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Abstract— We address the distributed estimation of an un-
known scalar parameter in Wireless Sensor Networks (WSNs).
Sensor nodes transmit their noisy observations over multiple
access channel to a Fusion Center (FC) that reconstructs
the source parameter. The received signal is corrupted by
noise and channel fading, so that the FC objective is to
minimize the Mean-Square Error (MSE) of the estimate. In
this paper, we assume sensor node observations to be correlated
with the source signal and correlated with each other as
well. The correlation coefficient between two observationsis
exponentially decaying with the distance separation. The effect
of the distance-based correlation on the estimation quality is
demonstrated and compared with the case of unity correlated
observations. Moreover, a closed-form expression for the outage
probability is derived and its dependency on the correlation
coefficients is investigated. Numerical simulations are provided
to verify our analytic results.

I. I NTRODUCTION

Recent advances of micro-sensor fabrication technology
allow for producing cheap and small sensor nodes with
wireless communication capabilities. Consequently, Wireless
Sensor Networks (WSNs) become an economically sound
solution to wide range of applications such as environmental
and wildlife habitat monitoring, target tracking for defense
purposes, and health care [1]. Typical WSN consists of large
number of sensor nodes deployed in an area of interest to col-
lect specific information about the surrounding environment.
The need for large number of sensor nodes in WSNs while
being cost-effective constraints the industry standards to
produce battery-powered sensor nodes with simple hardware.
As a result of the limited energy and processing capabilities
of sensor nodes, the collected information has to be sent to
a Fusion Center (FC) for centralized processing.

One important application of WSNs is the distributed
estimation of scalar parameters (see, e.g., [2], and references
therein). In such application, sensor nodes transmit their
observations over a Multiple Access Channel (MAC) to the
FC. The received signal is distorted by the channel fading
and the additive noise. The FC is required to reconstruct the
source parameter with minimum Mean-Square Error (MSE).
Depending on the available information about the source
statistics, different estimators can be used to achieve theMSE
criterion. The performance of the Best Linear Unbiased Esti-
mation (BLUE) [3], Minimum Mean Squared Error (MMSE)
estimator [4], [5], and Maximum Likelihood Estimator
(MLE) [6], [7] are studied in literature. Both orthogonal

MAC [8] and coherent MAC [9], [10] are considered in the
distributed estimation problem. Assuming Gaussian source
signal and noise, amplify-and-forward schemes significantly
outperform the traditional source-channel coding for both
multiple access channels [11]. Optimal power allocation
for sensor nodes under different constraints is addressed in
[3], [4], [8]. Asymptotic behavior of the distortion is also
studied in [12]. The MSE performance for the coherent MAC
asymptotically approaches to zero as the number of sensors
increases to infinity. However, this is not the case for the
orthogonal MAC where the MSE reaches a finite non-zero
value as the number of sensor nodes increases [9]. Diversity
order of estimation distortion is introduced in [3] and shown
to be given by the number of sensors.

In most WSN applications, the source parameter is a
physical quantity like temperature, pressure, humidity, sound,
... etc. Therefore, the sensor node observations are correlated
where the correlation coefficient is exponentially decaying
with distance. In literature, simple signal models were usu-
ally assumed. For example, unity correlated observations
are assumed in [3], where sensor nodes measure a noisy
version of the source signal. The correlation between the
observations and the source signal (denoted hereafter as the
source-node correlation) is considered in [3]. However, in
this model the correlation between observations (denoted
hereafter as the inter-node correlation) is determined by the
source-node correlation as we will show later. Consideringa
correlation model with inter-node correlation that determined
by the distance between sensor nodes is a more realistic
assumption [10], [13].

In this paper, we study the distributed estimation of a
scalar parameter where sensor nodes transmit their obser-
vations to the FC over a coherent MAC. The observations
are spatially correlated and corrupted by noise. Moreover,
the communication channel is subject to fading and Additive
White Gaussian Noise (AWGN). The FC uses the received
signal to estimate the source parameter using LMMSE esti-
mator. The distance-based correlation model of [14] is used
in this paper to characterize the source-node correlation and
the inter-node correlation. The effect of the distance-based
correlation on the estimation performance is demonstrated
and compared with the case of unity correlated observations.
The outage probability is adopted as the performance mea-
sure. A new closed-form expression for the outage probabil-
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ity in terms of quadratic forms is introduced. It is shown that
less correlated observations degrade the performance.

Hereafter, small letters, bold small letters, and bold capital
letters will designate scalars, vectors, and matrices, respec-
tively. If A is a matrix, thenAH , AT , and eig(A) denote
the hermitian, the transpose, and the eigenvalues ofA,
respectively. We define diag(a) to be a diagonal matrix
formed from vectora. The function⌊·⌋ returns the same
value for the positive values and zero for the negative values
and the function max(·) returns the maximum value.

II. SYSTEM MODEL

Consider a WSN consisting ofN sensor nodes and a FC
as shown in Fig. 1. Sensor nodes are required to observe a
scalar parameter modeled by a zero-mean complex Gaussian
random variables ∼ CN (0, σ2

s). The signals measured by
individual sensor nodes can be described as

xi = si + ni, i = 1, . . . , N, (1)

where si is the ith sensor node observation andni ∼
CN (0, σ2

n) is the observation noise. The signalss and
si, i = 1, . . . , N , are modeled as zero-mean joint Gaussian
random variables, i.e.E{si} = 0, i = 1, . . . , N , E{ssi} =
ρiσ

2
s , i = 1, . . . , N , whereρi is the source-node correlation

coefficient betweens and si. Moreover, sensor node obser-
vations si, i = 1, . . . , N , are correlated to each other, i.e.
E{sisj} = ρijσ

2
s , i, j = 1, . . . , N, i 6= j, whereρij is the

inter-node correlation coefficient betweensi andsj .
The correlation coefficients are non-negative and decrease

monotonically with distance. Using the power exponential
model presented in [14],ρi andρij are functions ofdi and
dij , respectively, according to the relation

ρ(d) = e
−
(

d

θ1

)

θ2

, θ1 > 0, 0 < θ2 ≤ 2, d ∈ {di, dij}, (2)

wheredi is the distance between the event source and the
ith node,dij is distance between sensori and j, ρii = 1,
andθ1 andθ2 are the model parameters, whereθ1 normalizes
the distance andθ2 controls the correlation decay rate. Let us
define the matrixC as the cross-node correlation matrix with
ρij is the element at theith row andjth column. Assuming
random sensor node locations,C will be a full-rank matrix,
and therefore this model will be referred to asfull-rank cor-
relation model. The aforementioned model for the correlation
coefficientsρi and ρij is more generalized than the one
used in [3]–[5] where the signal is given asxi(t) = s(t) +
vi(t), i = 1, . . . , N , and thussi(t) = s(t) in this case. This
results inunity correlated source and observations, i.e.ρi = 1
and ρij = 1, i, j = 1, . . . , N . Also, the signal model used
in [9], [15] is xi(t) = his(t) + vi(t), i = 1, . . . , N, which
corresponds tosi(t) = his(t) in Eq. (1) and results in the
special caseρij = ρiρj whereE {s(t)si(t)} = σ2

shi = σ2
sρi

andE {si(t)sj(t)} = σ2
shihj = σ2

sρiρj . Let us define the
vectorr = [ρ1 ρ2 . . . ρN ]T , then the cross-node correlation
matrix for the later case is given byC = rrT which is a
rank one matrix and thus will be referred to asrank-one
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Fig. 1. System model.

correlation model. In the rest of the paper, we will compare
between the three correlation models.

For the amplify-and-forward scheme, the transmitted sig-
nal from the ith sensor node is given byyi = aixi, i =
1, . . . , N , where ai is the amplification factor. Here, the
transmit power for each node isE{|yi|2} = a2i (σ

2
s + σ2

n).
Assume that the Channel State Information (CSI) is available
at the FC. Then, the coherent combining of the transmitted
signals received at the FC is

z =

N
∑

i=1

aigixi + ν, (3)

whereν is the communication noiseν ∼ CN (0, σ2
ν) andgi

is the Rayleigh fading for theith nodegi ∼ CN (0, σ2
g).

Given the signal and channel statistics, the LMMSE esti-
mateŝ can be expressed as

ŝ=
E {zs}

E {z2}
z=

zσ2
s

N
∑

i=1

aigiρi

σ2
s

N
∑

i=1

N
∑

j=1

aiajgigjρij +
N
∑

i=1

σ2
na

2
i g

2
i + σ2

ν

(4)

and the corresponding distortion becomes

D=E
{

(s− ŝ)2
}

= σ2
s −

(E {zs})2

E {z2}
= σ2

s

−

σ4
s

(

N
∑

i=1

aigiρi

)2

σ2
s

N
∑

i=1

N
∑

j=1

aiajgigjρij + σ2
n

N
∑

i=1

a2i g
2
i + σ2

ν

. (5)

The normalized distortioñD = D
σ2
s

is then given by Eq. (6)
(shown at the bottom of the next page). This expression is
the generalization of the equivalent one given in [5, Eq. 2]
for the unity correlated source and observations. The first
term in the numerator and the first term of the denominator
in Eq. (6) are the result of the inter-node correlation.

III. E FFECT OF THE CORRELATION ON THE DISTORTION

In this section, the special cases of unity correlation
and rank-one model are compared to full-rank model. For
simplicity, the channel fading is neglected, i.e.gi = 1, i =
1, . . . , N , and Equal Power Allocation (EPA) is assumed,



i.e. ai =
√

Ptot/N(σ2
s + σ2

n) = a, where Ptot is the
total transmit power for all sensor nodes. Accordingly, the
normalized distortion expression for the full-rank model
reduces to

D̃FR
0 =

σ2
sa

2

(

N
∑

i=1

N
∑

j=1

ρij −

(

N
∑

i=1

ρi

)2
)

+Nσ2
na

2 + σ2
ν

σ2
sa

2

(

N
∑

i=1

N
∑

j=1

ρij

)

+Nσ2
na

2 + σ2
ν

. (8)

Considering the signal model in [9, Eq. 10], which results
in the special caseρij = ρiρj (rank-one model), the
corresponding normalized distortion is given by

D̃RO
0 =

Ptotσ
2
n

(σ2
s
+σ2

n
) + σ2

ν

Ptotσ2
s

N(σ2
s
+σ2

n
)

(

N
∑

i=1

ρi

)2

+
Ptotσ2

n

(σ2
s
+σ2

n
) + σ2

ν

. (9)

Finally, for unity correlated source and observations, i.e.
ρi = 1 and ρij = 1, ∀i, j, the normalized distortion
expression reduces to

D̃U
0 =

Ptotσ
2
n

(σ2
s
+σ2

n
) + σ2

ν

Ptot

(σ2
s
+σ2

n
) (Nσ2

s + σ2
n) + σ2

ν

. (10)

which is equivalent to the expression in [5, Eq. 2].
Comparing the aforementioned expressions, it is apparent

that D̃RO
0 and D̃U

0 → 0 as the number of sensor nodes
goes to infinity. However,̃DFR

0 does not vanish under the
same condition. The effect of correlation on the distortion
when the number of sensor nodes increases is depicted in
Fig. 2. Eqs. (8), (9), and (10) are averaged over 1000 random
realization of sensor node locations and plotted for increasing
N . Here, the observation Signal-to-Noise Ratio (SNR) is
defined asσ2

s/σ
2
n = 20 dB and the communication SNR

as (σ2
s + σ2

n)/σ
2
ν = 20 dB, whereσ2

s = 1. The correlation
model hasθ1 = 250 andθ2 = 1. The total transmit power
of all sensor nodes isPtot = 10 dB (normalized toσ2

s ). As
expected, the distortion for the unity correlated case tends
to zero asN increases. The same behavior is noticed for
the rank-one model, however with slightly higher distortion
in this case. Conversely, the distortion for full-rank model
exhibit a floor behavior at a non-zero distortion (≈ 0.182).
Therefore, correlation between observations should be taken
into consideration when designing distributed estimation
schemes because weak correlation degrades its performance.
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Fig. 2. The behavior of the normalized distortion as the number of sensor
nodesN increases for the three correlation models (θ1 = 250, θ2 = 1,
σ2
s/σ

2
n = 20 dB,σ2

x/σ
2
ν = 20 dB,σ2

s = 1, andPtot = 10 dB).

IV. OUTAGE PROBABILITY ANALYSIS

The normalized distortion in Eq. (6) depends on the chan-
nel fading, correlation coefficients, channel and measurement
noise power, and amplification factors. Given the distance-
based correlation model, the correlation coefficients willbe
invariable for specific network geometry. Therefore, with
fixed power allocation and noise power, the channel fading
is the only determining factor for the fluctuation in the
estimation distortion. In many applications, the interestis to
characterize the maximum distortion rather than the average
distortion. In such situations, the outage probability is used as
a performance measure where the outage refers to the event
at which a desired performance level cannot be satisfied.
Here, the outage probability is defined as the probability that
the normalized distortion exceeds a certain valueδ̃,

Pout(δ̃) = Pr(D̃ ≥ δ̃). (11)

To find a closed-form expression for the outage prob-
ability, we first express the distortion in vector form.
Let us define the vectorsg = [g1 g2 . . . gN ]T , a =
[a1 a2 . . . aN ]

T , and r and C as defined previously. It

follows that
N
∑

i=1

aigiρi = zHg, wherez = Wr andW =

diag(a). Similarly,

(

N
∑

i=1

aigiρi

)2

=
(

zHg
)2

= gHFg =

||g||2
F

, where F = zzH . Also,
N
∑

i=1

N
∑

j=1

aiajgigjρij =

D̃ =

σ2
s





N
∑

i=1

N
∑

j=1

aiajgigjρij −

(

N
∑

i=1

aigiρi

)

2


+ σ2
n

N
∑

i=1

a2i g
2

i + σ2
ν

σ2
s

N
∑

i=1

N
∑

j=1

aiajgigjρij + σ2
n

N
∑

i=1

a2i g
2

i + σ2
ν

. (6)



gHBg = ||g||2
B

, whereB = WCWT and
N
∑

i=1

a2i g
2
i =

gHW2g = ||g||2
W2 . Then the normalized distortion can be

expressed in terms of indefinite quadratic forms as

D̃ =
||g||2

B1
+ σ2

ν

||g||2
B2

+ σ2
ν

, (12)

whereB1 = σ2
s (B− F)+σ2

nW
2 andB2 = σ2

sB+σ2
nW

2.
Accordingly, the outage probability takes the form

Pout(δ̃)=Pr

(

||g||2
B1

+ σ2
ν

||g||2
B2

+ σ2
ν

≥ δ̃

)

=Pr
(

δ̃ ||g||2B2
− ||g||2B1

≤ σ2
ν − σ2

ν δ̃
)

=Pr
(

||g||
E(δ̃) ≤

(

1− δ̃
)

σ2
ν

)

, (13)

whereE(δ̃) = δ̃ B2 − B1. Using the results of [16], the
outage probabilityPout(δ̃) can be expressed as

Pout(δ̃)=u
((

1− δ̃
)

σ2
ν

)

+

N
∑

l=1

(−λl)
N

∏

i,l 6=i

(λi − λl)

1

λl

×e
−

(1−δ̃)σ2
ν

λl u





(

1− δ̃
)

σ2
ν

λl



 , (14)

whereλl = λl(δ̃), i = 1, . . . , N , are the eigenvalues of the
matrix E(δ̃) and u(·) is the Heaviside unit-step function.
This expression can be simplified ifE is substituted by its
component matrices,

λl(δ̃)=eig
(

E(δ̃)
)

= eig
(

δ̃ B2 −B1

)

=eig
(

σ2
sF− σ2

s (1− δ̃)B− σ2
n(1− δ̃)W2

)

≈σ2
seig

(

F− (1 − δ̃)B
)

, l = 1, . . . , N, (15)

where the last approximation results from considering that
σ2
n ≪ σ2

s . Recall that the matrixF is the outer product of
the vectorz by itself, hence it is of rank one and positive
semidefinite. Moreover,B is also positive semidefinite ma-
trix. Therefore,E has only one non-negative eigenvalue and
all other eigenvalues can simply canceled off in (14) because
of the unit-step function. Finally, the expression of outage
probability simplifies to

Pout(δ̃) = 1−
λN−1
+ e

−
(1−δ̃)σ2

ν

λ+

∏

i,l 6=i

(λ+ − λi)
, 0 ≤ δ̃ ≤ 1, (16)

whereλ+ = λ+(δ̃) is the only non-negative eigenvalue of
E(δ̃). Using Weyls inequality [17], this eigenvalue can be
lower bounded by

λ+(δ̃) ≈ σ2
s max

(

eig
(

F−
(

1− δ̃
)

B
))

≥
⌊

σ2
s

(

λF

max−
(

1− δ̃
)

λB

max

)⌋

, (17)

where λF

max and λB

max are the largest eigenvalues of the
matrices F and B, respectively. The outage probability

depends on the eigenvalues ofE(δ̃) (exact expression) or
the eigenvalues ofF andB (lower bound).

Assume equal power allocation, one has

λ+(δ̃)≈
Ptotσ

2
s

N (σ2
s + σ2

n)
max

(

eig
(

rrH −
(

1− δ̃
)

C
))

=
Ptotσ

2
s

(σ2
s + σ2

n)
λ̃+(δ̃) (18)

where λ̃+(δ̃) = max
(

eig
(

rrH −
(

1− δ̃
)

C
))

/N is the
factor reflecting the effect of the correlation on the largest
eigenvalue and it depends on the geometry of the WSN.
Considering that the termPtotσ

2
s/
(

σ2
s + σ2

v

)

is constant for
specific network setting, the factorλ̃+(δ̃) will be referred to
as the normalized eigenvalue. The outage probability in this
case is expressed as

P out(δ̃) = 1−
λ̃N−1
+

∏

i,l 6=i

(λ̃+ − λ̃i)

×exp







−

(

σ2
s + σ2

n

)

(

1− δ̃
)

σ2
ν

Ptotσ2
s λ̃+







, 0 ≤ δ̃ ≤ 1. (19)

Clearly, the outage probability is a monotonically decreasing
function of λ̃+(δ̃) and thus related to the signal and obser-
vations correlation.

V. NUMERICAL RESULTS

In this section, the analytic results are confirmed by
numerical simulations. Consider a WSN that consists ofN =
10 sensor nodes randomly located in a square area with side
length of20 m. It is required to estimate a source parameter
located 30 m away from the center of the sensor nodes.
The settings of Fig. 2 are assumed for all the following
simulations unless otherwise stated. Moreover, the channel
fading has varianceσ2

g = 1. All simulation results are
averaged over 1000 independent runs.

Fig. 3 shows the outage probability vs. the normalized
distortion. The analytic expressions are plotted with solid,
dashed, and dotted lines and the simulations are plotted with
circle, diamond, and plus marks. The closed-form expression
is shown to be in perfect match with the simulation results
and the accuracy of the closed-form approximation of the
outage probability is verified. The correlation clearly affects
the outage performance where more outage occurs for both
distance-based correlation models. Note that for the full-rank
model,Pout = 1 for D̃ with values less than≈ 0.182 (i.e.
the distortion is always larger than this value) which agrees
with the results of Fig. 2.

Fig. 4 compares between the exact expression for the
largest eigenvalue (normalized byPtotσ

2
s

σ2
s
+σ2

n

) and its approxi-
mation in Eq. (17) for different source locations. The source
distance to the center of the square area is set to 50 m, 30 m,
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and 0 m. Note thatλ+ is upper bounded byPtotσ
2
s

σ2
s
+σ2

n

since

λ+(δ̃)≈
Ptotσ

2
s

N (σ2
s + σ2

n)

×
(

max
(

eig
(

rrH
))

−
(

1−δ̃
)

max(eig(C))
)

≤
Ptotσ

2
s

N (σ2
s + σ2

n)

N
∑

i=1

ρ2i ≤
Ptotσ

2
s

σ2
s + σ2

n

. (20)

Recall that the outage probability is a monotonically
decreasing function ofλ+(δ̃) and situations with larger
eigenvalue corresponds to a better outage performance (i.e.
lower outage probability). From the figure, we conclude that
observing farther source reduces the largest eigenvalue and
thus increases the outage probability.
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Fig. 4. Largest eigenvalue and its lower bound vs. normalized distortion
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x/σ
2
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s = 1, andPtot =
10 dB).

VI. CONCLUSIONS

In this paper, distributed estimation of a scalar param-
eter in WSNs is considered. Correlated source signal and
observations are assumed and the effect of correlation is
investigated. A closed-form expression for the outage prob-
ability is derived to link between the correlation and the
outage performance. It is shown that higher distortion levels
occurs with higher probability when assuming correlated
observations as compared to unity correlated ones. Moreover,
the distortion does not vanish when increasing the number of
sensor nodes indefinitely for the distance-based correlation.
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