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Abstract—Distributed adaptive filtering has been considered
as an effective approach for data processing and estimatioaver
distributed networks. Most existing distributed adaptive filtering
algorithms focus on designing different information diffusion
rules, regardless of the nature evolutionary characterist of a
distributed network. In this paper, we study the adaptive neéwork
from the game theoretic perspective and formulate the distibuted
adaptive filtering problem as a graphical evolutionary game With
the proposed formulation, the nodes in the network are regaded
as players and the local combiner of estimation informatiorfrom
different neighbors is regarded as different strategies dection.
We show that this graphical evolutionary game framework is ery
general and can unify the existing adaptive network algoribms.
Based on this framework, as examples, we further propose
two error-aware adaptive filtering algorithms. Moreover, we use
graphical evolutionary game theory to analyze the informaton
diffusion process over the adaptive networks and evolutioarily
stable strategy of the system. Finally, simulation resultare shown
to verify the effectiveness of our analysis and proposed miebds.

Index Terms—Adaptive filtering, graphical evolutionary game,
distributed estimation, adaptive networks, data diffusian.

I. INTRODUCTION

linear regression model as follow
dl(t) = ’Uliﬂg’wo =+ v; (t), (1)

wherew" is a deterministic but unknowh/ x 1 vector,d;(t)

is a scalar measurement of some random prodgss; ; is
the 1 x M regression vector at timé with zero mean and
covariance matrixR,, = IE(u;tuiyt) > 0, andv;(t) is the
random noise signal at timewith zero mean and varianeg.

Note that the regression daig; and measurement procass

are temporally white and spatially independent, respelstiv
and mutually. The objective for each node is to use the data
set{d;(t),u; .} to estimate parameteo®.

In the literatures, many distributed adaptive filteringaalg
rithms have been proposed for the estimation of parameter
w?®. The incremental algorithms, in which nodeipdatesw,

i.e., the estimation otw?®, through combining the observed
data sets of itself and nodé — 1, were proposed, e.g.,
the incremental LMS algorithim_[5]. Unlike the incremental
algorithms, the diffusion algorithms allow nodeto com-
bine the data sets from all neighbors, e.g., diffusion LMS
[6], [7] and diffusion RLS [8]. Besides, the projection-kds
adaptive filtering algorithms were summarized[ih [9], etlye,

Recently, the concept of adaptive filter network deriveRrojected subgradient algorithin [10] and the combine qui]
from the traditional adaptive filtering was emerging, wher@da@pt algorithm[11]. IN[12], the authors considered thee®

a group of nodes cooperatively estimate some parameterdTPility and analyzed the mobile adaptive networks.
interest from noisy measurements [1]. Such a distributéid es While achieving promising performance, these traditional

mation architecture can be applied to many scenarios, suictfigtributed adaptive filtering algorithms mainly focused o

wireless sensor networks for environment monitoring, lese

designing different information combination rules or diff

Ad-hoc networks for military event localization, distried SIOn rules among the neighborhood by utilizing the network
cooperative sensing in cognitive radio networks and so &Pology information and/or nodes’ statistical infornuati

[2], [3]. Compared to the classical centralized architegtu FOr €xample, the relative degree rule considers the degree
the distributed one is not only more robust when the cent&formation of each node [8], and the relative degree-vea
node may be dysfunctional, but also more flexible when tf5ele further incorporates the variance information of each

nodes are with mobility. Therefore, distributed adaptiVerfi

node [6]. However, most of the existing algorithms are some-

network has been considered as an effective approach for i intuitively designed to achieve some specific objective
implementation of data fusion, diffusion and processingrovSOrt of like bottom-up approaches to the distributed astepti

distributed networks [4].

In a distributed adaptive filter network, at every time imsta

t, nodei receives a set of datéd;(t),u; .} that satisfies a
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networks. There is no existing work that offers a design
philosophy to explain why combination and/or diffusionesil

are developed and how they are related in a unified view.
Is there a general framework that can reveal the relatipnshi
among the existing rules and provide fundamental guidance
for better design of distributed adaptive filtering alglomiis? In

our quest to answer the question, we found that in essence the
parameter updating process in distributed adaptive né&svor
follows similarly the evolution process in natural ecolcayi
systems. Therefore, based on the graphical evolutionanega

in this paper, we propose a general framework that can offer
a unified view of existing distributed adaptive algorithrasd
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provide possible clues for new future designs. Unlike the (dio), ul}
traditional bottom-up approaches that focus on some specifipode
rules, our framework provide a top-down design philosophy t
understand the fundamental relationship of distributexpéide
networks.

The main contributions of this paper are summarized a

follows.

1) We propose a graphical evolutionary game theoretic
framework for the distributed adaptive networks, wher -
nodes in the network are regarded as players and {the ™
local combination of estimation information from dif-
ferent neighbors is regarded as different strategies selecy¢ here js no fusion center in the network, then each node
tion. We show that the proposed graphical evolutionafyaeqs to exchange information with the neighbors to update
theorghc framework can unify existing adaptive filteringy, parameter as shown in the right part of Fig. 1. In thediter
algorithms as special cases. ture, several distributed adaptive filtering algorithmeeaeen

2) Based on the proposed framework, as examples, W oquced, such as distributed incremental algorithids [5
further design two simple error-aware distributed adagysripyted LMS [6], [7], and projection-based algorithi],
tive filtering algorithms. When the noise variance i1y These distributed algorithms are based on the clalssic
unknown, our proposed algorithm can achieve similajy, e filtering algorithms, where the difference is thades
performance compared with existing algorithms but with, ' se information from neighbors to estimate the paramete
lower complexity, which immediately shows the advan; o Taking one of the distributed LMS algorithms, Adapt-

tage of the proposed general framework. then-Combine Diffusion LMS (ATC)[6], as an example, the
3) Using the graphical evolutionary game theory, we anﬁarameter updating rule for nodes
lyze the information diffusion process over the adaptive

network, and derive the diffusion probability of infor- [ ;.1 =w;; + i > oiju;ft(dj (t) — u.j7tw.j7t)7

Left: centralized model. Right: distributed model.

mation from good nodes. JEN; 3)
4) We prove that the strategy of using information from Wi = Y GyXjirts
good nodes is evolutionarily stable strategy either in ' JEN; '

complete graphs or incomplete graphs. whereN; denotes the neighboring nodes set of no¢iaclud-

The rest of this paper is organized as follows. We summariggy nodei itself), o;; anda,; are linear weights satisfying the
the existing works in Section Il. In Section Ill, we describgo|lowing conditions

in details how to formulate the distributed adaptive filtgri

problem as a graphical evolutionary game. We then discuss oij = aij =0, if j¢N;,
the information diffusion process over the adaptive nekwor N N (4)
in Section IV, and further analyze the evolutionarily seabl >0 =1 > aj;=1
strategy in Section V. Simulation results are shown in 8ecti =t =t
VI. Finally, we draw conclusions in Section VII. In a practical scenario, since the exchange of full raw data
{d;(t),u;} among neighbors is costly, the weight; is
I1. RELATED WORKS usually set am;; = 0, if j # ¢, as in [6]. In such a case,

for nodei with degreen; (including node: itself, i.e., the
rﬁardinality of set\;) and neighbour sefiy, is,. .., i, }, We
can write the general parameter updating rule as

Let us consider an adaptive filter network witth nodes.
If there is a fusion center that can collect information fro
all nodes, then global (centralized) optimization methoals
be used to Qerlve the o_pt_lm_al updating rule for the parameter W1 = Ai,tJrl(F(wil,t),F(wig,t), o Plw;, t))7
w, wherew is a deterministic but unknowh/ x 1 vector for ’
estimation, as shown in the left part of Hi§. 1. For example, = Z Ai i1 () F(w;e), (5)
in the global LMS algorithm, the parameter updating rule can JEN;

be written as{[b] where F(-) can be any adaptive filtering algorithm, e.g.

N F(wi,t) = Wi+ + uu;‘t(di(t) — umwi,t) for the LMS al-
Wiy = Wy + p Z u; (dz‘ (t) - Ui,twt)7 (2)  gorithm, 4, ,.1(-) represents some specific linear combination

i=1 rule. The[(d) gives a general form of existing distributedd
wherey is the step size anfl}* denotes complex conjugationtive filtering algorithms, where the combination rudg ;1 (+)
operation. With [(R), we can see that the centralized LM®ainly determines the performance. Tallle | summarizes the
algorithm requires the information dfd;(¢), w; .} across the existing combination rules, where for all rulels ;1 (j) = 0,
whole network, which is generally impractical. Moreoverck if j ¢ N;.
a centralized architecture highly relies on the fusion eeahd From Tabl€]l, we can see that the weights of the first four
will collapse when the fusion center is dysfunctional or soncombination rules are purely based on the network topology.
data links are disconnected. The disadvantage of such topology-based rules is that atreey



TABLE |

DIFFERENTCOMBINATION RULES. @ - =
: 4;7 0 0 0:s O 0
“ﬂﬂ 6 0 0 0 06
Name Rule: A;(j) = X
= |4 [
Uniform [I1][13] L forall j e N; @ ® s 00 0
. %, for j # 1, @ €4¥ 0 0 0. 0 Oys
Maximum degree! [8][T4] Is:
1 7L1 , for j=i. 55 @ 0 2 0 0 0
L for j #1
Laplacian [I5][16] frmax . ) .
1— 77Lzmax for j = 4. Fig. 2. Graphical evolutionary game model.
Relative degre€ [8] T/\JG”V for all j € \V;

njo; strategic interactions. Such an equilibrium strategy inee
Srin o2 orallj e as the Evolutionarily Stable Strategy (ESS). For an evouti

{max{/\fi.,/\/'j}’ for j #1, ary game with\ players, a strategy profile* = (aj, ..., al),

Relative degree-variance][§]

Metropolis [T6][17] wherea? € X and X' is the action space, is an ESS if and

1= g Ai(k), for j=1i. only if, Va # a*, a* satisfies following[[19]:
o2 o
Hastings [[17] max{|NiloF,[N; |07}’ forj #4, 1) Ui(a;, a%;) <Ui(a;, a-;), (6)
' L= Y Ailk),  forj =i, 2) if Ui(a;, a*;) = U'(GZ‘, a’;),
Ui(ai, a—;) <Ui(a7, a—;), )

whereU; stands for the utility of player anda_; denotes the
sensitive to the spatial variation of signal and noise stiai Strategies of all players other than playeMe can see that
across the network. The relative degree-variance rule shole first condition is the Nash equilibrium (NE) conditiomga
better mean-square performance than others, which, howetle second condition guarantees the stability of the gfyate
requires the knowledge of all neighbors’ noise variances. AMoreover, we can also see that a strict NE is always an ESS.
discussed in Section I, all these distributed algorithnescaly  If all players adopt the ESS, then no mutant strategy could
focusing on designing the combination rules. Neverthelassinvade the population under the influence of natural seiacti
distributed network is just like a natural ecological sysiend Even if a small part of players may not be rational and take
the nodes are just like individuals in the system, which maut-of-equilibrium strategies, ESS is still a locally dtabtate.
spontaneously follow some nature evolutionary rulesemdt Let us consider an evolutionary game with strategies
of some specific artificially predefined rules. Besides,alth X = {1,2,...,m}. The utility matrix,U, is anm x m matrix,
various kinds of combination rules have been developetihose entriesu;;, denote the utility for strategy versus
there is no general framework which can reveal the unifyiri§rategy;. The population fraction of strategyis given by
fundamentals of distributed adaptive filtering problemmstde p:,» where >, p; = 1. The fitness of strategy is given
sequel, we will use graphical evolutionary game theory ® fi = Y-, pjui;- For the average fitness of the whole
establish a general framework to unify existing algorittand  population, we have = >, p; f;. The Wright-Fisher model
give insights of the distributed adaptive filtering problem has been widely adopted to let a group of players converge to

the ESS[[2l7], where the strategy updating equation for each

Il. GRAPHICAL EVOLUTIONARY GAME FORMULATION player can be written as
. i ' i pi(t) fi(t
A. Introduction of Graphical Evolutionary Game pit+1) = (t).fi( )_ (8)

Evolutionary game theory (EGT) is originated from the (1)
study of ecological biology[[18], which differs from theNote that one assumption in the Wright-Fisher model is that
classical game theory by emphasizing more on the dynamigsen the total population is sufficiently large, the frantiof
and stability of the whole population’s strategiesi[19ktead players using strategy is equal to the probability of one
of only the property of the equilibrium. EGT has been widelindividual player using strategy. From [8), it can be seen
used to model users’ behaviors in image processing [28hat the strategy updating process in the evolutionary game
as well as communication and networking aréal [21][22]s similar to the parameter updating process in adaptiver filt
such as congestion contrdl [23], cooperative sensing [2@koblem. It is intuitive that we can use evolutionary game to
cooperative peer-to-peer (P2P) streamingl [25] and dynanmidecmulate the distributed adaptive filter problem.
spectrum acces$ [26]. In these literatures, evolutionarpegy  The classical evolutionary game theory considers a pop-
has been shown to be an effective approach to model thlation of M individuals in a complete graph. However,
dynamic social interactions among users in a network. in many scenarios, players’ spatial locations may lead to
EGT is an effective approach to study how a group afn incomplete graph structure. Graphical evolutionary gam
players converges to a stable equilibrium after a period tifeory is introduced to study the strategies evolution rhsa



TABLE Il
CORRESPONDENCHBETWEEN GRAPHICAL EGTAND DISTRIBUTED
ADAPTIVE NETWORK. = = =
Initial population Selection for birth Selection for death Replace
Graphical EGT Distributed adaptive network (a) BD update rule.
N Players N Nodes in the network
Pure strategy of player with Node i combines information from (=3 (=3 (=3
n; neighbors{iy, iz, ...,in, } one of its neighborgiy, iz, ..., in, }
Initial population Selection for death Selection for birth Replace
Mixed strategy of playe# with Nodei’s combiner (Weight) (b) DB update rule.
n; neighbors{p1,p2, ..., pn; } {A4:(1), Ai(2), ..., Ai(ni) }
Mixed strategy update of player Combiner update of nodée = = =
Equilibrium Convergence network state

Initial population Selection for update Selection for imitation Imitation

(c) IM update rule.

finite structured population [28], where each vertex repnes Fig. 3. Three different update rules, where death selestane shown in
a player and each edge represents the reproductive redaijon 92"k Plue and birth selections are shown in red.

between valid neighbors, i.€;; denotes the probability that

the strategy of node will replace that of nodegj, as shown quality of its noise variancd/ is the player’s utility which is
in Fig.[2. Graphical EGT focuses on analyzing the ability of determined by the predefined utility matrix. The parameter
mutant gene to overtake a group of finite structured ressdentepresents the selection intensity, i.e., the relativerdmrtion
One of the most important research issues in graphical EGfthe game to fitness. The case— 0 represents the limit
is how to compute the fixation probability, i.e., the proliépi of weak selection[31], whilex = 1 denotes strong selection,
that the mutant will eventually overtake the whole struetlr where fitness equals utility. There are three differenttetya
population [29]. In the following, we will use graphical EGTupdating rules for the evolution dynamics, called as bittath
to formulate the dynamic parameter updating process in(BD), death-birth (DB) and imitation (IM) [32].

distributed adaptive filter network. . BD update rule: a player is chosen for reproduction
with the probability being proportional to fithess (Birth
B. Graphical Evolutionary Game Formulation process). Then, the chosen player’s strategy replaces one

neighbor’s strategy uniformly (Death process), as shown

in Fig.[3-(a).

« DB update rule: a random player is chosen to abandon
his/her current strategy (Death process). Then, the chosen
player adopts one of his/her neighbors’ strategies with
the probability being proportional to their fitness (Birth
process), as shown in Figd. 3-(b).

« IM update rule: each player either adopts the strategy

of one neighbor or remains with his/her current strategy,

with the probability being proportional to fitness, as

In graphical EGT, each player updates strategy according to
his/her fitness after interacting with neighbors in eacmtbu
Similarly, in distributed adaptive filtering, each node apEbs
its parametetw through incorporating the neighbors’ informa-
tion. In such a case, we can treat the nodes in a distributed fil
network as players in a graphical evolutionary game. Foenod
i with n; neighbors, it has:; pure strategie§ii, ia, ..., n, },
where strategyj means updatingv; .41 using the updated
information from its neighbof, A; ;+1(j). We can see thafl(5)
represents the adoption of mixed strategy. In such a case, th o
parameter updating in distributed adaptive filter netwaak c shown in F|g[B-(c). .
be regarded as the strategy updating in graphical EGT. TRble 1hese three kinds of strategy updating rules can be matched
summarizes the correspondence between the terminolagield; three different kinds of parameter updating algorithms i
graphical EGT and those in distributed adaptive network. _dlstrlbuted adaptive filtering. Suppose that therg_]ﬁreodes

We first discuss how players’ strategies are updated [h@ structured network, where the degree of noden;. We
graphical EGT, which is then applied to the parameter upgdatiUSe-V to denote the set of all nodes ad to denote the

in distributed adaptive filtering. In graphical EGT, the s neighborhood set of nodg including ”0_0,'@' itself. )
of a player is locally determined from interactions with all For the BD update rule, the probability that nodadopts

adjacent players, which is defined as[30] strategyj, i.e., using updated information from its neighbor
' nodej, is
f=(l-a)-B+a-U, © p—di 1 (10)

_ o _ N Ky’
where B is the baseline fithess, which represents the player’s , 2oken i1y
inherent property. For example, in a distributed adaptivehere the first ter% Is the probability that the neigh-
network, a node’s baseline fitness can be interpreted as buging nodej is chosen to reproduction, which is proportional



L : . TABLE Il
to its fitnessyf;, and the second terg- is the probability that DIFFERENTFITNESSDEFINITIONS.

nodei is chosen for adopting strateg']yNote that the network
topology information ;) is required to calculaté (10). In such

a case, the equivalent parameter updating rule for riczn Name Fitness f; =
be written by Uniform [IT][13] 1, forall j € \V;
fj 1 > Maximum 1, for j # 1,
Wil = <7— Flwj) + T, y
je/\;\{i} ZkeN fk n; degree([8][14] N —n; + 1, for j =i.
. R 1, forj #1
fi 1 Laplacian [15][16]
- 3 (ghg) Jreoan
JENN\{i} ZkeN frn; Relative degree [8] nj, forall j € N;
Similarly, for the DB updating rule, we can obtain the correr Re'atiYe njor?, forall j € N;
sponding parameter updating rule for nadas degree-variance _[6]
1— A (k S
wsrr = 1 Z ( f )F(wj )+ Metropols [T6]17] ( Zkfz (k) lmax{wi\,\:‘vj\z )
’ ni Ly \2ken; i - eI AR/ Zk;ﬁj i (k)
1= Y Aik) v v Ty
1- = Z L F(w; ). (12) Hastings [117] o2 HNl ilesd
n; 2\ D ken; Sk " TV T L Sk As (k)
FEN\{i} keEN; {IN;lo?,IN;I ]}

For the IM updating rule, we have

Wi = Z (L>F(w]‘,t). (13) From [an, we can see that each node g@ves_ more weight to
JEN: Zke/\/i Tk the information from itself through enhancing its own fitees

Similarly, for the Relative-degree-variance rule, thed#s can
Note that [(11), [(I2) and(13) are expected outcome of Bi, defir)(ed as g
DB and IM updated rules, which can be referred in [35], [37]. ,

The performance of adaptive filtering algorithm is usually fi=mnjo;=, forall jeN. (18)
evaluated by two measures: mean-square deviation (MSD) an

X . ‘fior the metropolis rule and Hastings rule, the correspond-
excess-mean-square error (EMSE), which are defined as P g P

ing fitness definitions are based on strong selection model

MSD = E||w; — w0||2’ (14) (o — 1), where utility plays a dominant role if](9). For the
EMSE — E ’ut(wt—l _ ’UJO)‘Q . (15) metropolis rule, the utility matrix of nodes can be defined as
) Nodei Nodej # i
Using [11), [12) and(13), we can calculate the network MSD o Ak .
and EMSE of these three update rules accordingto [6]. ode: < 1= AiK) vy ) (19)
Nodej #i \ maaumm 1~ Tk Ai(R)

C. Relationship to Existing Distributed Adaptive Filtering
Algorithms

In Section I, we have summarized the existing distributed
adaptive filtering algorithms i {5) and Talle I. In this sub- Node i
section, we will show that all these algorithms are the speci
cases of the IM update rule in our proposed graphical ECN-IE)dej Y
framework. Compare [5) and_(13), we can see that different
fitness definitions are corresponding to different disteébu Table[Ill summarizes different fitness definitions correspo
adaptive filtering algorithms in Tab[é |. For the uniformeul ing to different combination rules in Tablé I. Therefore, we
the fitness can be uniformly defined #is= 1 and using the can see that the existing algorithms can be summarized into

For the Hastings rule, the utility matrix can be defined as
Nodei Nodej # i

( L= 2 i Ai(R) max{|Nf3§fAma§}> (20)

2
%G,

max{\Ni|02?\j\fj\a’j2.} L—=2 ks Aj (k)

i

IM update rule, we have our proposed graphical EGT framework with corresponding
1 fitness definitions.
Wi 41 = Z ;F(wj,t), (16)
JEN D. Error-aware Distributed Adaptive Filtering Algorithm

which is equivalent to the uniform rule in Table I. Here, g jjystrate our graphical EGT framework, as examples, we

the definition of f; = 1 means the adoption of fixed fitnesgyther design two distributed adaptive algorithms by ciog

and weak selectiona( << 1). For the Laplacian rule, when gitferent fitness functions. As discussed in Section I, the

updating the parameter of nodgthe fitness of nodes iN;  existing distributed adaptive filtering algorithms eithely on

can be defined as the prior knowledge of network topology or the requirement
fi= { 1, for j # i, (17) of additional network statistics. All of them are not robust
770 nmax—mni + 1, forj =i to a dynamic network, where a node location may change



and the noise variance of each node may also vary witl

time. Considering these problems, we propose error-awai
algorithms based on the intuition that neighbors with low |
mean-square-error (MSE) should be given more weight whil¢ |,
neighbors with high MSE should be given less weight. The

instantaneous error of nodedenoted by;, can be calculated
by

0it = |di(t) — ui,t'wi,t71|27 (21)

where only local datdd;(t), u;, } are used. The approximated ' '
MSE of nodei, denoted by3;, can be estimated by following Fig- 4-  Graphical evolutionary game model.
update rule in each time slot,

Bix = (1 —vi4)Bit—1 + Vit0ir, (22) assume that all nodes have the same regressor stalistics
but different noise statistics.

wherev; ; is a positive parameter. We assume that nodes cal . . .
’ T . . . : n a graphical evolutionary game, the structured poputatio
exchange their instantaneous MSE information with neigabo : . . .
are either residents or mutants. An important concept is the

Based on the estimated MSE, we design tW? kinds of f'me?&ation probability, which represents the probability tthiae
exponential form and power form as follows: . .
mutant will eventually overtake the whole population|[34¢t
Power: f; = 5;{ (23) us consider a local adaptive filter network as shown in[Fig. 4,
Exponential: f; = e~ (24) where the hollow points denote common nodes, i.e., nodes
with common noise variance?; and the solid points denote
where\ is a positive coefficient. Note that the fitness definegbod nodes, i.e., nodes with a lower noise varianges? and
in (23) and [(24) are just two examples of our proposed frame?, satisfy thate? >> o2, . Here, we adopt the binary signal
work, while many other forms of fithess can be considereghodel to better reveal the diffusion process of good signfls
e.g., fi = log(\B; '). Using the IM update rule, we have  we regard the common nodes as residents and the good nodes
as mutants, the concept of fixation probability in EGT can be

-2
Wiyl = %F(wj,t), (25) applied. to analyze th(_a c_ii.ffusion.of good signal;lin the nekvyo
JEN: D keN, Bri According to the definition of fixation probability, we define
o= ABjt the diffusion probability in a distributed filter network #se
Wil = =5 F(wj,). (26) probability that a good signal can be adopted by all nodes to

=Bkt .
JEN; 2oken, € update parameters in the network.

From [25) and[{26), we can see that the proposed algorithms
do not directly depend on any network topology informatiory Srategies and Utility Matrix
Moreover, they can also adapt to a dynamic environment when

since the weights can be immediately adjusted accordingly® ; ) X
In [33], a similar algorithm was also proposed based on th@de updates its parametes;, it has the following two

instantaneous MSE information, which is a special case of RPSSiPle strategies:
error-aware algorithm with power form of = 2. Note that { S,, using information from common nodes
the deterministic coefficients are adopted when implemgnti

(29) and [2B), instead of using random combining efficient

with some probability. However, the algorithm can also bg, gych a case, we can define the utility matrix as follow:
implemented using a random selection with probabilities.

There will be no performance loss since the expected outcome S, Sm

is the same, but the efficiency (convergence speed) will b®:- ( 7 HNor,00) T Hom,or) ) _ ( up U ), (28)
lower. In Section V, we will verify the performance of theSm 7 Horom) TN (Om, om) uz U4
proposed algorithm through simulation.

(27)

Sm, using information from good nodes

wheren(z, y) represents the steady EMSE of node with noise
variancez? using information from node with noise variance
IV. DIFFUSIONANALYSIS y%. For example,x(o,,0,,) is the steady EMSE of node
In a distributed adaptive filter network, there are node& witvith noise variancer? adopting strategys,,, i.e., updating
good signals, i.e., lower noise variance, as well as nod#s wits w using information from node with noise varianeg,
poor signals. The principal objective of distributed adapt which in turn adopts strateg$,. In our diffusion analysis,
filtering algorithms is to stimulate the diffusion of googsals we assume that only two players are interacting with each
to the whole network to enhance the network performances.dther at one time instant, i.e., there are two nodes exchgngi
this section, we will use the EGT to analyze such a dynamamd combining information with each other at one time instan
diffusion process and derive the close-form expressionhfer In such a case, the payoff matrix is two-user case. Note that
diffusion probability. In the following diffusion analysj we a node chooses one specific neighbor with some probability,



which is equivalent to the weight that the node gives to thatrategyS,., similar we havey,|,, ¢/, and gy, ,. In such a

neighbor. case, we have

Since the steady EMSE(z,y) in the utility matrix is
determined by the information combining rule, there is no Prtpm =1 Grx +amx =1, (37)
general expressions for(z,y). Nevertheless, by intuition, PXy =Py "4x|y; Prm = Pmr; (38)

we know that the steady EMSE of node with variance
should be larger than that of node with variangg since
o2 >> o2, and adopting strategys,, should be more
beneficial than adopting stratedy. since the node can obtain
better information from others, i.ex(o,,0,) > 7(or, om) > U
w(om,or) > m(om, om). Therefore, we assume that the utility

matrix defined in[(28) has the quality as follow

where X andY are eitherr or m. The equations[(3[7-38)
imply that the state of the whole network can be described by
only two variablesp,, and g,,|,- In the following, we will
calculate the dynamics of,, andg,,,, under the IM update

B. Dynamics of p,, and gy, m
In order to derive the diffusion probability, we first need
Here, we use an example in_[17] to have a close-forta analyze the diffusion process of the system. As discussed

expression forr(z,y) to illustrate and verify this intuition. in the previous subsection, the system dynamics under IM
According to [17], with sufficiently small step size, the update rule can be represented by parametgrand q,,, ., .

U < uz < uz < Uqg. (29)

optimal 7(z,y) can be calculated by Thus, in this subsection, we will first analyze the dynamits o
4 pm andg,, |, to understand the dynamic diffusion process of
m(z,y) = cro? + 02%7 (30) the adaptive network. According to the IM update rule, a node
93 using strateg\s,. is selected for imitation with probability,..
TR Gk As shown in the left part of Fi§]4, among itsneighbors (not
a="gr 5 2= 72 (31) including itself), there are, nodes using strateg§, andr,
o2 = %7 o2 = 1227;2’ nodes using strateg$,,,, respectively, where:,. + n,, = n.

The percentage of such a conflguratlon(|§) ZJL qf{r In
where ¢ = col{(,...,(n} consists of the eigenvalues ofsuch a case, the fitness of this node is

R, (recall thatR,, is the covariance matrix of the observed

regression data,). According to [3D) and{31), we have Jo=(1=0a)+ a(nyur + npus), (39)

m(0r,0,) = €102+ 2, (32) where thg baseline fithess |s.normaI|ze.d las\_Ne can see
that [39) includes the normalized baseline fitness and also

202 o2 2 . . L I
m(op, Om) = cl% +2020—2T, (33) the fitness from utility, which is the standard definition of
Um;_ o m fitness used in the EGT filed, as shown[ih (9). Among those
w(Omr0e) = 1 20;,0; + 2C2U_m7 (34) n neighbors, the fithess of node using strat&jy is
o2, + o2 o2
7'('(0'm7 o’m) = clgfn + 2¢5. (35) fm = (1_O‘)+O‘([(n_1)QT|m+1} u3+(n_1)Qm\mu4)7 (40)

Suppose&?, = 702, through comparind (32=85), we can derivénd the fithess of node using stratefly is

the condition forr(o,,0,) > w(or,0m) > 7(om,00) >
T(0m,om) as follows Jr= (1_a)+a([(n_1)qr|T+1]u1+(n_1)qm“u2)' (1)

7Tr(Ry )02 In such a case, the probability that the node using stragggy
< m (36) s replaced byS,, is
According to [17], the derivation of optimat(z,y) in (30) Py = "o fn ) (42)
and [31) is based on the assumption fhat sufficiently small. M fm + 1 fr + fo

Therefore, the condition of. in [38) holds. In such a case,Therefore, the percentage of nodes using strat8gy p.
we can conclude that(o,, 0,) > 7(oy,0m) > w(om,0r) > increases byl /N with probability
7(0m, om), Which implies thatu; < ug < ug < uy. 1 n

In the following, we will analyze the diffusion process of Prob(Apm = —) = p, Z < )qfn’rrqﬁ;

strategy S,,, i.e., the ability of good signals diffusing over N Nt =n \Vm
the whole network. We consider an adaptive filter network Nn [ (43)
based on a homogenous graph with general degresnd .nmfm +n.fr+ fo

adopt the IM update rule for the parameter updaie [35]. I‘meanwhile the edges that both nodes use stragggyncrease
p- andp,, denote the percentages of nodes using strategb%;n thu,s we have

S, and S, in the population, respectively. Let.., prm, Pmr

and p,.,.,, denote the percentages of edge, wherg means Prob(A _ 2nm) _ N o on
the percentage of edge on which both nodes use straggy Pmm =" N Pri\ny, ) dmlrrle
and S,,. Let g, denote the conditional probability of a N fm

node using strateg$,, given that the adjacent node is using .nmfm +nefr+ fo (44)



Similar analysis can be applied to the node using stratelpng tradition in theoretical biology [37]. Moreover, theeak
Smn. According to the IM update rule, a node using strategselection assumption can help achieve a close-form asalysi
Sy is selected for imitation with probability,,,. As shown of diffusion process and better reveal how the strategyiskfé
in the right part of Fid. ¥4, we also assume that thererare over the network. Similarly, by combining_(44) arld(50), we
nodes using strategy, and n,, nodes using strategy,, have the dynamics gf,,,, as

among itsn, ne|ghbors The percentage of such a phenomenon no, 5
is nm . Thus, the fitness of this node is - 2Mm _ ZMm
go = (1 — @) + a(nruz + npmug). (45) e
2N, 2N,
Among thosen neighbors, the fithess of node using strategy - Z —Pr0b<Apmm = _W)
S IS nm=0
= 2 (1 (- 1) )) +0(0).(56)
Gm = (l—a)—i-a((n—l)qT‘Win—[(n—l)qmm—i—l}u;;), (46) = n+ N n Am|r —dm|m ).
and the fitness of node using strate§y is Besides, we can also have the dynamicg,gf,, as
= (1_a)+a((n_1)%“\rul+[(n_l)Qm|r+1]u2)- (47) ij\m = %(pm_m)
In such a case, the probability that the node using stratggy 2 Drm
is replaced byS, is TN o (1 + (n = 1)(gm)r — qm\m)) + O(a). (57)
Py = Hrdr . (48)
NnGm + Nrgr + go C. Diffusion Probability Analysis
Therefore, the percentage of nodes using strat§gy p»., The dynamic equation gf,,, in (51) reflects the the dynamic
decreases by/N with probability of nodes updatingw using information from good nodes,
1 n\ . o e., the diffusion status of good signals in the network. A
PrOb(Apm = _N) = Pm Z (nm)qmmmqr|7;71 positive p,, means that good signals are diffusing over the
”T*”;{:” network, while a negativg,,, means that good signals have not
. rgr . (49) been well adopted. The diffusion probability of good signal
_ NmGm + Nrgr 1 go is closely related to the noise variance of good nodgs
Meanwhile, the edges that both nodes use stratggyde- |ntuitively, the lowero,,, the higher probability that good
crease byn,,, thus, we have signals can spread the whole network. In this subsection,
M n\ . o we will analyze the close-form expression for the diffusion
Prob(Apmm = _W) = Dm (nm> D[ r|m probability.
N Gr As discussed at the beginning of Section IV, the state of
N - (50)  whole network can be described by onty, and g, In
mm 1 Gr 90 such a case[(b1) and{57) can be re-written as functions of
Combining [48) and[{49), we have the dynamicpgf as P @Nd gy
) 1 1 1 1
P = 3 PrOY Ap,, = <) = T-Prob{ Ap,, = - P = 0 Gi (s Gim) + O(02),  (58)
an(n —1 Imlm = G2(Pms @mim) + O(a). 59
= ﬁ(%ul + Y2u2 4 Y3us + Yaus) +0(a”)(51) i 2(pm i) () (59)

From [58) and [(59), we can see that,,, converges to
where the second equality is according to Taylor’s Theoregguilibrium in a much faster rate thap, under the assumption
and weak selection assumption withgoes to zerol[36], and of weak selection. At the steady stateq@fin, i.e., Gm|m = 0,

the parametersy, 72, v3 and~, are given as follows: we have )

"= _qr\r[(n - 1)(qr\r + qm\m) + 3]a (52) Imlm = Qmlr = n—1

— @mjr[(n = 1) (@r)r + Gpm) +2] — i7(53) In such a case, the dynamic network will rapidly convergeont
n—1 the slow manifold, defined b¥> (P, ¢mm) = 0. Therefore,

(60)

V2= —Gm|m

3= Grpr + Grpm[(n = D)(@r)r + Gnjm) + 2] + il’ (54) we can assume thal (60) holds in the whole convergence
n— .
process ofp,,,. According to [[37){(3B) and (60), we have
V4 = QWIm[(n - 1)(qr\r + qm\m) + 3] (55) 1
In (&), the dot notationj,, represents the dynamic gf, Gmjm = Pm+ —— 1(1 — Pm); (61)
i.e., the variation ofp,,, within a tiny period of time. In such n—2
a case, the utility obtained from the interactions is comsd Gmlr = T Pm> (62)
as limited contribution to the overall fithess of each player n—2
On one hand, the results derived from weak selection often Qrim = 1(1 — Pm); (63)

n—
remain as valid approximations for larger selection stieng n—2
[31]. On the other hand, the weak selection limit has a Grjp = 1= ——Pm

(64)




Therefore, the diffusion process can be characterized by on Theorem 3: In a distributed adaptive filter network that can
pm. Thus, we can focus on the dynamicspf to derive the be characterized by complete graphs, strat8gyis always
diffusion probability, which is given by followingheorem 1. an ESS strategy.

Theorem 1: In a distributed adaptive filter network which Proof: In a complete graph, each node meets every other
can be characterized by si-node regular graph with degreenode equally likely. In such a case, according to the utility
n, suppose there are common nodes with noise variance matrix in (28), the average utilities of using strategisand
and good nodes with noise varianeg, where each common S,,, are given by
node has conqection edge With only one good node. If each U, = prus + prtia, (68)
node updates its parametar using the IM update rule, the
diffusion probability of the good signal can be approxindate Um = prus + pmt, (69)
by where p, and p,, are the percentages of population using

1 anN strategiesS,. and .S,,,, respectively. Consider the scenario that

+ 5 (§1u1 +&§2uz +&3us +&aua), (65)  the majority of the population adopt strate§y,, while a smalll
n+1l 6(n+1) ; ) S ;
fraction of the population adop$, which is considered as
where the parameters, &2, {3 and¢y are as follows: invasion,p, = e. In such a case, according to the definition
£ =202 —5n+3, fo—=-n®—n-—3, (66) of ESS in[7), strateg)S,,? is evolutionary stable it/,,, > U,
for (pr,pm) = (6,1 —¢), i.e.,

- +(1- - > 0. 70
Proof: See Appendix. e(us —u1) + (1 — €)(ug — ug) (70)

Using Theorem 1, we can calculate the diffusion probability™ 0" € — 0, the left hand side of(70) is positive if and only if
of the good signals over the network, which can be used “ug >ux” or “uy =wug andug > uq”. (72)

tq e_valuate th? pe_rformance_ of an adaptiv_e_ _filter netWOrjfhe [71) gives the sulfficient evolutionary stable conditidn
Similarly, the diffusion dynamics and probabilities und&d strategyS,,. In our system, we have, > uy > us > uy,

and DB update rules can also be derived using the same.
analysis. The following theorem shows an interesting tes Wﬁmh means tha{(T1) always holds. Therefore, stratgy

which is based on an important theorem [[29], stafing t%ﬁ} always an ESS if the adaptive filter network is a con;plete

evolutionary dynamics under BD, DB, and IM are equivale
for undirected regular graphs. B. ESSin Incomplete Graphs

Thsorerr? 2 In a dc;stt)rljt\gjteddadaptllve f||terhne.tvr\]/odrk which Let us consider an adaptive filter network which can be
can be characterized by/é-node regular graph with degree ., 54 cterized by an incomplete regular graph with degree

supzosedtherg ﬁre common nodeshW|th nmae varlancmdd The following theorem shows that stratedy, is always an
good nodes with noise varianeg,, where each common no e'E:jg].S in such an incomplete graph.

has connection edge with only one good node. If each noderpeqrem 4: In a distributed adaptive filter network which

updates its parametar using the IM update rule, the diffusionCan be characterized by a regular graph with degrestrategy
probabilities of good signals under BD and DB update rulc=§m is always an ESS strategy.
are same with that under the IM update rule. Proof: Using the pair approximation method [32], the
replicator dynamics of strategi&,, and.S,. on a regular graph
V. EVOLUTIONARILY STABLE STRATEGY of degreen can be approximated simply by
In the last section, we have analyzed the information diffu- A / r
sion process in an adaptive network under the IM update rule, ,pr B pr(pTul,ermuQ, ¢); (72)
and derived the diffusion probability of strate@y, that using Pm = Pm(pruz + pmity — 9), (73)
information from good nodes. On the other hand, considerimghere¢ = p,p,u] + prpm (uh +us) + pmpmuly is the average
that if the whole network has already chosen to adopt thisility, and v}, v}, u4 andu), are given as follows:
favorable strategys,,, is the current state a stable network
state, even though a small fraction of nodes adopt the other
strategyS,.? In the following, we will answer these questions uy = ug +u,
using the concept of evolutionarily stable strategy (ESB) i wy = uz —
evolutionary game theory. As discussed in Section Ill-A8 th
ESS ensures that one strategy is resistant against invasion uy = us.
another strategy [38]. In our system model, it is obvious thghe parameter’ depends on the three update rules (IM, BD
Sy, 1.., using information from good nodes, is the favorablgnd DB), which is given by [32]
strategy and a desired ESS in the network. In this section, we (n+ 3)us + us — uz — (n+ 3)us

Pyiff =

&=2m>+2n -3, & =n>+4n+3. (67)

I
ul—ul,

(74)

: : ; i IM: o = ( Y 75
will check whether strategyp,,, is evolutionarily stable. U ) , (75)
A. ESSin Complete Graphs BD: o = T 1)u1(:f21)_(:3__2)(n+ 1)U41 (76)

We first discuss whether stratedy,, is an ESS in complete o, upFug —u3z —ug
graphs, which is shown by the following theorem. DB ' = n_29 : (77)



Fig. 5.

varianceo; (right bottom).

In such a case, the equivalent utility matrix is

).

According to [[71), the evolutionary stable condition for

S, S
S, Uy ug + u’
Sy \ us —u' m

strategyS,, is

Sinceu; < uz < us < ug, We haveu’ < 0 for all three ]
update rules. In such a case ](79) always holds, which means ;.

Ug > us +u'.
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that strategyS,, is always an ESS strategy. This completes 0 10 20 300 40 s0 &0 700 s0 900 1000
the proof of the theorem.

In this section, we develop simulations to compare the 1 ~0— Relative degree algorithm [§]
performances of different adaptive filtering algorithmsweell
as to verify the derivation of information diffusion probitly

VI. SIMULATION RESULTS

and the analysis of ESS.

A. Mean-square Performances

The network topology used for simulation is shown in the
left part of Fig[®, where20 randomly nodes are randomly
located. The signal and noise power information of each node
are also shown in the right part of Hig. 5, respectively. la th
simulation, we assume that the regressors with &ize- 5, are
zero-mean Gaussian and independent in time and space. The
unknown vector is set to ba® = 115/\/5 and the step size of
the LMS algorithm at each nodseis set asu; = 0.01. All the

Time Index

(a) Network EMSE.

5.

04 Hastings algorithm [17]
—A— Adaptive combiner algorithm [7]

—~ —W— Relative degree-variance algorithm [6]
% 54 —&O— Proposed error-aware algorithm with power form
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Time Index

(b) Network MSD.

simulation results are averaged 0%6f independent runnings. Fig. 6. Transient performances comparison with known neaeances.
All the performance comparisons are conducted among six

different kinds of distributed adaptive filtering algoritis as

follows:

Relative degree algorithm|[8];
Hastings algorithm[[17];
Adaptive combiner algorithm [7];

Relative degree-variance algorithi [6];
Proposed error-aware algorithm with power form;

difference is the updating rule, where the adaptive combine

algorithm in [7] uses optimization and projection method,

and our proposed algorithms use the approximated EMSE
information.

In the first comparison, we assume that the noise vari-
ance of each node is known by the Hastings and rela-

Proposed error-aware algorithm with exponential form.tive degree-variance algorithms. Hif.6 shows the tramsien
Among these algorithms, the adaptive combiner algorithjn [Aetwork-performance comparison results among six kinds of
and our proposed error-aware algorithm are based on dynamligorithms in terms of EMSE and MSD. Under the similar
combiners (weights), which are updated in each time slo¢. Thonvergence rate, we can see that the relative degreetwaria
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—B—Relative degree algorithm [8] 5 . .
Hastings algorithm [17] g - Relafwe degife algm’lthn? [8] ) )
B . . 0 Hasting algorithm [17] with noise estimation
—A— Adaptive combiner algorithm [7] . Hasting algorithm [17] without noise estimation

—&A— Adaptive combiner algorithm [7]

5] —W7— Relative degree-variance algorithm [6] with noise estimation
—O— Relative degree-variance algorithm [6] withiout noise estimation
—&— Proposed error-aware algorithm with power form

210 4 Proposed error-aware algorithm with exponential form

225

—%/— Relative degree-variance algorithm [6]
—&— Proposed error-aware algorithm with power form
Proposed error-aware algorithm with exponential form

Steady EMSE (dB)
Transient network EMSE (dB)
7

-30

Node Index 35
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(a) Node's EMSE. 0 100 200 300 400 500 600 700 800 900 1000
3254 Time Index

-33.04

(a) Network EMSE.

3354

340 —@ Relative degree algorithm [8]

Hasting algorithm [17] with noise estimation
0 Hasting algorithm [17] without noise estimation
—&— Adaptive combiner algorithm [7]
—7— Relative degree-variance algorithm [6] with noise estimation
—OQ— Relative degree-variance algorithm [6] withiout noise estimation
—&— Proposed error-aware algorithm with power form

Proposed error-aware algorithm with exponential form

3454

Steady MSD (dB)

-35.0

Node Index

(b) Node's MSD.

Fig. 7. Steady performances comparison with known noisievegs. »

225

Transient network MSD (dB)
7

algorithm performs the best. The proposed algorithm with 304
exponential form performs better than the relative degree

algorithm. With the power form fitness, the proposed algponit o

T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000

can achieve similar performance, if not better than, com- Time Index
pared with adaptive combiner algorithm, and both algorghm (b) Network MSD.

performs better than all other algorithms except the redati
degree-variance algorithm However, as discussed in@e2fi Fig. 8. Transient performances comparison with unknowseeariances.
the relative degree-variance algorithm requires noisenae

information of each node, while our proposed algorithm does . N :
not. Fig[T shows the corresponding steady-state perfaresanwe can clearly see that when the variance estimation meghod i
) not adopted, our proposed algorithm with power form actdgeve

of each node for six kinds of distributed adaptive filteringpe best performance. When the variance estimation method
algorithms in terms of EMSE and MSD. Since the steady-state P '

resultis for each node, besides averaging 6vérindependent IS adopted, the performances of our proposed algorithm with

; . power form, the relative degree-variance and the adaptive
runnings, we average at each node oi@d time slots after : . - )
c%linblner algorithm are similar, all of which perform better

the convergence. We can see that the comparison result . .
9 - P . %han other algorithms. Nevertheless, the complexity ohbot
steady-state performances are similar to those of thei¢mans . o . . . )
relative degree-variance algorithm with variance estiomat

performances. and the adaptive combiner algorithm are higher than that

In the secor!d comparison, we assume_thatthe noise VariaHf:%ur proposed algorithm with power form. Such results
of each node IS unkr_lown, but can be estimated by th_e metnﬂﬂnediately show the advantage of the proposed general
proposed in([17]. Fig.J8 and Figl 9 show the transient anghmework. We should notice that more algorithms with brette
steady-state performances for six kinds of algorithmsimse oty mances under certain criteria can be designed based

of EM_SE a“‘?' MSD u_nder_ smﬂar_converg_gnce rate: Sin the proposed framework by choosing more proper fitness
the noise variance estimation requires additional coniylex ¢, ~ions

we also simulate the Hastings and relative degree-variance

algorithms without variance estimation for fair compariso - .

where the noise variance is set as the network average v&i-Diffusion Probability

ance, which is assumed to be prior information. ComparinglIn this subsection, we develop simulation to verify the
with Fig.[4, we can see that when the noise variance informdiffusion probability analysis in Section IV. For the simatibn
tion is not available, the performance degradation of kadat setup, three types of regular graphs are generated witleeegr
degree-variance algorithm is significant, about 0.5dB (12%= 3, 4 and6, respectively, as shown in F[g.]10-(a). All these
more error) even with noise variance estimation, while thtaree types of graphs are witN = 100 nodes, where each
performance of Hastings algorithm degrades only a littheeessi node’s trace of regressor covariance is set to &Ty = 10,

it relies less on the noise variance information. From[Bih)8 the common nodes’s noise variance is setrAs= 1.5 and
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—B— Relative degree algorithm [8]

Hastings algorithm [17] with noise estimation

Hastings algorithm [17] without noise estimation

Adaptive combiner algorithm [7]
—/— Relative degree-variance algorithm [6] with noise estimation
—E&— Relative degree-variance algorithm [6] withiout noise estimation
—&— Proposed error-aware algorithm with power form

Proposed error-aware algorithm with exponential form

(a) Regular graph structures with degree= 3, 4 and6.
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Fig. 9. Steady performances comparison with unknown nadsiances. . . »
finally abandons the unfavorable strate§y, which verifies

the stability of strategys,,.

the good node’s noise variance is setads € [0.2,0.8]. In
the simulation, the network is initialized with the statattll
common nodes choosing stratefy. Then, at each time step,
a randomly chosen node’s strategy is updated according t
the IM rules under weak selectiom (= 0.01), as illustrated framework to offer a very general view of the distributed
in Section IlI-B. The update steps are repeated until either

o adaptive filtering problems and unify existing algorithms.
strategyS,,, has reached fixation or the number of steps h : :
reach the limit. The diffusion probability is calculated the Fhsed on this framework, as examples, we further designed

two error-aware adaptive filtering algorithms. Using thapir-

fraction of runs where strateg$,, reached fixation out of . . . .
10° runs. FiglID-(b) shows the simulation results, from whicﬁ.al eyolutlonary game theory, we analyzed the information
) ’ iffusion process in the network under the IM update rulg, an

we can see that all the simulated results are basically dccor L . )
. . : roved that the strategy of using information from node$wit
with the corresponding theoretical results and the gaps are

S . C good signal is always an ESS. We would like to emphasize
due to the approximation during the derivations. Moreower, that. unlike the traditional bottom-up approaches. thaosed
can see that the diffusion probability of good signal desesa ' P app , PP

. : X ) . ; graphical evolutionary game theoretic framework provides
along with the Increase of _|t.s noise variance, i.e., betgna top-down design philosophy to understand the fundamentals
has better diffusion capability.

of distributed adaptive algorithms. Such a top-down design
philosophy is very important to the field of distributed ati\eg
C. Evolutionarily Stable Strategy signal process, since it offers a unified view of the formiolat

) ] ) . and can inspire more new distributed adaptive algorithms to
To verify that strategyS,, is an ESS in the adaptivepq designed in the future.

network, we further simulate the IM update rule o(ax 10

VIl. CONCLUSION

I this paper, we proposed an evolutionary game theoretic

grid network with degreen = 4 and number of nodes

N = 100, as shown in Fig. 11 where the hollow points APPENDIX

represent common nodes and the solid nodes represent good PROOF OFTHEOREM 1

nodes. In the simulation, all the settings are same withetlios

the simulation of diffusion probability in Section VI-B, egpt Proof: First, let us definem(p,,) as the mean of the

the initial network setting. The initial network state ig figat increment ofp,,, per unit time given as follows
the majority of nodes adopt stratedy,, denoted with black

color (including both hollow and solid nodes) in Higl 11, and (D) = Pm
only a very small percentage of nodes use stratggdenoted " 1/N
with red color. From the strategy updating process of thelevho an(n — 2)

network illustrated in Fig:d1, we can see that the network “-Dn+ 1)2p’”(1 — Pm)(apm +b). (80)
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Fig. 11. Strategy updating process in@ x 10 grid network with degreex = 4 and number of node®” = 100.

where the second step is derived by substitufing (60)-(@4) i By substituting[(8l1) and (82) intd_(B8), we can have the close

(51) and the parametetsandb are given as follows:
a=(n—2)(n+3)(ur —uz —us +us), (81)
b= —(n—1)(n+3)u1—3uz+(n*+n—3)uz+(n+3)us.(82)

We then define(p,,) as the variance of the incrementgf,
per unit time, which can be calculated by

R
olpm) = P e 89

wherep2, can be computed by

% (Prob(Apm = %) + Prob(Apm = —%))

- %%pmu —pa) +0(a).  (84)

In such a casey(p.,) can be approximated by
2 nn-2)

v(pm) = Nmpm(l — Pm)- (85)

P2,

form expression for the diffusion probability ifi_(65). This
completes the proof of the theorem. ]

Remark: From [87), we can see that there are two terms
constituting the expression of diffusion probability: timétial
percentage of strategy,., pm, (the initial system state) and
the second term representing the changes of system state
after beginning, in whichu + 3b determines whethep,, is
increasing or decreasing along with the system updating. If
a+3b < 0, i.e., the diffusion probability is even lower than the
initial percentage of strateg§,,,, the information from good
nodes are shrinking over the network, instead of spreading.
Thereforea + 3b > 0 is more favorable for the improvement
of the adaptive network performance.
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