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Abstract

A distributed average consensus algorithm in which every sensor transmits with bounded peak

power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus

asymptotically to a finite random variable whose expectation is the desired sample average of the

initial observations with a variance that depends on the step size of the algorithm and the variance

of the communication noise. The asymptotic performance is characterized by deriving the asymptotic

covariance matrix using results from stochastic approximation theory. It is shown that using bounded

transmissions results in slower convergence compared to the linear consensus algorithm based on the

Laplacian heuristic. Simulations corroborate our analytical findings.

Index Terms

Distributed Consensus, Sensor Networks, Bounded Transmissions, Asymptotic Covariance, Stochas-

tic Approximation, Markov Processes.

I. INTRODUCTION

Wireless sensor networks (WSNs) without a fusion center have the advantages of robustness to

node failures and they can function autonomously without a central node controlling the entire

network [1]. In such fully distributed networks, sensors collaborate with their neighbours by

repeatedly exchanging information locally to achieve a desired global objective. For example,
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the sensors could come to an agreement on the sample average (or on a global function) of

initial measurements. This is called distributed consensus. Distributed consensus algorithms

have attracted significant interest in the recent past and have found several applications in areas

such as healthcare, environmental monitoring, military and home appliances (please see [2]–[8]

and references therein). In this body of literature, it is often assumed that a given node can

obtain exact information of the state values of its neighbours through local communications.

This essentially means that the system consumes theoretically unlimited energy and bandwidth.

However, practical WSNs are severely power limited and the available bandwidth is finite.

Moreover, the main source of power consumption in a sensor isits transceiver [9]. Therefore,

there is a need for consensus algorithms which work under strict resource constraints of power

and bandwidth imposed by the WSNs.

Sensors may adopt either a digital or analog method for transmitting their information to

their neighbours. Digital methods of transmissions may be using low transmit power but require

increased bandwidth especially when the number of quantization levels is high. Distributed

consensus algorithms using quantized transmissions have been studied in [10]–[14]. The analog

method consists of transmitting unquantized data by appropriately pulse shaping and amplitude

or phase modulating to consume finite bandwidth. One such method is the amplify-and-forward

(AF) scheme in which sensors send scaled versions of their measurements to their neighbours.

However, using the AF technique is not a viable option for WSNs because it requires high

transmission power when the values to be transmitted are large [15]. Moreover, the linear transmit

amplifier characteristics required for AF are often very power-inefficient [16], requiring the

study of the effect of non-linear transmissions on performance. In distributed systems which

employ the AF technique for transmission of the sensed data,it is often assumed that the power

amplifiers used are perfectly linear over the entire range ofthe sensed observations. In practice,

the amplifiers exhibit non-linear behaviour when the amplitude of the sensed data is relatively

high [16]–[18].

In this paper, we propose a non-linear distributed consensus (NLC) algorithm in which

every sensor maps its state value through a bounded functionbefore transmission to constrain

the peak transmit power. Therefore the magnitude of the transmitted signal at every node

in every iteration is always bounded, making it ideal for resource-constrained WSNs. In the

presence of communication noise, we prove that all the sensors employing theNLC algorithm

July 6, 2018 DRAFT



3

reach consensus to a finite random variable whose mean is the desired sample average. We

characterize the asymptotic performance by deriving the asymptotic covariance matrix using

results from stochastic approximation theory. We show thatusing theNLC algorithm results in

larger asymptotic covariance compared to the linear consensus algorithm. Finally we explore

the performance of the proposed algorithm employing various bounded transmission functions.

Different from [8] which also considered consensus in the presence of noisy transmissions,

herein we analyse non-linear transmissions and study the asymptotic covariance matrix and its

dependence on the non-linearity. Our work in this paper alsostudies the merits and demerits of

distributed schemes involving realistic amplifier models with non-linear characteristics such as

the ones discussed in [16], [17].

The rest of this paper is organized as follows. We begin by reviewing some basics of network

graph theory in Section II. In Section III, we describe the system model and review the previous

work on non-linear consensus. We consider theNLC algorithm in the presence of noise in Section

IV, and prove that the sensors reach consensus to a random variable. In Section V, we present

several simulation examples to study the performance of theproposed algorithm. Concluding

remarks are presented in Section VI.

Notations and Conventions

Vectors are denoted by boldface upper-case or lower-case letters and matrices are denoted by

boldface upper-case letters.max{a1, a2} denotes the maximum ofa1 anda2. diag[a1, a2, . . . , aN ]

denotes anN × N diagonal matrix whose diagonal elements are given bya1, a2, . . . , aN . E[·]
denotes the expectation operator andI denotes the identity matrix. The symbol‖ · ‖ denotes

the l
2

norm for real vectors and spectral norm for symmetric matrices. For a matrixM, λi(M)

denotes theith smallest eigenvalue. The vector1 denotes anN × 1 column vector of all ones,

1 = [1 1 . . . 1]T.

II. REVIEW OF NETWORK GRAPH THEORY

In this paper, we model a sensor network as an undirected graph. In this section, we provide

a brief background on network graph theory which we will use to derive our results. Consider

an undirected graphG = (N,E) containing a set of nodesN = {1, . . . , N} and a set of edges

E. Nodes that communicate with each other have an edge betweenthem. We denote the set of
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neighbours of nodei by Ni, Ni = { j|{i, j} ∈ E} where{i, j} indicates an edge between the

nodesi andj [19]. A graph is connected if there exists at least one path between every pair of

nodes. We denote the number of neighbours of a nodei by di anddmax = maxi di. The graph

structure is described by anN × N symmetric matrix called the adjacency matrixA = {aij},

aij = 1 if {i, j} ∈ E. The diagonal matrixD = diag[d1, d2, . . . , dN ] captures the degrees of

all the nodes in the network. The Laplacian matrix of the graph is given byL = D−A.

The graph Laplacian characterises a number of useful properties of the graph. The eigenvalues

of L are non-negative and the number of zero eigenvalues denotesthe number of distinct

components of the graph. When the graph is connected,λ1(L) = 0, and λi(L) > 0, i ≥ 2,

so that the rank ofL for a connected graph isN − 1. The vector1 is the eigenvector ofL

associated with the eigenvalue0, i.e, L1 = 0. The eigenvalueλ2(L) characterizes how densely

the graph is connected and the performance of consensus algorithms depend on this eigenvalue

[20].

III. SYSTEM MODEL AND PREVIOUS WORK

A. System Model

Consider a WSN withN sensor nodes each with an initial measurementxi(0) ∈ R. Measure-

ments made at the sensor nodes are modeled as

xi(0) = θ + ni , i = 1, . . . , N (1)

whereθ is an unknown real-valued parameter andni is the sensing noise at theith sensor. The

sample mean of these initial measurements in (1) is given by

x̄ =
1

N

N
∑

i=1

xi(0) . (2)

Let x̄ be the estimate of the parameterθ to be computed by an iterative distributed algorithm, in

which each sensor communicates only with its neighbours. Ifthe states of all the sensor nodes

converge tōx, then the network is said to have reachedconsensuson the sample average.

B. Previous Work

A commonly used iterative algorithm for distributed consensus can be written as
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xi(t+ 1) = xi(t)− α
∑

j∈Ni

h(xi(t)− xij(t)) , (3)

where i = 1, . . . , N , t = 0, 1, 2, . . ., is the time index,xi(t + 1) is the updated state value of

sensor nodei at time t + 1, Ni is the set of neighbours of sensor nodei, xij(t), j ∈ Ni are the

state values of the neighbours of sensor nodei at timet, andα is a constant step size. Ifh(·) is

linear, then (3) is a linear distributed average-consensus(LDAC) algorithm [2], [5], [20]. In [2],

it is proved that if0 < α < 2/λN(L), thenxi(t) converges tōx exponentially and (3) is then

called as the LDAC algorithm based on the Laplacian heuristic. If h(·) is non-linear then the

algorithm belongs to the class of non-linear distributed average-consensus algorithms [4], [21].

In [4], the average consensus problem is solved whenh(x) in (3) is differentiable and odd. In

[21], it is illustrated that whenh(x) in (3) is sin(x), faster convergence is possible compared

to the LDAC algorithm based on the Laplacian heuristic. In all of these cases,xij(t) has to be

transmitted to nodei before it can apply the functionh(·) to get the new updated state value.

Therefore, the transmit peak power in (3) is determined byxi(t) and not necessarily bounded,

even ifh(·) is bounded. Moreover, there is no communication noise assumed in all the previous

work on non-linear consensus.

IV. CONSENSUS WITHBOUNDED TRANSMISSIONS ANDCOMMUNICATION NOISE

In this work, we propose a distributed non-linear average consensus algorithm in which every

sensor maps its state value through a bounded function before transmission to constrain the

transmit power. Therefore the magnitude of the transmittedsignal at every node in every iteration

is always bounded making it ideal for resource-constrainedWSNs.

In this section, we will study theNLC algorithm with communication noise when sensors

exchange information. Our approach is similar to, but more general than [8] in that we analyse

non-linear transmissions. Moreover, unlike [8] we study the asymptotic covariance matrix of the

state vector and its dependence on the non-linearity. Unlike [21] and [4], we assume transmit

non-linearity which allows for bounded transmissions. Moreover, we consider the presence of

communication noise.
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A. TheNLC Algorithm with Communication Noise

Let each sensor map its state value at timet through the functionh(x) before transmission,

and consider the followingNLC algorithm with communication noise:

xi(t+ 1) = xi(t)− α(t)
∑

j∈Ni

[h(xi(t))− h(xij(t)) + nij(t)] , (4)

wherei = 1, . . . , N, t = 0, 1, 2, . . ., is the time index. The valuexi(t + 1) is the state update of

nodei at timet+1, xij(t) is the state value of thejth neighbour of nodei at timet andα(t) is

a positive step size which will further be assumed to satisfyassumption(A4) in the sequel. The

nodej transmits its informationxij(t) by mapping it through the functionh(x), nodei receives

a noisy version ofh(xij(t)) andnij(t) is the noise associated with the reception ofh(xij(t)).

Note that the proposed scheme (4) is different from (3) in thefollowing aspects. Firstly, in (3),

xij(t) has to be transmitted which could exhibit variation over a wide range of values ifxi(0)

has a large dynamic range and hence (3) does not guarantee bounded transmission power. In

contrast, in the proposed scheme the non-linearity is applied before the state value is transmitted

so that the magnitude of the transmitted state value is always constrained within the maximum

value ofh(x) irrespective of the range ofxi(t) and the realizations of noisenij(t). Finally, (4)

involves communication noise while (3) does not. Thus the proposed scheme is more suited to

resource constrained WSNs when compared to (3).

The recursion in (4) can be written in vector form as

X(t+ 1) = X(t)− α(t) [Lh(X(t)) + n(t)] , (5)

whereX(t) ∈ RN is the state vector at timet given byX(t) = [x1(t) x2(t) . . . xN (t)]
T, and

h : RN → RN such thath(X(t)) = [h(x1(t)) h(x2(t)) . . . h(xN (t))]
T. The vectorn(t) captures

the additive noise atN nodes contributed by their respective neighbours and itsith component

is given by

ni(t) = −
∑

j∈Ni

nij(t) , 1 ≤ i ≤ N . (6)

Our model in (5) is more general than the linear consensus algorithm considered in [8] which

is a special case ofh(x) when it is linear. We make the following assumptions onh(x), nij(t),

α(t) and the graph:

Assumptions

July 6, 2018 DRAFT
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(A1): The graphG is connected so thatλ2(L) > 0.

(A2): The functionh(·) is differentiable, and has a bounded derivative such that0 < h
′

(x) ≤ c,

for somec > 0.

(A3) Independent Noise Sequence: The channel noise{nij(t)}t≥0,1≤i,j≤N is an independent

sequence across time and space. It also satisfies

E[nij(t)] = 0 , 1 ≤ i, j ≤ N, t ≥ 0 , sup
i,j,t

E[n2
ij(t)] ≤ σ2 < ∞. (7)

From (6) we have

E[n(t)] = 0 , ∀t , µ := sup
t

E[‖n(t)‖2] ≤ Ndmaxσ
2 < ∞. (8)

Note that (8) is because of the fact that the number of neighbours of a given node is upper

bounded bydmax.

(A4) Decreasing Weight Sequence: The channel noise in (5) could make the algorithm diverge.

In order to control the variance growth rate of the noise we need the following conditions on

the sequenceα(t):

α(t) > 0 ,

∞
∑

t=0

α(t) = ∞ ,

∞
∑

t=0

α2(t) < ∞ . (9)

Our primary motivation for considering non-linear transmissions is to impose the realistic

assumption of bounded peak per-sensor power by ensuring that h(·) is bounded. However, as

seen in(A2) this assumption is not needed for our subsequent development as long ash
′

(·) is

bounded.

We will prove convergence and asymptotic normality result of the NLC algorithm in (5). For

the sake of clarity, we now present a result on the convergence of a discrete time Markov process

which will be used in establishing convergence of theNLC algorithm in (5).

B. A Result on the Convergence of Discrete time Markov Processes

Let X = {X(t)}t≥0 be a discrete time vector Markov process onRN . The generating operator

L of X is defined as

LV (x) = E [V (X(t+ 1))|X(t) = x]− V (x) (10)

for functionsV (x),x ∈ RN , provided that the conditional expectation exists. LetC ⊂ RN and

its complement beC
′

= RN \C. We now state the desired result as a simplification of Theorem

2.7.1 in [22] (see also Theorem 1 in [8]).
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Theorem 1. Let X be a discrete time vector Markov process with the generator operatorL as

in (10). If there exists a potential functionV (x) : RN → R+, andC ⊂ RN with the following

properties

V (x) > 0,x ∈ C
′

, V (x) = 0, x ∈ C , (11)

LV (x) ≤ −γ(t)ϕ(x) +mg(t)[1 + V (x)] (12)

wherem > 0, ϕ(x) is such that

ϕ(x) = 0,x ∈ C, ϕ(x) > 0,x ∈ C
′

, (13)

and

γ(t) > 0, g(t) > 0,

∞
∑

t=0

γ(t) = ∞,

∞
∑

t=0

g(t) < ∞ , (14)

then, the discrete time vector Markov processX = {X(t)}t≥0 with arbitrary initial distribution

converges almost surely (a.s.) to the setC as t → ∞. That is,

Pr

[

lim
t→∞

inf
Y∈C

‖X(t)−Y‖ = 0

]

= 1. (15)

Intuitively, Theorem 1 indicates that if the one-step prediction error of the Markov process

evaluated at the potential function in (10) is bounded as in (12) then it is possible to establish

convergence ofX(t).

To prove the a.s. convergence of the consensus algorithm in (5) using Theorem 1, we define

the consensus subspaceC, the set of all vectors whose entries are of equal value as,

C = {x ∈ R
N |x = a1 , a ∈ R} . (16)

We are now ready to state the main result of Section IV.

Theorem 2. Let the assumptions(A1), (A3) and(A4) hold, and assumeh(x) is strictly increasing.

Consider theNLC algorithm in(5) with the initial state vectorX(0) ∈ RN . Then, the state vector

X(t) in (5) approaches the consensus subspaceC a.s., i.e.,

Pr

[

lim
t→∞

inf
Y∈C

‖X(t)−Y‖ = 0

]

= 1. (17)
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Proof: We will make use of Theorem 1 to prove (17). We will choose an appropriate

potential functionV (x) that is non-negative which satisfies equation (11). We will then prove

that the generating operatorL applied onV (x) as in (10) can be upper bounded as in (12) with

γ(t) = α(t), and aϕ(x) can be found that satisfies (13).

First we see that under the assumptions(A1), (A2) and the assumption onh(x), the discrete

time vector process{X(t)}t≥0 is Markov. SinceL is a positive semi-definite matrix, it has

an eigenvalue decomposition (EVD) given byL = UΣU
T, whereΣ is the diagonal matrix

containing the eigenvalues ofL in the increasing order, andU is a unitary matrix with1 as

its first column vector which corresponds to the 0 eigenvalue. Define a positive semi-definite

matrix M as a function ofU such thatM = UΛU
T and Λ = diag[0, 1, 1 , . . . , 1]. Let

V (x) = x
T
Mx, then the functionV (x) is non-negative sinceM is a positive semi-definite

matrix by construction. Note thatx ∈ C is an eigenvector ofM associated with the zero

eigenvalue, therefore we have

V (x) = 0,x ∈ C . (18)

Let x = xC + xC⊥ wherexC is the orthogonal projection ofx on C. Whenx ∈ C
′

, we have

‖xC⊥‖ > 0. Let x ∈ C
′

andh(x) be as defined in (5). Then,h(x) = hC(x) + hC⊥(x), where

hC⊥(x) is non-zero, i.e.,‖hC⊥(x)‖ > 0. Defineβ := ‖hC⊥(x)‖2/‖xC⊥‖2, thenβ > 0, x ∈ C
′

.

Therefore, for anyx ∈ C
′

,

V (x) = x
T
Mx = V (xC + xC⊥) = V (xC⊥) ≥ min

xC⊥ 6=0
x
T
C⊥MxC⊥ = λ2(M)‖xC⊥‖2 > 0 , (19)

where the last inequality is due toλ2(L) > 0 by assumption(A1). The equations (18) and (19)

establish that the conditions in (11) in Theorem 1 are satisfied.

Now we will prove that (12) is satisfied as well. Towards this end, considerLV (x) defined

in (10),

LV (x) = E
[

X(t+ 1)TMX(t+ 1)|X(t) = x

]

− V (x) , (20)

= E
[(

x
T − α(t)

(

h(x)TLT + n(t)T
))

· (Mx− α(t) (MLh(x) +Mn(t)))
]

− V (x) , (21)

= −2α(t)
[

x
T
MLh(x)

]

+ α2(t)
[

h(x)TLT
MLh(x) + E

[

n(t)TMn(t)
]]

. (22)
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We get (22) by expanding (21) and taking the expectations andusing the fact thatE[n(t)] = 0.

Recall the EVDs ofL andM from which we have

LM = ML = UΣU
T
UΛU

T = UΣU
T = L . (23)

Sinceλ2(M) = λN(M) = 1, we have

E
[

n(t)TMn(t)
]

≤ E
[

λN(M)‖n(t)‖2
]

≤ µ, (24)

where the second inequality follows from (8) and the fact that λN(M) = 1. Using (23) and (24)

in (22), we get the following bound

LV (x) ≤ −2α(t)
[

x
T
Lh(x)

]

+ α2(t)
[

h(x)TL2
h(x) + µ

]

, (25)

≤ −2α(t)
[

x
T
Lh(x)

]

+ α2(t)
[

λ2
N(L)β‖xC⊥‖2 + µ

]

, (26)

≤ −2α(t)
[

x
T
Lh(x)

]

+ α2(t)

[

β
λ2
N (L)

λ2(M)
x
T
Mx+ µ

]

, (27)

≤ −2α(t)
[

x
T
Lh(x)

]

+mα2(t)
[

1 + β2x
T
Mx

]

, (28)

≤ −α(t)ϕ(x) +mα2(t) [1 + V (x)] , (29)

whereϕ(x) := 2xT
Lh(x), m := max{βλ2

N(L)/λ2(M), µ}, β2 := µ/m andβ2 ∈ (0, 1]. In (26),

we have used the facth(x)TL2
h(x) ≤ λ2

N (L)‖hC⊥(x)‖2 and ‖hC⊥(x)‖2 = β‖xC⊥‖2. In (27),

we have used the fact thatxT
Mx ≥ λ2(M)‖xC⊥‖2 due to (19). We will now prove thatϕ(x)

in (29) satisfies equation (13) of Theorem 1.

Recall thatL is the Laplacian matrix of the graph and that1 is in its null space, that is,

L1 = 0. Wheneverx ∈ C, i.e., x = a1, a ∈ R, thenh(x) = b1 for someb ∈ R. This implies

Lh(a1) = Lb1 = 0. Therefore we haveϕ(x) = 2xT
Lh(x) = 0, ∀x ∈ C.

To proveϕ(x) > 0 whenx ∈ C
′

, considerϕ(x) for a connected graph withL of dimension

N ×N ,

ϕ(x) = 2xT
Lh(x) (30)

= 2

[

∑

j∈N1

(x1 − xj)h(x1) +
∑

j∈N2

(x2 − xj)h(x2) + . . .+
∑

j∈NN

(xN − xj)h(xN )

]

, (31)

where (31) follows from the structure of the symmetric matrix L (recallL = D−A). Note that

the ith summation in (31) corresponds to theith node. Now suppose that nodei is connected
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to nodej. Then there exists a term(xi − xj)h(xi) in the summation corresponding to theith

node in (31), and a term(xj −xi)h(xj) in the summation corresponding to thejth node in (31).

Both of these terms can be combined as(xi − xj)(h(xi) − h(xj)) and this corresponds to the

edge{i, j} ∈ E. Thus equation (31) can be written as pairwise products enumerated over all the

edges in the graph as follows

ϕ(x) = 2
∑

{i,j}∈E

(xi − xj)(h(xi)− h(xj)) . (32)

Sincex ∈ C
′

, ϕ(x) in (32) is positive due to the fact thath(x) is strictly increasing so that there is

at least one term in the sum which is strictly greater than zero. Lettingγ(t) = α(t), g(t) = α2(t)

and by assumption(A4), we see that the sequenceα(t) in (29) satisfies (14). Thus all the

conditions of Theorem 1 are satisfied to yield (17).

Theorem 2 states that the sample paths ofX(t) approach the consensus subspace almost

surely. We note that the assumption(A2) is not necessary for Theorem 2 to hold. Instead we

assumedh(x) is strictly increasing (not necessarily differentiable) to prove Theorem 2. Now,

like in [8], we will prove the convergence ofX(t) to a finite point inC in Theorem 3.

Theorem 3. Let the assumptions of Theorem 2 hold. Consider theNLC algorithm in (5) with

the initial stateX(0) ∈ RN . Then, there exists a finite real random variableθ∗ such that

Pr
[

lim
t→∞

X(t) = θ∗1
]

= 1. (33)

Proof: Let the average ofX(t) be x̄(t) = 1
T
X(t)/N . Since1x̄(t) ∈ C, Theorem 2 implies,

Pr
[

lim
t→∞

‖X(t)− x̄(t)1‖ = 0
]

= 1 , (34)

where (34) follows from (17) since the infimum in (17) is achieved by Y = x̄(t)1. Pre-

multiplying (5) by 1T/N on both sides and noting that1T
Lh(X(t)) = 0 we get,

x̄(t+ 1) = x̄(t)− ṽ(t) (35)

= x̄(0)−
∑

0≤k≤t

ṽ(k) (36)
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whereṽ(t) = α(t)1T
n(t)/N . From (A3), it follows that

E[ṽ(t)] = 0,

∑

t≥0

E[ṽ(t)]2 =
∑

t≥0

α2(t)

N2
E‖n(t)‖2 ≤ µ

N2

∑

t≥0

α2(t) < ∞

which implies

E[x̄(t + 1)]2 ≤ x̄2(0) +
µ

N2

∑

t≥0

α2(t) , ∀t . (37)

Equation (37) implies that the sequence{x̄(t)}t≥0 is an L2 bounded martingale1 and hence

converges a.s. and inL2 to a finite random variableθ∗ (see [22, Theorem 2.6.1]). Therefore the

theorem follows from (34).

It should be noted that the results in Theorems 2 and 3 are similar to the results in [8], but

we have proved it for a more general case of which [8] is a special case whenh(x) = x. In

what follows, we present the properties of the limiting random variableθ∗.

C. Mean Square Error ofNLC Algorithm

The Theorems 2 and 3 establish that the sensors reach consensus asymptotically and converge

a.s. to a finite random variableθ∗. We can viewθ∗ as an estimate of̄x. In the following theorem

we characterize the unbiasedness and means squared error (MSE) properties ofθ∗. We define

the MSE ofθ∗ as ξ
N
= E[(θ∗ − x̄)2].

Theorem 4. Let θ∗ be the limiting random variable as in Theorem 3. Thenθ∗ is unbiased,

E[θ∗] = x̄, and its MSE is bounded,ξ
N
≤ µN−2

∑

t≥0

α2(t).

The proof is obtained by following the same steps of the Lemma5 in [8].

We point out that with non-linear transmissions, we have obtained the same bound on the

MSE ξ
N

as that of the linear consensus algorithm in [8]. It should benoted thatµ ≤ Ndmaxσ
2

from (8) which implies thatξ
N

≤ dmaxN
−1

∑

t≥0 α
2(t)σ2. Therefore, ifdmax is finite for a

large connected network, we havelimN→∞ ξ
N
= 0 and this means thatθ∗ converges tōx as the

1A sequence of random variables{y(t)}t≥0 is called as a martingale if for allt ≥ 0, E [|y(t)|] < ∞ and

E [y(t+ 1) | y(1) y(2) . . . y(t)] = y(t). The sequence{y(t)}t≥0 is an L2 bounded martingale ifsup
t
E
[

y2(t)
]

< ∞ (see

[23, pp. 110]).
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variance ofθ∗ approaches 0. If the graph is densely connected, thendmax is relatively high which

increases the worst-case MSE. On the other hand, when the graph is densely connected,λ2(L) is

larger which aids in the speed of convergence toθ∗, as quantified through the covariance matrix

in Section IV-D.

For any connected graph withN nodes, ifσ2 = 0 then limt→∞X(t) = x̄1, which means all

the sensor states asymptotically converge to the desired sample average. In fact, in the absence of

communication noise, under assumptions(A1) and (A2), we believe that it is possible to prove

exponential convergence ofX(t) to x̄1 by lettingα(t) = α such that0 < α < 2/(cλN(L)) and

by following a similar approach as in [21].

Similar results as in Theorems 2 and 3 could be easily proved under more general assumptions.

For example, the graph can be randomly varying over time due to link failures. As long as the

graph is connected on an average, it can be easily proved thatthe Theorems 2 and 3 hold. The

independent assumption on the noise sequence can also relaxed and the noise sequence can be

allowed to depend onX(t). For detailed discussions on these assumptions and its variations,

please see Section III-A in [8]. We do not pursue these extensions herein since our focus is on

studying the effect of non-linear transmissions on performance.

D. Asymptotic Normality ofNLC Algorithm

The NLC algorithm in (5) belongs to the class of stochastic approximation algorithms. The

convergence speed of these algorithms is an important issuefrom a practical perspective. There

are various criteria for determining the rate of convergence. For instance, one can try to estimate

E [‖X(t)− θ∗1‖2] orPr [‖X(t)− θ∗1‖ ≤ ǫ(t)] [24]. Estimating these parameters may be difficult

in practice. However, it is usually possible to establish that
√
t(X(t) − θ∗1) is asymptotically

normal with zero mean and some covariance matrix. Asymptotic normality of stochastic ap-

proximation algorithms have been established under some general conditions in [22] and for the

linear consensus algorithms in [6].

In this section, we establish the asymptotic normality of the NLC algorithm in (5). Our

approach here is similar to the one in [6]. Basically, we decompose theNLC algorithm inRN

into a scalar recursion and a recursion inR(N−1). In this section, for the sake of simplicity we

assume that the noise sequence{n(t), t ≥ 0} are i.i.d. random vectors with zero mean and finite

covariance. We now formally state and prove the result as a theorem.
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Theorem 5. Let α(t) = a/t, a > 0, then theNLC algorithm in (5) becomes

X(t+ 1) = X(t) +
a

t
[−Lh(X(t)) + n(t)] . (38)

Suppose that the assumptions(A1), (A2), (A3) and (A4) hold and that the noise sequence

{n(t), t ≥ 0} are i.i.d. across time and space with zero mean and covariance σ2
vI. Let the EVD

of L be given byL = UΣU
T, whereU is a unitary matrix whose columns are the eigenvectors

of L such that

U =

[

1√
N

Φ

]

,Φ ∈ R
N×(N−1) , −Σ =





0 0
T

0 B



 , (39)

whereB ∈ R(N−1)×(N−1) is a diagonal matrix containing theN − 1 negative eigenvalues of

−L (this means thatB is a stable matrix). In addition, letθ0 be a realization of the random

variable θ∗ and 2aλ2(L)h
′

(θ0) > 1 so that the matrix
[

ah
′

(θ0)B+ I/2
]

, θ0 ∈ R is stable.

Define[ñ(t) ñ(t)T]T := N−1/2
U

T
n(t), ñ(t) ∈ R(N−1), so thatñ(t) = N−1

1
T
n(t) and ñ(t) =

N−1/2
Φ

T
n(t). Let C = E[ññT], C ∈ R(N−1)×(N−1). Then, ast → ∞,

√
t(X(t)− θ01) ∼ N

(

0, N−1a2σ2
v11

T +N−1
ΦS

θ0Φ
T
)

, (40)

where

S
θ0 = a2

∞
∫

0

e

[

ah
′
(θ0)B+ I

2

]

t
C e

[

ah
′
(θ0)B+ I

2

]

t
dt . (41)

Proof: Define [x̃(t) X̃(t)T]T := N−1/2
U

T
X(t), X̃(t) ∈ R(N−1). From Theorem 3, we have

X(t) → θ∗1 a.s. ast → ∞ which implies that[x̃(t) X̃(t)]T → [θ∗ 0]T a.s. ast → ∞, and

thereforeX̃(t) → 0 a.s. ast → ∞. The error[X(t) − θ01] can be written as the sum of two

error components (see also Section VI in [6]) as given below

[X(t)− θ01] = [x̃(t)− θ0]1+
1√
N
ΦX̃(t) , (42)

= e1 + e2 , (43)

wheree1 = [x̃(t) − θ0]1 ande2 = N−1/2
ΦX̃(t). By calculating the covariance matrix between

e1 and e2, it can be proved that they are asymptotically uncorrelatedas t → ∞, and that

asymptotically
√
te1 ∼ N (0, N−1a2σ2

v11
T) (see Theorem 12 in [6]). To show that

√
te2 is
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asymptotically normal, it suffices to show that
√
tX̃(t) is asymptotically normal. To this end,

expressh(x) in (38) aroundx = θ0 using Taylor’s series expansion,

h(x) = h(θ0) + h
′

(θ0)(x− θ0) + o(|x− θ0|) , as x → θ0 . (44)

Using (44) in (38) we get

X(t+ 1) = X(t) +
a

t

[

−L

(

h(θ0)1+ h
′

(θ0)[X(t)− θ01]
)

+ δ(X(t)) + n(t)
]

, (45)

= X(t) +
a

t

[

h
′

(θ0) (−LX(t)) + δ(X(t)) + n(t)
]

, as t → ∞ , (46)

where‖δ(X(t))‖ → 0 as t → ∞. Pre-multiplying (46) on both sides byN−1/2
U

T and using

(39) we get the following recursions

x̃(t+ 1) = x̃(t) +
a

t
ñ(t) , (47)

X̃(t+ 1) = X̃(t) +
a

t

[

h
′

(θ0)BX̃(t) + δ̃(X(t)) + ñ(t)
]

, as t → ∞ , (48)

where δ̃(X(t)) = N−1/2
Φ

Tδ(X(t)). With the assumption that
[

ah
′

(θ0)B+ I/2
]

, θ0 ∈ R is a

stable matrix, it can be verified that all the conditions of Theorem 6.6.1 in [22, p. 147] are satisfied

for the process̃X(t) in (48). Therefore, for a givenθ0, the process
√
tX̃(t) is asymptotically

normal with zero mean and covariance matrix given by (41). Since
√
te1 ∼ N (0, N−1a2σ2

v11
T)

and using (41) together with the fact thate1 ande2 are asymptotically independent ast → ∞,

we get (40) which completes the proof.

Equation (40) indicates how fast the processX(t) will converge toθ01 for a givenθ0. The

convergence speed clearly depends onh
′

(θ0). We note that ifh(x) = x, thenh
′

(θ0) = 1, ∀θ0 ∈ R,

and substituting this in (41), we get the results for the linear case as in Theorem 12 of [6].

Let the asymptotic covariance in (40) be denoted byCnlc. Sincen(t) are i.i.d.,C in (41)

becomesC = σ2
vI and thus we haveCnlc = N−1a2σ2

v11
T+N−1

ΦS
θ0Φ

T whereSθ0 is a diagonal

matrix whose diagonal elements are given byS
θ0
ii = a2σ2

v/[2ah
′

(θ0)λi+1(L)− 1]. A reasonable

quantitative measure of largeness [24] of the asymptotic covariance matrix is‖Cnlc‖ which is

the maximum eigenvalue of the symmetric matrixCnlc. Further,‖Cnlc‖ can be minimized with

respect to the parametera. This can be formulated as the following optimization problem,

min
{a|2ah′ (θ0)λ2(L)>1}

max
{x|x∈RN ,‖x‖2≤1}

x
T
Cnlcx , (49)
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which can be solved analytically by using the KKT conditions[25]. The value ofa that optimizes

(49) is a∗nlc = (N + 1)/[2Nλ2(L)h
′

(θ0)] and the corresponding optimal value of the‖Cnlc‖is

given by

‖C∗
nlc‖ =

(

N + 1

2N

)2(
σ2
v

λ2
2(L)

)(

1

h′(θ0)

)2

. (50)

The size of the asymptotic covariance matrix in (50) is inversely proportional to the square of

the smallest non-zero eigenvalueλ2(L) which quantifies how densely a graph is connected. We

also note that (50) is directly proportional to the channel noise varianceσ2
v .

Equation (50) also gives some useful insights to design the transmission functionh(x). If

we choose two functionsh1(x) andh2(x) such thath
′

1(x) > h
′

2(x), ∀x ∈ R, it is easy to see

from (50) that‖C∗
nlc1‖ < ‖C∗

nlc2‖, ∀θ0 ∈ R. This means that the convergence will be faster

whenh1(x) is employed in theNLC algorithm (5) than whenh2(x) is employed. However, it

should be noted that ifh
′

1(x) > h
′

2(x), ∀x ∈ R and supposeh1(0) = h2(0) = 0 then we have

h2
1(x) > h2

2(x), ∀x which implies that on an average the transmit power is greater whenh1(x) is

employed compared toh2(x). We will illustrate these findings in the simulations in Section V.

Comparing the‖C∗
nlc‖ against the special case ofh(x) = cx yields‖C∗

nlc‖ = ‖C∗
lin‖(c/h

′

(θ0))
2.

Clearly c/h
′

(θ0) ≤ 1 and therefore ifh(x) is bounded, appropriately normalized by letting

c = 1, so that0 < h
′

(x) ≤ 1, we conclude that the best case linear algorithm outperforms the

best caseNLC algorithm in terms of speed of convergence. However, the improved asymptotic

covariance matrix in the former is achieved at the cost of increased peak and average transmit

power compared to the latter.

V. SIMULATIONS

In this section, we corroborate our analytical findings through various simulations. In all the

simulations presented, the initial samplesxi(0) ∈ R, i = 1, 2, . . . , N, were generated randomly

using Gaussian distribution with a standard deviation equal to 10. The desired global average

value is indicated in each of the simulations. We focus here on bounded transmission functions

to study their performance. Please note that our results arevalid for a broader class of increasing

functions (see Section IV-A) than the ones considered in this section.
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A. Performance ofNLC Algorithm Without Channel Noise

Our focus in this paper is on non-linear transmissions in thepresence of noise. However, we

would also like to illustrate the convergence behavior on the absence of noise. Figures 1, 2 and 3

depict the performance of the proposedNLC algorithm in the absence of channel noise for a large

network withN = 75. In all the cases, we have usedα values such that0 < α < 2/(cλN(L))

as mentioned in Section IV-C.

From Figure 1, we infer that in about50 iterations, all the nodes reach consensus on the

desired global average of̄x = 76. Figure 2 shows evolution of error norm||X(t) − x̄1|| for

various bounded functions. We see that the convergence is exponential in all cases as noted

in Section IV-C. Figure 3 illustrates the performance of theNLC algorithm whenα is varied.

Interestingly, by adjusting the step sizeα it is indeed possible to achieve the same convergence

speed using theNLC algorithm as that of optimal linear consensus algorithm using the Laplacian

heuristic [2].

B. Performance ofNLC algorithm with Channel Noise

Figures 4 - 8 illustrate the performance ofNLC algorithm in the presence of communication

noise. As explained in the assumption(A4) in Section IV-A, we chose the decreasing step

sequence to beα(t) = 1/(t+1), t ≥ 0, in all simulations. Here we assumed thatρ = maxx h
2(x)

is the maximum power available at each sensor to transmit itsstate value. Figure 4 shows that

the nodes employing theNLC algorithm reach consensus for a small network withN = 10.

Figure 5 shows the transmit powerh2(xi(t)), i = 1, 2, . . . , N, per-neighbour versus iterations for

a large network. Clearly, the transmit power is always constrained within the upper bound of

ρ (indicated by the dashed line) making the proposed scheme practically viable for the power

constrained WSNs.

In Figures 6, 7 and 8, we show the convergence speed performance of the proposedNLC

algorithm by plotting||E[X(t)]− x̄1|| versus iterationst. These plots indicate how fast the mean

of the processX(t) converges towards the desired global mean vectorx̄1.

In Theorem 5, we saw that if two functionsh1(x) andh2(x) such thath
′

1(x) > h
′

2(x), ∀x ∈ R,

are employed in theNLC algorithm then the convergence will be faster forh1(x) compared to

that of h2(x). This is illustrated in Figure 6 where we have chosenh1(x) =
√
ρ tan−1(ωx) and

h2(x) =
√
ρ tanh(ωx). The performance gain ofh1(x) obtained overh2(x) can be understood
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intuitively by observing that on an average the transmit power will be more whenh1(x) is

employed than whenh1(x) is employed. The speed of convergence for various transmit functions

appropriately normalized to have the same peak powerρ is shown in Figure 7. Here, we see

that the transmit functionh1(x) has the best performance andh4(x) has the worst performance.

Intuitively this is due to the fact thath
′

1(x̄) > h
′

2(x̄) > h
′

3(x̄) > h
′

4(x̄). Finally, we depict the

convergence speed versus the power scaling constantρ, the upper bound on the transmit power,

in Figure 8. For a given transmit function, increased power leads to faster convergence as would

be expected, and we also observe that when the consensus iterations were increased, speed of

convergence improves.

VI. CONCLUSIONS

A distributed consensus algorithm in which every sensor maps its state value through a bounded

function before transmission to constrain the transmit power is proposed. The transmitted signal

power at every node in every iteration is always bounded irrespective of the state value or the

communication noise, which is a desirable feature for low-power sensors with limited peak

power capabilities. In the presence of communication noise, it is proved using the theory of

Markov processes that the sensors reach consensus asymptotically on a finite random variable

whose expectation contains the desired sample average of the initial sensor measurements, and

whose mean-squared error is bounded. The asymptotic convergence speed of the proposed

algorithm is characterized by deriving the asymptotic covariance matrix using results from

stochastic approximation theory. While the proposedNLC algorithm has the desirable feature

of bounded transmit power, it is shown that using the best case NLC algorithm results in larger

asymptotic covariance compared to the best case linear consensus algorithm. In the absence of

communication noise, it is illustrated that the network achieves consensus on the global sample

average exponentially fast provided the step size is chosenappropriately and that by adjusting

the step size, it is possible to achieve the same speed of convergence as that of the best case

linear consensus algorithm using Laplacian heuristic.
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Fig. 1. Entries ofX(t) versus Iterationst: α = 1.5, ω = 0.01, N = 75, h(x) = tanh(ωx), x̄ = 76.
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Fig. 2. Evolution of error||X(t)− x̄1|| versus Iterationst: α = 1.5, ω = 0.01, N = 75, x̄ = 76.
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