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Noise Analysis of a New Singularity Index
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Abstract—We analyze the noise sensitivity of a new singularity
index that was designed to detect impulse singularities in signals
of arbitrary dimensionality while rejecting step-like singularities
see Muralidhar et al., IEEE Signal Process. Lett., vol. 20, no. 1,
pp. 7–10, 2013 and Muralidhar et al., Proc. IEEE Int. Conf. Image
Process., 2012. For example, the index responds strongly to curvi-
linear masses (ridges) in images, while weakly to jump discontinu-
ities (edges). We analyze the detection power of the index in the
presence of noise. Our analysis is geared towards answering the
following questions: a) in the presence of noise only, what is the
probability of falsely detecting an impulse given a threshold; b)
given an impulse submerged in noise, what is the probability of de-
tecting it given a threshold; and c) since the index is designed to be
edge suppressing, what is the probability of incorrectly detecting
an edge submerged in noise given a threshold. We compare the de-
tection power of the index with that of a nominal impulse detector,
the second derivative operator. Simulations and example applica-
tions in 1-D and 2-D reveal the efficacy of the new singularity index
for correctly detecting impulses submerged in noise, while sup-
pressing edges. A software version of the 2-D singularity index can
be downloaded from: http://live.ece.utexas.edu/research/Singular-
ityIndex/SingularityIndexCode.zip.

Index Terms—Edges, impulses, singularities, singularity detec-
tion, statistical analysis.

I. INTRODUCTION

S INGULARITY detection has been a widely studied
problem in signal and image processing. For example,

detecting transients or peaks in 1-D signals such as mass
spectrometry signals obtained from biological fluids such as
serum is important in proteomic pattern diagnosis, e.g., [3], [4].
In images, singularities often manifest as isolated impulse or
curvilinear masses, which are commonly referred to as ridges,
and step discontinuities, which are commonly referred to as
edges [5]–[10]. Reliable detection of curvilinear masses in
images is important in many applications such as the detection
of blood vessels and cancers in medical images, filaments in
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images of biological specimens, and roads and river deltas in
satellite images [10].
We recently designed a new index to detect impulse singular-

ities in signals of arbitrary dimensionality [1], [2]. It is defined
as the dimensionless ratio

(1)

where , is a 1-D signal, and are the first
and second derivatives of , respectively, and the constant

. As explained in [1], we assume the nominal value
. Hence

(2)

The singularity index (2) is closely related to an energy op-
erator developed by Teager and Kaiser [11], which has been
employed for demodulating AM-FM signals [12]. The index
(2) responds strongly to impulse masses whose twice deriva-
tive is large and once-derivative is small. To see this, model
a smoothed 1-D impulse (a smoothed Dirac) as a gaussian of

height and scale : . Then at

, . Hence, the index response at the origin
increases monotonically as either increases or decreases.
The index is not sensitive to the polarity of the impulse, but is
easily modified to reflect signal polarity. However, it is sensitive
to the signal level (bias).
Since many applications require bias-free impulse detection,

the index response can be easily debiased by subtracting a low-
pass version of the signal prior to applying the index. As detailed
in [1], a principled way to accomplish this uses a gaussian low-

pass debiasing filter , where .
This choice of the filter space constant ensures that the response
to a gaussian impulse will be reduced by no more than a fraction
.
On the other hand, edges whose once derivative is large and

twice derivative is small produce minimal responses to the
index. Model a 1-D edge profile as a Heaviside step of
height smoothed by a gaussian : ,

where . Then the index response
vanishes at the origin: .
The singularity index in (2) operates directly on the signal.

This is not practical in real applications since derivative com-
putations are not stable in the presence of noise. Hence, define
the smoothed singularity index

(3)
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where is the shorthand notation for used in
[1] and is a unit-area gaussian:

(4)

The smoothed singularity index is regularized similar to the reg-
ularized Teager energy operator discussed in [13], [14].
The smoothing filter serves two objectives. First, it stabi-

lizes (regularizes) the derivative computations in the presence
of noise, and second, it provides a framework for multi-scale
(scale-space) representation of the signal. As shown in [1], for
a smoothed gaussian impulse of height and width , the
scale-normalized singularity index

(5)

where attains a scale-space peak response at the origin

when , which matches the smoothed impulse
scale when . Substituting and in (5)
yields a scale-space peak response of ,
which is scale invariant in the absence of noise [1]. Note that
the scale-normalized singularity index is based on Lindeberg’s
scale selection methodology that involves finding the local ex-
trema over scales of -normalized derivatives [8].
Here, we shall analyze the impulse detection power of the

smoothed 1-D singularity index in the presence of noise. These
analyses are important since they reveal how predictable the
index is when applied to an impulse that is submerged in
noise. The remainder of the paper is organized as follows:
in Section I-A, we provide a brief review of the prior work
on singularity detection and place the new singularity index
in context. In Section II, we establish the existence of the
low-order moments (mean and variance) of the response of
to zero-mean, wide sense stationary (WSS) Gaussian random
noise. In Section III, we conduct a false alarm analysis, finding
the probability of false impulse detection in the presence of
noise only followed by an analysis of the probability of true
impulse detection for an impulse submerged in noise. Further,
since the index is designed to be edge suppressing, we also
study the probability of incorrectly detecting an edge sub-
merged in noise in Section IV. In Section V, we use the results
of our analyses to extract peak locations from example 1-D
mass spectrometry signals. Then we also use the results of our
analyses as a guide to determine thresholds for extracting curvi-
linear structures from example 2-D images afflicted with noise
in Section VI. In Section VII, we demonstrate the potential of
the new singularity index for automatic segmentation of vessels
on retina images as an example 2-D application. Finally, we
conclude the paper in Section VIII.

A. Review of Singularity Detection

Mallat and Hwang [6] andMallat and Zhong [15] studied sin-
gularity detection in the context of wavelet theory. They showed
that the singularities in a signal can be detected and character-
ized by the local modulus maxima of the multi-scale wavelet
transform of the signal. The Lipschitz exponent estimated from
the evolution of the wavelet transform modulus maxima across

scales is used to reveal whether the signal varied smoothly, or
whether there was an edge, or an impulse singularity [6], [15].
As in the current study, the Dirac function and the smoothed
Dirac function (a gaussian pulse) are used to model impulse
singularities. They also cast Canny’s multi-scale edge detector
in the wavelet analysis framework [15]. The wavelet consid-
ered in their analyses is the simple first derivative of a gaussian
smoothing function [15].
Lindeberg studied ridge detection in a scale-space framework

[7], [8]. He proposed ridge strengthmeasures based on the Eigen
values of the Hessian matrix of the gaussian smoothed image.
Multi-scale analysis was achieved by varying the scale of the
smoothing gaussian function. One of Lindeberg’s ridge strength
measures is the maximum absolute Eigen value of the Hessian
matrix computed at each image location, which corresponds to
the maximum absolute value of the directional second deriva-
tive. Similar to Canny’s edge detector, Lindeberg’s ridge de-
tector can be cast within the wavelet framework [15], with the
wavelet being the second derivative of a gaussian function.
The new singularity index (3) is designed to detect impulse

(ridge) singularities. A similarity betweenMallat’s [15] and Lin-
deberg’s analysis [7], [8] is that their impulse (ridge) measures
are based on first and second derivatives of the signal. By com-
parison, the new singularity index is a non-linear combination
of the signal, its first and second derivatives. Throughout this
paper, we compare the performance of the new singularity index
with the second derivative operator, which is one of the mea-
sures put forth by Lindeberg for detection of ridges in images
[7], [8].
Finally, note that several non linear filters based on order

statistics have been proposed for impulse detection (e.g., [16]).
However, these filters are typically used to remove impulse
noise (salt and pepper noise) in images.While they are known to
work well on impulse noise, their extensions to detect sustained
multi-scale curvilinear structures such as ridges in images is
not straight forward and often involves ad-hoc combinations of
many filters and several post-processing steps.

II. LOW-ORDER MOMENTS OF

We begin by establishing the existence of the low-order
moments (mean and the variance) of the smoothed singularity
index when applied to a random signal . These moments
reveal useful insights into the stability and the predictability of
the index when applied to signals submerged in noise.
Assume that is a zero-mean WSS gaussian random

process with auto-correlation function

(6)

where the input noise variance is . The assumption
of wide sense stationarity and gaussianity allows for a tractable
statistical analyses of . We will deal with the slightly more
complex non-zero mean case when we study the statistical be-
havior of the index when applied to a deterministic signal im-
mersed in a random zero-mean noise process.
Let , , and

, where is a unit-area gaussian
smoothing filter as defined in (4). All of the processes ,
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and are also zero-mean WSS gaussian [17]. More-
over, is statistically independent of both and .
Hence, the singularity index

(7)

is the ratio of two statistically independent random processes.
Denote the numerator random process in (7) by and the

denominator random process by . From Theorem 2 in [18],
the ratio has all the moments up to order provided the
following condition is satisfied:

(8)

for any , , integers , and . Letting
, this condition holds since

(9)
, since .We next derive

approximations for the mean and the variance of .
The auto-correlation function of the process is

, since is WSS [17].
This evaluates to

(10)

Hence, the variance of is

(11)

Further, the variances of the derivative processes and
can be written as [17]

(12)

and

(13)

where .
In general, it is difficult to derive exact expressions for the

statistical mean and variance of (7). However, it is possible to
re-write (7) as

(14)

since is positive. Further, let

(15)

where . The approximate mean and vari-

ance of the ratio can be found using the Taylor expan-
sion [17]:

(16)

and

(17)
where and are defined as above and denotes
expectation.
It can be shown that [12]

(18)

(19)

Using Isserlis’s formula for the product moment coefficient
of normally distributed random variables [19], the variance of
the numerator random process evaluates to

(20)

The variance of the denominator random process is [17]

(21)

Substituting (18), (19), (20), (21), and (since
X and Y are statistically independent) in (16) and (17) yields

(22)

and

(23)

The mean and variance of place bounds on the
moments of the singularity index as a consequence
of Jensen’s inequality: and

.
Finally, Fig. 1 illustrates themean (top) and variance (bottom)

of computed using the Taylor approximation for dif-
ferent values of the input noise variance as a function of the
smoothing filter scale . To ascertain the veracity of the Taylor
approximation, we plot themean and variance of com-
puted empirically for simulated zero-mean white gaussian noise
at the same values of and . As evident from Fig. 1, the
mean and variance of estimated using the Taylor ap-
proximation and empirical simulation are nearly identical. It
is also evident from Fig. 1 that for each input noise variance,
the mean of approaches zero as the smoothing filter
scale increases, while the variance of decreases as
the smoothing filter scale increases. These properties are desir-
able since it suggests that as the noise is reduced by increased
smoothing, the expected value and the variance of the index re-
sponse tend towards zero.
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Fig. 1. Mean (top) and variance (bottom) of estimated using the
Taylor approximation (blue) and empirical simulations (red) for different values
of the input noise variance as a function of the smoothing filter scale .

III. FALSE ALARM AND TRUE IMPULSE DETECTION
PROBABILITIES

A. False Alarm Probability

Here, we find the probability of false impulse detection given
a threshold, when the scale-normalized smoothed singularity
index (5) is applied to a zero-mean WSS gaussian
random process . This is a simple test of whether an impulse
singularity will be detected when none is present (false alarm).
We only deal with the scale-normalized case, since in real appli-
cations the scale-normalized index is most useful for detecting
impulses and for obtaining an estimate of their scale/width. Lin-
deberg [8] first presented scale-normalization in the context of
ridge detection and stated that it was necessary to normalize the
derivatives computed at each scale of the smoothing gaussian
in order to compare the derivative magnitudes across scales and
to obtain an estimate of the width of the ridge. We begin by first
finding the false alarm probability for the smoothed singularity
index and subsequently use this result to find the false alarm
probability for the scale-normalized index (5).
As discussed earlier, the random process (7) is the

ratio of two statistically independent random processes
and , i.e. . Since is

a zero-mean gaussian random process, the probability density
function (PDF) of is given by [17]

(24)

The numerator random process is of the form ,
where . Since both and are correlated
zero-mean gaussian random processes with correlation coeffi-
cient , their product has a PDF that is given by [12]

(25)
where is the modified Bessel function of the second kind
and order zero. The PDF of is given by

(26)

Hence,

(27)

Determining a closed form expression for the PDF of
is generally difficult. However, numerical evaluation of the
probabilities involving is feasible. Specifically, evaluate
the probability

(28)

where is a threshold. The probability in (28) can be
determined as [17]

(29)

Since and are statistically independent of each other, (29)
becomes

(30)

The second double integral in (30) evaluates to 0 since
. Hence, (30) can be written

(31)

Consider the inner integral

(32)
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On introducing the change of variable and using
(3.361) in [20], (32) evaluates to

(33)

where is the error function.
Substituting (27) and (33) into (31) yields

(34)

Making a number of changes of variables in (34) yields

(35)

Then, it is easily shown that the probability of false impulse de-
tection in noise using the scale-normalized smoothed singularity
index is

(36)

We also compare the false alarm rates of the singularity index
with the scale-normalized smoothed second derivative operator

(37)

where

(38)

The operator is the simplest nominal impulse detector,
which responds strongly to impulses. It produces a minimal
response to the center of an edge, but a large response in
the edge neighborhood as discussed in [1]. Normalization by

ensures that the maximizing scale matches the impulse
scale. Note that the scale normalized second derivative index

is precisely equivalent to Lindeberg’s scale-nor-
malized maximum eigenvalue of the Hessian ridge
strength measure for a gaussian ridge profile (equation (46) in
[7]).
In the noise only scenario, . Since is a zero-

mean WSS gaussian random process with variance , the PDF
of is the half-normal distribution

(39)

Hence,

(40)

which is the probability of false impulse detection when the op-
erator is applied to a signal comprising of only a zero-mean
WSS gaussian random process. Then, the probability of false
impulse detection in the noise only scenario by the scale-nor-
malized smoothed second derivative operator is

(41)

Note that the probabilities in (36) and (41) have well-behaved
integrals that can be easily evaluated numerically using pack-
ages such as the Matlab (MathWorks, Natick, MA) library.

B. True Impulse Detection in the Presence of Noise

Wenow study the detection power of the new index byfinding
the probability of detecting a noise corrupted impulse signal (sit-
uated, without loss of generality at the origin) when the scale-
normalized smoothed singularity index (5) (with ) is ap-
plied. Let be the noise corrupted impulse signal:

, where is the deterministic signal and is a
zero-mean WSS gaussian random noise process as before. We
assume to be a gaussian smoothed impulse of height and
scale as before, i.e., . Let ,

, and . Then the
response of the scale normalized smoothed singularity index (5)
applied to the noise corrupted impulse signal
may be expressed

(42)

Since is a deterministic signal and , , and
are all zero-mean gaussian random processes, we

have: ,
, ,

, ,
and . Fur-
ther, , , and are given by:
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, , and

. At ,

(43)

Denote the random variable by the ratio
, where again and are statisti-

cally independent. The random variables is
zero-mean gaussian with variance , since . Hence,
the PDF of the variable is as
defined in (24).
Further, and are

non-zero-mean, correlated gaussian random variables having
means and , variances and , respectively, and

correlation coefficient . Unlike the zero-mean case,
there exists no simple closed form expression for the PDF of
the product .
Instead, let and

. Hence, the random variable is the product
of two non-zero mean folded normal random processes with
means and , variances and , respectively, and
correlation coefficient . The PDF of the product
can be determined as follows [17]:

(44)

where the joint PDF is the bivariate folded normal den-
sity function defined in (3.1) in [21]. Hence, the PDF of the nu-
merator is

(45)

Given a threshold , the probability of detecting an impulse
at the origin is

(46)

which is arrived at by following the sequence of steps from (29)
to (33).
Finally, for comparison, the probability of detecting an im-

pulse at the origin using the scale-normalized smoothed second
derivative operator is

(47)

where

(48)

The probabilities given by (46) and (47) can again be easily
evaluated numerically.

C. Simulations

The detection power and the false alarm rates of the
scale-normalized singularity index and the second derivative
operator were assessed using receiver operating characteristic
(ROC) curves. Our simulations assumed gaussian smoothed
impulses , of three different heights (5,
10, and 20), each submerged in white gaussian noise of four
different variances (5, 10, 50, and 100). The scale of each
impulse was fixed at 1.5. The scale of the gaussian low pass
filter was set to match the impulse scale i.e., , since
we are using the scale-normalized versions of the index and
the second derivative operator. We next describe the threshold
selection mechanism that was used to generate the ROC curves.
For the scale-normalized smoothed singularity index, the

scale-space peak response (at the origin) to a gaussian smoothed
impulse in the absence of noise is scale invariant and is given
by [1]. The threshold was varied
in equal increments (set to ) from 0.05 to ,
where is an integer that was set to 6 to yield a sufficiently
large range of thresholds. Note that the range of thresholds is
different for different values of . The same thresholds were
used for computing both the false alarm and true impulse detec-
tion probabilities of the scale-normalized smoothed singularity
index using (36) and (46), respectively. The false alarm and
true impulse detection probabilities were then subsequently
used to generate the ROC curves.
Similarly, for the scale-normalized smoothed second deriva-

tive operator, the scale-space peak response to a gaussian
smoothed impulse in the absence of noise is given by

[1], which is not scale invariant.
Here again, the threshold was varied in equal increments (set
to ) from 0.05 to , where .
The false alarm and true impulse detection probabilities of the
scale-normalized second derivative operator were computed
for the same thresholds using (41) and (47), respectively, which
were then used to generate the ROC curves.
Fig. 2 plots the ROC curves for the scale-normalized

smoothed singularity index and the second derivative operator
that were obtained using the threshold selection mechanism
described above for gaussian smoothed impulses of heights

, 10, and 20, scale , and each submerged in noise
of variances , 10, 50, and 100. The superior performance
of the singularity index over the second derivative operator is
immediately apparent from Fig. 2. At low noise variances (e.g.,
as depicted in the plot for in Fig. 2), the difference in
ROC curves is larger for smaller values of (e.g., ).
This accords with intuition, since one would expect that as
increases in the presence of noise having low variance, the
detection power of the singularity index and the second-deriva-
tive operator would be similar. On the other hand, as the noise
variance increases, the difference in ROC curves between the
scale-normalized smoothed singularity index and the second
derivative operator increases with (e.g., as depicted in the
plot for in Fig. 2). The ability of both the singularity
index and the second derivative operator to reliably detect small
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Fig. 2. ROC curves plotting the probability of true impulse detection for gaussian smoothed impulses of different heights against the false alarm probability for
the scale-normalized singularity index (blue) and the second derivative operator (red). Top row: (left) and (right). Bottom row: (left)
and (right). The scale of the impulses and the scale of the smoothing gaussian were both fixed at 1.5.

impulses (e.g., ) while at the same time keeping the false
alarm rates low diminishes in the presence of noise having large
variance. Yet, the singularity index outperforms the second
derivative operator even for small impulses submerged in noise
of large variance.
We also considered gaussian smoothed impulses whose

scales were different, but had the same height. Three values
of (1.5, 3, and 4.5) were considered, while and were
fixed at 10 and 100, respectively. The scale of the gaussian
low pass filter was set to match the impulse scale . Fig. 3
plots the ROC curves for the scale-normalized smoothed sin-
gularity index and the second derivative operator using the
same threshold selection mechanism as before for the gaussian
smoothed impulses of different scales. Again, the singularity
index offers superior performance when compared to the
second-derivative operator. What is revealing is that both the
operators offer better detection power at lower false alarm rates
when the scale of the impulse increases. This is due to the
fact that since the scale of the gaussian low pass filter is set to
match the impulse scale , the increase in reduces the effect
of noise and yields better ROC curves. Note that as described
earlier, in the absence of noise, the scale-space peak response
to a gaussian smoothed impulse of scale-normalized singularity
index is scale invariant. However, this does not hold when the
impulse is submerged in noise.
To ascertain the veracity of the mathematical analysis used in

the derivation of the detection power and the false alarm rates

Fig. 3. ROC curves plotting the probability of true impulse detection for
gaussian smoothed impulses of different scales against the false alarm
probability for the scale-normalized singularity index (blue) and the second
derivative operator (red). The plots were generated for ,
and .

of the scale-normalized singularity index, we also plotted the
empirical ROC curves along with the analytic ROC curves for
the scale-normalized singularity index in Fig. 4. The following
procedure was used to generate the empirical ROC curves: we
considered 10000 different AWGN realizations with a notional
origin and computed the index response at the origin. The false
alarm rate was defined as follows: out of 10000 realizations,
how many times did the index response at the origin exceed a
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Fig. 4. Analytic (blue) and empirical (black) ROC curves plotting the probability of true impulse detection for gaussian smoothed impulses of different heights
against the false alarm probability for the scale-normalized singularity index. Top row: (left) and (right). Bottom row: (left) and

(right). The scale of the impulses and the scale of the smoothing gaussian were both fixed at 1.5.

given threshold when applied to the noise only signal. A similar
definition was used for the detection power for the signal+noise
scenario. The empirical ROC curves were generated using the
threshold selection mechanism described above for gaussian
smoothed impulses of heights , 10, and 20, scale
, and each submerged in noise of variances , 10, 50,

and 100. As can be seen in Fig. 4, the empirical ROC curves
match the analytic ROC curves quite closely, thereby validating
the mathematical analysis.

IV. EDGE SUPPRESSION IN THE PRESENCE OF NOISE

The smoothed singularity index is designed to be edge
suppressing. Hence, we consider the problem of finding the
probability of incorrectly detecting a noise corrupted edge at
the origin when the scale-normalized smoothed singularity
index defined in (5) is applied. As in the impulse
detection scenario, let . We model the
edge signal as a Heaviside step of height
smoothed by a gaussian : , where

. The constant is subtracted to
ensure that the edge height is 0 at the origin and symmetric
about it. Then, , , and are given by:

, , and

. At ,

(49)

Again, denote the random variable as the ratio
, where and are statistically indepen-

dent. The PDF of is then

(50)

since is the absolute value of the product of two corre-
lated, zero-mean gaussian random processes. The PDF of the
random variable is

(51)

where

(52)
Then, given a threshold , the probability of detecting an
edge at the origin is

(53)
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Fig. 5. ROC curves plotting the probability of true impulse detection for gaussian smoothed impulses of different heights against the false alarm probability
arising out of edge detection for the scale-normalized singularity index (blue) and the second derivative operator (red). Top row: (left) and (right).
Bottom row: (left) and (right). The scale of the impulses and the scale of the smoothing gaussian were both fixed at 1.5.

Finally, the probability of detecting an edge at the origin by the
scale-normalized second derivative operator is

(54)

which is independent of the edge height and scale . This
follows since the random process is zero-mean
gaussian with variance . In fact, for the second derivative
operator, the probability of detecting an edge is identical to
the probability of finding an impulse (41) in the noise-only
scenario!

A. Simulations

Since both the singularity index and the second derivative
operator are, by design, edge suppressing, we treat the detec-
tion of an edge in the presence of noise as being identical to
the false alarm scenario, i.e, detection of an impulse singularity
when none is present. Hence, we plot ROC curves using the
same threshold selection mechanism described in the previous
section. Here again, we consider gaussian smoothed impulses
of three different heights (5, 10, and 20), each submerged in
white gaussian noise of four different variances (5, 10, 50,
and 100). The scale of each impulse was fixed at 1.5 and the
scale of the gaussian low pass filter was set to match the im-
pulse scale.
Fig. 5 plots the ROC curves for the scale-normalized

smoothed singularity index and the second derivative operator

Fig. 6. Receiver operating characteristic curves for the scale-normalized 1-D
singularity index (blue) and the second derivative operator (red) computed for
an impulse of height and scale submerged in noise of variance

. The scale of the smoothing gaussian was also set to 3. The triangles
denote the operating points on each curve corresponding to the chosen threshold
values.

for gaussian smoothed impulses of heights , 10, and
20, scale , and each submerged in noise of variances

, 10, 50, and 100. Notice in Fig. 5 that as expected,
the ROC curves for the scale-normalized second derivative
operator are identical to the ROC curves plotted in Fig. 2. It is
evident from Fig. 5 that the singularity index clearly outper-
forms the second derivative operator across the four different
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Fig. 7. Peak detection in 1-D mass spectra. Row 1: left—original spectra
(normal case), right—noisy spectra generated using additive zero mean white
gaussian noise of variance 100; Row 2: detected peaks; left—thresholded NMS
scale-normalized singularity index response computed from the noisy spectra;
right—thresholded NMS scale-normalized second derivative operator response
computed from the noisy spectra; Rows 3 and 4: close-up regions showing
detected peaks; left—singularity index, right—second derivative operator.

noise variances in detecting true impulses while maintaining
low false alarm rates arising out of edge detection.

V. 1-D EXAMPLE APPLICATION

We demonstrate the results of the ROC analyses on two ex-
emplar 1-D spectra (Figs. 7 and 8; row 1) from an ovarian cancer
serum data set comprising both cancer and normal cases. These
spectra were generated using low resolution time of flight (TOF)
mass spectrometry from surface-enhanced laser/desorption ion-
ization (SELDI) ProteinChip arrays [3]. The entire dataset can
be downloaded from http://home.ccr.cancer.gov/ncifdapro-
teomics/ppatterns.asp (under Low Resolution SELDI-TOF
Datasets, 2.1). We generated noisy spectra (Figs. 7 and 8;
row 1, right column) by adding independent, zero mean white
gaussian noise of variance 100 to the original spectra. It is im-
portant to note that in addition to mass spectrometry, there are
many biomedical applications in which spectral measurements
are used for disease detection and diagnosis (e.g., polarized
reflectance spectroscopy for oral cancer detection [22] and
Raman spectroscopy for skin cancer detection [23]) and these
spectral measurements are often afflicted with noise that is
correlated, non-white and non-gaussian. Here, we used an
independent, zero mean additive white gaussian noise model to
generate the noisy mass spectra to illustrate the ROC analyses.

Fig. 8. Peak detection in 1-D mass spectra. Row 1: left—original spectra
(ovarian cancer case), right—noisy spectra generated using additive zero mean
white gaussian noise of variance 100; Row 2: detected peaks; left—thresholded
NMS scale-normalized singularity index response computed from the noisy
spectra; right—thresholded NMS scale-normalized second derivative operator
response computed from the noisy spectra; Rows 3 and 4: close-up regions
showing detected peaks; left—singularity index, right—second derivative
operator.

To determine the threshold values, we used the 1-D gaussian
smoothed impulse model of height and scale
submerged in a zero-mean WSS gaussian random noise process
of variance . The scale of the smoothing gaussian
was set equal to . We generated ROC curves for the 1-D
scale normalized singularity index and the second derivative
operators by plotting the probabilities of true impulse detection
against the false alarm probabilities using the threshold selec-
tion mechanism described before.
The two ROC curves are illustrated in Fig. 6. Clearly, the

performance of the scale-normalized singularity index is supe-
rior to the performance of the second derivative operator on
evidence of the ROC curves. On each ROC curve, we con-
sidered an operating point (denoted by the triangles in Fig. 6)
where the probability of true impulse detection was approxi-
mately 0.65. The threshold values for the 1-D singularity index
and the second derivative operator were based on these oper-
ating points and were set to 55.05 and 3.52, respectively.
Figs. 7 and 8 illustrate the results of peak detection obtained

by thresholding the scale-normalized singularity index and the
scale-normalized second derivative operator when applied to
the noisy spectra (row 1, right column). The singularity index
and the second derivative operator were computed over 5 scales,
where the lowest scale of the smoothing gaussian was set to
3 pixels, while each subsequent coarser scale was larger than
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the previous finer scale by a factor of . A simple 1-D non
maxima suppression (NMS) operation was applied to the re-
sponse of both the operators prior to thresholding. In the 1-D
NMS implementation, the response at each point along the in-
dependent variable (here, the mass by charge ratio) was com-
pared with the immediate left and right neighboring points and
was suppressed if the response was not a local-maximum. The
NMS responses were then thresholded to detect the peaks using
threshold values 55.05 and 3.52 for the singularity index and the
second derivative operator, respectively. As evident from rows
2 to 4 in Figs. 7 and 8, the scale-normalized singularity index
detects most of the peaks whose amplitude exceeds 20, while at
the same time results in lower numbers of false positive detec-
tions when compared to the scale-normalized second derivative
operator.

VI. 2-D SINGULARITY INDEX

The singularity index is readily extended to 2-D. The 2-D
counterparts for (2) and (3) are [2]:

(55)

and

(56)
where is a 2-D signal or function, the

2-D Laplacian operator ,

the 2-D gradient operator ,

and is a 2-D unit area isotropic smoothing gaussian

. In particular, if represents
the image brightness function, then the 2-D singularity index
(56) is useful for detecting impulse masses in images.
It is often of interest to detect curvilinear masses in images,

which have a dominant orientation alongwhich the second order
directional derivative attains a local extremum. Hence, as de-
scribed in [1], the index (56) is modified to account for the dom-
inant orientation

(57)

where , , and are the
responses to the zero, first and second order isotropic gaussian
derivative filters along the direction specified by and at
scale . Estimation of (the direction along which the
second order derivative attains a local extremum) is straight-
forward and is achieved by exploiting the steerable property of
isotropic gaussian directional derivatives as described in [24].
The first derivative response in (57) is computed at a scale
, where the constant . The constant serves to atten-

uate the edge side-lobe responses produced by the index without
affecting the peak response to an impulse at the origin. Fol-
lowing the detailed arguments made in [1], the value of is

set to 1.7754. This ensures that the peak edge side-lobe re-
sponse is upper bounded by about 3.7, independent of the edge
magnitude.
The scale-normalized 2-D singularity index is

(58)

where is the scale of the isotropic smoothing gaussian. The
scale-normalized 2-D index (58) can detect curvilinear masses
at multiple scales. This is achieved by varying the scale
of the isotropic smoothing gaussian and computing the max-
imum scale-normalized index response across all scales. Once
the maximum response is computed at every location ,
non-maxima suppression (NMS) is applied along the dominant
orientation . This design is similar to Canny’s for
directional edge detection [5].
We used the results of the 1-D analyses to guide the choice of

threshold values for the 2-D scale-normalized singularity index
and the second derivative operator responses
computed on noisy images. The rationale be-

hind using the 1-D analyses directly in the 2-D scenario is as
follows: model a smoothed 2-D line impulse profile by a 2-D
isotropic gaussian of strength and scale convolved

with the impulse sheet :

. Then, the conclusions regarding the response of the
2-D singularity index (55) to the 2-D line impulse profile are
the same as that of the 1-D singularity index (2) for the 1-D im-
pulse profile. Note that the analysis of the detection power and
the false alarm rates of the 2-D singularity index applied to a
2-D white gaussian noise process is possible, though tedious.
The threshold values for the 2-D singularity index and the

second derivative operator were based on the operating points
on the two ROC curves shown in Fig. 6. Figs. 9 and 10 show ex-
amples of pristine and noisy images (rows 1 and 2, respectively).
The noisy images were generated by contaminating the pristine
images with independent, zero mean additive white gaussian
noise of variance 100. The 2-D scale-normalized singularity
index (58) and the scale-normalized second-derivative operator

responses (with NMS) were computed over
5 scales on the noisy images illustrated in Figs. 9 and 10. It is
worth reiterating here that the scale-normalized second-deriva-
tive operator corresponds exactly to Linde-
berg’s ridge strength measure defined in (46) in [7].
The lowest scale of the isotropic gaussian was set to 3 pixels,
while each subsequent coarser scale was larger than the previous
finer scale by a factor of . The NMS responses were then
thresholded to detect curvilinear masses using threshold values
55.05 and 3.52 for the singularity index and the second deriva-
tive operator, respectively.
The results of the thresholding are shown in rows 3 and 4 for

the singularity index and the second derivative operator, respec-
tively. Also, a close-up view of the results is shown in Fig. 11. It
is evident from row 3 in Figs. 9 and 10, and from row 2 in Fig. 11
that the singularity index detects most of the salient curvilinear
structures with good contour continuity while at the same time
suppressing edges. On the other hand, the second derivative op-
erator results in a lot more clutter and in the detection of edges
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Fig. 9. Row 1: Original images (column 1: The Ganges river delta, NASA,
courtesy of nasaimages.org, column 2: An aerial image (courtesy University
of Southern California), column 3: An image of pine tree trunks), row 2: Cor-
responding noisy images (additive zero mean white gaussian noise of variance
100), row 3: Curvilinear structures detected on thresholding the NMS scale-nor-
malized singularity index response, and row 4: Curvilinear structures detected
on thresholding the NMS scale-normalized second derivative operator response.

Fig. 10. Row 1: Original images (column 1: A Mammogram courtesy Emory
University, Atlanta, GA, column 2: A foliage scene captured by the authors),
row 2: Corresponding noisy images (additive zero mean white gaussian noise of
variance 100), row 3: Curvilinear structures detected on thresholding the NMS
scale-normalized singularity index response, and row 4: Curvilinear structures
detected on thresholding the NMS scale-normalized second derivative operator
response.

as well. The detection of edges by the second derivative oper-
ator should not be surprising, since as shown in our analyses,
the probability of falsely detecting an impulse in the noise only
scenario is exactly the same as the probability of detecting an
edge suppressed in noise.

Fig. 11. A close-up view of the results. Row 1: a region of interest (ROI) from
the noisy images illustrated in row 2 in Figs. 9 and 10 (column 1: from Ganges
river delta, column 2: from the aerial image, column 3: from the image of the
pine tree trunks, column 4: from the mammogram, and column 5: from the fo-
liage scene) row 2: Corresponding ROI from the binary scale-normalized singu-
larity index response, and row 3: Corresponding ROI from the binary scale-nor-
malized second derivative operator response.

VII. 2-D EXAMPLE APPLICATION

To illustrate a practical application of the new singularity
index, we consider the problem of automated segmentation
of vessels in 2-D color images of the retina. Segmentation of
retinal vessels is an important pre-processing step in the auto-
mated screening of diabetic retinopathy. We used the publicly
available DRIVE database of retina images [25]. The images in
the database were acquired using a Canon CR5 non-mydriatic
3CCD camera with a 45 degree field of view (FOV). Each
image in the database has an associated ground truth depicting
the true vessels in the image. The details of the image acquisi-
tion and ground truth generation can be found in [25].
We compared the performance of the 2-D scale-normalized

singularity index with the scale-normalized second derivative
operator for extracting vessels in the retina images. As described
in [25], the processing was carried out on the green channel of
the RGB images at the following scales: 0.5, 1, 2, and 4 pixels.
Prior to computing the index and the second derivative response,
the images were locally normalized to 0 mean and unit variance
using a gaussian de-biasing filter of scale pixels. This
pre-processing is exactly as described in [25]. There were a total
of 20 test images in the DRIVE database and the performance of
both of the operators was evaluated using ROC analysis, which
is a standard evaluation methodology for evaluating detection
performance on medical imaging data [25].
Fig. 12 illustrates the ROC curves of the vessel detection per-

formance of both the scale-normalized singularity index and the
second derivative operators. The area under the curve (AUC)
values were 0.8176 and 0.7494 for the scaled-normalized sin-
gularity index and the second derivative operator, respectively.
The scale-normalized singularity index does a better job of auto-
matically segmenting vessels as compared to the scale-normal-
ized second derivative operator. Note that this experiment was
completely unsupervised and no training data was used to se-
lect any parameters for the two operators. With training and the
use of a classifier to classify pixels as vessel or non-vessel, one
could expect even better performance using the new singularity
index. Fig. 13 illustrates an example retina image, ground truth
depicting the vessels, and vessels detected by the scale-normal-
ized singularity index and the second derivative operator. The
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Fig. 12. ROC curves illustrating the vessel detection performance of the scale-
normalized singularity index and the second derivative operator on the DRIVE
retina image database.

Fig. 13. Vessel detection on an example retina image. Top row: left: an example
retina image from theDRIVEDatabase; right: ground truth vessel segmentation.
Bottom row: Detected vessels. Left: scale-normalized singularity index; right:
scale-normalized second derivative.

binary results were obtained by thresholding the response of the
two operators at a sensitivity of 50%. It is evident from Fig. 13
that the scale-normalized singularity index produces a better
segmentation of the vessels than the second derivative operator
(fewer false positives at a given sensitivity).

VIII. CONCLUSION

This paper develops detailed theoretical analyses of the detec-
tion power and false alarm probabilities of a new 1-D singularity
index that was recently designed for impulse detection in signals
of arbitrary dimensionality [1], [2]. By design, the singularity
index amplifies response to impulses, while at the same time de-
livering powerful attenuation to edges. Our theoretical analyses

and subsequent simulations involving ROC curves and experi-
ments with real 1-D signals and images corroborate this claim.
By comparison, the simple second derivative operator, which is
a nominal impulse detector fails in reliably detecting impulses
and suppressing edges in a noisy environment. The index is nat-
urally scalable and is computationally efficient, since it exploits
the steerable property of isotropic gaussian derivatives.
Two interesting directions that we plan to pursue as part of

future work include generalization of the 2-D singularity index
by defining the -order index [1]

(59)

Clearly (3) is a special case of (59) when . Further,
yields an edge detector. We plan to study the -order index
(59) in detail. Of particular interest is to analyze what types of
higher order singularities other than impulses and edges can be
detected within the framework of the -order index.
Our analyses has been based on the assumption that the noise

is independent and white, although by gaussian low pass fil-
tering, the noise spectrum is modified and is no longer white.
Going forward, we plan to study the detection of impulses in im-
ages corrupted by speckle noise. Analysis with speckle is chal-
lenging due to the high degree of correlation and signal depen-
dence that typically characterizes speckle. Yet, this is important
since there are many imaging applications based on coherent
processing that generate images afflicted with speckle, which
impacts the ability of a computer vision system to detect fea-
tures of interest such as ridges and edges. Examples of such
imaging applications include synthetic aperture radar [26] and
optical coherence tomography [27].
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