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Abstract

In this paper, we develop a unified framework for beamformingdesigns in non-regenerative multiuser two-way

relaying (TWR). The core of our framework is the solution to the max-min signal-to-interference-plus-noise-ratio

(SINR) problem for multiuser TWR. We solve this problem using a Dinkelbach-type algorithm with near-optimal

performance and superlinear convergence. We show that, using the max-min SINR solution as a corner stone,

the beamforming designs under various important criteria,such as weighted sum-rate maximization, weighted sum

mean-square-error (MSE) minimization, and average bit-error-rate (BER) or symbol-error-rate (SER) minimization,

etc, can be reformulated into a monotonic program. A polyblock outer approximation algorithm is then used to

find the desired solutions with guaranteed convergence and optimal performance (provided that the core max-

min SINR solver is optimal). Furthermore, the proposed unified approach can provide important insights for

tackling the optimal beamforming designs in other emergingnetwork models and settings. For instances, we extend

the proposed framework to address the beamforming design incollaborative TWR and multi-pair MIMO TWR.

Extensive numerical results are presented to demonstrate the merits of the proposed beamforming solutions.
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I. INTRODUCTION

Relay communications have been long studied to enhance the capacity and expand the coverage of

wireless networks. For conventional communications between two users via a single relay, four transmis-

sion phases in time or frequency are typically required: twoused for user-to-relay, and the other two for

relay-to-user. To improve spectral efficiency, a two-way relaying (TWR) method, referred to as physical-

layer network coding (PNC) [1], was proposed to accomplish bidirectional data exchange in two phases.

This PNC technique is remarkable for its potential to doublethe system throughput.

PNC for two-way relay channels has gained a growing interestin recent years [1]–[4]. Various relaying

strategies have been proposed to exploit the benefit of PNC, including but not limited to, decode-and-

forward [1], compress-and-forward [2], amplify-and-forward (AF) [3], and compute-and-forward [4].

Particularly, it was shown in [5] that PNC with nested lattice coding can achieve the capacity of the

single-input single-output Gaussian two-way relay channel within 1
2

bit. Later, the authors in [6], [7]

showed that lattice-coding techniques can be efficiently incorporated into multiple-input multiple-output

(MIMO) TWR, where the users and the relay are equipped with multiple antennas. It was revealed therein

that near-capacity performance can be achieved in MIMO two-way relay channels.

More recently, multiuser two-way relaying, in which multiple users exchange data via a single relay

in a pairwise or non-pairwise manner, has been intensively studied in the literature [8]–[15]. In these

approaches, analogue network coding (ANC) is employed, i.e., simple AF operations are implemented at

the relay and self interference is canceled at the user ends;multiple antennas are deployed at the relay

to provide extra degrees of freedom, which enables a potential boost of the system throughput. However,

to fully exploit this potential requires a proper design of the beamforming (or calledprecoding) matrix

at the relay, which is in general a difficult problem. To date,only approximate algorithms have been

proposed based on specific design criteria, such as zero-forcing [10], power minimization [11], max-min

signal-to-interference-plus-noise ratio (SINR) [14], and maximum sum-rate [13], [15].

In this paper, we develop a unified framework to solve the beamforming optimization problems for
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multiuser TWR. We use the classic max-min SINR problem as thecore of our framework. Our major

contribution is to show that the max-min SINR solution can beused as a corner stone to pursue the

optimal beamforming designs based on arbitrary utility functions that are monotonic in the user SINRs.

Our framework works for various optimization criteria, such as power minimization, weighted sum-rate

maximization, average symbol-error-rate (SER) or bit-error rate (BER) minimization, etc. Relying on

solving a series of max-min SINR problems, a polyblock outerapproximation algorithm is developed

to find the desired solutions with guaranteed convergence and global optimality (provided that the core

max-min SINR solver yields the optimal solution).

The optimality and efficiency of our proposed framework depends on the choice of the max-min SINR

solver. In our approach, the max-min SINR problem, treated as a max-min fractional program, is solved

using a Dinkelbach-type algorithm [18]. This algorithm is optimal for the two-user case and can provide

near-optimal performance for the general case of multiple pairs of users. It is worth mentioning that the

max-min SINR problem can be alternatively solved using the bisection search method in [14] with linear

(i.e., geometrically fast) convergence. In contrast, the proposed Dinkelbach-type algorithm has a quotient-

(Q-)superlinear convergence speed [18], and hence in general exhibit faster convergence (and thus reduced

computation) than the bisection search method.

Furthermore, the proposed unified approach can provide important insights for tackling the optimal

beamforming designs in other emerging network models and settings. For instances, we extend the

proposed framework to cover the beamforming design in collaborative TWR and multi-pair MIMO TWR.

Specifically, for collaborative TWR, we propose the beamforming design under an individual power

constraint at each relay node, which is more practical than the settings in [16], [17] (where the relays

share a total power budget). For multi-pair MIMO TWR, an iterative optimization algorithm is developed

to jointly optimize the transmit and receive beamforming vectors of each user, together with the relay

precoding matrix. Extensive numerical results are presented to demonstrate the merits of the proposed

beamforming solutions.
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The rest of this paper is organized as follows. Section II outlines the notations in use and the system

model. Section III discusses the max-min SINR problem and its solution, as well as the relation between

the power minimization design and the max-min SINR design. Aunified approach for beamforming

designs is presented in Section IV. Sections V and VI discussgeneralizations of the proposed framework

to collaborative beamforming for multi-pair multi-relay TWR, as well as to multi-pair MIMO TWR. The

proposed schemes are tested and compared with existing alternatives in Section VII, followed by the

conclusions in Section VIII.

II. PRELIMINARIES

A. Notation

The following notation is used throughout this paper. Boldface fonts denote vectors or matrices, the

ith entry of a vector, saya, is denoted byai; RK×M andCK×M denote theK-by-M dimensional real

and complex space, respectively.RK
+ := {a ∈ RK×1 | a ≥ 0}. Note that the vector inequalities, such as

a ≥ 0, are defined element-wise.⌈x⌉ denotes the nearest integer greater than or equal tox; (·)∗ denotes

complex conjugate,(·)T denotes transpose, and(·)H conjugate transpose;⊗ represents the Kronecker

product;⊙ denotes the Schur-Hadamard (element-wise) product; tr(A) denotes trace operator for matrix

A, vec(A) operator creates a column vector from a matrixA by stacking its column vectors below one

another,A1/2 denotes the square-root of a positive semi-definite matrixA, diag(A1, . . . ,AM) denotes a

block-diagonal matrix withA1, . . . ,AM as the submatrices in the diagonal;‖ · ‖ denotes the Euclidean

norm for vectors, and| · | denotes norm of a complex scalar;0 and1 denote all-zero and all-one vectors;

A � 0 means that a square matrixA is positive semi-definite; a circularly symmetric complex Gaussian

random vectorx with meanx̄ and covariance matrixΣ is denoted asx ∼ CN (x̄,Σ), where∼ stands

for “distributed as”;A\B denotes the set obtained by excluding all the elements of setB from setA.



5

…

Relay 
… …

User 1 User 2

User 2K-1 User 2K

Pair 1 

Pair K

Fig. 1. A multi-pair two-way relaying system.

B. System Model for Multi-Pair TWR

As shown in Fig. 1, we consider a two-way relay (bidirectional) communication betweenK pairs of

users, where the relay is equipped withM antennas and each user has a single antenna [8], [9]. Without

loss of generality, it is assumed that the(2k − 1)th and the(2k)th users communicate with each other,

k = 1, . . . , K, through two phases. The communication channels between the relay and users are assumed

to be flat-fading over a common narrow band. Following the convention in [8], [9], [13], [15], we assume

global channel state information (CSI), i.e., all the usersand the relay have full CSI.

In the first phase of the two-way relaying communication, allusers transmit to the relay simultaneously,

and the received signalyR(t) ∈ CM×1 at the relay is

yR(t) =

2K
∑

i=1

hi
√
pisi(t) + nR(t), (1)

wherehi, pi and si(t) denote the channel coefficient vector from useri to the relay, transmit power of

useri, and unit-power transmitted symbol from useri, respectively, andnR(t) ∈ CM×1 denotes the noise

vector. With a given covariance matrixΛR, it is assumednR(t) ∼ CN (0,ΛR).

Upon receivingyR(t), the non-regenerative relay amplifies and forwards the signal xR(t) = AyR(t)

to all users in the next phase, whereA ∈ C
M×M is the relay beamforming matrix. The transmit power
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at the relay is

pR(A) = E‖xR(t)‖2

= E

∥

∥

∥

∥

∥

A(

2K
∑

i=1

hi
√
pisi(t) + nR(t))

∥

∥

∥

∥

∥

2

=

2K
∑

i=1

pi‖Ahi‖2 + tr(AΛRA
H).

Suppose that channel reciprocity holds for the uplink and downlink transmission between the relay and

users. The received signal at useri ∈ {1, . . . , 2K} is given by

yi(t) = hT
i A

2K
∑

j=1

hj
√
pjsj(t) + hT

i AnR(t) + ni(t) (2)

where the receive noiseni(t) ∼ CN (0, σ2
i ).

Upon receiving the downlink signal, user(2k− 1) intends to detect the signals2k(t) from user2k, and

the term
√
p2k−1h

T
2k−1A h2k−1s2k−1(t) in (2) is referred to as “self-interference”. In the spirit of ANC,

this self-interference can be canceled before signal detection. The SINR at the(2k − 1)th user is thus

SINR2k−1(A) =
p2k|hT

2k−1Ah2k|2
∑

i 6=2k−1,2k[pi|hT
2k−1Ahi|2] + ‖Λ1/2

R AHh∗
2k−1‖2 + σ2

2k−1

; (3)

and, similarly, the SINR at the(2k)th user is

SINR2k(A) =
p2k−1|hT

2kAh2k−1|2
∑

i 6=2k−1,2k[pi|hT
2kAhi|2] + ‖Λ1/2

R AHh∗
2k‖2 + σ2

2k

. (4)

Based on the SINRs (3) and (4), we will develop a unified approach for beamforming designs in

AF-based TWR under different criteria.

III. SINR BALANCING OPTIMIZATION

In this section, we describe two alternative forms of the SINR balancing problem. The effective solution

to this problem will serve as a corner stone of our proposed framework.
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A. Max-Min SINR Problem

We start with the first form of SINR balancing, i.e., the max-min SINR problem formulated as

λopt =max
A

min
i=1,...,2K

SINRi(A)

γi

s. t.
2K
∑

i=1

pi‖Ahi‖2 + tr(AΛRA
H) ≤ P̌R

(5)

whereγi denotes the SINR target for useri, and P̌R denotes the total power budget at the relay.

Relying on a semi-definite programming (SDP) based Dinkelbach-type algorithm, this max-min SINR

problem has been solved for one-pair (i.e.,K = 1) TWR [19]. The problem has also been approximately

solved using bisection search over the SDP relaxation solvers for related power minimization problems

for the general case ofK-pair users [14]. Here, we generalize the Dinkelbach-type algorithm in [19]

to approximately solve (5) for the case ofK-pair users. We show that the proposed algorithm is more

efficient than the bisection search method.

We start with the following definitions:

qji := vec(hjh
T
i ) and Bi := diag(hT

i , . . . ,h
T
i ) ∈ C

M×(MM) (6)

wherehT
i is repeated byM times inBi.

Let Θ :=
∑2K

i=1[pihih
H
i ] + ΛR, and Φ := (Θ1/2)T ⊗ IM . Further leta := vec(A), X := aaH ,

E0 := Φ
H
Φ. Then we have the relay transmit power:

2K
∑

i=1

pi‖Ahi‖2 + tr(AΛRA
H) = tr(A(

2K
∑

i=1

pihih
H
i +ΛR)A

H) = ‖Φa‖2 = tr(E0X).

With (6), we also have|hT
j Ahi|2 = |qT

jia|2 andhT
i AΛRA

Hh∗
i = ‖Λ1/2

R AHh∗
i ‖2 = ‖Λ1/2

R Bia‖2. Hence,

we have

SINR2k−1(a)

γ2k−1

=
p2k|qT

2k−1,2ka|2

γ2k−1(
∑

i 6=2k−1,2k pi|qT
2k−1,ia|2 + ‖Λ1/2

R B2k−1a‖2 + σ2
2k−1)

,

and

SINR2k(a)

γ2k
=

p2k−1|qT
2k,2k−1a|2

γ2k(
∑

i 6=2k−1,2k pi|qT
2k,ia|2 + ‖Λ1/2

R B2ka‖2 + σ2
2k)

.
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DefineE(1)
2k−1 := p2kq

∗
2k−1,2kq

T
2k−1,2k, E(2)

2k−1 :=
∑

i 6=2k−1,2k[piq
∗
2k−1,iq

T
2k−1,i]+BH

2k−1ΛRB2k−1, E
(1)
2k :=

p2k−1q
∗
2k,2k−1q

T
2k,2k−1, andE(2)

2k :=
∑

i 6=2k−1,2k[piq
∗
2k,iq

T
2k,i] +BH

2kΛRB2k, for k = 1, . . . , K.

In terms ofX, let

fi(X) := tr(E(1)
i X) and gi(X) := tr(E(2)

i X) + σ2
i , for i = 1, . . . , 2K. (7)

UsingX as the optimization variable and dropping the constraint ofrank(X) = 1, we can relax (5) to

λ̃opt =max
X

min
i=1,...,2K

fi(X)

γigi(X)

s. t. X � 0, tr(E0X) ≤ P̌R.

(8)

The problem (8) is a max-min fractional program, and can be solved using a primal Dinkelbach-type

algorithm [18]. This algorithm is based on solving a sequence of the following parametric optimization

problems forλ ≤ λopt:

max
X

min
i=1,...,2K

fi(X)− λγigi(X)

s. t. X � 0, tr(E0X) ≤ P̌R.

(9)

Let Ei := E
(1)
i − λγiE

(2)
i , i = 1, . . . , 2K. The problem (9) becomes a convex SDP as

min
X,τ

− τ

s. t. X � 0, tr(E0X) ≤ P̌R, tr(EiX)− λγiσ
2
i ≥ τ, i = 1, . . . , 2K.

(10)

This SDP can be solved by the interior point method in polynomial time [20].

Relying on this SDP solution, we propose the following algorithm to solve (8):

Algorithm 1: for max-min SINR problem

Initialize : A0 = ( P̌R∑2K
i=1(pi‖hi‖2)+tr(ΛR)

)1/2I, X (0) = vec(A0)vec(A0)H , andj = 0.

Repeat: j = j + 1,

givenX(j−1), find λ(j) = mini=1,...,2K
fi(X

(j−1))

γigi(X
(j−1))

;

givenλ(j), solve (10) with SDP to obtain:X (j) = argmaxX mini=1,...,2K [fi(X)−λ(j)γigi(X)];

until mini=1,...,2K [fi(X
(j))− λ(j)γigi(X

(j))] ≤ 0.

Output : λ̃opt = λ(j), andX(j) as the solution.
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Algorithm 1 is a classic Dinkelbach-type algorithm [18]. InProblem (8), it is clear that0 < gi(X) <

∞, ∀X, and λ̃opt is finite. Hence, Condition 8.5 in [18] holds. According to [18, Theorem 8.7], we

immediately have the following result.

Lemma 1: Algorithm 1 converges Q-superlinearly1 to the global optimal solutionXopt for (8).

Remark 1: We note that the max-min SINR problem can be alternatively solved with the bisection

search method in [14]. It is known that the bisectional search has a linear, i.e., geometrically fast conver-

gence speed. In contrast, the proposed Dinkelbach-type algorithm has quotient-superlinear convergence.

Therefore, the proposed algorithm in general exhibits a faster convergence speed than the bisection search

method in [14]. We further remark that, the proposed Algorithm 1 is guaranteed to converge to the optimal

solution of (8) from any feasible initialA0 per Lemma 1. Here, we setA0 to be a scaled identity matrix for

simplicity; we may also use the existing beamforming solutions, such as the ZF or MMSE beamforming

in [9] asA0, for initialization. The choice ofA0 does not significantly affect the convergence speed.

Remark 2: The optimality of the solution given by Algorithm 1 to the original problem in (5) depends

on the rank of the solution matrixXopt. If Algorithm 1 yields a rank-oneXopt for (8), then we find the

optimalaopt as the (scaled) eigenvector with respect to the only positive eigenvalue ofXopt, and obtain

optimal beamforming matrixAopt for the original problem (5) by “de-stacking” theMM × 1 vectoraopt

into aM ×M matrix. In fact, for the two-user case, it was shown in [12], [19] that the problem (10), and

consequently (8), always has a rank-one optimal solutionXopt. However, for the generalK > 1 case, the

existence of a rank-one optimal solution for (10) cannot be provably guaranteed; see also [14]. Hence,

the exact optimal solution for the original problem (5) may not be constructed from the optimalXopt for

its relaxed problem (8), the solution to which possibly has arank greater than one. Randomized rounding

is a widely adopted method to obtain a feasible rank-one approximate solution from the SDP relaxation;

specifically, a Gaussian randomized rounding strategy [20]can be applied to get a vectoraopt from Xopt

1Let λ̃opt denote the optimal value of problem (8), andλ(j) the output value of thej-th iteration of Algorithm 1. We say that the sequence

λ(j) converges Q-superlinearly tõλopt if limj→∞
|λ(j+1)−λ̃opt|

|λ(j)−λ̃opt|
= 0.
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to nicely approximate the solution of the original problem (5).

It is worth mentioning that, for the case ofK > 1, the output value of Algorithm 1, obtained by

dropping the rank constraint, is an upper bound of the solution to the original max-min SINR problem

in (5). This upper bound can be used as a benchmark to assess the approximate solution obtained by

randomized rounding.

B. Power Minimization Problem

We next describe the SINR balancing problem in the form of power minimization. We show that, for

the two alternative forms of the SINR balancing problem, thesolution to one can be obtained through

solving the other.

The power minimization problem is formulated as follows:

min
A

2K
∑

i=1

pi‖Ahi‖2 + tr(AΛRA
H)

s. t. SINRi(A) ≥ γi, i = 1, . . . , 2K.

(11)

Noting a = vec(A) andX = aaH , and dropping the rank constraint ofX , we can rewrite (11) as

PR(λ) = min
X�0

tr(E0X)

s. t.
fi(X)

gi(X)
≥ λγi, i = 1, . . . , 2K.

(12)

Clearly, setting the parameterλ to 1 reduces (12) to (11). Here, we allowλ to be an arbitrary positive

number for ease of further discussions. We note that the power minimization in (12) can be efficiently

solved with a single SDP [14].

We next establish a close relation between the max-min SINR problem in (5) and the power minimization

problem in (12). We first show that (12) can be solved via solving (5). Let λ̃opt(P̌R) denote the optimal

value of (8) for a given power budgeťPR. It can be shown that̃λopt(P̌R) is a strictly increasing function

of P̌R, and the optimal solution to (11) is the same as that to (5) with the power budgetPR satisfying

λ̃opt(PR) = 1. (See the Appendix for proof.) As a result, the optimal solution to (11) can be obtained by

solving the equatioñλopt(PR) = 1, which simply requires a one-dimensional bisection search.
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What remains is to show that (5) can be solved via solving (12). It can be similarly shown thatPR(λ)

in (12) is a strictly increasing function ofλ. Together with the fact that, for an arbitraryλ > 0, (12)

is readily solvable using a single SDP, we conclude that (5) is solvable by a bisection search overλ

satisfyingPR(λ) = P̌R.

So far, we have shown that the power minimization and max-minSINR problems are two alternative

forms of the SINR balancing problem. This allows us to freelychoose a more tractable form, i.e., a form

that is more efficiently solvable, as the corner stone to pursue the optimal beamforming designs under

various important optimization criteria, as detailed in what follows.

IV. A U NIFIED APPROACH VIA MONOTONIC PROGRAM

In this section, using the max-min SINR or power minimization solution as a corner stone, we propose a

unified approach to find the relay beamforming designs for sumrate maximization, sum MSE minimization,

and average BER minimization, etc.

A. Some Useful Definitions

We start with some commonly used terminologies in monotonicprogramming [21]:

Definition 1 (Box): A box [0, b] is defined as the set of allz such that0 ≤ z ≤ b.

Definition 2 (Normal): A setS is callednormal if z′ ≤ z andz ∈ S implies z′ ∈ S.

Definition 3 (Reverse Normal):A setS is calledreverse normalif z′ ≥ z andz ∈ S impliesz′ ∈ S.

Definition 4 (Polyblock): For any finite vector setT := {vj|j = 1, . . . , J}, the union of all the boxes

[0, vj], ∀j, is a polyblockwith vertex setT .

Definition 5 (Proper): A vertex vj ∈ T is calledproper if there does not exist anothervj′ ∈ T such

that vj′ ≥ vj . A polyblock is fully determined by its proper vertices.

Definition 6 (Projection): For anyz ∈ R2K
+ \{0} and a normal setG, πG(z) is a projectionof z on G

if πG(z) = λz whereλ = max{α | αz ∈ G}; i.e., πG(z) is the unique point where the halfline from0

throughz meets the upperboundary ofG.
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B. Weighted Sum-Rate Maximization

Now consider the beamforming design for weighted sum-rate maximization. Treat the inter-user inter-

ference as noise. For the SINRi(A) in (3) and (4), we adopt a Shannon-capacity rate formulari(A) =

0.5 log2(1 + SINRi(A)) due to its wide applications in communication systems. The results will be

generalized to other utility functions in the sequel. Letwi denote the priority weight for useri. We

aim to solve the weighted sum-rate maximization problem formulated as

max
A

2K
∑

i=1

0.5wi log2(1 + SINRi(A))

s. t.
2K
∑

i=1

pi‖Ahi‖2 + tr(AΛRA
H) ≤ P̌R.

(13)

In terms ofX = vecA(vecA)H , we rewrite (13) as

max
X�0

2K
∑

i=1

0.5wi log2(1 + SINRi(X)), s. t. tr(E0X) ≤ P̌R (14)

where SINRi(X) = fi(X)/gi(X). Note that the rank constraint ofX is dropped in (14), and thus (14)

is in fact a relaxation of (13).

Define the setX := {X | tr(E0X) ≤ P̌R}. Introducing an auxiliary vectorz = [z1, . . . , z2K ]
T , we can

reformulate (14) into

max
z∈Z

Φ(z) :=

2K
∑

i=1

0.5wi log2(zi), (15)

where the feasible setZ := {z | 1 ≤ zi ≤ 1 + SINRi(X), i = 1, . . . , 2K, ∀X ∈ X}. Let zopt be the

optimal solution to (15). Then,Xopt ∈ X satisfyingzopt
i = 1+SINRi(X

opt) for all i is clearly the optimal

solution to the original problem (14).

Now let

G := {z | 0 ≤ zi ≤ 1 + SINRi(X), ∀i, ∀X ∈ X}. (16)

Also let b(X) := [1 + SINR1(X), . . . , 1 + SINR2K(X)]T , for anyX ∈ X . ThenG = ∪X∈X [0, b(X)],

implying thatG can be represented as the union of an infinite number of normalboxes; hence,G is also



13

normal [21]. Letd := [d1, . . . , d2K ]
T , with

d2k−1 = 1 +
p2kP̌R‖h2k−1‖2‖h2k‖2

σ2
2k−1

, d2k = 1 +
p2k−1P̌R‖h2k−1‖2‖h2k‖2

σ2
2k

. (17)

It clearly holds:1 + SINRi(X) ≤ di, ∀i, ∀X ∈ X . Therefore,G ⊂ [0,d] is a compact normal set with

nonempty interior. Further defineH := {z | zi ≥ 1, ∀i}. Clearly,H is a reverse normal set. Then (15)

can be written in the form of a standard MP [21] as

max
z

Φ(z), s. t. z ∈ G ∩H. (18)

For the MP (18), a polyblock outer approximation method can be employed to efficiently find its global

optimal solution [21]. Specifically, we target at constructing a nested sequence of polyblocksPn, n =

1, 2, . . ., approximatingG∩H: P1 ⊃ P2 ⊃ · · · ⊃ G∩H in such a way thatmaxz∈Pn
Φ(z) ց maxz∈G∩H Φ(z).

Denote the maximizer at iterationn as

zn = argmax
z∈Tn

Φ(z), (19)

whereTn is the (finite) proper vertex set ofPn. Note thatzn can be obtained by exhaustively searching

over the finite setTn. If zn ∈ G ∩H, then it solves the MP in (18). Otherwise, we find the next polyblock

Pn+1 contained inPn but still containingG ∩ H, and continue the process.

We next findPn+1 from Pn. Let yn be the projection ofzn on G, i.e.,yn = πG(z
n), and denote

zn(i) = zn − (zni − yni )ei, i = 1, . . . 2K, (20)

whereei is a unit vector with the only non-zero (i.e., “1”) in thei-th entry. Note thatzn(i) is obtained

by replacing thei-th entry of zn by yni . Clearly,yn ≤ zn(i) ≤ zn. Let Tn+1 be the set obtained from

Tn by replacing the vertexzn with 2K new verticeszn(i) and then remove the improper vertices; i.e.,

Tn+1 = (Tn\{zn}) ∪ {zn(i) | zn(i) is proper}. Sincezopt ∈ H, we can further reduce the vertex set

Tn+1 = Tn+1 ∩ H. From [21, Proposition 17], we immediately have

Lemma 2: The polyblockPn+1 with vertex setTn+1 satisfies(G ∩H) ⊂ Pn+1 ⊂ Pn.



14

Lemma 2 guarantees the validity of the above constructedPn+1 to continue the polyblock outer approxi-

mation process. A key step in the above construction ofPn+1 is to find the projectionyn = πG(z
n) = λnzn,

which can be determined by solving

λn = max{α | αzn ∈ G}

= max{α | α ≤ min
i=1,...,2K

1 + SINRi(X)

zni
, ∀X ∈ X}

= max
X∈X

min
i=1,...,2K

1 + SINRi(X)

zni
, (21)

where the second step utilizes the definition ofG in (16). The above is an extended max-min SINR

balancing problem written as

λn =max
X

min
i=1,...,2K

1 + SINRi(X)

zni

s. t. X � 0, tr(E0X) ≤ P̌R.

(22)

This problem can be solved using the Dinkelbach-type Algorithm 1 with minor modifications. Use the

definitions in Section II (such asΦ, qji, Bi, and gi(X)), except thatfi(X) is redefined asfi(X) :=

tr(E(1)
i X) + tr(E(2)

i X) + σ2
i . Then the solution of (22) can be obtained by solving a seriesof (9).

We are now ready to implement polyblock outer approximationmethod for (13). For a given accuracy

tolerance levelǫ > 0, we say that a feasiblēz is an ǫ-optimal solution if (1 + ǫ)Φ(z̄) ≥ Φ(zopt). The

following algorithm is proposed to find anǫ-optimal solution for (14).

Algorithm 2: for weighted sum-rate maximization

Initialize : select an accuracy levelǫ > 0, let n = 0, T0 = {d}, and CBV= −∞.

Repeat:

1). let zn = argmaxz∈Tn Φ(z), For zn, use Algorithm 1 to solve (22) to obtainλn, and the

correspondingXopt, as well asyn = λnzn.

2). If yn ∈ H andΦ(yn) > CBV, then CBV= Φ(yn), z̄ = yn andX̄ = Xopt.

3). Let zn(i) = zn − (zni − yni )ei, ∀i, andTn+1 = [(Tn\{zn}) ∪ {properzn(i)}] ∩ H.

4). Further remove fromTn+1 any vj ∈ Tn+1 satisfyingΦ(vj) ≤ CBV(1 + ǫ).

5). Setn = n+ 1.
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until Tn = φ.

Output : z̄ as theǫ-optimal solution for (15) and̄X the solution for (14).

Per iterationn of Algorithm 2, we haveyn = πG(z
n) ∈ G. If yn ∈ H is also true, we obtain a feasible

pointyn ∈ G∩H. In this case, we update CBV= max{CBV,Φ(yn)}. This implies that CBV is the current

best value so far, and the correspondingz̄ = argmax{ym | ym∈H,m≤n}Φ(y
m) is the current best solution

for (15). Observe that for anyvj ∈ Tn+1 satisfyingΦ(vj) ≤ CBV(1 + ǫ), we have(1 + ǫ)CBV ≥ Φ(y),

∀y ∈ [0, vj], due to monotonicity ofΦ. Hence,vj can be removed fromTn+1 for further consideration

sincez̄ will be the desiredǫ-optimal solution ifzopt ∈ [0, vj].

Remark 3: We remark that Algorithm 2 yields theǫ-optimal solution to (13) for the case ofK = 1.

However, for the general case ofK > 1, the output value of Algorithm 2, obtained by dropping the rank

constraint, only provides an upper bound of the maximum weighted sum-rate of (13). Again, randomized

rounding is used to obtain a good approximate solution to (13).

An illustration of Algorithm 2 forK = 1 is given in Fig. 2. With a vertex setTn, the upperboundary

of polyblockPn is depicted by the black dotted-dashed line. Among the threeentries ofTn, the third one

is the maximizer:zn = argmaxz∈Tn Φ(z), which is marked with a blue dot. After finding its projection

yn (marked with a blue cross) on the achievable SINR boundary, two new verticeszn,1 andzn,2 are then

obtained through (20). By replacingzn with these two vertices, we determine the new polyblockPn+1

with its upperboundary given by the red dashed line.

Similar polyblock outer approximation approaches have been adopted to solve the linear fractional

programming and non-convex wireless power control problems in [22], [23]. A key requirement for

provable convergence of Algorithm 2 is thatz is lower bounded by a strictly positive vector. Since

z ≥ 1 > 0 in (15), it readily follows from [21, Theorem 1] that

Proposition 1: Algorithm 2 globally converges to anǫ-optimal solution for (15) and (14).

The proposed Algorithm 2 can yield optimal TWR beamforming solution for the relaxed weighted

throughput maximization (14) with guaranteed convergenceand global optimality. For the two-user case,
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Fig. 2. The polyblock outer approximation procedure.

the algorithm can also yield the globally optimal solution for the original problem (13); for the general

K-pair case, it can provide a good approximate solution for (13). Hence, the proposed approach provides

a good benchmark for all the beamforming (or precoding) schemes that are designed to maximize the

user rates in AF-based TWR.

Note that the outer polyblock approximation is in fact a branch-and-bound method. For coordinated

beamforming designs in multicell networks, a branch-reduce-and-bound (BRB) algorithm was proposed.

It was shown that this BRB algorithm can have faster convergence for weighted sum-rate maximization

problems, whereas the polyblock approximation has faster convergence for many other utility functions

[24]. The key in the BRB algorithm is again finding the projection of an outer vertex on the upperboundary

of the achievable SINR region. Using the max-min SINR solution for (5), a BRB algorithm similar to

Algorithm 2 can be also developed to find the optimal TWR beamforming design for the weighted

throughput maximization (13), probably with a faster convergence speed.

C. General Design Criteria

The proposed MP approach only relies on the monotonicity of the objective function and the normality

of the feasible set. Thus, it can apply to beamforming designs under more general criteria. Consider
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maximizing a general increasing functionFi of SINRs

max
A

2K
∑

i=1

Fi(SINRi(A))

s. t.
2K
∑

i=1

pi‖Ahi‖2 + tr(AΛRA
H) ≤ P̌R.

(23)

The functionFi can be a specific rate function (different from the Shannon capacity formula)ri(SINRi(A))

for practical modulation and coding schemes. Maximizationof the utility of user rates has gained a

growing interest in the communication and networking context, where different types of utility functions

are proposed to trade off the throughput and fairness, or to capture the “happiness” of the user links

[25]. The functionFi here can also be the composition of an increasing (not necessarily concave) utility

function with that particular rate functionUi(ri(SINRi(A))).

In addition, the formulation (23) includes the following two important cases:

1) MSE minimization: Assume that all the user receivers use the linear-minimum-mean-square-error

(LMMSE) filters for estimating the received symbols. The weighted sum-MSEs at the output of the

LMMSE receivers is given by [26]:

2K
∑

i=1

wiMSEi =

2K
∑

i=1

wi

1 + SINRi
.

With Fi(SINRi(A)) := − wi

1+SINRi(A)
, (23) specializes to weighted sum-MSE minimization.

2) SER or BER minimization: Using a Q-function:Q(x) := 1√
2π

∫∞
x

exp(−u2

2
)du, the SER and BER

of practical modulation schemes can be calculated or approximated in closed-form [27]. Clearly all

these SER or BER functions, sayεi(SINRi), are strictly decreasing in SINR. WithFi(SINRi(A)) :=

−wiεi(SINRi(A)), the problem (23) specializes to weighted sum-SER (or BER) minimization.

It is clear that (23) also carries over to minimization of increasing (not necessarily convex) cost functions

of MSE, SER or BER.

For all theseFi(SINRi(A)) functions, we can redefineΦ(z) :=
∑2K

i=1 Fi(zi − 1), and consider

max
z∈Z

Φ(z) :=

2K
∑

i=1

Fi(zi − 1). (24)
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Algorithm 2 can be used to approximately solve this MP, and, subsequently, provide the solution for (23).

It provides a benchmark for the beamforming designs in AF-based TWR under many important criteria.

V. COLLABORATIVE TWR BEAMFORMING

A. Collaborative TWR Model

The proposed unified framework also applies to collaborative TWR where a cluster ofM single-antenna

relay nodes{Rm | m = 1, . . . ,M} cooperatively assist the bidirectional communications between multiple

users. Such a collaborative TWR scheme was previously considered in [16], [17] and [28], where the

beamforming coefficients for the relays are designed under atotal relay power constraint, i.e., the relays

share a total power budget. This total relay power constraint is usually not realistic in practical scenarios.

Therefore, we consider collaborative beamforming design with individual relay power constraints.

The system model for collaborative TWR can be viewed as a special case of the TWR model described

in Section II. The only difference is that in collaborative TWR, the signals received by different antennas

at relays cannot be jointly processed. Assume that the(2k − 1)th user and the(2k)th user communicate

with each other,k = 1, . . . , K, and that data exchange consists of two phases. In the first phase, each

user transmits its signalsi(t) to the relays, and the received signalyRm
(t) at the relayRm is

yRm
(t) =

2K
∑

i=1

hi,m
√
pisi(t) + nRm

(t), (25)

wherehi,m denotes the channel coefficient from useri to relayRm, andzRm
(t) ∼ CN (0, σ2

Rm
) denotes

the additive noise at relayRm. Let hi := [hi,1, . . . , hi,M ]T , yR(t) := [yR1(t), . . . , yRM
(t)]T , andzR(t) :=

[zR1(t), . . . , zRM
(t)]T . Then the received signal vectoryR(t) at all relays is again given by (1).

Upon receivingyRm
(t), the relay collaboratively amplifies and forwards its signal xRm

(t) = ãmyRm
(t)

to all users in the next phase. Letã := [ã1, . . . , ãM ] collect the (complex) AF gains for all relays. The

signal vectorxR(t) := [xR1(t), . . . , xRM
(t)]T can be written asxR(t) = ÃyR(t), whereÃ := diag(ã).

Different from the TWR model with a multi-antenna relay in Section II, the beamforming matrix for
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collaborative TWR is restricted to be diagonal. The transmit power of the relayRm is given by

pRm
(ã) =

2K
∑

i=1

pi‖ãmhi,m‖2 + σ2
Rm

|ãm|2. (26)

Assuming channel reciprocity, the received signal at useri = 1, . . . , 2K, is then given by

yi(t) = hT
i Ã

2K
∑

j=1

hj
√
pjsj(t) + hT

i ÃnR(t) + ni(t) (27)

where the noiseni(t) ∼ CN (0, σ2
i ). Clearly, (27) is equivalent to (2) by replacing̃A with A. Therefore,

after removing the self-interference, the SINR at the(2k−1)th user and at the(2k)th user are respectively

given by (3) and (4) (withA replaced byÃ).

B. Algorithm Design

Based on these SINRs, the max-min SINR problem for collaborative TWR can be formulated as

λopt =max
Ã

min
i=1,...,2K

SINRi(Ã)

γi

s. t.
2K
∑

i=1

pi‖ãmhi,m‖2 + σ2
Rm

|ãm|2 ≤ P̌Rm
, m = 1, . . . ,M.

(28)

Problem (28) is similar to (5) except that̃A in (28) is constrained to be diagonal and there areM

transmit power constraints. Thus, (28) can be solved in a similar way as (5) is. LetX = ããH , θm :=

∑2K
i=1 pi‖hi,m‖2 + σ2

Rm
, Φm := [01×(m−1), θm, 01×(M−m)], andE0,m := Φ

H
mΦm. Then the transmit power

constraint of relayRm can be expressed as tr(E0,mX) ≤ P̌Rm
. Upon definingfi(X) andgi(X) as with

(7), the problem (28) can be relaxed to a max-min fractional program similar to (8). Consequently, it can

be efficiently solved by the Dinkelbach-type Algorithm 1 with minor modifications.

Using the max-min SINR solution as the corner stone, the beamforming designs for the collaborative

TWR under the various criteria considered in Section IV can be done with minor modifications of

Algorithm 2. For example, the weighted sum-rate maximization problem for collaborative TWR is the

same as (18) except that the setX is now given byX := {X | tr(E0,mX) ≤ P̌Rm
, m = 1, . . . ,M}.

It is clear that the corresponding setG for collaborative TWR is still normal. Hence, the optimization

problem can be still formulated as an MP, and the optimal beamforming matrix can be obtained using

the polyblock outer approximation method in Algorithm 2.
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VI. MIMO TWR B EAMFORMING

A. MIMO TWR Model

The performance of TWR can be enhanced when both the relay andthe users are equipped with

multiple antennas [19]. In what follows, we consider the joint optimization of users’ transmit and receive

beamforming vectors and the relay’s beamforming matrix.

Let Mi denote the number of antennas at useri = 1, . . . , 2K, andsi(t) denote the data signal. In the

first phase, useri performs transmit beamforming with vectorui ∈ CMi×1 as xi(t) = uisi(t), where

||ui||2 ≤ pi, andpi is the transmit power budget of useri. The received signal at the relay is

yR(t) =

2K
∑

i=1

H ixi(t) + nR(t), (29)

whereH i ∈ CM×Mi is the channel matrix from useri to the relay.

In the second phase, the relay amplifies and forwards the signal xR(t) = AyR(t) to both users. The

transmit power at the relay is given by

pR(A) =
2K
∑

i=1

tr(AH iuiu
H
i H

H
i A

H) + tr(AΛRA
H). (30)

The received signal at useri is given by

yi(t) = HT
i A

2K
∑

j=1

Hjxj(t) +HT
i AnR(t) + ni(t), (31)

whereni(t) ∼ CN (0,Λi) is the additive noise at useri.

The useri first combines its received signal with a vectorvi ∈ CMi×1 to obtainy′
i(t) = vH

i yi(t), which

can be expressed as

y′
i(t) = vH

i [H
T
i A

2K
∑

j=1

Hjujsj(t) +HT
i AnR(t) + ni(t)]. (32)

Clearly, the output SINR of each user depends on the relay precoding matrixA, the users’ transmit

precoding vectors, and the receive combining vectors. The SINR at the useri is

SINRi(A, {ui}, {vi}) =
|vH

i H
T
i AHπ(i)uπ(i)|2

∑

j 6=i,π(i) |vH
i H

T
i AHjuj|2 + ‖ΛR

1/2AHH∗
ivi‖2 + ‖Λi

1/2vi‖2
, (33)

whereπ(i) denotes the partner of useri, i.e., π(2k − 1) = 2k andπ(2k) = 2k − 1, ∀k.
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B. Algorithm Design

The max-min SINR problem of the considered multi-pair MIMO TWR can be formulated as

λopt = max
A,{ui},{vi}

min
i=1,...,2K

SINRi(A, {ui}, {vi})
γi

s. t. pR(A) =
2K
∑

i=1

tr(AH iuiu
H
i H

H
i A

H) + tr(AΛRA
H) ≤ P̌R,

‖ui‖2 ≤ pi, i = 1, . . . , 2K.

(34)

This optimization problem is in general difficult to solve. We next propose an iterative algorithm to

optimizeA, {ui}, and{vi} in an alternating fashion.

1) User Receive Combining:Given the relay beamforming matrixA and users’ transmit precoding

vectorsui, i = 1, . . . , 2K, the well-known MMSE combining can be employed at useri to detect the

transmit signal from its partner user. Letαi,j := HT
i AHjuj ∈ CMi×1, and Ri :=

∑

j 6=iαi,jα
H
i,j +

HT
i AΛRA

HH∗
i +Λi. Then the combining vectorvi is given by

vi = R−1
i αi,π(i). (35)

2) Optimal Relay Precoding:Now consider the relay beamforming design with fixed transmit and

receive beamforming vectors at the users. Lethi := H iui ∈ CM×1, gi := H∗
ivi ∈ CM×1. The max-min

optimization problem in (34) becomes

λopt
A =max

A
min

i=1,...,2K

|gH
i Ahπ(i)|2

γi(
∑

j 6=i,π(i) |gH
i Ahj |2 + ‖Λ1/2

R AHgi‖2 + ‖Λ1/2
i vi‖2)

s. t.
2K
∑

i=1

‖Ahi‖2 + tr(AΛRA
H) ≤ P̌R.

(36)

This problem has almost the same form with (5); hence, it can be efficiently solved by Algorithm 1.

3) Optimal Transmit Precoding:The users’ transmit precoding vectorsui, i = 1, . . . , 2K, are also

designed to maximize the minimum SINR, and the optimizationproblem can be formulated as

λopt
u = max

{uj}2Kj=1

min
i=1,...,2K

SINRi(u)

γi

s. t. ‖ui‖2 ≤ pi, i = 1, . . . , 2K.

(37)
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Let βi,j := HH
j A

HH∗
ivi, anddi := ‖Λ1/2

R AHgi‖2+‖Λ1/2
i vi‖2. Define:Ei,j := βi,jβ

H
i,j, andX i = uiu

H
i .

The SINR of useri can be expressed as

SINRi(u) =
tr(Ei,π(i)Xπ(i))

∑

j 6=i,π(i) tr(Ei,jXj) + di
. (38)

Using X i, i = 1, . . . , 2K, as the optimization variables and dropping the constraintof rank(X i) = 1,

i = 1, . . . , 2K, the problem (37) becomes a max-min fractional program

λopt
u = max

{Xj}2Kj=1

min
i=1,...,2K

tr(Ei,π(i)Xπ(i))

γi(
∑

j 6=i,π(i) tr(Ei,jXj) + di)

s. t. X i � 0, i = 1, . . . , 2K,

tr(EiX i) ≤ pi, i = 1, . . . , 2K.

(39)

Again, the problem is similar to (8); it can be efficiently solved using the Dinkelbach-type Algorithm 1

with minor modifications.

4) Overall Iterative Algorithm:We are now ready to present the overall iterative algorithm to alter-

natingly optimize the users’ transmit precoding vectors, the relay’s beamforming matrix, and the users’

receive combining vectors.

Algorithm 3: Iterative optimization for multi-pair MIMO TWR

Initialize : u0
i ,A

0, andv0
i , i = 1, . . . , 2K. Select an accuracy levelǫ > 0. Let n = 0.

Repeat:

1). Givenun
i ,A

n, update the receive combining vectorsvn+1
i , i = 1, . . . , 2K, via (35).

2). With un
i andvn+1

i fixed, use Algorithm 1 to solve the max-min SINR problem (36) to obtain

the relay beamforming matrixAn+1.

3). With An+1 andvn+1
i fixed, solve the max-min SINR problem (39) to compute its optimal

value λn
u and the corresponding users’ transmit precoding vectorsun+1

i , i = 1, . . . , 2K, via

Algorithm 1 (with minor modification).

4). Setn = n+ 1.

until |λn
u − λn−1

u | < ǫ.
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Since the objective of the intended problem (34) is clearly upper-bounded and it is increased in each

iteration of Algorithm 3, the convergence of the proposed alternative optimization approach readily follows.

Note that Algorithm 3 in general converges to a local optimumpoint. Nevertheless, as will be shown in the

next section, the beamforming design with the proposed iterative algorithm can significantly outperform

the existing methods.

For weighted sum-rate maximization and other criteria, a similar iterative optimization algorithm can

be developed to find the users’ transmit precoding vectors, the relay’s beamforming matrix, and the users’

receive combining vectors. Consider the beamforming designs for weighted sum-rate maximization. The

joint design problem can be again decoupled into three sub-problems and an iterative method can be used

to alternatively solve the three sub-problems. Specifically, during then-th iteration, we first update the

users’ receive combining vectorsvn+1
i , i = 1, . . . , 2K, via (35) with fixedun

i , i = 1, . . . , 2K, andAn.

Given un
i and vn+1

i , we next find the optimal relay beamforming matrixAn+1. This sub-optimization

problem is an MP. Building on the max-min SINR solution to (36), Algorithm 2 can be used to obtain

An+1. With An+1 and vn+1
i fixed, the optimal precoding vectorsun+1

i , i = 1, . . . , 2K, for weighted

sum-rate maximization can also be found by the polyblock outer approximation method in Algorithm 2

building on the max-min SINR solution to (39). It is guaranteed that the proposed MP based alternative

optimization approach converges to, at least, a local optimum.

VII. N UMERICAL RESULTS

In this section, numerical results are presented to test theproposed beamforming designs. The simulation

settings are as follows. We consider uncorrelated Rayleighflat fading channels, i.e., each element inhi

or H i is independent complex Gaussian distributed with zero meanand unit variance. Unless otherwise

specified, each user is equipped with a single antenna; the noise components are complex white Gaussian

with nR(t) ∼ CN (0, N0IM), andni(t) ∼ CN (0, N0); assumepi = p, ∀i, and defineSNR = p/N0.
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Fig. 3. Weighted sum-rate of two-user two-way relaying withvarious schemes,p1 = p2 = P̌R, w1 = 0.2, w2 = 0.8, andM = 2.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Iterations

C
B

V

 

 

CBV,SNR=18dB
Upper bound,SNR=18dB
CBV,SNR=24dB
Upper bound,SNR=24dB

Fig. 4. Evolution of CBV in Algorithm 2.

A. One-pair TWR

In Fig. 3, we check the optimality of the proposed monotonic program based weighted sum-rate maxi-

mization beamforming design method forK = 1 user pair, by comparing with the optimal beamforming

scheme in [12], and the antenna selection relaying scheme, where the best antenna is selected for signal

relaying. There areM = 2 antennas at the relay, and the transmit power of the relay andthe two users are

the same :p1 = p2 = P̌R. The weights are chosen asw1 = 0.2 andw2 = 0.8, andǫ = 0.01 for Algorithm

2. It is seen that the proposed monotonic program based design method achieves the same performance as
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Fig. 5. Comparison between the proposed Algorithm 1 and the bisection search method in [14] forǫ = 0.01 andK = 2.

the scheme in [12], which confirms that the beamforming matrix obtained by Algorithm 2 is optimal. (The

slight differences between the two are due to numerical errors.) To illustrate the convergence behavior of

the proposed method, the CBV in Algorithm 2 is shown in Fig. 4.The weighted sum-rate upper bound

is obtained as follows: we ignore the rank-one constrain when solving the problem (22), and find the

minimal of Φ(zn) in Algorithm 2 as the upper bound. We see that Algorithm 2 converges fast. In this

particular example, three iterations is sufficient to determine the optimal beamforming matrix.

B. Multi-pair TWR

Now consider a two-pair TWR with a four-antenna relay, i.e.,K = 2 andM = 4. We assume equal

power allocation among the four users and the relay. Fig. 5 compares the number of iterations of the

proposed Dinkelbach-type Algorithm 1 with the bisection search method in [14] for a given solution

accuracyǫ = 0.01. For the bisection method in [14] , the number of iterations is ⌈log2(t/ǫ)⌉, wheret

and ǫ are the search bound and error precision, respectively. Thesearch boundt depends on the SNR

and the channel coefficients [14]. Hence, the number of iterations of the bisection method increases as

the SNR increases or the number of antennas increases as shown in the figure. On the other hand, the

number of iterations for the proposed Dinkelbach-type Algorithm 1 remains almost unchanged. Using the

zero-forcing beamforming matrix in [9] as the initialA0, it can be seen that the proposed Algorithm 1
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Fig. 6. Weighted sum-rate of four-user TWR with different beamforming schemes,w1 = 0.2, w2 = 0.8, w3 = 0.5, w4 = 0.5, andM = 2.
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Fig. 7. Weighted sum-rate of four-user TWR with different beamforming schemes,w1 = 0.2, w2 = 0.8, w3 = 0.5 ,w4 = 0.5, andM = 4.

converges much faster than the bisection method. About 5 or 6iterations are sufficient for the convergence

of Algorithm 1 in the whole SNR region.

Fig. 6 and Fig. 7 show the achievable weighted sum-rate of various beamforming schemes withM = 2

and 4 antennas at the relay, respectively. The weights are chosen asw1 = 0.2, w2 = 0.8, andw3 =

w4 = 0.5. For the proposed weighted sum-rate maximization (Max WSR)beamforming, the optimal

beamforming matrixAopt is obtained by the monotonic program method in Algorithm 2 with ǫ = 0.01.

The weighted sum-rate performance upper bound is obtained as in Fig. 4. We compare the proposed

design with the following methods: 1) max-min beamforming in [14], 2) minimum mean-square-error
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Fig. 8. Weighted sum-rate of multi-pair collaborative TWR with pi = P̌R,∀i.

(MMSE) beamforming in [9], 3) zero-forcing based network coding (ZFNC) in [10], and 4) ProBaSeMO

scheme in [15]. Note that for the ZFNC scheme, the number of antennas at the relay should be no less

than the number of users, hence it is only applicable whenM = 4. From both figures, it is shown that

the performance of the proposed beamforming design is closeto the performance upper bound, and it

outperforms all other alternatives for all SNR values. In particular, the MP approach building on the max-

min SINR solution can significantly improve the sum-rate performance, when there is only two antennas

at the relay.

C. Collaborative Multi-pair TWR

Now consider a collaborative four-user TWR with four single-antenna relays. Fig. 8 shows the perfor-

mance of the proposed collaborative beamforming design andthe zero-forcing distributed beamforming

(ZFDBF) scheme in [28]. The simulation parameters are the same as in Fig. 6. We consider two transmit

power constraints: 1) the relays have a total transmit powerconstraint that
∑M

m=1 P̌Rm
= p, and 2) each

relay has individual transmit power constraint thatP̌Rm
= p/M, ∀m. For the considered two transmit

power constraints, it is shown that the collaborative TWR with total transmit power constraint slightly

outperforms that with individual transmit power constraint in the high SNR region. Compared with the

ZFDBF scheme, significant performance gains can be achievedwith the proposed beamforming designs.
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It can be also seen that the achievable weighted sum-rate of collaborative TWR with four single-antenna

relays is much lower than that of TWR with a single four-antenna relay. This is due to the fact that the

beamforming matrixÃ for collaborative TWR is restricted to be diagonal. Hence certain multiplexing

gain is lost as compared with the single multi-antenna relaycase.

D. MIMO Multi-pair TWR

Finally, Fig. 9 presents the BER performance of a four-user MIMO TWR system with QPSK modulation,

where both the users and the relay are equipped with multipleantennas. The number of antennas for one

user varies from 1 to 2, and there are 4 antennas at the relay. It is shown that the BER performance

improves as the number of antennas at each user increases. Also, significant performance improvement is

observed for the proposed optimal beamforming as compared with the MMSE beamforming scheme in

[9] and the interference alignment (IA) scheme in [29]. For instance, there is more than 10dB gain at a

BER of 10−3 for the proposed design when there are two antennas at each user.

VIII. C ONCLUSION

We developed a unified framework of beamforming designs for non-regenerative two-way relaying. Us-

ing the max-min SINR solution as a corner stone, we proposed efficient algorithms to find the near-optimal
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beamforming designs under various important criteria suchas power minimization, rate maximization,

MSE minimization, and BER minimization. We further extended the proposed framework to distributed

beamforming for TWR, as well as to MIMO TWR. The proposed unified approach can provide important

insights for tackling the optimal beamforming designs in other emerging network models and settings.

APPENDIX

We first show that

Lemma 3: λ̃opt(P̌R) is a strictly increasing function of̌PR.

Proof: Let Xopt denote the optimal solution for (8) with power budgetP̌R > 0. For a P̌ ′
R > P̌R,

let α = P̌ ′
R/P̌R > 1, and X ′ = αXopt. Then X ′ is feasible for (8) with power budgeťP ′

R, since

tr(E0X
′) = αtr(E0X

opt) ≤ αP̌R = P̌ ′
R.

On the other hand,

SINRi(X
′) =

fi(X
′)

gi(X
′)

=
tr(E(1)

i X ′)

tr(E(2)
i X ′) + σ2

i

=
αtr(E(1)

i Xopt)

αtr(E(2)
i Xopt) + σ2

i

>
tr(E(1)

i Xopt)

tr(E(2)
i Xopt) + σ2

i

= SINRi(X
opt).

Therefore,λ̃opt(P̌ ′
R) ≥ mini=1,...,2K

SINRi(X
′)

γi
> mini=1,...,2K

SINRi(X
opt)

γi
= λ̃opt(P̌R). �

Relying on the monotonicity of̃λopt(P̌R) stated in Lemma 3, we can further show that:

Lemma 4: The optimal solution for (12) is the same as the matrixXopt for (8) with the power budget

PR that satisfies̃λopt(PR) = 1.

Proof : LetXopt denote the optimal solution for (8) with the power budgetPR that satisfies̃λopt(PR) = 1.

Since λ̃opt(PR) = 1 implies SINRi(X
opt) ≥ γi, i = 1, . . . , 2K, Xopt is in the feasible set of (12). Upon

denotingP opt
R as the optimal value for (12), this in turn implies thatP opt

R ≤ tr(E0X
opt) ≤ PR. Consider

(8) with the power budgetP opt
R . By Lemma 3, we must have

λ̃opt(P opt
R ) ≤ λ̃opt(PR) = 1 (40)

due toP opt
R ≤ PR.
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On the other hand, let̃X
opt

denote the optimal solution for (12), which is the feasible set of (8) with

the power budgetP opt
R since tr(E0X̃

opt
) = P opt

R . For thisX̃
opt

, we havemini=1,...,2K
SINRi(X̃

opt
)

γi
≥ 1 since

SINRi(X̃
opt
) ≥ γi, i = 1, . . . , 2K. This together with the feasibility of̃X

opt
implies thatλ̃opt(P opt

R ) ≥ 1.

Clearly, we have both the latter and (40) satisfied, only whenall the inequalities are satisfied with equalities;

i.e., P opt
R = PR, and it is achieved by the beamforming matrixXopt. �
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