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Sparse Error Correction From Nonlinear
Measurements With Applications in
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Abstract—In this paper, we consider the problem of sparse error
correction from general nonlinear measurements, which has appli-
cations in state estimation of electrical power networks, when bad
data (outliers) are present. An iterative mixed and convex
program is used to estimate the true state by locally linearizing
the nonlinearmeasurements. In the special case when themeasure-
ments are linear, through using the almost Euclidean property for
a linear subspace, we derive a new performance bound for the state
estimation error under sparse bad data and additive observation
noise. As a byproduct, in this paper we provide sharp bounds on
the almost Euclidean property of a linear subspace, using the “es-
cape-through-the-mesh” theorem from geometric functional anal-
ysis. When the measurements are nonlinear, we give conditions
under which the solution of the iterative algorithm converges to
the true state even though the locally linearizedmeasurementsmay
not be the actual nonlinear measurements. We are able to use a
semidefinite program to verify the conditions for convergence of
the proposed iterative sparse recovery algorithms from nonlinear
measurements. We then numerically evaluate our iterative convex
programming approach of performing bad data detections in non-
linear electrical power networks problems.

Index Terms—System estimation, electrical power networks,
bad data detection, nonlinear sparse recovery, compressed sensing.

I. INTRODUCTION

I N this paper, inspired by state estimation for nonlinear elec-
trical power networks under bad data and additive noise, we

study the problem of sparse recovery from nonlinear measure-
ments. The static state of an electrical power network can be
described by the vector of bus voltage magnitudes and angles.
In smart grid power networks, due to physical constraints, indi-
rect nonlinear measurement results of these quantities are sent to
the central control center, where the state estimation of electric
power network is performed. On the one hand, these measure-
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ment results contain common small additive noises due to the
accuracy of meters and equipments. On the other hand, more
severely, these results can contain bad data (sometimes referred
to as “gross errors”, “outliers”) due to faulty sensors, meters
and system malfunctions. In addition, erroneous communica-
tions and adversarial compromises of the meters can also intro-
duce gross errors to the measurement quantities received by the
central control center. In these scenarios, the observed measure-
ments contain significant or even arbitrary measurement errors,
in addition to the more common additive observation noises. So
state estimation in power networks needs to detect, identify, and
eliminate these large measurement errors [5], [6], [25]. While
there are a series of works for dealing with outliers in linear
measurements [7], [8], the measurements for state estimation in
power networks are nonlinear functions of the states. This mo-
tivates us to study the general problem of state estimation from
nonlinear measurements in the presence of bad data.
Suppose that we make measurements to estimate the state

described by an -dimensional real-numbered vector,
then these measurements can be written as an -dimensional
vector , which is related to the state vector through the mea-
surement equation

(I.1)

where is a set of general functions, which may be linear
or nonlinear, and is an -dimensional vector of additive mea-
surement noise, and is the vector of bad data imposed on the
measurements. For simplicity, we assume that is an -dimen-
sional vector with i.i.d. zero mean Gaussian elements of vari-
ance (even though the performance bounds carry over to
other types of additive noises). We also assume that is an -di-
mensional sparse vector with at most nonzero entries, and the
nonzero entries can take arbitrary real-numbered values. The
sparsity of gross errors reflects the nature of bad data because
generally only a few faulty sensing results are present or an ad-
versary party may control only a few malicious meters. It is nat-
ural that a small number of sensors and meters are faulty at a
certain moment; an adversary party may be only able to alter
the results of a limited number of meters under his control [22];
and communication errors of meter results are often rare.
When there are no bad data present, it is well known that the

Least Square (LS) method can be used to suppress the effect of
observation noise on state estimations. In nonlinear setting, we
need the nonlinear LS method, where we try to find a vector
minimizing

(I.2)
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However, the LS method generally only works well when there
are no bad data corrupting the observation . If the magni-
tudes of bad data are large, the estimation result can be very
far from the true state [7], [8]. So further techniques to elim-
inate abnormal measurements are needed when there are bad
data present in the measurement results.
Bad data detection in power networks can be viewed as a

sparse error detection problem, which shares similar mathe-
matical structures as sparse recovery problems in compressed
sensing [7], [8], [12]. However, state estimation problem in
power networks is different from linear sparse error detection
problem [8]. In fact, in (I.1) is a nonlinear mapping
instead of a linear mapping as in [7]. It is the goal of this paper
to provide sparse error correction algorithms, and performance
analysis for general sparse error correction based on nonlinear
measurements, with applications in bad data detection for
electrical power networks.
Toward this end, we first consider the simplified problem

when is linear, which serves as a basis for solving and ana-
lyzing sparse recovery problems with nonlinear measurements.
For this sparse recovery problem with linear measurements, a
mixed least norm and norm convex program is used to si-
multaneously detect bad data and subtract additive noise from
the observations. In our theoretical analysis of the decoding
performance, we assume is a linear transformation ,
where is an matrix with i.i.d. standard zero mean
Gaussian entries. Through using the almost Euclidean property
for the linear subspace generated by , we derive a new per-
formance bound for the state estimation error under sparse bad
data and additive observation noise. In our analysis, using the
“escape-through-the-mesh” theorem from geometric functional
analysis [15], we are able to significantly improve on the bounds
for the almost Euclidean property of a linear subspace, which
may be interesting in amore general mathematical setting. Com-
pared with earlier analysis on the same optimization problem in
[7], we are able to give explicit bounds on the error performance,
which is generally sharper than the result in [7] in terms of re-
coverable sparsity.
We then consider the nonlinear measurement setting. Gener-

alizing the algorithm and results for linear measurements, we
propose an iterative convex programming approach to perform
joint noise reduction and bad data detection from nonlinear mea-
surements. We establish conditions under which the iterative al-
gorithm converges to the true state in the presence of bad data
even when the measurements are nonlinear. We are also able to
explicitly verify when the conditions hold through a semidefi-
nite programming formulation. Our iterative convex program-
ming based algorithm is shown to work well in this nonlinear
setting by numerical examples.
Compared with [21], which originally proposed to apply

minimization in bad data detection in power networks, our ap-
proach offers a better decoding error performance when both
bad data and additive observation noises are present. [19], [20]
considered state estimations under malicious data attacks, and
formulated state estimation under malicious attacks as a hypoth-
esis testing problem by assuming a prior probability distribution
on the state . In contrast, our approach does not rely on any
prior information on the signal itself, and the performance
bounds hold for an arbitrary state . Compressive sensing with

nonlinear measurements were studied in [4] by extending the re-
stricted isometry condition. Our sparse recovery problem is dif-
ferent from the compressive sensing problem considered in [4]
since our measurements are overcomplete and are designed to
perform sparse error corrections instead of compressive sensing.
Our analysis does not rely on extensions of the restricted isom-
etry condition.
The rest of this paper is organized as follows. In Section II, we

study joint bad data detection and denoising for linear measure-
ments, and derive the performance bound on the decoding error
based on the almost Euclidean property of linear subspaces.
In Section III, a sharp bound on the almost Euclidean prop-
erty is given through the “escape-through-the-mesh” theorem.
In Section IV, we present explicitly computed bounds on the
estimation error for linear measurements. In Section V, we pro-
pose our iterative convex programming algorithm to perform
sparse recovery from nonlinear measurements and give theo-
retical analysis on the performance guarantee of the iterative
algorithm. In Section VI, we present simulation results of our
iterative algorithm to show its performance in power networks.

II. BAD DATA DETECTION FOR LINEAR SYSTEMS

In this section, we introduce a convex program formulation to
do bad data detection in linear systems, and characterize its de-
coding error performance. In a linear system, the corresponding

observation vector in (I.1) is , where
is an signal vector is an matrix, is
a sparse error vector with at most nonzero elements, and is
a noise vector with . In what follows, we denote the
part of any vector over any index set as .
We solve the following optimization problem involving opti-

mization variables and , and we then estimate the state to
be , which is the optimizer value for .

(II.1)

This optimization problem was proposed in a slightly different
form in [7] by restricting in the null space of . We are
now ready to give a theorem which bounds the decoding error
performance of (II.1), using the almost Euclidean property [9],
[18].
Definition 2.1 (Almost Euclidean Property): A subspace in
satisfies the almost Euclidean property for a constant ,

if

holds true for every in the subspace.
Theorem 2.2: Let and be specified as above. Sup-

pose that the minimum nonzero singular value of is . Let
be a real number larger than 1, and suppose that every vector
in range of the matrix satisfies for

any subset with cardinality , where
is an integer, and . We also assume the

subspace generated by satisfies the almost Euclidean prop-
erty for a constant .
Then the solution to (II.1) satisfies

(II.2)
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Proof: Suppose that one optimal solution pair to (II.1) is
. Since , we have .

Since and are feasible for (II.1) and ,
then

Applying the triangle inequality to ,
we further obtain

Denoting as , because is supported on a set
with cardinality , by the triangle inequality for norm
again,

So we have

(II.3)

With , we know

Combining this with (II.3), we obtain

By the almost Euclidean property , it
follows:

(II.4)

By the definition of singular values,

(II.5)

so combining (II.4), we get

Note that when there are no sparse errors present, the de-
coding error bound using the standard LS method satisfies

[7]. Theorem 2.2 shows that the decoding error
bound of (II.1) is oblivious to the amplitudes of these bad data.
This phenomenon was also observed in [7] by using the re-
stricted isometry condition for compressive sensing.
We remark that, for given and , by strong Lagrange duality

theory, the solution to (II.1) corresponds to the solution to
in the following problem (II.6) for some Lagrange dual variable

.

(II.6)

Fig. 1. over .

In fact, when , the optimizer , and (II.6)
approaches

and when , the optimizer , and (II.6) ap-
proaches

In the next two sections, we aim at explicitly computing
appearing in the error bound (II.2), which

is subsequently denoted as in this paper. The appearance of
the factor is to compensate for the energy scaling of large
random matrices and its meaning will be clear in later context.
We first compute explicitly the almost Euclidean property
constant , and then use the almost Euclidean property to get a
direct estimate of the constant in the error bound (II.2).

III. BOUNDING THE ALMOST EUCLIDEAN PROPERTY

In this section, we would like to give a quantitative bound on
the almost Euclidean property constant such that with high
probability (with respect to the measure for the subspace gener-
ated by random ), holds for every vector
from the subspace generated by . Here we assume that

each element of is independently generated from the stan-
dard Gaussian distribution . Hence the subspace gener-
ated by is a uniformly distributed -dimensional subspace.
To ensure that the subspace generated from satisfies the

almost Euclidean property with , we must have the event
that the subspace generated by does not intersect the set

, where is the unit Eu-
clidean sphere in . To evaluate the probability that this event
happens, we will need the following “escape-through-mesh”
theorem.
Theorem 3.1 (Escape Through the Mesh [15]): Let be a

subset of the unit Euclidean sphere in . Let be a
random -dimensional subspace of , distributed uniformly
in the Grassmanian with respect to the Haar measure. Let us
further take , where is a random
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column vector in with i.i.d. components. Assume
that . Then

We derive the following upper bound of
for an arbitrary but fixed . Because the set

is symmetric, without loss
of generality, we assume that the elements of follow i.i.d.
half-normal distributions, namely the distribution for the abso-
lute value of a standard zero mean Gaussian random variables.
With denoting the -th element of is
equivalent to

Following the method from [29], we use the Lagrange duality
to find an upper bound for the objective function of (III.1):

where is a vector . Note that restricting to
be nonnegative still gives an upper bound even though it corre-
sponds to an equality.
First, we maximize (III.1) over for fixed

and . By setting the derivatives to be zero, the maxi-
mizing is given by

Plugging this back into the objective function in (III.1), we
get

(III.2)

Next, we minimize (III.2) over . It is not hard to see
the minimizing is

and the corresponding minimized value is

(III.3)

Then, we minimize (III.3) over . Given and ,
it is easy to see that the minimizing is

and the corresponding minimized value is

(III.4)

Now if we take any , (III.4) serves as an upper bound
for (III.1), and thus also an upper bound for .
Since is a concave function, by Jensen’s inequality, we have
for any given ,

(III.5)

Since has i.i.d. half-normal components, the righthand side of
(III.5) equals to

(III.6)

where erfc is the complementary error function.
One can check that (III.6) is convex in . Given , we min-

imize (III.6) over and let denote the minimum
value. Then from (III.5) and (III.6) we know

(III.7)

Given , we pick the largest such that .
Then as goes to infinity, it holds that

(III.8)

Then from Theorem 3.1, with high probability
holds for every vector in the subspace generated

by .We numerically calculate how changes over and plot
the curve in Fig. 1. For example, when ,
thus for all in the subspace gener-
ated by .
Note that when , we get . That is much

larger than the known used in [33], which is approximately
0.07 (see (12) in [33]). When applied to the sparse recovery
problem considered in [33], we are able to recover any vector
with no more than m nonzero elements,
which are 20 times more than the bound in [33].

IV. EVALUATING THE ROBUST ERROR CORRECTION BOUND
AND COMPARISONS WITH OTHER BOUNDS

If the elements in the measurement matrix are i.i.d. drawn
from the Gaussian distribution , following upon the



XU et al.: SPARSE ERROR CORRECTION FROM NONLINEAR MEASUREMENTS 6179

work of Marchenko and Pastur [23], Geman [14] and Silver-
stein [28] proved that for , as , the smallest
nonzero singular value

almost surely as .
Now that we have already explicitly bounded and , we

now proceed to characterize . It turns out that our earlier result
on the almost Euclidean property can be used to compute .
Lemma 4.1: Suppose an -dimensional vector satisfies

, and for some set with
cardinality . Then satisfies

Proof: Without loss of generality, we let . Then
by the Cauchy-Schwarz inequality,

At the same time, by the almost Euclidean property,

so we must have

Corollary 4.2: If a nonzero -dimensional vector satis-
fies , and if for any set
with cardinality for some
number , then

Proof: If , we have

So by Lemma 4.1, satisfies

This is equivalent to

Corollary 4.3: Let and be specified as above.
Assume that is drawn i.i.d. from the standard Gaussian dis-
tribution and the subspace generated by satisfies the
almost Euclidean property for a constant with over-
whelming probability as . Then for any small number

Fig. 2. versus .

, almost surely as , simultaneously for any state
and for any sparse error with at most nonzero elements, the
solution to (II.1) satisfies

(IV.1)

where is the smallest nonnegative number such that

holds; and needs to be small enough such
that .

Proof: This follows from 4.2 and as
.

So for a sparsity ratio , we can use the procedure in
Section III to calculate the constant for the almost Euclidean
property. Then we can use to find the value for in Corollary
4.3. In Fig. 2, we plot appearing in Corol-

lary 4.3 for as a function . Apparently, when the
sparsity increases, the recovery error bound also increases.

A. Comparisons With Existing Performance Bounds

In this subsection, we would like to explore the connection
between robust sparse error correction and compressive sensing,
and compare our performance bound with the bounds in the
compressive sensing literature.
As already noted in [7] and [8], sparse error correction can

be seen as a dual to the compressive sensing problem. If we
multiply with an matrix
satisfying ,

Since is a sparse vector, this corresponds to a compressive
sensing problem with sensing matrix , observation result
and observation noise .
[10] and [12] used the theory of high dimensional convex ge-

ometry to establish the phase transition on the recoverable spar-
sity for perfectly sparse signals under noiseless observations.
Compared with [10] and [12], our method using the almost Eu-
clidean property applies to the setting of noisy observations.
[31] also used the convex geometry tool to get the precise sta-
bility phase transition for compressive sensing. However, [31]
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mainly focused on obtaining - error bounds, namely the re-
covery error measured in norm is bounded in terms of the
norm of perturbations. No explicitly computed error bound

measured in norm was given in [31].
In a remarkable paper [11], precise noise-sensitivity phase

transition was provided for compressive sensing problems with
Gaussian observation noises. In [11], average recovery error in
norm was considered, and the average was taken over the

signal input distribution and the Gaussian observation noise.
Compared with [11], this paper derives a worst-case bound on
the recovery error which holds true for all -sparse vectors si-
multaneously; the performance bound also applies to arbitrary
observation noises, including but not limited to Gaussian obser-
vation noise. Compared with another worst-case recovery error
bound obtained in [7] through restricted isometry condition,
the bound in this paper greatly improves on the sparsity up to
which robust error correction happens. To our best knowledge,
currently the best bound on the sparsity for a restricted isom-
etry to hold is still very small. For example, when ,
the proven sparsity for strong equivalence is about

according to [3], which is smaller than the bound
obtained in this paper. In fact, as illustrated in

Fig. 1, the almost Euclidean bound exists for any . So
combined with the recovery error bound in norm, we can
show the recovery error is bounded in norm up to the stability
sparsity threshold in [31]. In this paper, we also obtain much
sharper bounds on the almost Euclidean property than known
in the literature [33].

V. SPARSE ERROR CORRECTION FROM NONLINEAR
MEASUREMENTS

In power network applications, measurement outcomes are
nonlinear functions of system states. Let us denote the -th mea-
surement by , where and can be a non-
linear function of . In this section, we study the theoretical
performance guarantee of sparse recovery from nonlinear mea-
surements and give an iterative algorithm to do sparse recovery
from nonlinear measurements, for which we provide conditions
under which the iterative algorithm converges to the true state.
In Subsection V.A, we explore the conditions under which

sparse recovery from nonlinear measurements are theoretically
possible. In Subsection V.B, we describe our iterative algorithm
to perform sparse recovery from nonlinear measurements. In
Subsection V.C, we study the algorithm performance guarantees
when the measurements are with or without additive noise.

A. Theoretical Guarantee for Direct and -Minimization

We first give a general condition which guarantees recovering
correctly the state from the corrupted observation without
considering the computational cost.
Theorem 5.1: Let , and be specified as above; and

. A state can be recovered correctly from any
error with from solving the optimization

(V.1)

if and only if for any .
Proof: We first prove the sufficiency part, namely if for any

, we can always correctly re-
cover from corrupted with any error with . Sup-

pose that instead a solution to the optimization problem (V.1) is
an . Then

So can not be a solution to (V.1), which is a contradic-
tion.
For the necessary part, suppose that there exists an

such that . Let be the index set where
and differ and its size . Let
. We pick such that , where is

an index set with cardinality ; and to be 0 otherwise.
Then

which means that is certainly not a unique solution to (V.1).
Theorem 5.2: Let , and be specified as above; and

. A state can be recovered correctly from any
error with from solving the optimization

(V.2)

if and only if for any
, where is the support of the error vector .

Proof: We first prove if any
, where is the sup-

port of the error vector , we can correctly recover state
from (V.2). Suppose that instead a solution to the optimization
problem (V.1) is an . Then

So can not be a solution to (V.2), and this leads to a
contradiction.
Now suppose that there exists an such that

, where is the support of
the error vector . Then we can pick to be
over its support and to be 0 over . Then

which means that is certainly not a unique solution to (V.2).
However, direct and minimization may be computa-

tionally costly because norm and nonlinear may lead
to non-convex optimization problems. In the next subsection,
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we introduce our computationally efficient iterative sparse re-
covery algorithm in the general setting when the additive noise
is present.

B. Iterative -Minimization Algorithm

Let and be specified as above; and
with . Now let us consider the algorithm which

recovers the state variables iteratively. Ideally, an estimate of
the state variables, , can be obtained by solving the following
minimization problem,

(V.3)

where is the optimal solution . Even though the norm is
a convex function, the function may make the objective
function non-convex.
Since is nonlinear, we linearize the equations and apply an

iterative procedure to obtain a solution. We start with an initial
state . In the -th iteration, let ,
then we solve the following convex optimization problem,

(V.4)

where is the Jacobian matrix of evaluated at the
point . Let denote the optimal solution to (V.4),
then the state estimation is updated by

(V.5)

We repeat the process until approaches 0 close enough or
reaches a specified maximum value.
Note that when there is no additive noise, we can take

in this iterative algorithm; and the algorithm is exactly the same
as the state estimation algorithm from [21].

C. Convergence Conditions for the Iterative Sparse Recovery
Algorithm

In this subsection, we discuss the convergence of the pro-
posed algorithm in Subsection V.B. First, we give a necessary
condition (Theorem 5.3) for recovering the true state when there
is no additive noise, and then give a sufficient condition (Corol-
lary 5.5) for the iterative algorithm to converge to the true state
in the absence of additive noise. Secondly, we give the perfor-
mance bounds (Theorem 5.4) for the iterative sparse error cor-
rection algorithm when there is additive noise.
Theorem 5.3 (Necessary Recovery Condition): Let ,

and be specified as above; and . The iter-
ative algorithm converges to the true state only if for the
Jacobian matrix at the point of and for any

, where is the sup-
port of the error vector .

Proof: The proof follows from the proof for Theorem 5.2,
with the linear function , where

is the Jacobian matrix at the true state .
Theorem 5.3 shows that for nonlinear measurements, the

local Jacobian matrix needs to satisfy the same condition as the
matrix for linear measurements. This assumes that the iterative
algorithm starts with the correct initial state. However, the

iterative algorithm generally does not start at the true state .
In the following theorem, we give a sufficient condition for
the algorithm to have an upper bounded estimation error when
additive noises are present, even though the starting point is
not precisely the same one. As a corollary of this theorem, the
proposed algorithm converges to the true state when there is no
additive noise.
Theorem 5.4 (Guarantee With Additive Noise): Let

, and be specified as above; and
with . We assume that each function
has continuous gradients. Suppose that at every point , the
local Jacobian matrix is full rank and satisfies that
for every in the range of , where
is the support of the error vector and a constant larger

than 1. Moreover, for a fixed constant , we assume that

(V.6)

holds for any two states and , where is the local
Jacobian matrix at the point is a matrix such that

is the induced
matrix norm for , and for a matrix is defined as

.
Then for any true state , the estimation ,

where is the solution to the -th iteration optimiza-
tion

(V.7)

satisfies

where is the local Jacobian matrix at , and is a
matrix satisfying .
As the number of iteration , the estimation error

where is the local

Jacobian matrix at an arbitrary state , and is an arbi-
trarily small positive number.
Remarks: When the function is linear and therefore

, the condition (V.6) will always be satisfied with
. So nonlinearity is captured by the the term

. We also remark that is not necessarily a Jaco-
bian matrix at a certain point, but however, from Mean Value
Theorem for multiple variables, such a matrix exists.

Proof: At the -th iteration of the iterative state estimation
algorithm

(V.8)

where is an matrix, is the state estimate at the
-th step, and , namely the estimation error at
the -th step.
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Since at the -th step, we are solving the following
optimization problem

(V.9)

Plugging (V.8) into (V.9), we are really solving

(V.10)

Denoting as , which is the measure-
ment gap generated by using the local Jacobian matrix
instead of , then (V.10) is equivalent to

(V.11)

Suppose that the solution to (V.7) is . We
are minimizing the objective norm, and is a feasible
solution with an objective function value , so we have

(V.12)

By the triangular inequality and the property of , using
the same line of reasoning as in the proof of Theorem 2.2, we
have

(V.13)

So

(V.14)

Since and are both no larger than
, and

, we have

where and are respectively
the matrix quantities defined in the statement of the theorem.
So as long as , for some

fixed constant , the error upper bound converges to
.

When there is no additive noise, as a corollary of Theorem
5.4, we know the algorithm converges to the true state.
Corollary 5.5 (Correct Recovery Without Additive Noise):

Let , and be specified as above; and
. Suppose that at every point , the local

Jacobian matrix is full rank and satisfies that for every

in the range of , where is the
support of the error vector . Moreover, for a fixed constant

, we assume that

(V.15)

holds true for any two states and , where is the
local Jacobian matrix at the point is a matrix such
that is the induced
matrix norm for , and for a matrix is defined as

.
Then any state can be recovered correctly from the observa-

tion from the iterative algorithm in Subsection V.B, regardless
of the initial starting state of the algorithm.

D. Verifying the Conditions for Nonlinear Sparse Error
Correction

To verify our conditions for sparse error correction from non-
linear measurements, we need to verify:
• at every iteration of the algorithm, for every in the range
of the local Jacobian matrix ,
where is the support of the error vector and is
a constant.

• for some constant ,

(V.16)

To simplify our analysis, we only focus on verifying these
conditions under which the algorithm converges to the true state
when there is no observation noise (namely Corollary 5.5), even
though similar verifications also apply to the noisy setting (The-
orem 5.4).
1) Verifying the Balancedness Condition: In nonlinear

setting, the first condition, namely the balancedness condition
[31], needs to hold simultaneously for many (or even an infinite
number of) local Jacobian matrices , while in the linear
setting, the condition only needs to hold for a single linear
subspace. The biggest challenge is then to verify that the
balancedness condition holds simultaneously for a set of linear
subspaces. In fact, verifying the balancedness condition for a
single linear space is already very difficult [2], [17], [30]. In this
subsection, we show how to convert checking this balancedness
condition into a semidefinite optimization problem, through
which we can explicitly verify the conditions for nonlinear
sparse error corrections.
One can verify the balancedness condition for each individual

local Jacobian matrix in an instance of algorithm exe-
cution, however, the results are not general enough: our state
estimation algorithm may pass through different trajectories of

’s, with different algorithm inputs and initializations. In-
stead, we propose to check the balancedness condition simulta-
neously for all ’s in a neighborhood of , where is
the local Jacobian matrix at the true system state. Once the al-
gorithm gets into this neighborhood in which the balancedness
condition holds for every local Jacobian matrix, the algorithm
is guaranteed to converge to the true system state.
More specifically, we consider a neighborhood of the true

system state, where each . We assume
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that for each state in this neighborhood, each row of is
bounded by in norm. The question is whether, for
every , every vector in the range of satisfies

, for all subsets with cardinality
( is the sparsity of bad data). This requirement is satisfied, if the
optimal objective value of the following optimization problem
is no more than :

(V.17)

However, this is a difficult problem to solve, because there are at

least subsets , and the objective is not a concave function.

We instead solve a series of optimization problems to find an
upper bound on the optimal objective value of (V.17). For each
integer , by taking the set , we solve

(V.18)

Suppose the optimal objective value of (V.18) is given by
for . Then is the largest fraction
can occupy out of . Then is the largest

fraction can occupy out of for any subset
with cardinality . Let us then take a constant satis-
fying . Therefore

always holds true, for all support subsets with , and
all ’s in the ranges of all with each row
of bounded by in norm.
So now we only need to give an upper bound on the optimal

objective value of (V.18). By first optimizing over is
upper bounded by the optimal objective value of the following
optimization problem:

(V.19)

Since

(V.19) is equivalent to

(V.20)

From , we know in
the feasible set of (V.20) is upper bounded by ,
where is the smallest singular value of the matrix .
This enables us to further relax (V.20) to

(V.21)

which can be solved by semidefinite programming algorithms.

2) Verifying the Second Condition in Nonlinear Sparse Error
Correction: Now we are in a position to verify the second con-
dition for successful nonlinear sparse recovery:

(V.22)

holds for a constant in this process.
Suppose that the Jacobian matrix at the true state is .

Define a set as the set of system states at which each row
of is no larger than in norm, where is
the local Jacobian matrix.
By picking a small enough constant , we consider a

diamond neighborhood of the
true state , such that . By Mean Value Theorem
for multiple variables, for each , we can find an
matrix such that , and
moreover, each row of is also upper bounded by
in norm.
For this neighborhood , using the proposed semidefinite

programming (V.21), for a fixed (the sparsity), we can find a
such that for every local Jacobian in that neighborhood,
every vector in the subspace generated by satisfies the
balancedness property with the parameter .
Meanwhile, in that neigh-

borhood since each row of and is no
larger than in norm.
Similarly, for every in that neighborhood , by the

definition of singular values and inequalities between and
norms, ,
where is the smallest singular value of .
So as long as

(V.23)

once our state estimation algorithm gets into
, the algorithm will always stay in the region

(because decreases after each iteration, see the
proof of Theorem 5.5 with ), and the iterative state esti-
mation algorithm will converge to the true state .
In summary, we can explicitly compute a parameter such

that inside a diamond neighborhood

, the condition is
always satisfied and the decoding algorithm always converges
to the true state once it gets into the region . The size of the
region depends on specific functions. For example, if
is a linear function and can be taken as . This fits
with known results in [7], [8] for linear measurements where the
local Jacobian is the same everywhere.

VI. NUMERICAL RESULTS

In our simulation, we apply (II.1) to estimate an unknown
vector from Gaussian linear measurements with both sparse er-
rors and noise, and also apply the iterative method to recover
state information from nonlinear measurements with bad data
and noise in a power system.
Linear System: We first consider recovering a signal vector

from linear Gaussian measurements. Let and .
We generate the measurement matrix with i.i.d.
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Fig. 3. Estimation error versus for Gaussian measurements with fixed noise
level.

entries. We also generate a vector with i.i.d entries
uniformly chosen from interval .
We add to each measurement of with a Gaussian noise

independently drawn from . Let denote the fraction
of erroneous measurements. Given , we randomly choose
measurements, and each such measurement is added with a
Gaussian error independently drawn from . We apply
(II.1) to estimate . Since the noise vector has i.i.d.

entries, then follows the chi distribution with
dimension . Let denote the cumulative distribution
function (CDF) of the chi distribution of dimension , and let

denote its inverse distribution function. We
choose to be where

(VI.1)

Thus, holds with probability 0.98 for randomly gen-
erated . Let denote the estimation of , and the relative es-
timation error is represented by .
We fix the noise level and consider the estimation perfor-

mance when the number of erroneous measurements changes.
Fig. 3 shows how the estimation error changes as increases,
and each result is averaged over one hundred runs. We choose
different between 0 and 2. When , the measurements
have errors but no noise, and (II.1) is reduced to conventional
-minimization problem. One can see from Fig. 3 that when

there is no noise, can be correctly recovered from (II.1) even
when twenty percent of measurements contain errors.
We next compare the recovery performance of (II.1) with that

of -minimization. We fix the number of erroneous measure-
ments to be two, i.e., the percentage of erroneous measurements
is , and increase the noise level . One can see
from Fig. 4 that (II.1) has a smaller estimation error than that
of -minimization when the noise level is not too small. This is
not that surprising since (II.1) takes into account the measure-
ment noise while -minimization does not.
Power System: We also consider state estimation in power

networks. Monitoring the system characteristics is a funda-
mental prerequisite for the efficient and reliable operation of
the power networks. Based on the meter measurements, state
estimation provides pertinent information, e.g., the voltage

Fig. 4. Comparison of the estimation error with -minimization.

magnitudes and the voltage angles at each bus, about the
operation condition of a power grid [1], [24], [27]. Modern de-
vices like a phasor measurement unit (PMU) [16] can measure
the system states directly, but their installation in the current
power system is very limited. The current meter measurements
are mainly bus voltage magnitudes, real and reactive power
injections at each bus, and the real and reactive power flows on
the lines. The meter measurements are subject to observation
noise, and may contain large errors [5], [13], [25]. Moreover,
with the modern information technology introduced in a smart
grid, there may exist data attacks from intruders or malicious
insiders [19], [20], [22]. Incorrect output of state estimation
will mislead the system operator, and can possibly result in
catastrophic consequences. Thus, it is important to obtain
accurate estimates of the system states from measurements that
are noisy and erroneous. If the percentage of the erroneous
measurements is small, which is a valid assumption given the
massive scale of the power networks, the state estimation is
indeed a special case of the sparse error correction problem
from nonlinear measurements that we discussed in Section V.
The relationship between the measurements and the state

variables for a -bus system can be stated as follows [21]:

(VI.2)

(VI.3)

(VI.4)

(VI.5)

where and are the real and reactive power injection at bus
respectively, and are the real and reactive power flow
from bus to bus and are the voltage magnitude and
angle at bus . and are the magnitude and phase angle
of admittance from bus to bus and are the magnitude
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Fig. 5. IEEE 30-bus test system.

and angle of the shunt admittance of line at bus . Given a power
system, all and are known.
For a -bus system, we treat one bus as the reference bus and

set the voltage angle at the reference bus to be zero. There are
state variables with the first variables for the bus

voltage magnitudes and the rest variables for the bus
voltage angles . Let denote the state variables and
let denote the measurements of the real and reactive
power injection and power flow. Let denote the noise
and denote the sparse error vector. Then we can write
the equations in a compact form,

(VI.6)

where denotes nonlinear functions defined in (VI.2)
to (VI.5). We apply the iterative -minimization algorithm in
Section V.B to recover from .
We evaluate the performance on the IEEE 30-bus test

system. Fig. 5 shows the structure of the test system. Then
the state vector contains 59 variables. Its first thirty entries
correspond to the normalized bus voltage magnitudes, and are
all close to 1. Among the thirty buses in this example, the
minimum bus voltage magnitude is 0.992, and the maximum
bus voltage magnitude is 1.082. The last twenty-nine entries of
correspond to the relative bus voltage angles to a reference

bus. Here, the bus voltage angles are in the range to
. We take measurements including the real

and reactive power injection at each bus and some of the real
and reactive power flows on the lines. We first characterize
the dependence of the estimation performance on the noise
level when the number of erroneous measurements is fixed.
For each fixed , we randomly choose a set with cardinality

. Each measurement with its index in contains a
Gaussian error independently drawn from . Each
measurement also contains a Gaussian noise independently
drawn from . For a given noise level , we apply the
iterative -minimization algorithm in Section V.B to recover
the state vector with where is defined in (VI.1).

The initial estimate is chosen to have ‘1’s in its first thirty
entries and ‘0’s in its last twenty-nine entries. The relative
error of the initial estimate is . For
example, in one realization when and , the
iterative method takes seven iterations to converge. Let be
the estimate of after the th iteration, is treated as the final
estimate . The relative estimation errors
are , and

respectively. Fig. 6 shows the relative estimation
error against for various . The result is
averaged over two hundred runs. Note that when , i.e.,
the measurements contain sparse errors but no observation
noise, the relative estimation error is not zero. For example,

is 0.018 when is 0.02. That is because the
system in Fig. 5 is not proven to satisfy the condition in The-
orem 5.5, and the exact recovery with sparse bad measurements
is not guaranteed here. However, our next simulation result
indicates that our method indeed outperforms some existing
method in some cases.
We compare our proposed method with two other recovery

methods. In the first method, we assumewe know the location of
the errors, i.e., the support of the sparse vector . We delete
these erroneous measurements and apply the conventional
Weighted Least Squares (WLS) method (Section III.A of [5])
to estimate system states based on the remaining measurements.
The solution minimizing the weighted least squares function
requires the application of an iterative method, and we follow
the updating rule in [5] ((6) and (7)). In the second method, we
apply the test in [25] to detect the erroneous measurements.
It first applies the WLS method to estimate the system states,
then applies a statistical test to each measurement. If some
measurement does not pass the test, it is identified as a potential
erroneous measurement, and the system states are recomputed
by WLS based on the remaining measurements. This procedure
is repeated until every remaining measurement passes the
statistical test. Fig. 7 shows the recovery performance of three
different methods when . The result is averaged over
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Fig. 6. Estimation error versus with fixed percentage of errors in power
system.

Fig. 7. Estimation error of three recovery methods.

two-hundred runs. The estimation error of our method is less
than that of the test. WLS method with known error location
has the best recovery performance.
Verification of the Conditions for Nonlinear Sparse Error

Correction: We use the verification methods in Subsection V.D
to verify the conditions for nonlinear sparse error correction.
The Jacobianmatrix for the true state is generated a 200 50
matrix with i.i.d. standard Gaussian entries. We also assume that
each rowof isupperboundedby in
norm.We then plot the sparsity and the corresponding lower

bound on in Fig. 8 such that for every , every index
set with cardinality , and every vector in the sub-
space spanned by , we always have .
We can see that for is lower bounded by 1.1222. So
when there are no more than 7 bad data entries, there exists a
convergence region around the true state such that the iterative
algorithm converges to the true state once the iterative algorithm
gets into that convergence region. Of course, we remark that
the computation here is pretty conservative and in practice, we
can get much broader convergence scenarios than this theory
predicts. However, this is ameaningful step towards establishing
sparse recovery conditions for nonlinear measurements.

Fig. 8. Lower bound on when and .
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