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Abstract
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I. INTRODUCTION

Relay communications have been long studied to enhanceath&city and expand the coverage of
wireless networks. For conventional communications betwtvo users via a single relay, four transmis-
sion phases in time or frequency are typically required: twed for user-to-relay, and the other two for
relay-to-user. To improve spectral efficiency, a two-wakaymg (TWR) method, referred to as physical-
layer network coding (PNC) [1], was proposed to accompligliréctional data exchange in two phases.
This PNC technique is remarkable for its potential to douhke system throughput.

PNC for two-way relay channels has gained a growing intenestcent yeard [1]=[4]. Various relaying
strategies have been proposed to exploit the benefit of PhNyding but not limited to, decode-and-
forward [1], compress-and-forward![2], amplify-and-faxd (AF) [3], and compute-and-forward! [4].
Particularly, it was shown in_[5] that PNC with nested ladticoding can achieve the capacity of the
single-input single-output Gaussian two-way relay chamiénin % bit. Later, the authors in_[6],[7]
showed that lattice-coding techniques can be efficienttpiiporated into multiple-input multiple-output
(MIMO) TWR, where the users and the relay are equipped withiptie antennas. It was revealed therein
that near-capacity performance can be achieved in MIMO wag-relay channels.

More recently, multiuser two-way relaying, in which mulgpusers exchange data via a single relay
in a pairwise or non-pairwise manner, has been intensivielgtiesd in the literature[|8]=[15]. In these
approaches, analogue network coding (ANC) is employed,simple AF operations are implemented at
the relay and self interference is canceled at the user endiiple antennas are deployed at the relay
to provide extra degrees of freedom, which enables a patdmtbst of the system throughput. However,
to fully exploit this potential requires a proper design bé tbeamforming (or callegrecoding matrix
at the relay, which is in general a difficult problem. To dately approximate algorithms have been
proposed based on specific design criteria, such as zerimdo[10], power minimization [11], max-min
signal-to-interference-plus-noise ratio (SINR)|[14]damaximum sum-rate [13][ [15].

In this paper, we develop a unified framework to solve the Weamning optimization problems for



multiuser TWR. We use the classic max-min SINR problem asctive of our framework. Our major
contribution is to show that the max-min SINR solution canused as a corner stone to pursue the
optimal beamforming designs based on arbitrary utilityctions that are monotonic in the user SINRs.
Our framework works for various optimization criteria, Buags power minimization, weighted sum-rate
maximization, average symbol-error-rate (SER) or bitemate (BER) minimization, etc. Relying on
solving a series of max-min SINR problems, a polyblock owpproximation algorithm is developed
to find the desired solutions with guaranteed convergendegéobal optimality (provided that the core
max-min SINR solver yields the optimal solution).

The optimality and efficiency of our proposed framework dejseon the choice of the max-min SINR
solver. In our approach, the max-min SINR problem, treated anax-min fractional program, is solved
using a Dinkelbach-type algorithri [18]. This algorithm jstimal for the two-user case and can provide
near-optimal performance for the general case of multipiespof users. It is worth mentioning that the
max-min SINR problem can be alternatively solved using tisediion search method in [14] with linear
(i.e., geometrically fast) convergence. In contrast, tteppsed Dinkelbach-type algorithm has a quotient-
(Q-)superlinear convergence speled [18], and hence in glesdribit faster convergence (and thus reduced
computation) than the bisection search method.

Furthermore, the proposed unified approach can provide riapoinsights for tackling the optimal
beamforming designs in other emerging network models aitihge. For instances, we extend the
proposed framework to cover the beamforming design in bolative TWR and multi-pair MIMO TWR.
Specifically, for collaborative TWR, we propose the beammiog design under an individual power
constraint at each relay node, which is more practical tihansettings in[[16],[[17] (where the relays
share a total power budget). For multi-pair MIMO TWR, anatere optimization algorithm is developed
to jointly optimize the transmit and receive beamformingtees of each user, together with the relay
precoding matrix. Extensive numerical results are presetd demonstrate the merits of the proposed

beamforming solutions.



The rest of this paper is organized as follows. Section Ilines the notations in use and the system
model. Section Il discusses the max-min SINR problem asdaiution, as well as the relation between
the power minimization design and the max-min SINR designurfied approach for beamforming
designs is presented in Section IV. Sections V and VI disgeseralizations of the proposed framework
to collaborative beamforming for multi-pair multi-relayMR, as well as to multi-pair MIMO TWR. The
proposed schemes are tested and compared with existirgatites in Section VII, followed by the

conclusions in Section VIII.

[I. PRELIMINARIES
A. Notation

The following notation is used throughout this paper. Batdf fonts denote vectors or matrices, the
ith entry of a vector, saw, is denoted by:;; RE*¥ and CX*M denote theK-by-M dimensional real
and complex space, respectiveR% := {a € R**! | a > 0}. Note that the vector inequalities, such as
a > 0, are defined element-wiséz| denotes the nearest integer greater than or equal t9* denotes
complex conjugate(-)” denotes transpose, arid” conjugate transpose; represents the Kronecker
product;® denotes the Schur-Hadamard (element-wise) product;)tdenotes trace operator for matrix
A, veq A) operator creates a column vector from a matixoy stacking its column vectors below one
another,A'/? denotes the square-root of a positive semi-definite madrixdiag A, ..., A,,) denotes a
block-diagonal matrix withA,, ..., A), as the submatrices in the diagongl; || denotes the Euclidean
norm for vectors, and- | denotes norm of a complex scal@and1 denote all-zero and all-one vectors;
A > 0 means that a square mattk is positive semi-definite; a circularly symmetric compleauSsian
random vectorr with meanz and covariance matri¥ is denoted as ~ CN(Z,X), where~ stands

for “distributed as”;.A\B denotes the set obtained by excluding all the elements oB $eim set.A.



Fig. 1. A multi-pair two-way relaying system.
B. System Model for Multi-Pair TWR

As shown in Fig. 1, we consider a two-way relay (bidirectipremmmunication betweetk pairs of
users, where the relay is equipped with antennas and each user has a single anténna [8], [9]. Without
loss of generality, it is assumed that tfig: — 1)th and the(2k)th users communicate with each other,
k=1,..., K, through two phases. The communication channels betweerelly and users are assumed
to be flat-fading over a common narrow band. Following theveation in [8], [9], [13], [15], we assume
global channel state information (CSlI), i.e., all the usard the relay have full CSI.

In the first phase of the two-way relaying communicationugkrs transmit to the relay simultaneously,

and the received signal,(t) € CM*! at the relay is

2K
yr(t) = Z hi\/pisi(t) + nr(t), (1)
i=1

where h;, p; and s;(t) denote the channel coefficient vector from uséo the relay, transmit power of
useri, and unit-power transmitted symbol from userespectively, andvz(t) € CM*! denotes the noise
vector. With a given covariance matriXp, it is assumediy(t) ~ CN(0, Ag).

Upon receivingy (), the non-regenerative relay amplifies and forwards theasign (1) = Ayy(¢)

to all users in the next phase, whefec CM*M is the relay beamforming matrix. The transmit power



at the relay is

pr(A) = El|zr(t)|

2
=F

A(Z hiy/Pisi(t) +ng(t))

2K
=3 pillAR|? + tr(AARA™).
=1
Suppose that channel reciprocity holds for the uplink angrdimk transmission between the relay and

users. The received signal at user {1,...,2K} is given by
2K
yi(t) = hl A " hj/pjsi(t) + b Ang(t) + ni(t) (2)
j=1

where the receive noise;(t) ~ CN(0, 0?).

Upon receiving the downlink signal, usétk — 1) intends to detect the signaj,(t) from user2k, and
the term%hgk_lA hor_1s9,_1(t) in (@) is referred to as “self-interference”. In the spirft ANC,
this self-interference can be canceled before signal ietecThe SINR at th€2k — 1)th user is thus

pok| Ry Ahoy|?

SINRy,_1(A) = - ; 3)
Zi;«éZk—1,2k[pi|h2Tk—1Ahi|2] +IA ARy, |12+ 03
and, similarly, the SINR at thé2k)th user is
iR Aoy |?
SINR%(A) _ P2k 1| 2%k 2k 1\ (4)

D son1nlpil P AR + | A AT R, 2 + o3,
Based on the SINRg](3) and] (4), we will develop a unified apgrd®@r beamforming designs in

AF-based TWR under different criteria.

IIl. SINR BALANCING OPTIMIZATION

In this section, we describe two alternative forms of the SIibhalancing problem. The effective solution

to this problem will serve as a corner stone of our proposachéwork.



A. Max-Min SINR Problem

We start with the first form of SINR balancing, i.e., the maxr8INR problem formulated as

)\Opt —max min SIL(A)
A i=1,..2K Vs
2K (5)

s.t. > pillAh|* + tr(AARA™) < P

1=1

where~,; denotes the SINR target for usgrand P denotes the total power budget at the relay.
Relying on a semi-definite programming (SDP) based Dinlalkgpe algorithm, this max-min SINR

problem has been solved for one-pair (i&.= 1) TWR [19]. The problem has also been approximately

solved using bisection search over the SDP relaxation solieg related power minimization problems

for the general case oK-pair users([14]. Here, we generalize the Dinkelbach-tylgerdhm in [19]

to approximately solvel {5) for the case af-pair users. We show that the proposed algorithm is more

efficient than the bisection search method.

We start with the following definitions:
q;; = vedh;h}) and B; :=diagh;,...,h]) e C*"*) (6)

whereh! is repeated byl\/ times in B;.
Let © = > X [phih] + Ag, and @ = (©Y*)T © I,,. Further leta := veqA), X = aa”,

E, := ®"®. Then we have the relay transmit power:

2K 2K
> pill Ahi|? + tr(AARAT) = tr(A(Y pihih!" + AR)A") = | @al* = tr(EoX).

i=1 i=1

With (@), we also havéh! Ah,|* = |g%al? andh! AARr AR} = |A}>A"R}|> = | A;{* Bia|*. Hence,

we have
SINRy_1(a) _ P2kl @31 o @l
V2k—1 Vor-1(D ok 1,00 Pil @3 017 + IAKBa_1all? + 03, _,)
and
SINRy(a) Pok—1|@3y 210

- 1/2 :
Yok Yo X sk 1.0 Pil @3 sal? + [|AF* Baral2 + 03,)
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. 1 * 2 . % H 1) .
DEfInEEék)—l = kaQ2k—1,2kqgk—1,2k’ Eék)—l =D idok—1.2k [piqzk—quk—u] + By, _1ArBay-1, Eék) =

* 2 *
P2k—1G5p 21Dk 21 and E) := > k1,06 i3 iG] + By ArBoy, fork=1,... K.

In terms of X, let
£(X) =tr(EYX) and ¢:(X) == tr(EP X) + 02, fori=1,...,2K. 7)

Using X as the optimization variable and dropping the constraimaok X ) = 1, we can relax[{5) to

AP — max  min filX)
X i=1,..2K 7;g;(X) (8)

s.t. X > 0, tr(EQX) < PR-

The problem[(B) is a max-min fractional program, and can beeslousing a primal Dinkelbach-type
algorithm [18]. This algorithm is based on solving a seqeeotthe following parametric optimization

problems for)\ < \°Pt

X i=1,...,2K (9)
s.t. X >0, tr(EyX)< Pg.

Let E; := E\Y — \,E”, i = 1,...,2K. The problem[(D) becomes a convex SDP as

min — T

X,T (10)
s.t. X =0, tr(EyX)<Pr, t(EX)-\yol>r1, i=1,...,2K.

This SDP can be solved by the interior point method in polyiabnime [20].

Relying on this SDP solution, we propose the following aithon to solve [(8):

Algorithm 1: for max-min SINR problem

Initialize: A° =

P 1/2 _ 0 0\H _
(fol(pi||h¢1ﬁ2)+tr(AR)) r2r, x© =veq A’ )veq A”)", andj = 0.

Repeat j = j + 1,

fi(xYY) .
=L 2K S (XTI

given A\, solve [ID) with SDP to obtainX ) = arg maxx min;—;__ox[fi(X) — AD,0:(X)];

Until min,-zl 77777 QK[fZ(X(J)) - A(J)vlgl(X(]))] S 0.

Output: \P'= \@), and X) as the solution.




Algorithm 1 is a classic Dinkelbach-type algorithm [18]. Fmoblem [(), it is clear thal < ¢;(X) <
00, VX, and \°" is finite. Hence, Condition 8.5 in_[18] holds. According {08[1Theorem 8.7], we
immediately have the following result.
Lemma 1: Algorithm 1 converges Q-superlineaulf,o the global optimal solutiodX°"* for (8).
Remark 1: We note that the max-min SINR problem can be alternativelyesbwith the bisection
search method in_[14]. It is known that the bisectional dedvas a linear, i.e., geometrically fast conver-
gence speed. In contrast, the proposed Dinkelbach-typeitdlgn has quotient-superlinear convergence.
Therefore, the proposed algorithm in general exhibits tefaonvergence speed than the bisection search
method in[14]. We further remark that, the proposed Aldomitl is guaranteed to converge to the optimal
solution of [8) from any feasible initiat° per Lemma 1. Here, we set’ to be a scaled identity matrix for
simplicity; we may also use the existing beamforming sohsi such as the ZF or MMSE beamforming
in [9] as A°, for initialization. The choice ofA° does not significantly affect the convergence speed.
Remark 2: The optimality of the solution given by Algorithm 1 to the ginal problem in[(5) depends
on the rank of the solution matriX °**. If Algorithm 1 yields a rank-oneX°" for (@), then we find the
optimal a®® as the (scaled) eigenvector with respect to the only pesiigenvalue ofX°", and obtain
optimal beamforming matrixA°® for the original problem[{5) by “de-stacking” th&/ M/ x 1 vector a®
into a M x M matrix. In fact, for the two-user case, it was shownlinl [12R][that the problenT(10), and
consequenthy{8), always has a rank-one optimal soluk6f. However, for the generdk > 1 case, the
existence of a rank-one optimal solution féri(10) cannot bevgbly guaranteed; see also[14]. Hence,
the exact optimal solution for the original problem (5) mayt he constructed from the optimai°"* for
its relaxed problent{8), the solution to which possibly haarik greater than one. Randomized rounding
is a widely adopted method to obtain a feasible rank-oneceqimiate solution from the SDP relaxation;

specifically, a Gaussian randomized rounding strategy ¢20]be applied to get a vectaf’ from X°F

Let A°" denote the optimal value of problefd (8), akd’ the output value of thg-th iteration of Algorithm 1. We say that the sequence

[AG+D) _Xopy

A9 converges Q-superlinearly &6 if lim;_, oo e =
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to nicely approximate the solution of the original probldB). (

It is worth mentioning that, for the case & > 1, the output value of Algorithm 1, obtained by
dropping the rank constraint, is an upper bound of the soiutd the original max-min SINR problem
in (®). This upper bound can be used as a benchmark to assespphoximate solution obtained by

randomized rounding.

B. Power Minimization Problem

We next describe the SINR balancing problem in the form of grominimization. We show that, for
the two alternative forms of the SINR balancing problem, sb&ition to one can be obtained through
solving the other.

The power minimization problem is formulated as follows:
2K
: 2 H
min > pillAhg|* + tr(AAzAM)
i=1 (11)
s.t. SINR(A)>~;, i=1,...,2K.

Noting a = vec(A) and X = aa”, and dropping the rank constraint &f, we can rewrite[(11) as
Pr(\) = %i% tr(EyX)

fi(X)
9:(X)
Clearly, setting the parametarto 1 reduces[(12) td (11). Here, we allowto be an arbitrary positive

(12)

s. t. > Ay, i=1,...,2K.
number for ease of further discussions. We note that the paviemization in [12) can be efficiently
solved with a single SDR [14].

We next establish a close relation between the max-min SitéBlem in [$) and the power minimization
problem in [I2). We first show thaf (112) can be solved via s@vB). Let \%(P;) denote the optimal
value of [8) for a given power budgétz. It can be shown thaiOP‘(PR) is a strictly increasing function
of Pr, and the optimal solution td_(lL1) is the same as thafo (5h Wie power budgePy satisfying
;\Opt(PR) = 1. (See the Appendix for proof.) As a result, the optimal soluto (11) can be obtained by

solving the equatioriOpt(PR) = 1, which simply requires a one-dimensional bisection search
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What remains is to show thdtl(5) can be solved via soMing. (t2jan be similarly shown thaPx(\)
in [I2) is a strictly increasing function of. Together with the fact that, for an arbitrary > 0, (12)
is readily solvable using a single SDP, we conclude thht $5§dlvable by a bisection search over
satisfying Pr(\) = Px.

So far, we have shown that the power minimization and max-8MR problems are two alternative
forms of the SINR balancing problem. This allows us to freghpose a more tractable form, i.e., a form
that is more efficiently solvable, as the corner stone toymuthe optimal beamforming designs under

various important optimization criteria, as detailed inawifollows.

IV. A UNIFIED APPROACH VIAMONOTONIC PROGRAM

In this section, using the max-min SINR or power minimizatsmlution as a corner stone, we propose a
unified approach to find the relay beamforming designs for texmaximization, sum MSE minimization,

and average BER minimization, etc.

A. Some Useful Definitions

We start with some commonly used terminologies in monotgnagramming [[211]:

Definition 1 (Box): A box [0, b] is defined as the set of all such that0 < z < b.

Definition 2 (Normal): A setS is callednormalif 2’ < z andz € S implies 2z’ € S.

Definition 3 (Reverse Normal):A setS is calledreverse normalf z’ > z andz € S impliesz’ € S.

Definition 4 (Polyblock): For any finite vector sef := {v;|j = 1,..., J}, the union of all the boxes
[0,v;], Vj, is apolyblockwith vertex set7.

Definition 5 (Proper): A vertexwv, € T is calledproper if there does not exist another, € 7 such
thatv,;, > v,. A polyblock is fully determined by its proper vertices.

Definition 6 (Projection): For anyz € R2*\{0} and a normal sef, m5(z) is aprojectionof z on G
if 7g(z) = Az where\ = max{a | az € G}; i.e., mg(z) is the unique point where the halfline fron

throughz meets the upperboundary 6t
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B. Weighted Sum-Rate Maximization

Now consider the beamforming design for weighted sum-radgimization. Treat the inter-user inter-
ference as noise. For the SINR) in (3) and [4), we adopt a Shannon-capacity rate formylal) =
0.5log,(1 + SINR;(A)) due to its wide applications in communication systems. Tésults will be
generalized to other utility functions in the sequel. ket denote the priority weight for user We
aim to solve the weighted sum-rate maximization problermidated as

2K
max Z 0.5w; log,(1 + SINR;(A))
- (13)

2K
s.t. > pillAh|* +tr(AARA") < Pp.

i=1

In terms of X = vecA (vecA), we rewrite [IB) as

2K
Bas ‘ Tt < F
max ;0 5w;logy(1 4 SINR(X)), s.t t(E\X) < Py (14)

where SINR(X) = f;(X)/g:(X). Note that the rank constraint &X is dropped in[(I4), and thuE_(14)
is in fact a relaxation of (13).

Define the sett := {X | tr(E,X) < Pg}. Introducing an auxiliary vectot = [z, ..., zx|”, we can
reformulate [(I4) into

2K
max ¢(z) := Z 0.5w; logy (), (15)

zeZ
=1
where the feasible sef := {z | 1 < z; < 1+ SINR;(X),i = 1,...,2K, VX € X}. Let z°" be the
optimal solution to[(I5). ThenX °* € X satisfyingz"" = 1+ SINR;(X°") for all 7 is clearly the optimal
solution to the original problent_(14).
Now let

G:={z]0<z<1+SINR(X),Vi, VX € X}. (16)

Also let b(X) := [1 + SINR;(X), ..., 1 + SINRy,(X)]?, for any X € X. ThenG = Uxex[0,b(X)],

implying thatG can be represented as the union of an infinite number of ndsmads; henceg is also
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normal [21]. Letd := [dy, . .., dyk]T, with

o Prl Rar—1 ||| a2

Poi—1Pr| Rar_1]?| a2
: .
O%k—1

dgk_1:1+ d2k21+ 2
2k

(17)

It clearly holds:1 + SINR;(X) < d;, Vi, VX € X. Therefore,G C [0,d] is a compact normal set with
nonempty interior. Further defin® := {z | z; > 1,Vi}. Clearly, H is a reverse normal set. Then [15)

can be written in the form of a standard MP][21] as

max ¢(z), sS.t. z€eGNH. (18)

For the MP [(18), a polyblock outer approximation method careimployed to efficiently find its global
optimal solution [[21]. Specifically, we target at constimgta nested sequence of polyblocRs, n =
1,2,..., approximatingiNH: P; O P, O --- D GNH in such a way thathax.cp, P(z) \, max,egry P(2).

Denote the maximizer at iteration as

z" = argmax ¥(z), (29

zeTn

where7, is the (finite) proper vertex set @?,. Note thatz” can be obtained by exhaustively searching
over the finite sef,,. If 2" € GNH, then it solves the MP in_(18). Otherwise, we find the next plalgk
P..+1 contained inP,, but still containingG N H, and continue the process.

We next findP,,; from P,. Let y™ be the projection ok™ on G, i.e., y"™ = ng(2z"), and denote
Z"(i) =2"— (2 —yle;, 1=1,...2K, (20)

wheree; is a unit vector with the only non-zero (i.e., “1”) in theth entry. Note that" (i) is obtained
by replacing thei-th entry of z” by . Clearly,y” < z2"(i) < z". Let 7,1 be the set obtained from
7. by replacing the vertex” with 2K new verticesz"(i) and then remove the improper vertices; i.e.,
Tov1 = (T\{z"}) U {z"(:) | 2"(i) is prope}. Since z°"' € H, we can further reduce the vertex set
Tni1 = Tni1 NH. From [21, Proposition 17], we immediately have

Lemma 2: The polyblockP, . ; with vertex set7, ., satisfies(G NH) C P11 C Ph.
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Lemma 2 guarantees the validity of the above construBtgd to continue the polyblock outer approxi-
mation process. A key step in the above constructidR,of; is to find the projectiony” = ng(z") = A"2",

which can be determined by solving

A" =max{a | az" € G}

=max{a |« < min 1+ SINR(X)

i=1,....2K zlﬂ

= max min Lt SINR@(X), (21)

XeXx i=1,..2K 20

, VX e X}

where the second step utilizes the definition®fin (16). The above is an extended max-min SINR

balancing problem written as

, 1+ SINR;(X)
i=1,...2K zlﬂ (22)
s.t. X >0, tr(EyX)< Pp.

A" = max
X

This problem can be solved using the Dinkelbach-type Atgaril with minor modifications. Use the
definitions in Section Il (such a®, q;;, B;, andg;(X)), except thatf;(X) is redefined asfi(X) :=
tr(EY X) + tr(E” X) + 2. Then the solution of{22) can be obtained by solving a safe®).

We are now ready to implement polyblock outer approximatiwethod for [(IB). For a given accuracy
tolerance levek > 0, we say that a feasible is an e-optimal solution if (1 + €)®(z) > ®(2°"). The

following algorithm is proposed to find anoptimal solution for [(14).

Algorithm 2: for weighted sum-rate maximization
Initialize : select an accuracy level> 0, letn =0, 7y = {d}, and CBV= —occ.
Repeat
1). let 2" = argmax,c7, ®(z), For 2", use Algorithm 1 to solvel(22) to obtaik’, and the
correspondingX °®, as well asy™ = \"2".
2). If y* € H and ®(y") > CBV, then CBV= &(y"), z = y” and X = X°".
3). Letz"(i) = 2" — (2! — y!")e;, Vi, and T,1 = [(T,\{z"}) U {properz"(i)}| N H.
4). Further remove fron¥, ., anyv; € 7, satisfying®(v;) < CBV(1 + ¢).

5). Setn = n + 1.
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until 7;, = 6.

Output: z as thee-optimal solution for [I5) andX the solution for [(T4).

Per iterationn of Algorithm 2, we havey™ = ng(z") € G. If y" € H is also true, we obtain a feasible
pointy™ € GNH. In this case, we update CB¥ max{CBV, ®(y")}. This implies that CBV is the current
best value so far, and the correspondig- arg maxgym | ymewu,m<n} ®(y™) is the current best solution
for (I5). Observe that for any; € 7, satisfying®(v;) < CBV(1 + ¢), we have(l + ¢)CBV > &(y),
Vy € [0,v,], due to monotonicity ofb. Hence,v; can be removed fronT,, for further consideration
sincez will be the desired:-optimal solution ifz° € [0, v;].

Remark 3: We remark that Algorithni]2 yields the-optimal solution to [(13) for the case df = 1.
However, for the general case &f > 1, the output value of Algorithrh]2, obtained by dropping theka
constraint, only provides an upper bound of the maximum kteidj sum-rate of (13). Again, randomized
rounding is used to obtain a good approximate solutiom_t§. (13

An illustration of Algorithm[2 for K = 1 is given in Fig.[2. With a vertex se€f,, the upperboundary
of polyblock P,, is depicted by the black dotted-dashed line. Among the tergees of7,,, the third one
is the maximizerz™ = argmax.c7, ®(z), which is marked with a blue dot. After finding its projection
y" (marked with a blue cross) on the achievable SINR boundaxy,new verticess™! and z™? are then
obtained through[(20). By replacing® with these two vertices, we determine the new polybl@tk
with its upperboundary given by the red dashed line.

Similar polyblock outer approximation approaches havenbadopted to solve the linear fractional
programming and non-convex wireless power control problem [22], [23]. A key requirement for
provable convergence of Algorithid 2 is thatis lower bounded by a strictly positive vector. Since
z > 1> 0in (I8), it readily follows from[2], Theorem 1] that
Proposition 1: Algorithm 2 globally converges to astoptimal solution for [(15) and_(14).

The proposed Algorithm 2 can yield optimal TWR beamformimmjuson for the relaxed weighted

throughput maximizatior{(14) with guaranteed convergearae global optimality. For the two-user case,
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Fig. 2. The polyblock outer approximation procedure.

the algorithm can also yield the globally optimal soluti@r the original problem[{13); for the general
K-pair case, it can provide a good approximate solution[f8).(Hence, the proposed approach provides
a good benchmark for all the beamforming (or precoding) sweethat are designed to maximize the
user rates in AF-based TWR.

Note that the outer polyblock approximation is in fact a lefaand-bound method. For coordinated
beamforming designs in multicell networks, a branch-redacd-bound (BRB) algorithm was proposed.
It was shown that this BRB algorithm can have faster convergdor weighted sum-rate maximization
problems, whereas the polyblock approximation has fasiavergence for many other utility functions
[24]. The key in the BRB algorithm is again finding the projentof an outer vertex on the upperboundary
of the achievable SINR region. Using the max-min SINR solutior (3), a BRB algorithm similar to
Algorithm 2 can be also developed to find the optimal TWR beaming design for the weighted

throughput maximizatior_(13), probably with a faster cagemce speed.

C. General Design Criteria

The proposed MP approach only relies on the monotonicithefdbjective function and the normality

of the feasible set. Thus, it can apply to beamforming desigmder more general criteria. Consider
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maximizing a general increasing functidf) of SINRs
2K
max ; Fi(SINR;(A))
- (23)
s.t. > pillAh|?* + tr(AAzA") < Pp.

i=1

The functionF; can be a specific rate function (different from the Shann@aciy formula)-; (SINR;(A))
for practical modulation and coding schemes. Maximizatidrthe utility of user rates has gained a
growing interest in the communication and networking centeshere different types of utility functions
are proposed to trade off the throughput and fairness, omptuce the “happiness” of the user links
[25]. The functionF; here can also be the composition of an increasing (not naglyssoncave) utility
function with that particular rate functioti;(r;(SINR;(A))).

In addition, the formulation[(23) includes the followingdvimportant cases:

1) MSE minimization: Assume that all the user receivers ielinear-minimum-mean-square-error
(LMMSE) filters for estimating the received symbols. The giged sum-MSEs at the output of the
LMMSE receivers is given by [26]:

2K 2K W
> wMSE; = ; TTSINR

=1
With F;(SINR;(A)) := — TSR A (23) specializes to weighted sum-MSE minimization.

2) SER or BER minimization: Using a Q-functiof)(z) := —&= [~ exp(—% )du, the SER and BER
of practical modulation schemes can be calculated or appeigd in closed-form [27]. Clearly all
these SER or BER functions, sa)SINR;), are strictly decreasing in SINR. Withi (SINR;(A)) :=
—w;g;(SINR;(A)), the problem[(23) specializes to weighted sum-SER (or BERjmization.

It is clear that[(ZB) also carries over to minimization ofreasing (not necessarily convex) cost functions

of MSE, SER or BER.

For all theseF;(SINR;(A)) functions, we can redefin@(z) := S22 Fi(z; — 1), and consider

zeZ

2K
max $(z) := ZE(ZZ —1). (24)
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Algorithm 2 can be used to approximately solve this MP, ansequently, provide the solution fr {23).

It provides a benchmark for the beamforming designs in AgeddaTWR under many important criteria.

V. COLLABORATIVE TWR BEAMFORMING
A. Collaborative TWR Model

The proposed unified framework also applies to collabocgalWR where a cluster af/ single-antenna
relay nodeq R,, | m = 1,..., M} cooperatively assist the bidirectional communicatiortsveen multiple
users. Such a collaborative TWR scheme was previously dered in [16], [17] and[[28], where the
beamforming coefficients for the relays are designed undetad relay power constraint, i.e., the relays
share a total power budget. This total relay power congtiainsually not realistic in practical scenarios.
Therefore, we consider collaborative beamforming desigh mdividual relay power constraints.

The system model for collaborative TWR can be viewed as aiapase of the TWR model described
in Section II. The only difference is that in collaborativBVR, the signals received by different antennas
at relays cannot be jointly processed. Assume that 2the- 1)th user and th€2k)th user communicate
with each otherk = 1,..., K, and that data exchange consists of two phases. In the fiestepleach

user transmits its signal(¢) to the relays, and the received signal (¢) at the relayR,, is

m

2K
YR (t) = D him/Disi(t) + nm, (1), (25)
i=1

whereh;,, denotes the channel coefficient from usep relay R,,, and zg,, (t) ~ CN'(0,0% ) denotes
the additive noise at rela,,,. Let h; := [hi1,..., him], yp(t) = [yr, (t),. .., yr,, (t)]", andzg(t) :=
(2R, (1), ..., 2R, (t)]*. Then the received signal vectgr,(¢) at all relays is again given byl(1).

Upon receivingyg,, (1), the relay collaboratively amplifies and forwards its signg, (¢) = @, yr,, (t)
to all users in the next phase. Let:= [a, ..., ay] collect the (complex) AF gains for all relays. The
signal vectorz(t) := [zg, (1), ..., zx, (1)]7 can be written ascy(t) = Ayy(t), where A := diaga).

Different from the TWR model with a multi-antenna relay inc8en Il, the beamforming matrix for
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collaborative TWR s restricted to be diagonal. The tranngower of the relayR,, is given by

2K
PR (@) =D pillambim|’ + o, lam|* (26)
=1
Assuming channel reciprocity, the received signal at userl, ..., 2K, is then given by
yit) = hfAY hj/bisi(t) + hi Ang(t) +ni(t) (27)
j=1

where the noise;(t) ~ CA(0,02). Clearly, [27) is equivalent td](2) by replacing with A. Therefore,
after removing the self-interference, the SINR at thle— 1)th user and at thé2k)th user are respectively

given by [3) and[{4) (withA replaced byA).

B. Algorithm Design

Based on these SINRs, the max-min SINR problem for collabverd WR can be formulated as

A" = max min SINR(A) NRi(4)
A i=1,.2K Vs
2K (28)

st Y pillambiml® + o, lan|” < Pr,om=1,..., M.
=1

Problem [ZB) is similar to[{5) except that in (28) is constrained to be diagonal and there &fe
transmit power constraints. Thug, [28) can be solved in daiway as [b) is. LetX = aa”, 6,, =
S pilliml® + 0%, @4 = [01x(m-1), Oy Ot (a1—m)], @ND By, := L&, Then the transmit power
constraint of relayR,, can be expressed ag®,,,X) < Pg, . Upon definingf;(X) and g;(X) as with
(@), the problem[(28) can be relaxed to a max-min fractiomagmm similar to[(B). Consequently, it can
be efficiently solved by the Dinkelbach-type Algorithm 1 kvininor modifications.

Using the max-min SINR solution as the corner stone, the bmammg designs for the collaborative
TWR under the various criteria considered in Section IV candone with minor modifications of
Algorithm 2. For example, the weighted sum-rate maxim@atproblem for collaborative TWR is the
same as[(18) except that the s¥tis now given byX := {X | tr(Ey,,X) < Pg,,m = 1,...,M}.

It is clear that the corresponding sgtfor collaborative TWR is still normal. Hence, the optimipet

problem can be still formulated as an MP, and the optimal beaning matrix can be obtained using

the polyblock outer approximation method in Algorithm 2.
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VI. MIMO TWR B EAMFORMING
A. MIMO TWR Model

The performance of TWR can be enhanced when both the relaytrendisers are equipped with
multiple antennas [19]. In what follows, we consider thenjaptimization of users’ transmit and receive
beamforming vectors and the relay’s beamforming matrix.

Let M; denote the number of antennas at user1,...,2K, ands;(t) denote the data signal. In the
first phase, usei performs transmit beamforming with vectar; € CM>! as x;(t) = wu;s;(t), where

||w;||* < p;, andp; is the transmit power budget of userThe received signal at the relay is

Yr(t) =>  Hixi(t) + np(t), (29)
where H, € C"*Mi s the channel matrix from usérto the relay.

In the second phase, the relay amplifies and forwards thelsignt) = Ayy(t) to both users. The

transmit power at the relay is given by

2K
pr(A) =) t(AHuu H A") + tr(AARAY). (30)
=1
The received signal at uselis given by

2K
y,(t) = HI A Hax;(t) + H] Anp(t) + n(t), (31)

J=1

wheren;(t) ~ CN (0, A;) is the additive noise at user
The useri first combines its received signal with a vectgre C*! to obtainy/(t) = vy, (t), which

can be expressed as
2K
yi(t) =o' [H] A Hju;s;(t) + H Ang(t) + ni(t)). (32)

J=1

Clearly, the output SINR of each user depends on the relayodneg matrix A, the users’ transmit

precoding vectors, and the receive combining vectors. TNE&R St the userl is

Wl H AH . yu)|?

SIN 'A, Ui, Uy = s
e od > jpimto [0 HT AH ju? + |AR'? A" Hv |2 + || A 2oy 2

(33)

wherer (i) denotes the partner of uséri.e., 7(2k — 1) = 2k andn(2k) = 2k — 1, Vk.
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B. Algorithm Design

The max-min SINR problem of the considered multi-pair MIMGVR can be formulated as

)\opt _ max min SINRZ(A7 {Ui}, {v’l})
A7{u,i},{'ui} i=1,..., 2K ’}/Z
2K
st pr(A) =) t(AHuu H A") + tr((AARAY) < Py, (34)

i=1
|wil|* < pii=1,...,2K.
This optimization problem is in general difficult to solve.eWext propose an iterative algorithm to
optimize A, {u;}, and{v;} in an alternating fashion.
1) User Receive CombiningGiven the relay beamforming matrd and users’ transmit precoding
vectorsu;,i = 1,...,2K, the well-known MMSE combining can be employed at uséo detect the
transmit signal from its partner user. Let; := H] AH;u; € CM*!, and R; := Y, a; ol +

HTAARA" H? + A;. Then the combining vectay; is given by
V; = Ri_laiﬂr(i). (35)

2) Optimal Relay PrecodingNow consider the relay beamforming design with fixed transanid
receive beamforming vectors at the users. het= H,;u; € CM*!, g, := H v, € CM*!, The max-min

optimization problem in[(34) becomes

opt . |g£{Ah7r(z')|2
Aa —mgxi_rlanK H 2 /2 4H 12 /2, 112
T %‘(E#i,w(i) 9" Ah;|> + [[AR" A7 g, |* + | A vi?)
2K
st Y ||Ah|* +tr(AARA") < P
=1
This problem has almost the same form with (5); hence, it @efficiently solved by Algorithm 1.

(36)

3) Optimal Transmit PrecodingThe users’ transmit precoding vectoss,i = 1,...,2K, are also

designed to maximize the minimum SINR, and the optimizaposblem can be formulated as

)\Zpt: max  min LNR@(U)

w 12K i=1,.. 2K i
{ J}], Y (37)

so bt fJu|]* <pii=1,...,2K.
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LetB,, .= H A" H}v,, andd; := | A}> A" g,|>+||A}*v;|*. Define:E;; == 8,81, andX; = u,ul.
The SINR of user can be expressed as

tr(Eiri) X (i)
> ity W X ) + d;

Using X;, i = 1,...,2K, as the optimization variables and dropping the constrainank X ;) = 1,

SINR;(u) = (38)

i =1,...,2K, the problem[(37) becomes a max-min fractional program

tr(E; i) X rs))

st X;=0, i=1,.. 2K, (39)

Again, the problem is similar td {8); it can be efficiently wadl using the Dinkelbach-type Algorithm 1
with minor modifications.

4) Overall Iterative Algorithm:We are now ready to present the overall iterative algoritbnalter-
natingly optimize the users’ transmit precoding vectong, telay’s beamforming matrix, and the users’

receive combining vectors.

Algorithm 3: lIterative optimization for multi-pair MIMO TWR
Initialize : u?, A°, and+?,i = 1,...,2K. Select an accuracy level> 0. Let n = 0.
Repeat
1). Givenu?, A", update the receive combining vectars™ i = 1,...,2K, via (35).
2). With w andv!"*! fixed, use Algorithm 1 to solve the max-min SINR probldml (36pbtain
the relay beamforming matrixd”™"!.
3). With A" and v’ fixed, solve the max-min SINR problerh {39) to compute its rogti
value \» and the corresponding users’ transmit precoding vectdrs',i = 1,...,2K, via
Algorithm 1 (with minor modification).
4). Setn =n + 1.

until [AZ — A2 < e
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Since the objective of the intended probldml(34) is cleapgpar-bounded and it is increased in each
iteration of Algorithm 3, the convergence of the proposeérahtive optimization approach readily follows.
Note that Algorithm 3 in general converges to a local optinpomt. Nevertheless, as will be shown in the
next section, the beamforming design with the proposedtiter algorithm can significantly outperform
the existing methods.

For weighted sum-rate maximization and other criteria,nailar iterative optimization algorithm can
be developed to find the users’ transmit precoding vectbesrdlay’s beamforming matrix, and the users’
receive combining vectors. Consider the beamforming aesigr weighted sum-rate maximization. The
joint design problem can be again decoupled into three soblgms and an iterative method can be used
to alternatively solve the three sub-problems. Specificallring then-th iteration, we first update the
users’ receive combining vectoig ™ i = 1,...,2K, via (38) with fixedul,i = 1,...,2K, and A",
Given u? and v, we next find the optimal relay beamforming matu%' ™. This sub-optimization
problem is an MP. Building on the max-min SINR solution foly3@&lgorithm 2 can be used to obtain
A" With A" and v fixed, the optimal precoding vectorg! ™' i = 1,...,2K, for weighted
sum-rate maximization can also be found by the polyblocleoapproximation method in Algorithm 2
building on the max-min SINR solution t6 (39). It is guaradethat the proposed MP based alternative

optimization approach converges to, at least, a local aptim

VII. NUMERICAL RESULTS

In this section, numerical results are presented to tegirtyi@osed beamforming designs. The simulation
settings are as follows. We consider uncorrelated Rayl8ahfading channels, i.e., each elementhin
or H; is independent complex Gaussian distributed with zero nagahunit variance. Unless otherwise
specified, each user is equipped with a single antenna; ke nomponents are complex white Gaussian

with ng(t) ~ CN(0, NoI ), andn;(t) ~ CN (0, Ny); assumep; = p, Vi, and defineSNR = p/Np.
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A. One-pair TWR

In Fig.[3, we check the optimality of the proposed monotomimgpam based weighted sum-rate maxi-

mization beamforming design method far = 1 user pair, by comparing with the optimal beamforming

scheme in[[12], and the antenna selection relaying scheinesenthe best antenna is selected for signal

relaying. There ard/ = 2 antennas at the relay, and the transmit power of the relaytentivo users are

the same p; = p, = Pg. The weights are chosen as = 0.2 andw, = 0.8, ande = 0.01 for Algorithm

2. It is seen that the proposed monotonic program basedrdesthod achieves the same performance as
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Fig. 5. Comparison between the proposed Algorithm 1 and ibection search method i [14] fer= 0.01 and K = 2.

the scheme in_[12], which confirms that the beamforming mathitained by Algorithm 2 is optimal. (The
slight differences between the two are due to numericakrgirdo illustrate the convergence behavior of
the proposed method, the CBV in Algorithm 2 is shown in EigThe weighted sum-rate upper bound
is obtained as follows: we ignore the rank-one constrainnvbalving the problem[(22), and find the
minimal of ®(z") in Algorithm 2 as the upper bound. We see that Algorithm 2 eoges fast. In this

particular example, three iterations is sufficient to deiae the optimal beamforming matrix.

B. Multi-pair TWR

Now consider a two-pair TWR with a four-antenna relay, i€.= 2 and M = 4. We assume equal
power allocation among the four users and the relay. [Big. pewes the number of iterations of the
proposed Dinkelbach-type Algorithm 1 with the bisectiomrsé method in[[14] for a given solution
accuracye = 0.01. For the bisection method in_[14] , the number of iteratiomslog,(t/¢)], wheret
and ¢ are the search bound and error precision, respectively.séhech bound depends on the SNR
and the channel coefficients [14]. Hence, the number oftitara of the bisection method increases as
the SNR increases or the number of antennas increases as #hake figure. On the other hand, the
number of iterations for the proposed Dinkelbach-type Alpon 1 remains almost unchanged. Using the

zero-forcing beamforming matrix i [9] as the initizl®, it can be seen that the proposed Algorithm 1
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converges much faster than the bisection method. About Sterdions are sufficient for the convergence
of Algorithm 1 in the whole SNR region.

Fig.[8 and Fig[]7 show the achievable weighted sum-rate abwabeamforming schemes wifii = 2
and 4 antennas at the relay, respectively. The weights assechasw,; = 0.2, wy, = 0.8, andws =
wy = 0.5. For the proposed weighted sum-rate maximization (Max WB&mforming, the optimal
beamforming matrixA°" is obtained by the monotonic program method in Algorithm 2hwi= 0.01.
The weighted sum-rate performance upper bound is obtaiseid &ig.[4. We compare the proposed

design with the following methods: 1) max-min beamformimg[14], 2) minimum mean-square-error
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Fig. 8. Weighted sum-rate of multi-pair collaborative TWRwp; = Pr, Vi.

(MMSE) beamforming in[[B], 3) zero-forcing based networldig (ZFNC) in [10], and 4) ProBaSeMO
scheme in[[15]. Note that for the ZFNC scheme, the number t#ramas at the relay should be no less
than the number of users, hence it is only applicable wher= 4. From both figures, it is shown that
the performance of the proposed beamforming design is dlmdke performance upper bound, and it
outperforms all other alternatives for all SNR values. Irtipalar, the MP approach building on the max-
min SINR solution can significantly improve the sum-ratefpenance, when there is only two antennas

at the relay.

C. Collaborative Multi-pair TWR

Now consider a collaborative four-user TWR with four singl#enna relays. Fifl 8 shows the perfor-
mance of the proposed collaborative beamforming designtladero-forcing distributed beamforming
(ZFDBF) scheme in[28]. The simulation parameters are theesas in FigL 6. We consider two transmit
power constraints: 1) the relays have a total transmit paeestraint thatzyj‘,f:1 Pp=p, and 2) each
relay has individual transmit power constraint thias = p/M,Vm. For the considered two transmit
power constraints, it is shown that the collaborative TWRhwotal transmit power constraint slightly
outperforms that with individual transmit power consttaim the high SNR region. Compared with the

ZFDBF scheme, significant performance gains can be achieitbdthe proposed beamforming designs.
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It can be also seen that the achievable weighted sum-ratellaborative TWR with four single-antenna
relays is much lower than that of TWR with a single four-ami@melay. This is due to the fact that the
beamforming matrixA for collaborative TWR is restricted to be diagonal. Hencetaie multiplexing

gain is lost as compared with the single multi-antenna rekse.

D. MIMO Multi-pair TWR

Finally, Fig.[9 presents the BER performance of a four-usBvi® TWR system with QPSK modulation,
where both the users and the relay are equipped with mulipiennas. The number of antennas for one
user varies from 1 to 2, and there are 4 antennas at the re¢lés/.shown that the BER performance
improves as the number of antennas at each user increases.sfignificant performance improvement is
observed for the proposed optimal beamforming as compartdtihe MMSE beamforming scheme in
[9] and the interference alignment (IA) scheme(in![29]. Rustance, there is more than 10dB gain at a

BER of 1073 for the proposed design when there are two antennas at each us

VIII. CONCLUSION

We developed a unified framework of beamforming designs éorregenerative two-way relaying. Us-

ing the max-min SINR solution as a corner stone, we propoffieibat algorithms to find the near-optimal
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beamforming designs under various important criteria saghpower minimization, rate maximization,
MSE minimization, and BER minimization. We further exteddbe proposed framework to distributed
beamforming for TWR, as well as to MIMO TWR. The proposed @difapproach can provide important

insights for tackling the optimal beamforming designs ihastemerging network models and settings.

APPENDIX

We first show that
Lemma 3: \°P(Py) is a strictly increasing function oPs.

Proof Let X°" denote the optimal solution fof1(8) with power budget > 0. For a P, > Pg,
let « = Pj/Pr > 1, and X' = o X" Then X’ is feasible for [8) with power budgeP;, since
tr(EoX') = atr(Eo X°") < aPg = P,

On the other hand,

(X r(EV X' tr(EY X
9(X') wEPX)+o2  atr(EPXP) 4 g2

tr(E" X
tr(E® XY 4 o2

= SINR;(X°P).

~ - ) i X ) opt ~ -
Therefore AP(P) > min—y_ox M) > mingy o SR — Jopt( ) O

..... =
Relying on the monotonicity of\OPt(PR) stated in Lemma 3, we can further show that:
Lemma 4: The optimal solution for[{112) is the same as the mafXi®™ for (8) with the power budget
Py, that satisfies\°P!( Pg) = 1.
Proof: Let X°P' denote the optimal solution fdrl(8) with the power budggtthat satisfies\°?( P) = 1.
Since \((Pz) = 1 implies SINR(X°) > ~;, i = 1,...,2K, X°is in the feasible set of (12). Upon

denoting Py as the optimal value fof(12), this in turn implies thaf™ < tr(E,X°") < Py. Consider

@) with the power budgePy”. By Lemma 3, we must have
AP PRPY < AOPY( ) = 1 (40)

due to Pp* < Px.
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On the other hand, leX ™™ denote the optimal solution for (112), which is the feasild¢ af (8) with

opt

~ ~ =opt
the power budgeP? since tt E,X™") = P2 For this X, we havemin,_; oy SN ")

Vi

SINR(X™) > 7, i = 1,...,2K. This together with the feasibility oK™ implies that\°(P%) > 1.

> 1 since

Clearly, we have both the latter ahd{40) satisfied, only wdiktine inequalities are satisfied with equalities;

i.e., Po" = Py, and it is achieved by the beamforming mat&e®., O
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