB), which is given by [32]

IM: u′ =
(n+ 3)u1 + u2 − u3 − (n+ 3)u4

(n+ 3)(n− 2)
, (75)

BD: u′ =
(n+ 1)u1 + u2 − u3 − (n+ 1)u4

(n+ 1)(n− 2)
, (76)

DB: u′ =
u1 + u2 − u3 − u4

n− 2
. (77)
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Fig. 5. Network information for simulation, including network topology for20 nodes (left), trace of regressor covariance Tr(Ru) (right top) and noise
varianceσi (right bottom).

In such a case, the equivalent utility matrix is

Sr Sm

Sr

(

u1 u2 + u′
)

Sm u3 − u′ u4
. (78)

According to (71), the evolutionary stable condition for
strategySm is

u4 > u2 + u′. (79)

Sinceu1 < u3 < u2 < u4, we haveu′ < 0 for all three
update rules. In such a case, (79) always holds, which means
that strategySm is always an ESS strategy. This completes
the proof of the theorem.

VI. SIMULATION RESULTS

In this section, we develop simulations to compare the
performances of different adaptive filtering algorithms, as well
as to verify the derivation of information diffusion probability
and the analysis of ESS.

A. Mean-square Performances

The network topology used for simulation is shown in the
left part of Fig. 5, where20 randomly nodes are randomly
located. The signal and noise power information of each node
are also shown in the right part of Fig. 5, respectively. In the
simulation, we assume that the regressors with sizeM = 5, are
zero-mean Gaussian and independent in time and space. The
unknown vector is set to bew0 = 15/

√
2 and the step size of

the LMS algorithm at each nodei is set asµi = 0.01. All the
simulation results are averaged over500 independent runnings.
All the performance comparisons are conducted among six
different kinds of distributed adaptive filtering algorithms as
follows:

• Relative degree algorithm [8];
• Hastings algorithm [17];
• Adaptive combiner algorithm [7];
• Relative degree-variance algorithm [6];
• Proposed error-aware algorithm with power form;
• Proposed error-aware algorithm with exponential form.

Among these algorithms, the adaptive combiner algorithm [7]
and our proposed error-aware algorithm are based on dynamic
combiners (weights), which are updated in each time slot. The

0 100 200 300 400 500 600 700 800 900 1000

-35

-30

-25

-20

-15

-10

-5

0

5

914 916 918 920 922 924 926 928 930 932
-35.2

-35.0

-34.8

-34.6

-34.4

-34.2

-34.0

-33.8

-33.6

-33.4

-33.2

-33.0

-32.8

Tr
an

si
en

t n
et

w
or

k 
EM

SE
 (d

B
)

Time Index

 Relative degree algorithm [8]
  Hastings algorithm [17]
 Adaptive combiner algorithm [7]
 Relative degree-variance algorithm [6]
 Proposed error-aware algorithm with power form
 Proposed error-aware algorithm with exponential form

(a) Network EMSE.

0 100 200 300 400 500 600 700 800 900 1000

-35

-30

-25

-20

-15

-10

-5

0

5

908 910 912 914 916 918 920 922 924 926
-35.0

-34.8

-34.6

-34.4

-34.2

-34.0

-33.8

-33.6

-33.4

-33.2

-33.0

-32.8

 Relative degree algorithm [8]
  Hastings algorithm [17]
 Adaptive combiner algorithm [7]
 Relative degree-variance algorithm [6]
 Proposed error-aware algorithm with power form
 Proposed error-aware algorithm with exponential form

Tr
an

si
en

t n
et

w
or

k 
M

SD
 (d

B
)

Time Index

(b) Network MSD.

Fig. 6. Transient performances comparison with known noisevariances.

difference is the updating rule, where the adaptive combiner
algorithm in [7] uses optimization and projection method,
and our proposed algorithms use the approximated EMSE
information.

In the first comparison, we assume that the noise vari-
ance of each node is known by the Hastings and rela-
tive degree-variance algorithms. Fig. 6 shows the transient
network-performance comparison results among six kinds of
algorithms in terms of EMSE and MSD. Under the similar
convergence rate, we can see that the relative degree-variance
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Fig. 7. Steady performances comparison with known noise variances.

algorithm performs the best. The proposed algorithm with
exponential form performs better than the relative degree
algorithm. With the power form fitness, the proposed algorithm
can achieve similar performance, if not better than, com-
pared with adaptive combiner algorithm, and both algorithms
performs better than all other algorithms except the relative
degree-variance algorithm. However, as discussed in Section 2,
the relative degree-variance algorithm requires noise variance
information of each node, while our proposed algorithm does
not. Fig. 7 shows the corresponding steady-state performances
of each node for six kinds of distributed adaptive filtering
algorithms in terms of EMSE and MSD. Since the steady-state
result is for each node, besides averaging over500 independent
runnings, we average at each node over100 time slots after
the convergence. We can see that the comparison results of
steady-state performances are similar to those of the transient
performances.

In the second comparison, we assume that the noise variance
of each node is unknown, but can be estimated by the method
proposed in [17]. Fig. 8 and Fig. 9 show the transient and
steady-state performances for six kinds of algorithms in terms
of EMSE and MSD under similar convergence rate. Since
the noise variance estimation requires additional complexity,
we also simulate the Hastings and relative degree-variance
algorithms without variance estimation for fair comparison,
where the noise variance is set as the network average vari-
ance, which is assumed to be prior information. Comparing
with Fig. 7, we can see that when the noise variance informa-
tion is not available, the performance degradation of relative
degree-variance algorithm is significant, about 0.5dB (12%
more error) even with noise variance estimation, while the
performance of Hastings algorithm degrades only a little since
it relies less on the noise variance information. From Fig. 8-(b),
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Fig. 8. Transient performances comparison with unknown noise variances.

we can clearly see that when the variance estimation method is
not adopted, our proposed algorithm with power form achieves
the best performance. When the variance estimation method
is adopted, the performances of our proposed algorithm with
power form, the relative degree-variance and the adaptive
combiner algorithm are similar, all of which perform better
than other algorithms. Nevertheless, the complexity of both
relative degree-variance algorithm with variance estimation
and the adaptive combiner algorithm are higher than that
of our proposed algorithm with power form. Such results
immediately show the advantage of the proposed general
framework. We should notice that more algorithms with better
performances under certain criteria can be designed based
on the proposed framework by choosing more proper fitness
functions.

B. Diffusion Probability

In this subsection, we develop simulation to verify the
diffusion probability analysis in Section IV. For the simulation
setup, three types of regular graphs are generated with degree
n = 3, 4 and6, respectively, as shown in Fig. 10-(a). All these
three types of graphs are withN = 100 nodes, where each
node’s trace of regressor covariance is set to be Tr(Ru) = 10,
the common nodes’s noise variance is set asσ2

r = 1.5 and
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Fig. 9. Steady performances comparison with unknown noise variances.

the good node’s noise variance is set asσ2
m ∈ [0.2, 0.8]. In

the simulation, the network is initialized with the state that all
common nodes choosing strategySr. Then, at each time step,
a randomly chosen node’s strategy is updated according to
the IM rules under weak selection (w = 0.01), as illustrated
in Section III-B. The update steps are repeated until either
strategySm has reached fixation or the number of steps has
reach the limit. The diffusion probability is calculated bythe
fraction of runs where strategySm reached fixation out of
106 runs. Fig. 10-(b) shows the simulation results, from which
we can see that all the simulated results are basically accord
with the corresponding theoretical results and the gaps are
due to the approximation during the derivations. Moreover,we
can see that the diffusion probability of good signal decreases
along with the increase of its noise variance, i.e., better signal
has better diffusion capability.

C. Evolutionarily Stable Strategy

To verify that strategySm is an ESS in the adaptive
network, we further simulate the IM update rule on a10× 10
grid network with degreen = 4 and number of nodes
N = 100, as shown in Fig. 11 where the hollow points
represent common nodes and the solid nodes represent good
nodes. In the simulation, all the settings are same with those in
the simulation of diffusion probability in Section VI-B, except
the initial network setting. The initial network state is set that
the majority of nodes adopt strategySm denoted with black
color (including both hollow and solid nodes) in Fig. 11, and
only a very small percentage of nodes use strategySr denoted
with red color. From the strategy updating process of the whole
network illustrated in Fig. 11, we can see that the network

(a) Regular graph structures with degreen = 3, 4 and6.
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Fig. 10. Diffusion probabilities under three types of regular graphs.

finally abandons the unfavorable strategySr, which verifies
the stability of strategySm.

VII. C ONCLUSION

In this paper, we proposed an evolutionary game theoretic
framework to offer a very general view of the distributed
adaptive filtering problems and unify existing algorithms.
Based on this framework, as examples, we further designed
two error-aware adaptive filtering algorithms. Using the graph-
ical evolutionary game theory, we analyzed the information
diffusion process in the network under the IM update rule, and
proved that the strategy of using information from nodes with
good signal is always an ESS. We would like to emphasize
that, unlike the traditional bottom-up approaches, the proposed
graphical evolutionary game theoretic framework providesa
top-down design philosophy to understand the fundamentals
of distributed adaptive algorithms. Such a top-down design
philosophy is very important to the field of distributed adaptive
signal process, since it offers a unified view of the formulation
and can inspire more new distributed adaptive algorithms to
be designed in the future.

APPENDIX

PROOF OFTHEOREM 1

Proof: First, let us definem(pm) as the mean of the
increment ofpm per unit time given as follows

m(pm) =
ṗm
1/N

≃ αn(n− 2)

(n− 1)(n+ 1)2
pm(1− pm)(apm + b). (80)
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Fig. 11. Strategy updating process in a10× 10 grid network with degreen = 4 and number of nodesN = 100.

where the second step is derived by substituting (60)-(64) into
(51) and the parametersa andb are given as follows:

a= (n− 2)(n+ 3)(u1 − u2 − u3 + u4), (81)

b= −(n−1)(n+3)u1−3u2+(n2+n−3)u3+(n+3)u4.(82)

We then definev(pm) as the variance of the increment ofpm
per unit time, which can be calculated by

v(pm) =
˙p2m − (ṗm)2

1/N
, (83)

where ˙p2m can be computed by

˙p2m =
1

N2

(

Prob
(

∆pm =
1

N

)

+ Prob
(

∆pm = − 1

N

)

)

=
2

N2

n(n− 2)

(n− 1)(n+ 1)
pm(1 − pm) +O(α). (84)

In such a case,v(pm) can be approximated by

v(pm) ≃ 2

N

n(n− 2)

(n− 1)(n+ 1)
pm(1− pm). (85)

Suppose the initial percentage of good nodes in the network is
pm0. Let us defineH(pm0) as the probability that these good
signals can finally be adopted by the whole network, i.e., all
nodes can update their ownw using information from good
nodes. According to the backward Kolmogorov equation [39],
H(pm0) satisfies following differential equation

0 = m(pm0)
dH(pm0)

dpm0
+

v(pm0)

2

d2H(pm0)

dp2m0

. (86)

With the weak selection assumption, we can have the approx-
imate solution ofH(pm0) as

H(pm0) = pm0 +
αN

6(n+ 1)
pm0(1− pm0)

(

(a+3b)+ apm0

)

.

(87)
Let us consider the worst initial system state that each

common node has connection with only one good node, i,e.,
pm0 = 1

n+1 , we have

H

(

1

n+ 1

)

≃ 1

n+ 1
+

αnN

6(n+ 1)3
(a+ 3b). (88)

By substituting (81) and (82) into (88), we can have the close-
form expression for the diffusion probability in (65). This
completes the proof of the theorem.

Remark: From (87), we can see that there are two terms
constituting the expression of diffusion probability: theinitial
percentage of strategySm, pm0 (the initial system state) and
the second term representing the changes of system state
after beginning, in whicha + 3b determines whetherpm is
increasing or decreasing along with the system updating. If
a+3b < 0, i.e., the diffusion probability is even lower than the
initial percentage of strategySm, the information from good
nodes are shrinking over the network, instead of spreading.
Therefore,a+ 3b > 0 is more favorable for the improvement
of the adaptive network performance.
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