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Sample Distortion for Compressed Imaging
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Abstract—We propose the notion of a sample distortion (SD)
function for independent and identically distributed (i.i .d) com-
pressive distributions to fundamentally quantify the achievable
reconstruction performance of compressed sensing for certain
encoder-decoder pairs at a given sampling ratio. Two lower
bounds on the achievable performance and the intrinsic convexity
property is derived. A zeroing procedure is then introducedto
improve non convex SD functions. The SD framework is then
applied to analyse compressed imaging with a multi-resolution
statistical image model using both the generalized Gaussian
distribution and the two-state Gaussian mixture distribution. We
subsequently focus on the Gaussian encoder-Bayesian optimal
approximate message passing (AMP) decoder pair, whose theoret-
ical SD function is provided by the rigorous analysis of the AMP
algorithm. Given the image statistics, analytic bandwise sample
allocation for bandwise independent model is derived as a reverse
water-filling scheme. Som and Schniter’s turbo message passing
approach is further deployed to integrate the bandwise sampling
with the exploitation of the hidden Markov tree structure of
wavelet coefficients. Natural image simulations confirm that with
oracle image statistics, the SD function associated with the
optimized sample allocation can accurately predict the possible
compressed sensing gains. Finally, a general sample allocation
profile based on average image statistics not only illustrates
preferable performance but also makes the scheme practical.

Index Terms—Sample distortion function, bandwise sampling,
sample allocation, turbo decoding

I. I NTRODUCTION

T RADITIONALLY in compressed sensing (CS) a lot of
work has been done in improving reconstruction algo-

rithms assuming the optimality of the homogeneous random
sensing matrix. There has recently been more attention on
tailoring the sensing matrix in accordance with the signal of
interest. We focus on designing a block diagonal measurement
matrix for wavelet representation of natural images which falls
under the general scope of bandwise sampling.

Donoho pioneered the use of bandwise sampling for com-
pressed sensing in his original paper [2]. Tsaig further ex-
panded the idea through the concept of two-gender CS, which
randomly samples the fine-scale wavelet coefficients while
fully samples in the coarse-scale domain [3]. In [4], a specific
sampling pattern is provided for the general multi-scale image
model. With the key component of weighing the wavelet band
importance, it achieves considerable improvement over theho-
mogeneous matrix. However, the weight for each wavelet scale
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is assigned empirically. Despite all the attempts to improve the
measurement matrix, the prior works are algorithmic and lack
a solid theoretical grounding.

Analytically optimizing the bandwise sample allocation of
the sensing matrix was originally considered in [5] and [6].
The authors seek to minimize the reconstruction uncertainty
in terms of the entropy of the CS approximation. However,
directly quantifying the entropy is very difficult, thus theau-
thors resorted to an ad hoc solution, which only approximately
optimizes the InfoMax criterion [7].

In fact, the notion of optimized bandwise sampling dates
back much further and was instrumental in Kashin’s proof
of the optimal rates of approximation (n-widths) for certain
classes of smooth function [8], which was a key inspiration for
the theory of compressed sensing [2]. Specifically, bandwise
sampling forms the basis of Maiorov’s discretization theorem
which relates function n-widths to the n-widths of a sequence
of finite dimensionalℓp balls [9].

In other recent work, the block diagonal spatially-coupled
sensing matrix was used to reach the fundamental under-
sampling limit of compressed sensing with almost perfect
reconstruction [10], [11]. Unfortunately, to achieve the ground-
breaking improvement, a good level of compressibility thatwe
do not normally observe in natural images is required, which
makes it impractical for compressed sensing of real images.

Main Contributions

In this work, we seek to better understand the nature of
good sample allocation strategies for multi-resolution images.
To this end, we begin by setting up the sample distortion (SD)
framework for a stochastic CS model. The SD function is
proposed with the purpose of assessing the performance of dif-
ferent encoding and decoding methods quantitatively in terms
of the expected mean squared error (MSE) distortion. Then
an entropy based bound on the achievable MSE performance
for any linear encoder-CS decoder pair is derived following
the classic rate distortion theory. A tighter distributionspecific
model based bound is further derived by leveraging the entropy
based bound of the Gaussian source. We then prove that the
SD function is convex in nature. It comes with a key insight:
any scheme whose SD function is concave over the sampling
ratio interval[0, δc] can be improved for anyδ in that interval,
by sensing a portion of the source at the rateδc and making no
attempt to sense the reminder. The zeroing procedure which
can convexify the SD function comes naturally as a result.

As a broad definition, the SD function is applicable to any
encoder-decoder pair, i.e. the Gaussian homogeneous encoder
with the linearℓ2 decoder or theℓ1 minimum CS decoder.
In this work, we mainly investigate the SD function for
the Bayesian optimal approximate message passing (BAMP)
decoder [12], [13]. In the context of the replica method, the
BAMP decoder can be tuned for optimal performance and
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admits a rigorous analysis in the large system-limit with a large
set of sub-Gaussian encoders, which naturally provides the
theoretical basis for its SD function [14], [15], [16]. Two com-
pressible distributions: the generalized Gaussian distribution
and the two-state Gaussian mixture distribution are selected
as the representative examples, because they are commonly
used models in the compressed imaging literature [17], [18],
[19], [20].

The second part of the paper makes a contribution to the
understanding of analytically optimizing the per-band sample
allocation for a bandwise independent image model. For this
we use an orthogonal wavelet model to make sure our analysis
tractable. We have proved that the optimal sample arrangement
with the minimum MSE is achieved by performing a reverse
water-filling strategy, given the per-band statistics and by
virtue of the convexified SD function. A similar idea was used
in [5] to design the sensing matrix that is most informative
about the source. A water-filling strategy is also used in [21] in
the context of adaptive sensing. The reconstruction quality can
be quantitatively predicted and evaluated by the SD function
for the multi-resolution image model. Given the oracle image
statistics, our SD function based sample allocation is the
best we can achieve in terms of minimizing the MSE. In
practice, where the image information is not always available,
the performance depends on the quality of the image statistic
estimation.

Finally wavelet dependencies are incorporated with the
bandwise sampling by modelling the wavelet coefficients
with the hidden Markov tree (HMT) structure [17]. Several
works have exploited the local dependencies of the wavelet
coefficients in the wavelet based compressed sensing literature,
such as [22], [23] and [24]. In this paper we leverage Som
and Schniter’s state-of-the-art turbo message passing approach
to alternate between the CS decoding and the tree structure
decoding [25]. Instead of using a uniform distribution of
samples across wavelet bands, we choose the optimized block
diagonal sensing matrix to sample independently in the CS
decoding procedure. We see that even with the sub-optimal
sample allocation from the bandwise independent model, the
exploitation of the wavelet tree structure enables the accurate
message from the coarse scale bands propagates to the fine
scale bands and eventually benefit the reconstruction. Attempts
are made to find better sample allocation for the tree structure
image model. Empirical results are obtained for a specific im-
age example. However, finding the truly best sample allocation
for the turbo method is beyond the scope of this paper.

The remainder of the paper is organized as follows. We set
up the sample distortion framework in Section II, In Section
III optimizing sample allocation for multi-scale wavelet image
model and incorporating with tree structure is discussed.
Simulation results are given in Section IV and Section V
concludes.

II. SAMPLE DISTORTION FRAMEWORK

A. SD Function Definition

Suppose the signal of interestx ∈ R
n is a random vector

(source) with i.i.d components drawn according to the prior
distributionp(x). DenoteΦ ∈ R

m×n, m < n as the sensing
matrix or the encoder, andy = Φx as the underdetermined
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Fig. 1. SD functions for GMD datap(x) = 0.38 N (0, 1.198) +
0.62 N (0, 0.004) and lower bounds. The critical sampling ratio to convexify
this SD function isδc = 0.61.

linear combination of the source. Letδ = m/n be the
sampling ratio. The goal of statistical compressed sensing
is to reconstructx using some Lipschitz regular mapping
∆ : Rm → R

n based on the knowledge ofy, Φ andp(x). In
our work, we are interested in the reconstruction quality for
certain encoder-decoder pairs(Φ,∆) at an sampling ratioδ,
which is evaluated by the expected error distortion between
the original signalx and the estimation∆(Φx):

D{Φ,∆}(δ) =
1

n
E||x−∆(Φδx)||22 (1)

Along the lines of the classical rate-distortion function in
the communication field [26], we define a sample distortion
function for the compressed sensing setting.

Definition 1: The Sample Distortion (SD) function is de-
fined as the infimum of sampling ratios for which there is an
encoder-decoder pair,(Φ,∆), that can achieve an expected
distortionD.

D(δ) = inf
Φ,∆,n

D{Φ,∆}(δ) (2)

Through a slight abuse of terminology, we will also use the
term SD function to refer to the minimum distortion level a
specific encoder-decoder pair can achieve at a fixed sampling
ratio for a given compressive source. In this paper we will
concentrate on the Gaussian encoder-BAMP decoder pair.

B. SD Function for BAMP

Recent work by Donoho, Maleki and Montannari has shown
that the AMP algorithm can achieve the same sparsity un-
dersampling trade-off as the correspondingℓ1 convex opti-
mization procedure, but at less computational cost [12]. When
the signal prior,p(x), is known, the general AMP algorithm
can be tuned optimally by replacing the soft thresholding
step with an optimal scalar MMSE estimator to improve the
recovery algorithm [13], [27]. Moreover, the asymptotic MSE
behaviour of BAMP can be precisely characterized by the state
evolution (SE) formalism [15], known as the cavity method in
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Fig. 2. SD functions for GGD dataα = 0.4, σ = 1 and lower bounds. The
critical sampling ratio to convexify this SD function isδc = 0.15.

the context of statistical physics [11] asn→ ∞, which allows
us to make theoretical prediction about the SD performance
of the Gaussian encoder-BAMP decoder. On the large-system
limit assumption, the distortion iteration can be derived from
the SE function [27], [11]1

Dk+1 = E{[F (x̃+

√

Dk

δ
z;
Dk

δ
)− x̃]2} (3)

where x̃ follows the choice of the compressive distribution,
z ∼ N (0, 1) is independent of̃x, andD0 = E(x̃2). The func-
tion F (; ) is the (non-linear) scalar MMSE optimal estimator
for x̃ given x̃+z. The expectation in (3) is taken with respect
to x̃ andz and is in general calculated numerically. The SD
function for BAMP decoderDBAMP(δ) is then given by the
fixed point2 of (3).

We will consider two specific non-Gaussian distributions,
the two-state Gaussian Mixture distribution (GMD) and the
generalized Gaussian distribution (GGD), to model the com-
pressive random vector.

As the combination of two Gaussian distributions with large
varianceσ2

L
and small varianceσ2

S
, the GMD model is quite

effective at capturing the heavy tailed nature of an approximate
sparse signal by adjusting the activity rateλ. A random vector
with i.i.d GMD components can be seen as generated from
either the small variance Gaussian distribution or from the
large one, depending on the hidden statess = {0, 1}.

pGMD(x) =p(x, s = 1) + p(x, s = 0)

=p(s = 1)N (x; 0, σ2
L
)

+ p(s = 0)N (x; 0, σ2
S
)

=λN (x; 0, σ2
L
) + (1 − λ)N (x; 0, σ2

S
)

(4)

Another popular probabilistic model for compressive data
is the generalized Gaussian distribution (GGD). The pdf for

1While the large-system limit assumption does not hold, there is no
analogous results like (3). The finite-n case has been studied in a recent work
by Rangan et al. [28].

2For the distributions considered in this paper there is onlyone fixed point,
i.e. BAMP exhibits no phase transitions

the GGD can be written as

pGGD(x) =
α

2
√
βσΓ( 1

α )
exp

(

−
∣

∣

∣

∣

x√
βσ

∣

∣

∣

∣

α)

(5)

whereβ = Γ(1/α)/Γ(3/α), σ is the standard deviation andα
is the shape parameter. Asα goes to zero the distribution has
increasingly heavy tails. For images we are typically interested
in the GGD withα ∼ [0.3, 1] since these distributions provide
a good approximation for the distribution of the wavelet
coefficients in a given band for natural images.

Examples of the theoretical prediction for the SD function
of GMD and GGD data using BAMP decoder can be found in
Fig. 1 and Fig. 2 respectively. The functionF (; ) has a close-
form expression for the GMD [11], [25] and can be solved
numerically for the GGD.

C. SD Lower Bound

To understand the fundamental theoretical limits of CS for
compressible distributions, we now derive two lower bounds
for the SD function. We first prove theentropy based bound
(EBB) which is a sampling analogy to the classical Shannon
Rate Distortion Lower Bound (this result first appeared in the
conference paper [1]).

Theorem 1:Let x ∈ R
n be a realization of the random

vector x = x1, · · · , xn, i.i.d. ∼ p(x), Var(xi) = 1 and
h(xi) < ∞. Let y = Φx, y ∈ R

δn, δ = m/n < 1. Then
for any Lipschitz reconstruction decoder∆ : Rm → R

n, we
have:

D∆(δ) ≥ (1 − δ)22(h(x)−hg)/(1−δ) (6)

where hg = 1
2 log2 2πe is the entropy of a unit variance

Gaussian random variable.
The proof is given in appendix A.
The EBB can be easily rescaled to bound the SD per-

formance for distributions with non-unit variance. When the
sourcex is Gaussian the second term in the lower bound
becomes 1. The EBB for a Gaussian distribution reduces to
the well known form:DEBB = 1−δ, which can be shown to be
tight. Furthermore when we use the linear estimator (optimal
for Gaussian source),̂x = Φ†y, it is straight forward to show
that the SD function,Dℓ2(δ), has the same form independent
of the pdf of the sourcex and is achievable with any full rank
linear encoder.

While the EBB in Theorem 1 provides a bound on the
achievable performance of CS specifically for i.i.d sources,
it is not clear how close we can expect to get to it. The EBB
for both GMD and GGD data are plotted in Fig. 1 and Fig. 2.
We can see that at low sampling ratios, it is not tight since we
expect the SD function, i.e. the MSE, to approach the signal
energy asδ → 0.

We then define themodel based bound(MBB) to compen-
sate for the disadvantage of the EBB. Inspired by the fact that
the EBB is tight and achievable for Gaussian source, we resort
to the hierarchical Bayesian model to approximate the target
compressible distributions. By introducing the variance as a
latent variable, the hierarchical representation of a compressive
distribution p(x) can be understood as the weighted sum of
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(possibly infinite) Gaussian distributions.

p(x) =

∫ ∞

0

p(x|τ)p(τ) dτ

=

∫ ∞

0

N (x; 0, τ)p(τ) dτ

(7)

where p(τ) is the weight for the Gaussian component
N (x; 0, τ). The MBB is then derived in the following manner:
assume the sourcex is partitioned into different groups
according to the variance. For both encoder and decoder, we
agree to transmit and reconstruct the source group by group
in the descendant order of the variance. For each Gaussian
group, the SD function is tightly bounded by its EBB. Then
the lower bound for the whole procedure can be seen as the
weighted combination of the EBB of Gaussian components.
Thus the MBB has the form:

DMBB(δ) =

∫ c

0

τp(τ) dτ (8)

with δ =
∫∞
c
p(τ) dτ .

The GMD model is intrinsically a discretized hierarchical
Bayesian model with only two Gaussian components. Thus
its MBB can be seen as the discretized version of the general
form in :

DMBB(δ) =

{

(1 − λ)σ2
S + (λ− δ)σ2

L 0 ≤ δ ≤ λ

(1 − δ)σ2
S λ < δ ≤ 1

(9)

For the GGD model, the detailed procedure for inferring its
hierarchical Bayesian priorp(τ) is relegated to appendix B. As
we can see in both Fig. 1 and Fig. 2, the MBB is much tighter
than the EBB for small sampling ratios, although neither the
MBB nor the EBB dominates for the whole range of the
sampling ratios. The supremum of the two therefore yields
a better lower bound for the SD function.

D. Convexity Property

In this subsection, we first prove that the SD function is
necessarily convex. A direct application of this property is then
illustrated to effectively improve the reconstruction quality of
the Gaussian encoder-BAMP decoder in the low sample ratio
regime.

Theorem 2:The SD functionD(δ) is convex.
Proof: Consider two achievable SD points (δ1, D(δ1))

and (δ2, D(δ2)). To prove the SD function is convex, we only
need to show the convex combination of the two points is
also achievable. Letδt = tδ1 + (1 − t)δ2, 0 ≤ t ≤ 1. To
sample the sourcex ∈ R

n at the sampling ratioδt, we could
split x into two partsx = [x1,x2]

T , wherex1 ∈ R
tn, x2 ∈

R
(1−t)n, and apply encoders with sampling ratioδ1, δ2 to x1,

x2, respectively. Then the reconstruction ofx1 and x2 has
achievable MSE:tnD(δ1) and(1− t)nD(δ2). So the MSE of
the reconstruction ofX is:

nD(δt) ≤ tnD(δ1) + (1− t)nD(δ2) (10)

Therefore

D(tδ1 + (1− t)δ2) ≤ tD(δ1) + (1− t)D(δ2) (11)

Fig. 3. Hybrid zeroing Gaussian matrix as the convex combination of a
trivial decoderx̂ = 0 and a BAMP decoder∆. Elements equal to 0 are
represented with white blocks.

The convexity property is applicable to the SD function for
any specific encoder-decoder pair in the large-system limit. A
direct consequence of Theorem 2 is that for a given encoder-
decoder pair with a concave SD function betweenδ1 and
δ2 (δ1 < δ2), there exists a hybrid system with better SD
performance: it can be easily achieved by applying the two
encoder-decoders to different portions of the source to getthe
convex combination ofD(δ1) andD(δ2). A special case is
when δ1 = 0 with the corresponding trivial decoder (x̂ = 0)
and δ2 = δc with δc being the crucial sampling ratio. In this
case, instead of sampling the sourcex with a full Gaussian
matrix, Φ ∈ R

δn×n, we splitx as before withx1 ∈ R
tn and

x2 ∈ R
(1−t)n, t = δ/δc. We then samplex1 with the Gaussian

matrix, Φ̃ ∈ R
δn×tn and reconstruct, while the remainingx2

we reconstruct as zero. Since this is equivalent to setting part
of the encoder to zero,Φ = [Φ̃,0], we call this thezeroing
procedure, as illustrated in Fig. 3.

Close observation of the SD functions for the Gaussian
encoder-BAMP decoder system in Fig. 1 and Fig. 2 reveals
that the curves are convex for large sampling ratios but concave
for small sampling ratios. By applying the hybrid zeroing
Gaussian matrix, we convexify the SD function forδ below the
crucial sampling ratioδc. To best improve the SD performance,
δc is chosen as the largest sampling ratio that below which the
SD function is concave.

The Gaussian sensing matrix has been widely assumed
within the CS community to be optimal in terms of CS
performance. Indeed this has been proved to be the case for the
distributions that exhibit exact sparsity [29]. However, under
the assumption that the BAMP achieves the Bayes optimal
reconstruction - this would follow, for example, if the replica
method could be proved to be rigorous [11] - then thezeroing
procedureresulting from Theorem 2 indicates this assumption
to be false. It also shows that the optimal encoder is related
to both the signal property and the corresponding decoding
method.

III. SAMPLE DISTORTION FUNCTION FORSTATISTICAL

IMAGE MODEL

In this section we build upon the the aforementioned SD
framework and study the SD behaviour of the compressive
imaging. We investigate the optimal bandwise sampling strat-
egy with a fixed sample budget, in a similar manner to [5], but
in terms of minimizing the expected MSE. We begin by in-
troducing the bandwise independent multi-resolution statistical
model for natural images.
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Natural images are transform compressible: they have more
concise representation in the wavelet domain. The wavelet
decomposition of an imagef(X) has the form [30]:

f =
∑

k

µi,kφi,k +
∑

j≥i,k

ωj,kψj,k (12)

whereφi,k are the scaling functions,ψj,k are the prototype
bandpass functions such that together they form an orthonor-
mal basis. The variablesµi,k are in turn the scaling coefficients
at scalei andωj,k are the wavelet coefficients at scalej. We
can group the coefficients into a single vector according to
the scale or bandθ = [µ

i
,ω

i
,ω

i+1, · · · ]T and assign each a
band index. For simplicityµ

i
is band 0, the coarsest wavelet

coefficients group,ωi, is denoted as band 1, and the rest can
be labelled in the same manner. Here we follow [31], [32]
and consider a simple statistical model defined directly on the
wavelet coefficients. The band 0 is always treated as Gaussian
since these coefficients typically exhibit no sparsity. This can
be seen as a worse case assumption in terms of its SD function.
For the other bands, we model the wavelet coefficients within
each band as mutually independent and impose a compressive
distribution for each wavelet band. To be specific,ωj,k at scale
j can be modelled as

ωj,k ∼ GGD(0, σ2
j , αj) (13)

or

ωj,k ∼ GMD(λj , σ
2
L,j , σ

2
S,j), (14)

where typically for natural images the distributions exhibit a
self-similar structure with an exponential decay across scale,
i.e.σ2

j = 2−jβσ2
0 for the GGD andσ2

a,j = 2−jβσ2
a,0, a = S,L

for the two-state GMD for someβ > 0. For the bandwise
independent image model, we assume an uniform activity rate
λj for each wavelet band in spite of the coefficient index. In
particular, we defineλj := Pr{sj,k = 1}.

A. Bandwise Sampling

To keep things tractable we restrict ourselves to the class of
linear encoders,y = Φθ, that are block diagonal and sample
the different wavelet bands separately with the following form:

Φ =











Φ0

Φ1

. . .
Φ

L











(15)

where Φi ∈ R
mi×ni ,mi ≤ ni puts mi measurements to

sample theith band. The equality holds when theith band
is fully sampled withΦi being an identity matrix. Otherwise
Φi is a possibly zero padded (for convexity) Gaussian random
matrix. Andy

i
= Φiωi is the CS observation for each block.

To derive the SD function for the multi-resolution images, we
first consider theL wavelet bands as independent and parallel.
The question then is how to allocate a fixed number of samples
to the various bands, with the aim of minimizing the total
reconstruction distortion. Let us assume for now thatmi, ni be
continuous andδi = mi/ni ∈ [0, 1]. The problem is reduced

to the following optimization

min
mi

L
∑

i=1

σ2
i niDi(mi/ni)

s.t.
L
∑

i=1

mi = m and0 ≤ mi ≤ ni, i = 1, . . . , L.

(16)

whereDi is the (convex) SD function for bandi normalized to
have unit variance. Using Lagrange multipliers, we construct
the objective function

L =−
∑

i

σ2
i niDi(mi/ni)

− λ(
∑

i

mi −m)

−
∑

i

µi(mi − ni)

+
∑

i

νimi

(17)

Differentiating with respect tomi and setting equal to 0 we
have

∂L

∂mi
= −σ2

i ni
∂Di

∂δi
· ∂δi
∂mi

− λ− µi + νi = 0 (18)

or

− σ2
i

∂Di

∂δi
− λ− µi + νi = 0 (19)

Define the distortion reduction function as

ηi(δi) = −σ2
i

∂Di

∂δi
, (20)

noting that this function is non-increasing in terms ofδi. Now
applying the Kuhn-Tucker (KT) conditions we arrive at:

ηi(δi)− λ− µi + νi = 0, (21)

with
µi(ni −mi) = 0, µi ≥ 0, (22)

and
νimi = 0, νi ≥ 0. (23)

We therefore have three cases for the distortion reduction
function. First, if 0 < mi < ni then µi = νi = 0 and the
sampling ratio,δi, is set so thatηi(δi) = λ. Next suppose that
mi = ni so thatδi = 1. In this case, the KT conditions imply
that

ηi(δi) ≥ λ, ∀δi (24)

In the final case we havemi = 0 and δi = 0. Here the KT
conditions imply:

ηi(δi) ≤ λ, ∀δi (25)

This gives us an optimal sample allocation strategy which
is similar to the reverse water-filling idea in rate distortion
theory [33]. We allocate samples to the band with the greatest
distortion reduction value until another band has a greaterone
or that band has been fully sampled. The procedure is stopped
when the total distortion reaches the desired level.

To apply this idea to natural images we need to take account
of the fact thatmi, ni andL are all discrete and finite. Thus
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Fig. 4. Distortion reduction function of six bands Daubechies 2 wavelet
decomposition of cameraman image using GMD model (including the low-
pass band). The statistics is reported in Table I.

we define a discretized distortion reduction (DR) function for
each wavelet band.

ηi(mi) = σ2
i [Di(mi/ni)−Di((mi + 1)/ni)] (26)

Suppose thatmi samples have been allocated to theith band.
The DR function gives the amount of distortion decreased by
adding one more sample to that band. Then the number of
samples allocated to the bandi is

mi =











0 if max ηi(mi) < κ

ni if min ηi(mi) > κ

m̂i s.t. ηi(m̂i) = κ otherwise

(27)

whereκ is chosen so that
∑

imi = m. With a convex SD
function, the optimal allocation is again achieved by perform-
ing a greedy sample allocation strategy. The DR function for
a six-band Daubechies 2 decomposition of the ”cameraman”
using the two-state GMD model is illustrated in Fig. 4. One
thing worth noting is that neither the convexity property nor
the resulting greedy sample allocation method is restricted to
the form of the decoder. For example the optimized bandwise
sensing matrix can be designed in the same manner for the
CS ℓ1 decoder and theℓ2 decoder.

B. Comparison to the Theory of Widths

In [31], parallels are drawn between the statistical wavelet
model we have considered here and the family of Besov
function spaces. In particular, the authors argue that under
appropriate conditions realizations drawn from the GMD or
GGD based wavelet model almost surely lie in an associated
Besov space. It is therefore interesting to explore the similar-
ities and differences between the achievable distortion rates
derived here and those known in the deterministic setting for
Besov spaces.

1) n-widths of Besov spaces :Consider the Lipschitz class
of r-smooth functions on the interval[0, 1] and the unit ball,
Br

p, defined as:

Br
p := {f : ‖f (r)‖p ≤ 1} (28)

wheref (r) denotes therth derivative off and theLp ball acts
as the deterministic counterpart to the coefficient prior above.

Theℓ2 error of the best n-dimensional linear approximation
for these spaces is known to scale as∼ n−r+1/p−1/2 for 1 <=
p <= 2 [34, Chapter 14, Theorem 1.1]. In contrast, theℓ2 error
for the best CS reconstruction is characterized by the Gelfand
width of Br

p which can be written as:

dn(Br
p) := inf

Φ
sup
h
{‖h‖2, h ∈ N (Φ) ∩Br

p}. (29)

and measures the uncertainty inBr
p within the null space ofΦ.

Here, for1 ≤ p ≤ 2 the best CS approximation error decays
at the faster rate of∼ n−r, i.e. inversely proportional to the
smoothness [34, Chapter 14, Theorem 1.1]. This result was
derived in Kashin’s seminal paper [8], which is better known
in the CS community for accurate bounds for the n-widths of
lp balls inR

n.
2) Similarities and differences:Interestingly Kashin’s re-

sult relied on a discretization theory of Maiorov [9] that uses
a similar bandwise sampling to our own. Specifically Maiorov
uses a subband decomposition of spline spaces to bound the n-
width of Br

p in terms of a weighted sum of finite dimensional
n-widths for the individual subbands - effectively performing
a bandwise sampling. Furthermore in both the deterministic
and stochastic settings the allocation scheme is broadly the
same: fully sample the first few low resolution subbands; then
partially sample a number of intermediate subands; and finally
set coefficients of all the higher resolution subbands to zero.
However, in Kashin’s theory, the number of partially sampled
subbands grows as the distortion decreases and, indeed, it
is this that accounts for the different rate of approximation
compared with the best linear approximation. In contrast,
in the sample allocation framework, the number of partially
sampled bands,P , is bounded by the range of the distortion
reduction function:

P < β log2(η(0)/η(1)). (30)

For the two-state GMD model this bound is finite since from
the MBB we can deduce that:

η(0)

η(1)
<
σ2
L,0

σ2
S,0

(31)

Note the same bound applies to the SD function for the
MBB oracle decoder where the bandwise sampling is optimal.
Hence, the fact that we do not get a growing number of
partially sampled subbands implies that in the large system
limit the CS approximation error will decay at the same
rate as for the best linear approximation. We can therefore
conclude that the gains in CS solutions over optimal linear
approximation for such a model are fundamentally limited.
We can see this, for example, in Fig. 4 where we would only
ever partially sample at most 3 subbands for the convexified
BAMP decoder.

C. Incorporating Tree Structure

Until now we have developed an analytic sample allocation
method for a multi-resolution image model by assuming the
independence of the wavelet band. In this subsection we
look beyond the signal sparsity and incorporate the wavelet
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dependencies with the aim of getting closer to the upper model
based bound. We model the wavelet coefficients with the GMD
and impose the hidden Markov tree (HMT) structure to the
hidden states as in [17]. To be specific, with the hidden states
at the coarsest scale (band 1) being the ”root”, we connect
each wavelet hidden state to the four ”child” wavelet states
one scale below it to form the image quad-tree (see HMT in
Fig. 5). Thepersistence across scaleproperty [30] states that
the activity rateλj,k for ωj,k depends on the activity rate of its
parent on scalej− 1, λj−1,pk

, and the transition probabilities
across scales.

λj,k =p(sj = 1|sj−1 = 1)λj−1,pk

+ p(si = 1|sj−1 = 0)(1 − λj−1,pk
) (32)

We first review the core principles of Som and
Schniter’s TurboAMP decoding method [25]. Letω =
[ω1,ω2, · · · ,ωL]

T denote the collection of the wavelet co-
efficients of different bands ands = [s1, s2, · · · , sL]T
be the corresponding hidden states vector. Assumey =
[y

1
,y

2
, · · · ,y

L
]T is the CS observation vector using the

block diagonal sensing matrix. In the Bayesian compressed
sensing setting, the reconstruction ofω from y is interpreted
as approximating the posterior mean of the densityp(ω|y):

p(ω|y) = Z−1p(y|ω)
∑

s

p(s)p(ω|s)

= Z−1
∑

s

p(s)
∏

j

[
∏

t

p(yj,t|ωj)][
∏

k

p(ωj,k|sj,k)]

(33)

whereZ = p(y). The factor graph plotted in Fig. 5 visualizes
this global function [35], [36]. Exact computation ofp(ω|y)
is hard due to the dense and loopy structure of the factor
graph. Instead we split the factor graph along the dashed
line into two subgraphs as in [25] and calculate the marginal
posterior p(ωj,k|yj

). The essence of turbo decoding is to
exchange the local belief of the hidden statessj,k between
AMP decoding and HMT decoding alternately, by treating the
likelihood onsj,k from one decoding procedure as prior for the
other decoding procedure. Here, unlike [25], the AMP decoder
is bandwise independent due to the block diagonal form of
Φ. The interaction across different wavelet bands only comes
from the HMT decoding.

The SD function for the bandwise independent image model
is not optimal for the turbo decoding scenario since it does not
take the HMT decoding into consideration. The role of the
HMT decoding is to better provide estimation of the activity
rate λj,k for the scalar MMSE estimator of each wavelet
coefficient, instead of using an identicalλj over the coefficient
indexk, thus improving the reconstruction quality. To see the
impact of the HMT decoding, we feed the BAMP decoder
with the soft information, λ̂j,k, defined as follows:

λ̂j,k =
p(ωj,k|sj,k = 1)

p(ωj,k|sj,k = 1) + p(ωj,k|sj,k) = 0

=
N (ωj,k; 0, σ

2
j,L)

N (ωj,k; 0, σ2
j,L) +N (ωj,k; 0, σ2

j,S)

(34)

band 2

HMT 

band 1 band 3

AMP 

Fig. 5. Factor graph for bandwise sampling with HMT decoding. The upper
graph illustrates a quad-tree structure of the wavelet hidden states. The lower
graph is the bandwise independent random mixing.

This provides a soft estimate of the state of the GMD and
thereby gives a better prediction of individual coefficientvari-
ances. The empirical SD curve for BAMP decoder with soft
information is generated from the Monte Carlo simulations
with synthetic GMD data and illustrated in Fig. 1. To be
specific, we use thêλj,k in (34) instead ofλj for the scalar
MMSE estimator of each synthetic GMD component. Fig. 1
demonstrates that providing the BAMP decoder with good
estimation of activity rate information dramatically improves
the reconstruction quality, with the SD function lying very
close to the lower bound.

Based on the per-band image statistics, the SD function
for BAMP decoder with soft information can be obtained
empirically for each wavelet band in the same fashion. Then
the DR function with soft information for multi-resolution
image model can be established following the aforementioned
definition, as shown in Fig. 4. To clarify the terminology, we
denote the corresponding sample allocation profile as the HMT
based sample allocation, or HSA. And we use the term SA
to denote the sample allocation derived from the bandwise
independent wavelet model. We should note here that neither
SA nor HSA is optimal for turbo decoding. The problem with
SA is that it tends to undersample the fine scale bands since
they contain less energy than the coarse bands when treated
independently. While HSA is served as the benchmark by
assuming we have the accurate activity rate information for
each wavelet coefficient. The optimal sample allocation for
turbo decoding should combine the merits of both SA and
HSA.

IV. NATURAL IMAGE EXAMPLE

Reconstruction performance for natural images with the
bandwise sampling matrix introduced in Section III is demon-
strated and compared with several existing sensing matrices
in this section. We start with the256× 256 cameraman image
as an introductory example. With the knowledge of the image
statistics, we show that the bandwise independent image model
based SD function can accurately predict the reconstruction
quality for the proposed sample allocation scheme. It also
confirms the theoretical optimality of our bandwise sensing
matrix. We then extend the scheme to practical compressive
imaging by designing the general sample allocation with the
average image statistics estimated from the training set ofthe
Berkeley dataset [37]. Simulation with ten images from the
test set further confirms that with good statistics estimation,
the proposed SD sample allocation exhibits state-of-the-art
performance.
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A. Sample Allocation with Oracle Image Statistics

The cameraman image is decomposed into six bands using
the Daubechies 2 wavelet. GGD and GMD model parameters
estimated directly from the wavelet coefficients are reported in
Table I as the oracle image statistics, using moment matching
[32] and EM algorithm [38] respectively. Given the parameter
estimation, we are able to generate the image SD function
and the subsequent bandwise sample allocation using the
aforementioned method.

TABLE I
STATISTICS FORDAUBECHIES2 WAVELET COEFFICIENTS OF CAMERAMAN

subband b0 b1 b2 b3 b4 b5

GGD α 2 0.7 0.4 0.3 0.3 0.4
σ2 261.4383 2.0822 0.4559 0.0902 0.0167 0.0033

GMD
λ 1 0.4155 0.5309 0.4842 0.3664 0.2792
σ2

L
261.4383 4.4215 0.8542 0.1856 0.0453 0.0115

σ2

S
0.3331 0.0038 0.0004 0.0002 0.0001

To show the sample allocation method is not restricted to
the form of the decoders, we consider three reconstruction
options: the linearℓ2 decoder, the CSℓ1 decoder, and the
BAMP decoder. The SPGL1 toolbox3 is used to implement
the ℓ1 decoder. Its SD function can also be derived using
the SE formalism [15]. Both theℓ2 and theℓ1 decoder are
considered for the GGD and the GMD model. Although in [39]
the authors show that the BAMP decoder is applicable to the
GGD data by approximating it with the finite term of Gaussian
mixture distribution, the approximation error may contribute
to the final reconstruction distortion. Thus the BAMP decoder
results are only reported for the GMD model here. The detailed
algorithm can be found in [25], [11].

For quantitative comparison, the peak signal-to-noise ratio
(PSNR) is used for both theoretical prediction and simulations.
We examined the cameraman image at four different sampling
ratios:10%,15.26%,25% and30% associated withm = 6554,
10000, 16384, 19661 noiseless measurements. Two different
wavelet image models are considered. First, the wavelet bands
are assumed as mutually independent. The proposed SA matrix
is compared with five sensing matrices: the homogeneous
Gaussian matrix (Uniform), the two-gender matrix (2 Gender)
[3], the informative sensing matrix (InforSA) [6] and the multi-
scale sensing matrix (MBSA) in [4]. The 2 Gender matrix is
implemented as fully sampling the scaling band and uniformly
allocating the remaining samples to all the wavelet bands. As a
statistic-dependent sample allocation scheme, InforSA isalso
generated based on Table I.

The corresponding PSNR results are shown in Fig. 7 and
Fig. 8 for GGD and GMD model, respectively. The SD func-
tion predicts the expected distortion quite accurately forall
three choices of the decoder with SA. For both image models,
SA achieves the best performance among the five sensing
matrices. The advantages of SA over the Uniform matrix and
the 2 Gender matrix is significant in spite of the sample ratio.
MBSA has a relatively good performance since it has the
essence of putting more samples to the coarse bands. Provided
with the same image statistics, InforSA tends to allocate more
samples to the fine wavelet bands compared with SA. Thus

3http://www.cs.ubc.ca/labs/scl/spgl1/index.html

HSA

Fig. 6. Sample allocation per band for Daubechies 2 wavelet with the GMD
model. SA: sample allocation based on the bandwise independent model.
HSA: sample allocation based on the empirical SD functions for BAMP
decoder with soft information. ESA: empirically optimizedsample allocation
for turbo decoding.

it is not as effective as SA in the low sampling ratio regime.
Interestingly the CS scheme, even with an optimized sample
allocation, only provides modest reconstruction gains over the
classical linear approximation with similarly optimized sample
allocation. This actually verifies the discussion in Section
III-B: the rate of decay of error is the same for both the
BAMP and ℓ2 decoder (though the constants are different).
Thus we do not observe overwhelmingly better performance
for the BAMP decoder even when SA is performed.

Secondly, the quad-tree structure is exploited with the GMD
model. Within the turbo decoding regime, simulations are
reported for four different sensing matrices: Uniform (amounts
to the algorithm proposed in [25]), SA, HSA, and the empir-
ically optimized sample allocation, or ESA. As analysed in
section III-C, ESA should be the balance between SA and
HSA. For the cameraman image, the ESA is obtained by
adaptively reallocating samples from band four to band five
based on SA, with the step size of 100 samples, until the PSNR
does not increase. The sample allocation per band under four
specific sampling ratios are reported in Fig. 6. We see that
the scaling band and the coarsest wavelet band always have
priority over the fine wavelet bands. For this particular image,
around 2000 samples are reallocated to the finest scale band to
achieve the ESA. For the turbo decoding, the soft information
in (34) is used. It is fixed if bandj is fully sampled during
the HMT decoding. For partially sampled bands, activity rates
λj in Table I are used to initialize the turbo decoding and
updated by the HMT decoding for each turbo iteration. Other
hyperparameters to initialize the HMT decoding are set in
accordance with the recommendation in [25]. For various
choices of sample allocations, we ran 20 turbo iterations,
within which 500 BAMP iterations are performed.

As evident in Fig. 8, adding the HMT decoding ingredient
indeed improves the reconstruction quality. it is the jointuse
of optimized bandwise sampling and the tree structure that
delivers by far the best PSNR performance. Again, sample
allocation shows its importances when there is a tight bud-
get of samples: even without the turbo decoding procedure,
SA+BAMP is 1.5 dB better atδ = 0.1, 0.15 than Uni-
form+TurboAMP. In the large sampling ratio regimeδ = 0.3,
the effectiveness of the sample allocation is not as obviousand
the HMT alone is responsible for the excellent performance:
SA+TurboAMP is 0.5 dB better than the Uniform+TurboAMP.
It shows that both sample allocation and the HMT play a role
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Fig. 7. PSNR comparison of different encoder-decoder pairsfor camera-
man Daubechies 2 wavelet with the GGD model. The lines are theoretical
predictions with the SD function. While dots represent simulations with the
cameraman image.
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Fig. 8. PSNR comparison of different encoder-decoder pairsfor cameraman
Daubechies 2 wavelet with the GMD model. The lines are theoretical
predictions with the SD function. While dots represent simulations with the
cameraman image.

in improving the performance of compressive imaging, and
which matters more depends on several factors, including the
sampling ratio. We also observe that the ESA is only slightly
better than the SA. It means that even when we have the luxury
of manipulating samples, the benefit is limited because of the
exponential energy decay of the multi-resolution model.

The 256 × 256 cameraman image along with the recon-
structed images by different encoder-decoder pairs are visu-
alized in Fig. 10 at the sampling ratioδ = 15%. It further
confirms that given accurate image statistics, our proposedSA
is the optimal distribution of samples.

B. Sample Allocation with General Image Statistics: the GSA

In practice, we may not have access to the accurate image
statistics. In this section, reconstruction results for a general
sample allocation (GSA) which is not tuned to a specific
image distribution is presented. The GSA is designed based

(g) InforSA+TurboAMP (25.47 dB)

(b) Uniform+BAMP (22.98 dB)(a) Original Cameraman

(h) MBSA+TurboAMP (25.63 dB) (i) SA+TurboAMP (25.81 dB)

(c) 2 Gender+BAMP (23.04 dB)

(f) SA+BAMP (25.40 dB)(d) MBSA+BAMP (23.56 dB) (e) inforSA+BAMP (23.78 dB)

Fig. 9. Reconstruction using 10000 (15%) samples of the256 × 256
cameraman image with different encoder-decoder pairs. TheGMD is used
to model the Daubechies 2 wavelet coefficients statistics.

on the fixed per-band natural image statistics. We estimated
the GMD statistics for the six-band Daubechies 2 wavelet
decomposition of 200 training images from theBerkeley
Segmentation Dataset[37]. Each training image is cropped to
the size of256× 256. The pixel intensity value is normalized
between 0 and 1. The average per-band GMD parameters are
reported in Table II and used to generate the general (albeit
dictionary and algorithm dependent) sample allocation profile.

TABLE II
AVERAGE STATISTICS FORDAUBECHIES2 WAVELET COEFFICIENTS OF

200TEST IMAGES FROM THEBERKELEY DATASET [37]

subband b1 b2 b3 b4 b5

λ 0.5108 0.4374 0.4076 0.3616 0.3137
σ2

L
3.6910 0.7506 0.1595 0.0385 0.0081

σ2

S
0.4596 0.0490 0.0075 0.0015 0.0003

The resulting GSA is then applied to ten test images outside
the training set, and again compared with the Uniform matrix,
the 2 Gender matrix, MBSA and InforSA. Table II is also
used to generate InforSA. The BAMP decoder is used as the
reconstruction algorithm. The PSNR performance for sampling
ratio δ = 0.1, 0.2, 0.3 are reported in Table III, Table IV and
Table V, respectively.

The reconstruction quality of GSA depends on the accuracy
of the image statistics. We see that with reasonable image
statistics estimation, GSA outperforms the Uniform matrixand
the 2 Gender matrix with roughly 2 dB gain consistently for all
cases. The MBSA and InforSA have comparable yet slightly
worse performance except three images at sampling ratioδ =
0.3. It is due to the actual image deviates from the average
image statistics. Not surprisingly, adding the HMT decoding
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Fig. 10. Ten test images from the Berkeley dataset [37]. Fromleft to right,
top to bottom are: car, plane, eagle, sculpture, surfer, tourists, building, castle,
man and fish.

component can only improve the reconstruction quality, if not
significantly.

V. CONCLUSION

The main contribution of this paper is to understand the
nature of the sampling for multi-resolution images. For this,
the complete sample distortion framework with the definition,
lower bounds and the convex property is presented. Given the
image statistics, we have derived a tractable sample allocation
method for minimizing the reconstruction distortion and shown
that it provides an accurate prediction of the achievable SD
performance. We have also shown that when the optimized
sample allocation is performed, the reconstruction gain of
the CS decoder is limited over the linear reconstruction
techniques. To get closer to the model based bound, we
have deployed the tree structured sparsity within the opti-
mized bandwise sampling framework by the turbo decoding
approach. Various encoder-decoder combinations examined
with the cameraman image illustrate the merit of bandwise
sampling, especially in the regime of very low sampling ratios.
For practical sample allocation, a general sampling profileis
constructed based on average image statistics and demonstrates
competitive performance.

TABLE III
IMAGE RECONSTRUCTION RESULTS FOR TEN256 × 256 TEST IMAGES

FROM THE BERKELEY IMAGE DATABASE [37] WITH δ = 0.1. ENTRIES ARE
THE PEAK SIGNAL-TO-NOISE RATIO (PSNR)IN DECIBELS,

PSNR:= 10 log10(N/||x̂− x||2
2
). ALL RESULTS USE THE AVEARGAE

IMAGE STATISTICS REPORTED INTABLE II AND THE BAMP DECODER.

Image GSA InforSA MBSA Uniform 2 Gender SA+TurboAMP

car 22.52 21.67 22.28 20.61 20.65 23.12
plane 25.87 25.27 25.63 24.16 24.26 26.57
eagle 25.23 24.53 24.88 23.39 23.44 26.30
sculpture 22.42 21.72 22.36 20.75 20.81 22.68
surfer 22.37 21.58 22.11 20.42 20.59 23.14
tourists 22.17 21.35 22.08 20.41 20.50 22.52
building 22.01 21.42 21.84 20.39 20.41 22.73
castle 21.40 20.93 21.26 19.82 19.78 21.74
man 26.86 26.02 26.42 24.84 24.89 28.52
fish 24.60 23.52 24.43 22.57 22.63 24.85

APPENDIX A
PROOF OFTHEOREM 1

Without loss of generality we will assume thatΦ is an
orthogonal projection operator and we denote byΦ⊥ the or-
thogonal projection onto the null space ofΦ. We can then split

TABLE IV
RECONSTRUCTIONPSNRFOR TEST IMAGES WITHδ = 0.2

Image GSA InforSA MBSA Uniform 2 Gender SA+TurboAMP
car 25.56 24.11 25.29 22.92 22.98 25.92
plane 28.28 27.32 28.13 26.19 26.25 28.52
eagle 28.66 27.84 28.59 26.31 26.44 28.95
sculpture 23.81 22.89 23.54 22.05 22.61 24.58
surfer 25.37 24.00 25.13 22.81 22.95 25.65
tourists 24.15 22.93 23.75 22.08 22.37 24.53
building 24.84 23.59 24.66 22.48 22.55 25.37
castle 23.65 22.76 23.41 21.02 21.42 23.96
man 30.32 29.33 30.08 28.05 28.49 30.80
fish 27.26 27.57 26.76 24.62 24.83 27.76

TABLE V
RECONSTRUCTIONPSNRFOR TEST IMAGES WITHδ = 0.3

Image GSA InforSA MBSA Uniform 2 Gender SA+TurboAMP

car 26.21 26.24 26.15 25.00 25.22 26.97
plane 28.96 29.20 28.89 28.21 28.54 29.82
eagle 29.97 29.22 29.17 28.61 28.94 30.25
sculpture 24.94 23.93 25.02 23.00 23.11 25.72
surfer 26.04 25.96 25.85 24.91 25.05 26.85
tourists 25.35 24.22 25.15 23.35 23.57 25.79
building 25.50 25.28 25.32 24.28 24.42 26.17
castle 24.32 24.21 24.16 23.04 23.06 24.75
man 31.56 30.85 30.77 30.05 30.29 33.09
fish 28.76 27.97 28.26 26.31 26.53 29.31

the signalx into its observed and unobserved components:
y = Φx andz = Φ⊥x. Since we directly observey we need
only consider the component of the decoder that estimatesz,
∆(z) : Rm → R

n−m. We can then estimatex as:

x̂ = ∆(y) = ΦTy + [Φ⊥]T∆(z)(y) (35)

We can further write the squared error distortion in terms of
∆(z)(y) as

D =
1

n

∫

p(y)

∫

p(z|y)||z −∆(z)(y)||22 dzdy (36)

Now consider the following decomposition of the differen-
tial entropyh(x) of the vectorx:

h(x) = h(y) + h(z|y)
= h(y) + h(z−∆(z)(y)|y)
≤ h(y) + h(z−∆(z)(y))

≤ m

2
log2 2πe+

n−m

2
log2 2πenD/(n−m)

(37)

where we have used the following observations

• (line 2) The decoder is a deterministic function ofy and
therefore the differential entropy ofh(z−∆(z)(y)|y) =
h(z|y).

• (line 3) The conditional entropy is bounded by the
marginal entropy:h(x|y) ≤ h(x).

• (line 4) The entropy of a random variable with a fixed
covariance is bounded by the entropy of a Gaussian with
the same covariance. Similarly the entropy of a random
vectorv ∈ R

n−m under the constraint thatE{vTv} =
nD is bounded by the entropy of a Gaussian random
vector with covariance nD

(n−m)I .

The principle here is that the optimal projection should
maximize the entropy of the observed componenth(y) while



11

the decoder,∆(y), should minimize the distortion possible.
This is similar to the concept of information sensing proposed
in [5].

Substitutingδ = m/n into (37) gives:

h(x) ≤ 1− δ

2
log2 2πe

D

1− δ
+
δ

2
log2 2πe (38)

where we have used the i.i.d assumption to writeh(x) =
nh(x). This can then be rearranged to give the EBB.

APPENDIX B
DERIVATION OF THE HIERARCHICAL BAYESIAN MODEL

FOR THEGGD

Here, we derive the hierarchical Bayesian model to describe
the GGD, which is then used to bound the MSE performance
described in the main text in Sec. II-C. We introduce two latent
variablesc1 andc2 to simplify the expression of GGD:

c1 =
α

2
√
βσΓ( 1

α )
c2 = (

√

βσ)α (39)

Then the pdf of GGD can be written as

pGGD(x) = c1exp(−|x|α
c2

) (40)

Let p(x|τ) = N (x; 0, τ). To establish the hierarchical model,
we need to find the priorp(τ) which satisfies:

∫ ∞

0

N (x; 0, τ)p(τ) dτ = c1exp(−|x|α
c2

) (41)

Using the substitutiong(τ) = 1√
2πτ

p(τ), m = x2

2 and t =
√
2
α

c2
, the question becomes solvingg(τ) subject to

∫ ∞

0

exp(−m
τ
)g(τ) dτ = c1exp(−tm τ

2 ) (42)

let z = 1
τ andG(z) = g(τ)|τ= 1

z
, we further transform the

problem to findG(z) subject to
∫ ∞

0

exp(−zm)
G(z)

z2
dz = c1exp(−tm τ

2 ) (43)

Applying the integral formula [40]: if
∫∞
0 e−zty(t) dt = f(z),

theny(t) = L−1(f(z)), we obtain

G(z)

z2
= c1L−1exp(−x

α

c2
)] (44)

whereL−1(·) is the inverse Laplace transform. The inversion
of Laplace transform in (44) can be solved numerically [41].
From here we obtain the MBB for the GGD data in Fig. 2.
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