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Abstract

A distributed average consensus algorithm in which evensaetransmits with bounded peak
power is proposed. In the presence of communication ndige shown that the nodes reach consensus
asymptotically to a finite random variable whose expeatat® the desired sample average of the
initial observations with a variance that depends on thp siee of the algorithm and the variance
of the communication noise. The asymptotic performancenaacterized by deriving the asymptotic
covariance matrix using results from stochastic approtiomaheory. It is shown that using bounded
transmissions results in slower convergence comparedetdinbar consensus algorithm based on the

Laplacian heuristic. Simulations corroborate our anedjtfindings.
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. INTRODUCTION

Wireless sensor networks (WSNs) without a fusion centee ltla® advantages of robustness to
node failures and they can function autonomously withouertral node controlling the entire
network [1]. In such fully distributed networks, sensordladmorate with their neighbours by

repeatedly exchanging information locally to achieve airddsglobal objective. For example,

The authors are with the School of Electrical, Computer, Bmérgy Engineering, Arizona State University, Tempe, AZ
85287, USA. (Email{sdasarat, cihan, mbanavar, spap@ssu.edu). This work was supported in part by the Nation&n8e
Foundation under Grant NSF FRP 1231034.

July 6, 2018 DRAFT


http://arxiv.org/abs/1302.5371v1

the sensors could come to an agreement on the sample averaga & global function) of
initial measurements. This is called distributed consengistributed consensus algorithms
have attracted significant interest in the recent past amd foaind several applications in areas
such as healthcare, environmental monitoring, militargg hBome appliances (please see [2]-[8]
and references therein). In this body of literature, it ikenfassumed that a given node can
obtain exact information of the state values of its neighbdtrough local communications.
This essentially means that the system consumes thediseticdimited energy and bandwidth.
However, practical WSNs are severely power limited and thalable bandwidth is finite.
Moreover, the main source of power consumption in a sensits isansceiver [9]. Therefore,
there is a need for consensus algorithms which work undet seisource constraints of power
and bandwidth imposed by the WSNSs.

Sensors may adopt either a digital or analog method for mmétisg their information to
their neighbours. Digital methods of transmissions may fiagulow transmit power but require
increased bandwidth especially when the number of quarizdevels is high. Distributed
consensus algorithms using quantized transmissions hesare studied in [10]-[14]. The analog
method consists of transmitting unquantized data by apjataby pulse shaping and amplitude
or phase modulating to consume finite bandwidth. One suchades the amplify-and-forward
(AF) scheme in which sensors send scaled versions of theasanements to their neighbours.
However, using the AF technique is not a viable option for VESMcause it requires high
transmission power when the values to be transmitted age [46]. Moreover, the linear transmit
amplifier characteristics required for AF are often very powefficient [16], requiring the
study of the effect of non-linear transmissions on perforcea In distributed systems which
employ the AF technique for transmission of the sensed datapften assumed that the power
amplifiers used are perfectly linear over the entire rangihefsensed observations. In practice,
the amplifiers exhibit non-linear behaviour when the ampgkt of the sensed data is relatively
high [16]-[18].

In this paper, we propose a non-linear distributed conserfSl.C) algorithm in which
every sensor maps its state value through a bounded funoéfmre transmission to constrain
the peak transmit power. Therefore the magnitude of thestnd#ted signal at every node
in every iteration is always bounded, making it ideal foroge-constrained WSNs. In the

presence of communication noise, we prove that all the sereaploying theNLC algorithm
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reach consensus to a finite random variable whose mean isetieed sample average. We
characterize the asymptotic performance by deriving thenpgotic covariance matrix using
results from stochastic approximation theory. We show tisattg theNLC algorithm results in
larger asymptotic covariance compared to the linear cangealgorithm. Finally we explore
the performance of the proposed algorithm employing varibounded transmission functions.
Different from [8] which also considered consensus in thespnce of noisy transmissions,
herein we analyse non-linear transmissions and study tyrametic covariance matrix and its
dependence on the non-linearity. Our work in this paper siadies the merits and demerits of
distributed schemes involving realistic amplifier modeishwion-linear characteristics such as
the ones discussed in [16], [17].

The rest of this paper is organized as follows. We begin bievang some basics of network
graph theory in Section Il. In Section Ill, we describe theteyn model and review the previous
work on non-linear consensus. We considerXhg&” algorithm in the presence of noise in Section
IV, and prove that the sensors reach consensus to a randaableain Section V, we present
several simulation examples to study the performance ofptbposed algorithm. Concluding
remarks are presented in Section VI.

Notations and Conventions

Vectors are denoted by boldface upper-case or lower-césesl@nd matrices are denoted by
boldface upper-case lettersax{a,, a; } denotes the maximum aef anda,. diaga,, as, ..., ay]
denotes anV x N diagonal matrix whose diagonal elements are giverufyo, ..., ay. E[]
denotes the expectation operator dndenotes the identity matrix. The symbip} || denotes
the [, norm for real vectors and spectral norm for symmetric measid-or a matriXvVI, \;(M)
denotes the'™ smallest eigenvalue. The vectbrdenotes anV x 1 column vector of all ones,
1=[11...1"

1. REVIEW OF NETWORK GRAPH THEORY

In this paper, we model a sensor network as an undirectedhghaghis section, we provide
a brief background on network graph theory which we will uselérive our results. Consider
an undirected graplc = (N, E) containing a set of node§ = {1,..., N} and a set of edges

E. Nodes that communicate with each other have an edge betiveen We denote the set of
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neighbours of nodeé by N;, N; = { j|{7,j} € E} where{i, j} indicates an edge between the
nodesi andj [19]. A graph is connected if there exists at least one pativden every pair of
nodes. We denote the number of neighbours of a ndoe d; andd,,.., = max; d;. The graph
structure is described by aN x N symmetric matrix called the adjacency matdx= {a;;},

a;; = 1if {i,5} € E. The diagonal matribXD = diag[d;, d», ..., dn| captures the degrees of
all the nodes in the network. The Laplacian matrix of the grepgiven byL = D — A.

The graph Laplacian characterises a number of useful grepeaf the graph. The eigenvalues
of L are non-negative and the number of zero eigenvalues dettmtesumber of distinct
components of the graph. When the graph is connectgd,) = 0, and A\;(L) > 0,7 > 2,
so that the rank olL for a connected graph i& — 1. The vectorl is the eigenvector oL
associated with the eigenvalOei.e, L1 = 0. The eigenvalue\;(L) characterizes how densely
the graph is connected and the performance of consensustlabge depend on this eigenvalue
[20].

[Il. SYSTEM MODEL AND PREVIOUS WORK
A. System Model

Consider a WSN withV sensor nodes each with an initial measuremefit) € R. Measure-

ments made at the sensor nodes are modeled as

whered is an unknown real-valued parameter ands the sensing noise at thi& sensor. The

sample mean of these initial measurements in (1) is given by

1 N
1=1

Let z be the estimate of the parameteto be computed by an iterative distributed algorithm, in
which each sensor communicates only with its neighbourthdfstates of all the sensor nodes

converge tar, then the network is said to have reaclmuhsensusn the sample average.

B. Previous Work

A commonly used iterative algorithm for distributed corsesm can be written as

July 6, 2018 DRAFT



wi(t+1) = i(t) —a Y h(i(t) — zy(t)) 3)

jEN;
wherei = 1,...,N, t =0,1,2,..., is the time index;z;(t + 1) is the updated state value of
sensor node at timet + 1, N; is the set of neighbours of sensor nade:;;(¢), j € N; are the
state values of the neighbours of sensor nodetimet, anda is a constant step size. if-) is
linear, then (3) is a linear distributed average-consefisD&C) algorithm [2], [5], [20]. In [2],
it is proved that if0 < o < 2/Ay(L), thenz;(t) converges tor exponentially and (3) is then
called as the LDAC algorithm based on the Laplacian heari$tif(-) is non-linear then the
algorithm belongs to the class of non-linear distributedrage-consensus algorithms [4], [21].
In [4], the average consensus problem is solved wien) in (3) is differentiable and odd. In
[21], it is illustrated that wherk(z) in (3) is sin(z), faster convergence is possible compared
to the LDAC algorithm based on the Laplacian heuristic. Inoélthese casesy;;(t) has to be
transmitted to node before it can apply the functioh(-) to get the new updated state value.
Therefore, the transmit peak power in (3) is determinedc}fy) and not necessarily bounded,
even if h(-) is bounded. Moreover, there is no communication noise asdumall the previous

work on non-linear consensus.

IV. CONSENSUS WITHBOUNDED TRANSMISSIONS ANDCOMMUNICATION NOISE

In this work, we propose a distributed non-linear averageseaosus algorithm in which every
sensor maps its state value through a bounded function éoéfansmission to constrain the
transmit power. Therefore the magnitude of the transmgtgdal at every node in every iteration
is always bounded making it ideal for resource-constraMéRNs.

In this section, we will study th&\L.C algorithm with communication noise when sensors
exchange information. Our approach is similar to, but maeegal than [8] in that we analyse
non-linear transmissions. Moreover, unlike [8] we study #symptotic covariance matrix of the
state vector and its dependence on the non-linearity. &rjid] and [4], we assume transmit
non-linearity which allows for bounded transmissions. Btiver, we consider the presence of

communication noise.
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A. TheNLC Algorithm with Communication Noise

Let each sensor map its state value at tirrterough the functiom:(z) before transmission,

and consider the followin@lL.C algorithm with communication noise:
it +1) = zi(t) — a(t) Y [h(:(t) — hlwiy (1)) +ny(8)] (4)
jEN;

wherei =1,...,N,t =0,1,2,..., is the time index. The valug;(t + 1) is the state update of
nodei at timet + 1, x;;(t) is the state value of thg" neighbour of nodé at timet anda(t) is
a positive step size which will further be assumed to sa@syumption(A4) in the sequel. The
node; transmits its informatior;;(t) by mapping it through the functioh(z), nodei receives
a noisy version ofi(x;;(t)) andn;;(t) is the noise associated with the receptiom@t;;(t)).

Note that the proposed scheme (4) is different from (3) infolewing aspects. Firstly, in (3),
x;;(t) has to be transmitted which could exhibit variation over deviange of values if;(0)
has a large dynamic range and hence (3) does not guaranteddabtransmission power. In
contrast, in the proposed scheme the non-linearity is egflefore the state value is transmitted
so that the magnitude of the transmitted state value is awapstrained within the maximum
value of h(x) irrespective of the range af;(¢) and the realizations of noiseg;(t). Finally, (4)
involves communication noise while (3) does not. Thus treppsed scheme is more suited to
resource constrained WSNs when compared to (3).

The recursion in (4) can be written in vector form as
X(t+1) = X(t) — aft) [Lh(X(t)) + n(t)] , (5)

whereX(t) € R is the state vector at timegiven by X (¢) = [z1(¢) z2(t) ... zn(t)]", and
h: RY — RY such thath(X(t)) = [h(x1(t)) h(z2(t)) ... h(zx(t))]T. The vectom(t) captures
the additive noise alv nodes contributed by their respective neighbours and’itsomponent
is given by

n(t) = —» ny(t) , 1 <i< N, (6)

Our model in (5) is more general than the linear consensuxitiigh considered in [8] which
is a special case di(x) when it is linear. We make the following assumptions/dm), n;;(t),
a(t) and the graph:

Assumptions
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(Al): The graphG is connected so that,(L) > 0.
(A2): The functionh(-) is differentiable, and has a bounded derivative suchthath' (z) < c,
for somec > 0.

ZUl =0 >

sequence across time and space. It also satisfies

Elng(1)] =0,1<i,j < N,t >0, supE[n% ()] < 0® < oo, @

%,7,t
From (6) we have

En(t)] =0,vt, p:=supE[|n(t)|*] < Ndpao? < oco. (8)

Note that (8) is because of the fact that the number of neigtsoof a given node is upper
bounded byd,,, .

(A4) Decreasing Weight Sequence: The channel noise in (5) could make the algorithm diverge.
In order to control the variance growth rate of the noise wednthe following conditions on

the sequence(t):
a(t) >0, > alt)=o00, > a’(t) <oo. (9)
t=0 t=0

Our primary motivation for considering non-linear transsions is to impose the realistic
assumption of bounded peak per-sensor power by ensurindg:thais bounded. However, as
seen in(A2) this assumption is not needed for our subsequent develdpmseiong ash (-) is
bounded.

We will prove convergence and asymptotic normality restithe NLC algorithm in (5). For
the sake of clarity, we now present a result on the convergeha discrete time Markov process

which will be used in establishing convergence of M¥leC algorithm in (5).

B. A Result on the Convergence of Discrete time Markov Psases

Let X = {X(¢)};>0 be a discrete time vector Markov processot. The generating operator
L of X is defined as

LV (x)=E[V(X(t+1))|X(t) = x] — V(x) (10)

for functionsV (x),x € R”, provided that the conditional expectation exists. Cet R" and
its complement b&€ = R\ C. We now state the desired result as a simplification of Thaore
2.7.1 in [22] (see also Theorem 1 in [8]).
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Theorem 1. Let X be a discrete time vector Markov process with the genergperator £ as
in (10). If there exists a potential functioW (x) : RY — R*, andC c RY with the following

properties
Vix)>0,xeC, V(x)=0,xeC, (11)
LV (x) < =y(t)p(x) +mg(t)[L + V (x)] (12)

wherem > 0, ¢(x) is such that

o(x)=0,xeC, p(x)>0,xeC , (13)
and
Y(t) > 0,g(t) >0, > (t) =00, Y _g(t) < oo, (14)
t=0 t=0

then, the discrete time vector Markov process= {X(t)}:>o with arbitrary initial distribution

converges almost surely (a.s.) to the €est — oo. That is,

Pr nggxlrrgc |1X(t) = Y| = O] = 1. (15)

Intuitively, Theorem 1 indicates that if the one-step pcédn error of the Markov process
evaluated at the potential function in (10) is bounded asl#) (hen it is possible to establish
convergence oKX ().

To prove the a.s. convergence of the consensus algorith®) insfng Theorem 1, we define

the consensus subspaCethe set of all vectors whose entries are of equal value as,
C={xcR¥x=al,acR}. (16)

We are now ready to state the main result of Section IV.

Theorem 2. Let the assumption@\1), (A3) and(A4) hold, and assumk(z) is strictly increasing.
Consider theNLC algorithm in(5) with the initial state vectoX (0) € RY. Then, the state vector

X(t) in (5) approaches the consensus subspéce.s., i.e.,

Pr [lim inf [|X(t)=Y]| =0| = 1. (17)

t—oo YeC
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Proof: We will make use of Theorem 1 to prove (17). We will choose aprapriate
potential functionV/(x) that is non-negative which satisfies equation (11). We wadint prove
that the generating operatgrapplied onV (x) as in (10) can be upper bounded as in (12) with
~(t) = a(t), and ap(x) can be found that satisfies (13).

First we see that under the assumpti¢Ag), (A2) and the assumption ol(z), the discrete
time vector procesgX(t)}:>o is Markov. SinceL is a positive semi-definite matrix, it has
an eigenvalue decomposition (EVD) given lby= UXU", where X is the diagonal matrix
containing the eigenvalues &f in the increasing order, an is a unitary matrix withl as
its first column vector which corresponds to the 0 eigenvalefine a positive semi-definite
matrix M as a function ofU such thatM = UAUT and A = diag[0, 1, 1 ,..., 1]. Let
V(x) = x"Mx, then the functionV/(x) is non-negative sincd1 is a positive semi-definite
matrix by construction. Note that € C is an eigenvector ofM associated with the zero

eigenvalue, therefore we have
V(x)=0,xeC. (18)

Let x = x¢ + xc, Wherexc is the orthogonal projection af on C. Whenx € C', we have
|xc.|| > 0. Letx € C andh(x) be as defined in (5). Them(x) = h¢(x) 4 he, (x), where

he, (x) is non-zero, i.e.|lhc, (x)|| > 0. Define 3 := ||hey (x)?/||xcL||?, thens > 0, x € C.

Therefore, for any € C/,
V(x) =x"Mx =V (x¢c +xc1) = V(xcL) > migO xe, Mxcy = M(M)|xc|* >0, (19)
XcL

where the last inequality is due tg(L) > 0 by assumptior{A1). The equations (18) and (19)
establish that the conditions in (11) in Theorem 1 are satisfi

Now we will prove that (12) is satisfied as well. Towards thigleconsiderCV (x) defined
in (10),

LV (x)

E [X(t +1)TMX(t + 1)|X(¢) = x] V(x), (20)
=E[(x" —at) (h(x)"L" +n()")) - (Mx — a(t) (MLh(x) + Mn(t)))]
-V(x), (21)

= —2a(t) [x"MLh(x)] 4+ o*(t) [h(x)"L™MLh(x) + E [n(t)"Mn(t)]] . (22)
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We get (22) by expanding (21) and taking the expectationsusiitiy the fact thak[n(¢)] = 0.
Recall the EVDs ofl. and M from which we have

LM =ML =UXU'UAUT =USUT =L . (23)
Since A2 (M) = Ay(M) = 1, we have
E [n()"™Mn(t)] <E Dy (M)|In(#)]?] < (24)

where the second inequality follows from (8) and the fact tha(M) = 1. Using (23) and (24)
in (22), we get the following bound

LV (x) < —2a(t) [x"Lh(x)] + o*(t) [h(x)"L*h(x) + 4] , (25)
< —2a(t) [x"Lh(x)] + a2(t) N (L)B|xco || + 4] | (26)
< —2a(t) [x"Lh(x)] +a%(t) |8 jj{v((LngMx - (27)
< —2a(t) [x"Lh(x)] +ma®(t) [1 + fox"Mx] | (28)
< —a(t)p(x) +ma’(t) [1 + V(x)] (29)

wherep(x) := 2xTLh(x), m := max{ 8% (L)/A2(M), u}, B2 := pu/m and By € (0,1]. In (26),
we have used the fadt(x)TL?h(x) < X%(L)|hcy (x)||? and ||hey (x)]]? = Bl|xcL|]?. In (27),
we have used the fact that' Mx > \o(M)||xc.||*> due to (19). We will now prove thap(x)
in (29) satisfies equation (13) of Theorem 1.

Recall thatL is the Laplacian matrix of the graph and thiatis in its null space, that is,
L1 = 0. Wheneverx € C, i.e.,,x = al,a € R, thenh(x) = b1 for someb € R. This implies
Lh(al) = Lbl = 0. Therefore we have(x) = 2x*Lh(x) = 0, Vx € C.

To provep(x) > 0 whenx € C', considery(x) for a connected graph with of dimension
N x N,

¢(x) = 2x"Lh(x) (30)

=2 lz (w1 — zj)h(zr) + Y (22— z)h(2a) + ...+ Y (zx —;)h(zy)| . (31)

€Ny jEN2 jENN
where (31) follows from the structure of the symmetric malti (recall. = D — A). Note that
the i*" summation in (31) corresponds to tki& node. Now suppose that nodds connected
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to nodej. Then there exists a terify; — x;)h(x;) in the summation corresponding to tkf&
node in (31), and a terrtw; — z;)h(z;) in the summation corresponding to tf{€ node in (31).
Both of these terms can be combined(as— z;)(h(x;) — h(z;)) and this corresponds to the
edge{i,j} € E. Thus equation (31) can be written as pairwise products enated over all the
edges in the graph as follows
p(x) =2 Y (w — ) (hlw:) — h(zy)) . (32)
{i,j}€E

Sincex € C', ¢(x) in (32) is positive due to the fact thafz) is strictly increasing so that there is
at least one term in the sum which is strictly greater thaon.Zegtting~(t) = a(t), g(t) = o?(t)
and by assumptiorfA4), we see that the sequeneét) in (29) satisfies (14). Thus all the
conditions of Theorem 1 are satisfied to yield (17). [ |

Theorem 2 states that the sample pathsXdf) approach the consensus subspace almost
surely. We note that the assumptiOh2) is not necessary for Theorem 2 to hold. Instead we
assumedh(x) is strictly increasing (not necessarily differentiable)drove Theorem 2. Now,

like in [8], we will prove the convergence d£(t) to a finite point inC in Theorem 3.

Theorem 3. Let the assumptions of Theorem 2 hold. ConsiderNh& algorithm in (5) with

the initial stateX(0) € R". Then, there exists a finite real random varialffesuch that

Pr [hm X(t) = 9*1} —1. (33)

t—o00

Proof: Let the average oK (t) bez(t) = 17X (¢)/N. Sincelz(t) € C, Theorem 2 implies,

Pr [}H& IX(t) — z(t)1]| = o] ~1, (34)

where (34) follows from (17) since the infimum in (17) is ack@d by Y = z(¢)1. Pre-
multiplying (5) by 1*/N on both sides and noting that Lh(X(¢)) = 0 we get,

T(t+1) = z(t) — () (35)
=z(0)— > (k) (36)
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whered(t) = a(t)1Tn(t)/N. From (A3), it follows that

Bfo(t)] =0,
2_EOF =2 O Elm(r)? < 4 2 ) < o0

which implies

E[z(t + 1)]* < 2%(0) + a?(t) , Vvt . (37)

3=

Equation (37) implies that the sequenfe(t)}:o is an £, bounded martingalé and hence
converges a.s. and ifi; to a finite random variablé* (see [22, Theorem 2.6.1]). Therefore the
theorem follows from (34). [ ]

It should be noted that the results in Theorems 2 and 3 ardasitoi the results in [8], but
we have proved it for a more general case of which [8] is a gpesise wherh(x) = x. In

what follows, we present the properties of the limiting ramdvariablef*.

C. Mean Square Error oNLC Algorithm

The Theorems 2 and 3 establish that the sensors reach coasesysnptotically and converge
a.s. to a finite random variabt&. We can viewd* as an estimate of. In the following theorem
we characterize the unbiasedness and means squared e®&) loperties ob*. We define
the MSE of¢* as¢,, = E[(0* — 7)?].

Theorem 4. Let 6* be the limiting random variable as in Theorem 3. Th#nis unbiased,
E[6"] = z, and its MSE is bounded,, < uN~2) " a*(1).

t>0
The proof is obtained by following the same steps of the Lenbnia [8].
We point out that with non-linear transmissions, we haveaioled the same bound on the
MSE ¢, as that of the linear consensus algorithm in [8]. It shoulchbied thaty < Nd,..0?
from (8) which implies thatf, < duaN"" Y, *(t)o”. Therefore, ifdy.. is finite for a

large connected network, we haligwy_, . &, = 0 and this means th&" converges ta as the

A sequence of random variable§y(t)}:>0 is called as a martingale if for alt > 0, E[jy(t)]] < oo and

Efyt+1) | y(1) y(2)...y(t)] = y(t). The sequencdy(t)}:>o is an L2 bounded martingale ifup, E [y*(t)] < oo (see
[23, pp. 110]).
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variance ofd* approaches 0. If the graph is densely connected, dhgnis relatively high which
increases the worst-case MSE. On the other hand, when thk graensely connectedy (L) is
larger which aids in the speed of convergencé*toas quantified through the covariance matrix
in Section IV-D.

For any connected graph witN' nodes, ifoc? = 0 thenlim,_,., X(¢) = z1, which means all
the sensor states asymptotically converge to the desiredlsaverage. In fact, in the absence of
communication noise, under assumptig¢Ad) and (A2), we believe that it is possible to prove
exponential convergence (t) to z1 by letting o(¢) = « such thatd < o < 2/(cAx(L)) and
by following a similar approach as in [21].

Similar results as in Theorems 2 and 3 could be easily promdérumore general assumptions.
For example, the graph can be randomly varying over time duank failures. As long as the
graph is connected on an average, it can be easily provedhghdtheorems 2 and 3 hold. The
independent assumption on the noise sequence can alsededad the noise sequence can be
allowed to depend oiX(t). For detailed discussions on these assumptions and itaticas,
please see Section IlI-A in [8]. We do not pursue these eidarsherein since our focus is on

studying the effect of non-linear transmissions on pertonoe.

D. Asymptotic Normality oNLC Algorithm

The NLC algorithm in (5) belongs to the class of stochastic apprexiom algorithms. The
convergence speed of these algorithms is an important fesoea practical perspective. There
are various criteria for determining the rate of convergemi®r instance, one can try to estimate
E[||X(t) — 6*1||%] or Pr [||X(t) — 6*1|| < €(t)] [24]. Estimating these parameters may be difficult
in practice. However, it is usually possible to establisht (X (¢) — 6*1) is asymptotically
normal with zero mean and some covariance matrix. Asymptadirmality of stochastic ap-
proximation algorithms have been established under somerglkeconditions in [22] and for the
linear consensus algorithms in [6].

In this section, we establish the asymptotic normality o MLC algorithm in (5). Our
approach here is similar to the one in [6]. Basically, we dagose theNLC algorithm inRY
into a scalar recursion and a recursionRf¥ V). In this section, for the sake of simplicity we
assume that the noise sequekeét),t > 0} are i.i.d. random vectors with zero mean and finite

covariance. We now formally state and prove the result asarém.
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Theorem 5. Let a(t) = a/t,a > 0, then theNLC algorithm in (5) becomes
X(t+1) = X(t) + % [~Lh(X(t)) + n(t)]. (38)

Suppose that the assumptio(&l), (A2), (A3) and (A4) hold and that the noise sequence
{n(t),t > 0} are i.i.d. across time and space with zero mean and covaeiast. Let the EVD
of L be given byl. = UXU", whereU is a unitary matrix whose columns are the eigenvectors

of L such that

1 Nx(N-1) 0 o*
U=|—— ®&|, PR , =2 = , (39)
VN 0 B

where B ¢ RW-)x(V=1) is g diagonal matrix containing théV — 1 negative eigenvalues of
—L (this means thaB is a stable matrix). In addition, lef, be a realization of the random
variable ¢* and 2a)y(L)h' () > 1 so that the matrix[ah’(6))B +1/2] .6, € R is stable.
Define[n(t) a(t)T]T := N~/2UTn(t), a(t) € R¥-Y, so thatfi(t) = N~'1Tn(t) and i(t) =
N-128®Tn(t). Let C = E[anT], C € RW-UxWV=1 Then, ast — oo,

VHX(t) = 6p1) ~ N (0, N"'a?6?11" + N1 @SheT) | (40)

where

S = g2 76[“h'(90)‘3+5]t C el Bty (41)
0
Proof: Define[z(t) X(t)T]" := N-Y2UTX(t), X(t) € RNV, From Theorem 3, we have
X(t) — 6*1 a.s. ast — oo which implies that[z(t) X(t)]T — [6* 0]T a.s. ast — oo, and
thereforeX(t) — 0 a.s. ast — oo. The error[X(t) — 6y1] can be written as the sum of two

error components (see also Section VI in [6]) as given below

- I
[X(t) = o] = [Z(t) — fo]1 + \/—N@X(t) : (42)

=e; + ey, (43)

wheree; = [Z(t) — 6,]1 ande, = N~'/2®X(t). By calculating the covariance matrix between
e; ande,, it can be proved that they are asymptotically uncorrelasd — oo, and that
asymptoticallyv/te; ~ N(0, N~ta?c2117T) (see Theorem 12 in [6]). To show thatte, is
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asymptotically normal, it suffices to show tha‘rif((t) is asymptotically normal. To this end,

expressh(z) in (38) aroundz = 6, using Taylor’s series expansion,
h(z) = h(Bo) + ' (60)(x — o) + o|x — 6o|) ,as z — by . (44)

Using (44) in (38) we get

X(t+1) = X(t) + 7 [~L (h(00)1 + ' (00) X (1) = 0o1] ) + 6(X(1)) + ()| . (45)
— X(1) + % [h’(eo) (—LX(t)) + 6(X(t)) + n(t)] L ast — 00, (46)

where ||§(X(t))|| — 0 ast — co. Pre-multiplying (46) on both sides hy~'/2U™ and using

(39) we get the following recursions

T+ 1) =2(t)+ tﬁ(t) : 47)
X(t+1) = X(t) + % 1 (0)BX(t) + 6(X(¢)) + ﬁ(t)] Jast — 00 (48)
where§(X(t)) = N-1/2®T5(X(t)). With the assumption thafah'(6)B +1/2],6, € R is a
stable matrix, it can be verified that all the conditions oé®tem 6.6.1 in [22, p. 147] are satisfied
for the processX(t) in (48). Therefore, for a givesi,, the process/tX(t) is asymptotically
normal with zero mean and covariance matrix given by (41)c&i/te; ~ N (0, N~ta?02117)
and using (41) together with the fact that ande, are asymptotically independent as+ oo,
we get (40) which completes the proof. [ |
Equation (40) indicates how fast the procé&sg) will converge tod,1 for a givend,. The
convergence speed clearly depends.df,). We note that if(z) = z, thenh'(6,) = 1,0, € R,
and substituting this in (41), we get the results for thedmease as in Theorem 12 of [6].
Let the asymptotic covariance in (40) be denoted(y,.. Sincen(t) are i.i.d.,C in (41)
become<C = ¢*I and thus we hav€,. = N 1a?0211T+ N~ 1®S%®T whereS? is a diagonal
matrix whose diagonal elements are given$§§y = a202/[2ah’ (o) \is1(L) — 1]. A reasonable
quantitative measure of largeness [24] of the asymptoti@gance matrix ig|C,.|| which is
the maximum eigenvalue of the symmetric mai@y,.. Further,|C,.|| can be minimized with

respect to the parameter This can be formulated as the following optimization pesb|

min max xTCpeX | (49)
{al2ah’ (Bo)r2(L)>1} {x[xeRN,[|x|2<1}
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which can be solved analytically by using the KKT conditi¢®2S]. The value otz that optimizes
(49) isa,, = (N +1)/[2NXy(L)A (6y)] and the corresponding optimal value of the,.||is

st = (") () (rg) %0

The size of the asymptotic covariance matrix in (50) is ise&r proportional to the square of

given by

the smallest non-zero eigenvalig(L) which quantifies how densely a graph is connected. We
also note that (50) is directly proportional to the chanrake variancer?.

Equation (50) also gives some useful insights to design idesimission functiorh(z). If
we choose two functions;(z) and hy(z) such thath)(z) > hy(z),Vz € R, it is easy to see
from (50) that||C}.,|| < [|Chsll, V8o € R. This means that the convergence will be faster
when hy(x) is employed in theNL.C algorithm (5) than wherk,(z) is employed. However, it
should be noted that ik (x) > hy(z),Vr € R and supposé;(0) = hy(0) = 0 then we have
h%(x) > h3(x), Yz which implies that on an average the transmit power is gregtenh, (z) is
employed compared thy(x). We will illustrate these findings in the simulations in SeatV.
Comparing the|C?, || against the special case bfr) = cz yields || C#,.|| = |C;, || (c/R (6))>.
Clearly ¢/h'(6,) < 1 and therefore ifh(z) is bounded, appropriately normalized by letting
¢ =1, so that0 < h'(z) < 1, we conclude that the best case linear algorithm outpeddima
best caseNLC algorithm in terms of speed of convergence. However, theangd asymptotic
covariance matrix in the former is achieved at the cost ofeased peak and average transmit

power compared to the latter.

V. SIMULATIONS

In this section, we corroborate our analytical findings tigto various simulations. In all the
simulations presented, the initial sample$0) € R,i = 1,2,..., N, were generated randomly
using Gaussian distribution with a standard deviation etud0. The desired global average
value is indicated in each of the simulations. We focus heréaunded transmission functions
to study their performance. Please note that our resultgadict for a broader class of increasing

functions (see Section IV-A) than the ones considered i\ $biction.
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A. Performance oNLC Algorithm Without Channel Noise

Our focus in this paper is on non-linear transmissions inpitesence of noise. However, we
would also like to illustrate the convergence behavior anahsence of noise. Figures 1, 2 and 3
depict the performance of the propoedC algorithm in the absence of channel noise for a large
network with N' = 75. In all the cases, we have usedvalues such thal < o < 2/(cAn(L))
as mentioned in Section IV-C.

From Figure 1, we infer that in abodb iterations, all the nodes reach consensus on the
desired global average af = 76. Figure 2 shows evolution of error norfiX(¢) — z1|| for
various bounded functions. We see that the convergencepagnextial in all cases as noted
in Section IV-C. Figure 3 illustrates the performance of ¥ieC algorithm when« is varied.
Interestingly, by adjusting the step siaeit is indeed possible to achieve the same convergence
speed using th&LC algorithm as that of optimal linear consensus algorithmgighe Laplacian

heuristic [2].

B. Performance oNLC algorithm with Channel Noise

Figures 4 - 8 illustrate the performance 9i.C algorithm in the presence of communication
noise. As explained in the assumpti¢A4) in Section IV-A, we chose the decreasing step
sequence to be(t) = 1/(t+1),t > 0, in all simulations. Here we assumed that max, h?(x)
is the maximum power available at each sensor to transmstate value. Figure 4 shows that
the nodes employing th&L.C algorithm reach consensus for a small network wih= 10.
Figure 5 shows the transmit powkt(z;(t)),i = 1,2, ..., N, per-neighbour versus iterations for
a large network. Clearly, the transmit power is always aams¢d within the upper bound of
p (indicated by the dashed line) making the proposed scheaiqally viable for the power
constrained WSNSs.

In Figures 6, 7 and 8, we show the convergence speed perfoemainthe proposedLC
algorithm by plotting||E[X (¢)] — z1]|| versus iterations. These plots indicate how fast the mean
of the procesX(t) converges towards the desired global mean vetlor

In Theorem 5, we saw that if two functios () andh,(z) such thath, (z) > hy(z), Vo € R,
are employed in th& L.C algorithm then the convergence will be faster fqfz) compared to
that of k(). This is illustrated in Figure 6 where we have cho#gfw) = /ptan™!(wz) and

hy(z) = \/ptanh(wz). The performance gain df,(x) obtained overn,(r) can be understood
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intuitively by observing that on an average the transmit @owill be more whenh,(z) is
employed than wheh, (z) is employed. The speed of convergence for various transmidtions
appropriately normalized to have the same peak pgwer shown in Figure 7. Here, we see
that the transmit functiot, (x) has the best performance ahgz) has the worst performance.
Intuitively this is due to the fact thal,(7) > h,(Z) > hy(z) > hy(Z). Finally, we depict the
convergence speed versus the power scaling congtdiné upper bound on the transmit power,
in Figure 8. For a given transmit function, increased poweadsk to faster convergence as would
be expected, and we also observe that when the consensatfoiterwere increased, speed of

convergence improves.

VI. CONCLUSIONS

A distributed consensus algorithm in which every sensorsmitggstate value through a bounded
function before transmission to constrain the transmitgro proposed. The transmitted signal
power at every node in every iteration is always boundedpeetive of the state value or the
communication noise, which is a desirable feature for lowgr sensors with limited peak
power capabilities. In the presence of communication ndtses proved using the theory of
Markov processes that the sensors reach consensus aggalfytain a finite random variable
whose expectation contains the desired sample average afittal sensor measurements, and
whose mean-squared error is bounded. The asymptotic genes speed of the proposed
algorithm is characterized by deriving the asymptotic c@arace matrix using results from
stochastic approximation theory. While the propo$ddC algorithm has the desirable feature
of bounded transmit power, it is shown that using the best 8agC algorithm results in larger
asymptotic covariance compared to the best case lineaensuas algorithm. In the absence of
communication noise, it is illustrated that the networkiaebs consensus on the global sample
average exponentially fast provided the step size is chappnopriately and that by adjusting
the step size, it is possible to achieve the same speed oexmnce as that of the best case

linear consensus algorithm using Laplacian heuristic.
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Fig. 2. Evolution of errof|X(¢) — z1|| versus lterations: a = 1.5, w = 0.01, N = 75, T = 76.
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Fig. 3. Evolution of errof|X(t) — z1|| versus Iterationg: o = 2,4, 6,8, w = 0.005, N = 75, h(z)

T = 114.
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Upper Bound on Transmit Power: p = 5.62(7.5 dB)
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Fig. 5. Transmit poweh”(xz;(t)) per-neighbour versus Iteratioms h(z) = /p tanh(wz), w = 0.005, N = 75, = 102,
p=750dB, o2 =0.1.
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Fig. 6.  ||[E[X(t)] — z1]|| versus lterationg: hi(z) = /ptan”'(wz), ha(z) = /ptanh(wz), w = 0.005, N = 75,
Z=162,202, p="7.5dB, o2 =1.
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Fig. 7. ||E[X(t)] — Z1|| versus lterationg: w = 0.04, N = 10, Z = 36.24, p = 5 dB, 02 = 1.
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Fig. 8. [||E[X(¢)] — Z1]|| versusp: h(x) = \/ﬁ\/% w = 0.006, N = 75, z = 77, Iterationst = 20, 40, 60, 80, oz = 1.
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