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Abstract—We study compressive sensing in the spatial domain
to achieve target localization, specifically direction of arrival
(DOA), using multiple-input multiple-output (MIMO) radar. A
sparse localization framework is proposed for a MIMO array
in which transmit and receive elements are placed at random.
This allows for a dramatic reduction in the number of elements
needed, while still attaining performance comparable to that of
a filled (Nyquist) array. By leveraging properties of structured
random matrices, we develop a bound on the coherence of
the resulting measurement matrix, and obtain conditions under
which the measurement matrix satisfies the so-called isotropy
property. The coherence and isotropy concepts are used to es-
tablish uniform and non-uniform recovery guarantees within the
proposed spatial compressive sensing framework. In particular,
we show that non-uniform recovery is guaranteed if the product
of the number of transmit and receive elements, M/ N (which is
also the number of degrees of freedom), scales with K (log G)?,
where K is the number of targets and G is proportional to the
array aperture and determines the angle resolution. In contrast
with a filled virtual MIMO array where the product M N
scales linearly with GG, the logarithmic dependence on G in the
proposed framework supports the high-resolution provided by
the virtual array aperture while using a small number of MIMO
radar elements. In the numerical results we show that, in the
proposed framework, compressive sensing recovery algorithms
are capable of better performance than classical methods, such
as beamforming and MUSIC.

Index Terms—Compressive sensing, MIMO radar, random
arrays, direction of arrival estimation.

I. INTRODUCTION

ETECTION, localization, and tracking of targets are

basic radar functions. Limited data support and low
signal-to-noise ratios (SNR) are among the many challenges
frequently faced by localization systems. Another challenge is
the presence of nearby targets, whether in terms of location
or Doppler, since closely spaced targets are more difficult to
discriminate. In multiple-input multiple-output (MIMO) radar,
targets are probed with multiple, simultaneous waveforms.
Relying on the orthogonality of the waveforms, returns from
the targets are jointly processed by multiple receive antennas.
MIMO radar is typically used in two antenna configurations,
namely distributed [1] and colocated [2]. Depending on the
mode of operation and system architecture, MIMO radars have
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been shown to boost target detection, enhance spatial resolu-
tion, and improve interference suppression. These advantages
are achieved by providing and exploiting a larger number of
degrees of freedom than “conventional” radar.

In this work, we focus on the application of colocated
MIMO radar to direction-of-arrival (DOA) estimation. It is
well known in array signal processing [3] that DOA resolution
improves by increasing the array aperture. However, increasing
the aperture without increasing the number of sensors may lead
to ambiguities, i.e., measurements explained by erroneous sets
of locations. A non-ambiguous uniform linear array (ULA)
must have its elements spaced at intervals no larger than
A/2, where A is the signal wavelength. For MIMO radar,
unambiguous direction finding of targets is possible if N
receive elements are spaced A/2, and M transmit elements
are spaced N)/2, a configuration known as virtual ULA [2].
In sampling parlance, the \/2-spaced array and the MIMO
virtual ULA perform spatial sampling at the Nyquist rate. The
main disadvantage of this Nyquist setup is that the product of
the number of transmit and receive elements, M N, needs to
scale linearly with the array aperture, and thus with resolution.

In this paper, we propose the use of a sparse, random
array architecture in which a low number of transmit/receive
elements are placed at random over a large aperture. This setup
is an example of spatial compressive sensing since spatial
sampling is applied at sub-Nyquist rates. The goal of spatial
compressive sensing is to achieve similar resolution as a filled
array, but with significantly fewer elements.

Localizing targets from undersampled array data links ran-
dom arrays to compressive sensing [4l]. Random array theory
can be traced back to the 1960’s. In [5]], it is shown that as
the number of sensors is increased, the random array pattern,
a well known quantity to radar practitioners, converges to its
average. This is because the array pattern’s variance decreases
linearly with the number of elements. This work was extended
to MIMO radar in [6]. The main conclusion of the classical
random array literature was that the random array pattern
can be controlled by using a sufficient number of sensors.
However, two fundamental questions were left pending: How
many sensors are needed for localization as a function of
the number of targets, and which method should be used for
localization? Here we suggest that the theory and algorithms
of compressed sensing may be used to address these questions.

Early works on compressive sensing radar emphasize that
the sparse nature of many radar problems supports the re-
duction of temporal as well as spatial sampling (an overview
is given in [7]]). Recent work on compressive sensing for
single-input single-output radar [8]-[1 1] demonstrates either an
increased resolution or a reduction in the temporal sampling
rate. Compressive sensing for MIMO radar has been applied
both on distributed [12] and colocated [[13] setups. Much of the



previous literature on compressive sensing for colocated arrays
discusses the ULA setup, either within a passive system (with
only receive elements) [14] or in a MIMO radar [13], [15]]
setup. In particular, [[15] imposes a MIMO radar virtual ULA
and derives bounds on the number of elements to perform
range-angle and range-Doppler-angle recovery by using com-
pressive sensing techniques. As discussed above, the (virtual)
ULA setup performs Nyquist sampling in the spatial domain.
In contrast, we are interested in spatial compressive sensing
(i.e., reducing the number of antenna elements while fixing the
array aperture), and rely on a random array geometry. Links
between compressive sensing and random arrays have been
explored in [16]. The author shows that spatial compressive
sensing can be applied to the passive DOA problem, allowing
for a reduction in the number of receiving elements. However,
the MIMO radar framework poses a major challenge: contrary
to the passive setup, where the rows of the sensing matrix
A are independent, the MIMO radar M N measurements are
dependent (they conform to the structure of the MIMO random
array steering vector). This lack of independence prevents the
application of the vast majority of results in the compressive
sensing literature. A MIMO radar random array architecture
is studied in [17], but no recovery guarantees are provided.

Low-rate spatial sampling translates into cost savings due to
fewer antenna elements involved. It is of practical interest to
determine the least amount of elements required to guarantee
correct targets recovery. Finding conditions that guarantee
recovery has been a main topic of research, and it is one of the
underpinnings of compressive sensing theory. Recent work has
shown that, for a sufficient number of independent and iden-
tically distributed (i.i.d.) compressive sensing measurements,
non-uniform recovery can be guaranteed if a specific property
of the random sensing matrix, called isotropy, holds [18].
While this property plays an important role, this result does not
apply to our setup since the MIMO radar M N measurements
are not independent. The dependent measurements problem
was recently addressed in [19]. There, the authors derived
conditions for non-uniform recovery using spatial compressive
sensing in a MIMO radar system with N transceivers.

This work expands the literature in several ways. We
propose a sparse localization framework for a MIMO ran-
dom array assuming a general setup of M transmitters and
N receivers. We provide a bound on the coherence of the
measurement matrix, and determine the conditions under
which the isotropy property holds. This allows us to develop
both uniform and non-uniform recovery guarantees for target
localization in MIMO radar systems. The proposed MIMO
random array framework is of practical interest to airborne and
other radar applications, where the spacing between antenna
elements may vary as a function of aspect angle towards the
target, or where exact surveying of element locations is not
practical due to natural flexing of the structures involved. Our
results show that one can obtain the high-resolution provided
by a virtual array aperture while using a reduced number of
antenna elements.

The paper is organized as follows: Section [IIj introduces the
system model and the proposed sparse localization framework.
Section discusses spatial compressive sensing. Recovery

guarantees are derived in Section In Section |V} we present
numerical results demonstrating the potential of the proposed
framework, followed by conclusions in Section

The following notation is used: boldface denotes matrices
(uppercase) and vectors (lowercase); for a vector a, the i-th
index is a;, while for a matrix A, the ¢-th row is denoted by
A (i,:). The complex conjugate operator is (-)", the transpose
operator is ()T and the complex conjugate-transpose operator
is (). We define | X]||, as the number of non-zero norm rows
of X, the support of X collects the indices of such rows,
and a K-sparse matrix satisfies || X[, < K. The operator E
denotes expectation and we define v, (u) = E [exp (jzu)]
as the characteristic function of the random variable z. The
symbol “®” denotes the Kronecker product. The notation
x ~ CN (p,C) means that the vector x has a circular
symmetric complex normal distribution with mean p and
covariance matrix C. We denote by K, (-) the modified Bessel
function of the second kind.

II. SYSTEM MODEL
A. MIMO Radar Model

We model a MIMO radar system (see Fig. [I)) in which N
sensors collect a finite train of P pulses sent by M transmitters
and returned from K stationary targets. We assume that
transmitters and receivers each form a (possibly overlapping)
linear array of total aperture Zrx and Zgrx, respectively.
The quantities Zrx and Zrx are normalized in wavelength
units. Defining Z L Zrx + Zrx, the m-th transmitter is at
position Z¢&,,/2 on the z-axis, while the n-th receiver is at
position Z(, /2. Here &, lies in the interval [—Z%x ZZx],
and ¢, is in [fZRT'X, ZRTX] This definition ensures that when
Zrx = Zgrx, both &, and (,, are confined to the interval
[—3, 3], simplifying the notation in the sequel.

Let s,,(t) denote the continuous-time baseband signal
transmitted by the m-th transmit antenna and let § denote
the location parameter(s) of a generic target, for example, its
azimuth angle. Assume that the propagation is nondispersive
and that the transmitted probing signals are narrowband (in
the sense that the envelope of the signal does not change
appreciably across the antenna array). Then the baseband
signal at the target location, considering the p-th transmitted
pulse, can be described by (see, e.g., [L])

M
Z exp (527 foTm (0)) 8m (t — pT) 2 T (0) s (t — pT).

m=1
(1)
Here fj is the carrier frequency of the radar, 7,,, () is the time
needed by the signal emitted by the m-th transmit antenna to
arrive at the target, s (t) 2 [s1 (t),..., s (£)]7, T denotes
the pulse repetition interval, and

c(0) = [exp (j2m for1 (0)) ... exp (j2m forar (0))]  (2)

is the transmit steering vector. Assuming that the transmit array
is calibrated, c () is a known function of 6.

To develop an expression for the received signal r,, () at
the n-th receive antenna, let

b (6) = [exp (j27 fo71 (0)), ..., exp (j2m forn (0))]T  (3)
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Fig. 1. MIMO radar system model.

denote the receive steering vector. Here 7, (f) is the time
needed for the signal reflected by the target located at 6
to arrive at the n-th receive antenna. Define the vector of
received signals as r(t) £ [ry (¢),...,rn (t)]". Under the
simplifying assumption of point targets, the received data
vector is described by [1]
K P-1
r(t) =YY arybOr)c” (0k)s(t—pT)+e(t) @
k=1 p=1

where K is the number of targets that reflect the signals
back to the radar receiver, xj, is the complex amplitude
proportional to the radar cross sections of the k-th target
relative to pulse p-th, 6, are locations, and e (t) denotes
the interference plus-noise term. The targets’ positions are
assumed constant over the observation interval of P pulses. We
assume that the target gains {xy_,} follow a Swerling Case II
model, meaning that they are fixed during the pulse repetition
interval T', and vary independently from pulse to pulse [20].

Analyzing how to estimate the number of targets K, or the
noise level, without prior information is the topic of current
work [21]], but outside the scope of this paper. Therefore in the
following, we assume that the number of targets K is known
and the noise level is available.

B. Problem Formulation

The purpose of the system is to determine the DOA angles
to targets of interest. We consider targets associated with a
particular range and Doppler bin. Targets in adjacent range-
Doppler bins contribute as interferences to the bin of interest.
The assumption of a common range bin implies that all wave-
forms are received with the same time delay after transmission.
Since range and Doppler measurements are not of interest, the
common time delay and Doppler shift are not explicitly shown
in our model. This approach is justified because angle reso-
lution is essentially independent of range-Doppler resolution
in antenna arrays [22]]. Being capable to handle targets with
non-zero Doppler, our approach is applicable to airborne or
ground targets. Targets are assumed in the far-field, meaning
that a target’s DOA parameter § £ sin 1) (where 9 is the DOA
angle) is constant across the array. Under these assumptions,
the receiver and transmitter steering vectors, b (6) and c (0)
respectively, become

b (6) = [exp (jmZ6C1) , . .. exp (jrZ0CN)]" (5)

and
c(0) = [exp (jnZ0&), ..., exp (ij@fM)]T. (6)

By cross-correlating the received signal at each sensor with
filters matched to each of the probing waveforms, we obtain

¥, = vec [ / v ()7 (t — pT) dt} 7
= vec [Zk: Z:;OI b (04) € (0,) W
+/e(t)sH (t—pT)dt]

where the M x M matrix W has elements

W], = / sm (1) 87 (£) dt. )

We assume the M probing waveforms to be orthogonal (e.g.,
pulses modulated by an orthogonal code), therefore W = 1.
Defining the MN x P matrix Y £ [yy,...,yp|, we have

from _ _
Y=A\X+E. 9)
Here X = [X1,...,Xp] is a K x P matrix with X, =

T
. 7:CK,p] 5

[.Z‘Lp, N
A@O)=1[a(0),...,a(0k)] (10)
isa M N x K matrix with columns
a(f) =c(9)@b(0) (11)
known as the “virtual array” steering vector, and
E = Je,....,ep] is MN x P with e, =
vec [[e(t)s™ (t —pT)dt]. The term ‘“virtual array”

indicates that a (f) can be thought of as a steering vector
with M' N elements.

Our aim is to recover § and X from Y using a small
number of antenna elements. To do this, we use a sparse
localization framework. Neglecting the discretization error, it
is assumed that the target possible locations 6 comply with a
grid of G points ¢1.¢ (with G > K). Since each element
of 6 parameterizes one column of A(@) it is possible to
define an M N x G dictionary matrix A = [a1,...,aq],
where a, = a(¢,). From (11), the steering vector ag is the
Kronecker product of the receive steering vector b, = b (¢g)
and the transmit steering vector ¢, = ¢ (¢4):

a, =c, @b, (12)
The received signal is then expressed as
Y =AX+E, (13)

where the unknown G x P matrix X contains the target
locations and gains. Zero rows of X correspond to grid points
without a target. The system model (13) is sparse in the sense
that X has only K' < G non-zero rows.

Note that in the sparse localization framework, the matrix
A is known, whereas in the array processing model (9, the
matrix A (0) is unknown. Given the measurements Y and
matrix A, our goal translates into determining the non-zero
norm rows’ indices of X, i.e., the support of X. The matrix



A is governed by the choice of grid points ¢1.g, by the number
M of transmitters and their positions, £;.57, and by the number
N of receivers and their positions, (;.x. In the following
we assume that the transmitter (receiver) elements’ positions
&0 (C1:v) are independent and identically distributed (i.i.d.)
random variables governed by a probability density function

(pdf) p (§) (@ ().

III. SPATIAL COMPRESSIVE SENSING FRAMEWORK

The aim of spatial compressive sensing is to recover the
unknown X from the measurements Y (see (I3)) using a
small number of antenna elements, M N, while fixing the
array aperture Z. In this section we introduce the proposed
spatial compressive sensing framework and overview practical
recovery algorithms (the well-known beamforming method as
well as compressive sensing based algorithms).

A. Beamforming

Consider the scenario in which the transmitters and receivers
locations support the Nyquist array (virtual ULA) geometry.
In this setting, the matrix A in @]) has a Vandermonde
structure, and the aperture scales linearly with the number
of antenna elements, Z = (M N — 1) /2. If we choose the
(uniform) grid of possible target locations ¢, to match the
array resolution, that is G = 2Z + 1, then the matrix A
becomes a Fourier matrix. In this case, Q = A A = M N -1.
It follows that X can be estimated as (1/M N)-A7Y. In array
processing, this method is called beamforming. The support
of the unknown X is recovered by looking for peak values of
|aZ'Y ||, over the grid points. Beamforming is also applied
to estimate the locations of targets not limited to a grid. This
is done by finding the peaks of ||a’ () Y| ,» Where a () is
a steering vector (IT) swept over the angles of interest. The
shortcoming of the Nyquist array setup is that the number
of elements M N must scale linearly with the array aperture
Z and consequently, with the resolution (i.e., such sampling
mode requires M N = G).

Spatial compressive sensing implies that a sparse X can be
recovered from a number of spatial measurements significantly
lower than the Nyquist array, i.e., MN < G. The idea
is to design the sensing procedure so that the matrix Q is
a scalar multiple of the identity matrix on averageﬂ ie.,
E[Q] = MN -1, and to control the variance of the non-
diagonal elements by using a sufficient number of measure-
ments. Intuitively, the more measurements M N we employ,
the closer we get to a diagonal Q. Furthermore, because when
MN < @, each realization of Q has non-zero off-diagonal
terms, the beamforming metric Haf YH2 is affected not only
by the g-th row of X and by the noise, but also by any
row of X that has non-zero norm. This entails that, instead
of beamforming, we resort to more sophisticated recovery
algorithms, which take advantage of the signal’s sparsity to
mitigate the mutual interference among non-zero rows of X.
A brief overview of compressive sensing recovery methods is
provided next.

!For instance, this is obtained when using a partial Fourier matrix.

B. Compressive Sensing

One way to classify compressive sensing models is accord-
ing to the number of pulses P (“snapshots” in array processing
problems): single measurement vector (SMV) for P = 1 (Y
reduces to a single vector), or multiple measurement vector
(MMV) for P > 1 (Y is a matrix). The system model in
(13) is an example of an MMV setting. For simplicity, in the
following we consider an SMV scenario (i.e., P=1,Y =Yy,
X =x and E = e in (13)).

In principle, a sparse x (i.e., it has only K < G non-zero
rows) can be recovered from the least number of elements
M N by solving the non-convex combinatorial ¢y-norm prob-
lem

min Ixlly st [ly — Ax|, <o, (14)
or one of its equivalent formulations: a cardinality-constrained
formulation, miny ||y — Ax||§ s.t. [|x||y < 7, or a Lagrangian
formulation, miny £ |ly — Ang +v ||x]|,. These three formu-
lations are equivalent for a proper choice of the parameters ~,
v and o, which depend on prior information, e.g. the noise
level ||e||, or the sparsity /. Unfortunately, the solution to
any of these formulations requires an exhaustive search among
all combinations of non-zero norm indices of x, necessitating
exponential complexity [4]].

A variety of polynomial complexity algorithms have been
proposed for obtaining an approximate solution to (I4). One
family of methods is Matching Pursuit (MP). In its simplest
version, an empty provisional support is refined by adding
one grid-point index at each iteration. Among the matching
pursuit algorithms, the most notable in the SMV setting are
Orthogonal Matching Pursuit (OMP) [23]], Orthogonal Least
Squares (OLS) [24], and CoSaMP [25]. For the general MMV
setting, examples are the Rank Aware-Orthogonal Recursive
Matching Pursuit (RA-ORMP) algorithm [26] and its gen-
eralization, Multi-Branch Matching Pursuit (MBMP) [27].
Another family of methods is known as Basis Pursuit (BP).
The BP strategy relaxes the /p-norm in with the [;-norm
[28]]. The reformulation is known as LASSO, defined by

min [[x[|; st [ly — Ax[l, <o (15)
Unlike , this problem is convex, and a global solution
can be found in polynomial time. Since it is a relaxation, the
solution obtained could be different from that of (I4). Finding
conditions that guarantee correct recovery with a specific
method (e.g. LASSO) has been a main topic of research and
one of the underpinnings of compressive sensing theory [4].

Two kinds of recovery guarantees are defined in compres-
sive sensing: uniform and non-uniform. A uniform recovery
guarantee (addressed below by Theorem means that for
a fixed instantiation of the random measurement matrix A,
all possible K-sparse signals are recovered with high prob-
ability. In contrast, a non-uniform recovery result (addressed
by Theorem |4)) captures the typical recovery behavior for a
random measurement matrix A. Specifically, suppose we are
given an arbitrary K -sparse vector x, and we then draw A
at random (independent of x). Non-uniform recovery details
under what conditions an algorithm will recover x with high



probability. Note that, for a non-uniform guarantee, A is being
asked to recover only a specific x, not any K-sparse vectors.
Therefore, uniform recovery implies non-uniform recovery, but
the converse is not true.

Loosely speaking, a uniform recovery guarantee can be
obtained if, with high probability, the matrix A has small
coherence [4]. The coherence is defined as the maximum inner
product between the normalized columns of A,

|aa|
(16)

A

PR Tl Ty
Alternatively, uniform recovery is guaranteed if A satisfies the
Restricted Isometry Property (RIP) [4] with high probability.
Non-uniform recovery follows if a specific property of the
random measurement matrix A, called isotropy, holds [18].
The isotropy property states that the components of each row
of A have unit variance and are uncorrelated, i.e.,

E[AT (t,:)A(t,)] =1 (17)
for every ¢.

Both lb and suggest that the matrix Q £ A’ A plays
a key role in establishing recovery guarantees. Indeed, because
in our setting the rows of A are identically distributed, a sim-
ple calculation shows that E [Af (¢,:) A (¢,:)] = 7/xE[Q].
thus the isotropy property requires E [Q] = M N - I. Further-
more, as evident by the definition of coherence in (I6), 1 is
the maximum absolute value among normalized off-diagonal
elements of Q. In Section [[V] by deriving statistics of the
matrix Q, we provide conditions on design’s quantities (p (£),
p(¢), M, N and ¢1.¢) to obtain (uniform and non-uniform)
recovery guarantees for spatial compressive sensing.

IV. RECOVERY GUARANTEES

In this section, we develop recovery guarantees for sparse
localization with MIMO random arrays. In detail, we show
how to choose the grid-points ¢;.c, the number of elements
MN and the distributions governing the element positions
p (&) and p(¢), in order to guarantee target localization by
spatial compressive sensing via (I3). Due to the role of the
matrix Q in recovery guarantees, we start by studying the
statistics of Q.

A. Statistics of Q & AT A

To study the statistics of Q, we first analyze its relationship
to a quantity known to radar practitioners as the array pattern
[29]. In array processing, the array pattern [ (u;;) is the
system response of an array beamformed in direction ¢; to
a unit amplitude target located in direction ¢;. In other words,
B (u;,) is the inner product between two normalized columns
of the measurement matrix:

H
a;” ay

2l flall,

| M N
= oW Z Z exp [jui (Cn +&m)]

m=1n=1

B (uig) = (18)

where we defined

iy =77 (o1 — ¢5) - (19)

The peak of the absolute value of the array pattern for a target
colinear with the beamforming direction, |5 (0)|, is called
the mainlobe. Peaks of |§(u)| for u # 0, are known as
sidelobes, and the highest among all the sidelobes is called
the peak sidelobe. Thus the terms a’a; in play the role
of sidelobes.

The relation between coherence, isotropy and array pattern
is apparent. Indeed, from (I6), (I8), and the definition of
sidelobes, the coherence, in array processing parlance, is the
peak sidelobe associated with the matrix A. Similarly, from
and (T8), the isotropy can be related to the mean array
pattern

N (uig) £ EB (uig)],

where the expectation E [§ (u; ;)] is taken with respect to the
ensemble of element locations. In particular, isotropy requires
that 7 (u;,;) = 0 for any i # [.

For a system with randomly placed sensors, the array pattern
153 (uvl) is a stochastic process. Naturally, statistics of the
array pattern of a random array depend on the pdf of the
sensor locations. In [6], the authors derive the means and
the variances of the real and imaginary parts of 3 (u;;). The
following proposition formalizes pertinent results from [6].
For the sake of brevity, we drop the dependency on ¢ and
I, and denote the array pattern as (3 (u). Define z = ¢ + &,
and assume that the pdf of z, p(z), is an even function (so
that Im 7 (u) = 0). Further, define the variances of the array
pattern o2 (u) = var [Re 8 (u)], 03 (u) = var [Im 3 (u)] and

12 (u) = E[(Re 3 (u) — 7 (u)) Im B (u))].

Proposition 1. Let the locations & of the transmit elements be
i.i.d., drawn from a distribution p (§), and the locations ( of
the receive elements be i.i.d., drawn from a distribution p (C).
Then, for a given u, the following holds:

(20)

1) The mean array pattern is the characteristic function of
z, lLe.,

n(u) = (u). 2

2) If & and ( are identically distributed, then [22), (23),
and o012 (u) = 0 hold.

Proof: See Appendix A. [ ]
Proposition |1| links the probability distributions p (£) and
p(¢) (via 9. (u) and v (u)) to the mean and variances of
cach element of the matrix Q, ie., 8(ui;) = rvala.
As shown below, this result is used to obtain non-uniform
recovery guarantees.

To characterize the statistics of the coherence p (defined in
@])), we need the distribution of the maximum absolute value
among normalized off-diagonal elements of Q.

We now show that, by imposing specific constraints on the
grid points ¢;.¢ and on the probability distributions p (£) and
p(¢), we can characterize the distributions of the elements
of Q. To do this, we require an intermediate result about the
structure of the matrix Q when ¢1.¢ is a uniform grid:

Lemma 1. If ¢1.¢ is a uniform grid, Q is a Toeplitz matrix.



1 N+M-2 N+M-1
of (u) = SN (14 = (2u)) + = (u) TOMN (1 +v¢ (2u)) — ¥z (u) N (22)
1 N+M-2
o5 (u) = SN (1 =z (2u)) + ¢z (u) OMN (1 + ¢ (2u) 23)
Proof: See Appendix B. B 2)If¢&, =, forall n:
Thanks to Lemma [T} whenever ¢;.¢ is a uniform grid, Q 1
is described completely by the elements of the first row of A, Pr <N2 |a{{ ai] > q) < exp(—Ngq). 27

alla; fori =1,...,G. From the definition of A, its columns
all have squared-norm equal to M N. Therefore the elements
on the main diagonal of Q are equal to M N. Thus, we need
to investigate the remaining random elements, al’a; for i =
2,...,G. By exploiting the Kronecker structure of the columns
of A in (I2), we can express the elements of Q as:

(1>

(c? @b) (c; ®by)

_ H_ v.Hy .
=c¢; ¢;b;" by,

aiH aj
(24)

where b and c are the steering vectors of the receiver and
transmitter arrays, respectively.

From , the random variable 3 (u1,;) £ t}alla; is the
product between the random variables 8¢ (u1;) £ +bf'b;
and B¢ (u1;) = 2-cfc;. As such, the distribution of 3 (u1 ;)
(or equivalently, afl a;) can be characterized from the distri-
butions of ¢ (u1,;) and B¢ (u1 ;). Following the approach in
[Sl], we show in Appendix C that the real and imaginary parts
of B¢ (u1,;) (or Be (u1,;)) have an asymptotic joint Gaussian
distribution, but, in general, the variances of real and imaginary
parts of such variables are not equal. Interestingly, a closed
form expression for the cumulative density function (cdf)
of the product of S (uq;) and B¢ (u1;) (ie., the cdf of
ivalla;) exists in the special case when var [Re B¢ (u1,;)] =
var [Im B¢ (u1,;)] and var [Re B¢ (u1,)] = var [Im B¢ (u14)].
By meeting these conditions, in the following theorem we
derive an upper bound on the sidelobes’ complementary cdf
(cedf), ie., Pr (7% |a{{ai| >q), and show that sidelobes
have uniformly distributed phases.

We address two MIMO radar setups: (1) M transmitters
and N receivers, where ¢ and ( are independent, and (2) N
transceivers, where &, = (,, for all n and M = N.

Theorem 1. Let the locations £ of the transmit elements be
drawn i.id. from a distribution p (&), and the locations (
of the receive elements be drawn i.i.d. from a distribution
p (€). Assume that p (£), p (¢) and the uniform grid ¢1.c; are
such that the transmitter and receiver characteristic functions

satisfy
Ve (u1:) = Ye (2u1;) = e (uri) = ¢ (2ur ;) =0

fori=2,...,G, where u1; = 7Z (¢; — ¢1). Then for i =
2,...,G:
1) If € and ¢ are independent:

(25)

1 H
Pr (MN‘al a;| >q> <z K (z), (26)

where © 2 2v/MNy.

3) In both scenarios, the phase of alla; is uniformly dis-
tributed on the unit circle, i.e.,

Lalla; ~ U [0,27]. (28)
Proof: See Appendix C. |
This theorem characterizes the distribution of ﬁa{{ a;

for the M transmitters N receivers setup, and for the N
transceivers setup. In subsection IV.D, we provide a practical
setup that satisfies . As shown below, this allows to obtain
a uniform recovery guarantee for spatial compressive sensing.

B. Uniform recovery

The following corollary of Theorem [T] bounds the probabil-
ity that the matrix A has high coherence, or equivalently, the
probability of a peak sidelobe:

Corollary 1. Let the locations of the transmit elements £ be
drawn i.i.d. from a distribution p (§), and the locations of the
receivers  be drawn i.id. from a distribution p ({). Assume
that the distributions p (§) and p (¢) and the uniformly spaced
grid-points ¢1.c; are such that (23) holds for i = 2,...,G.
Then:

1) If £ and C are independent:

Prp>q) <1—[1—z- K ()", (29)
where = £ 2v/MNq.
2) If &, = (,, for all n:
Pr(u>q)<1—[1-exp(~Ng)“". (30)
Proof: See Appendix D. [ ]

Since i can be interpreted as the peak sidelobe of the array
pattern, eq. (eq. (30)) characterizes the probability of
having a peak sidelobe higher than ¢ in a system with M
transmitters and N receivers (/N transceivers). These results
are not asymptotic (i.e., they do not need the number of
measurements M and N to tend to infinity). To further explore
this point, in numerical results we compare these bounds with
empirical simulations.

The coherence p plays a major role in obtaining uniform
recovery guarantees for compressive sensing algorithms, as
well as guaranteeing the uniqueness of the sparsest solution
to (T4). For instance, using the coherence 1, it is possible to
obtain a bound on the RIP constant, i < (K — 1) u [30].
This ensures stable and robust recovery by [;-minimization
(i.e., using (I5)) from noisy measurements. By building on
Corollary [T] the following theorem establishes the number of



elements M N needed to obtain uniform recovery with high
probability using (T3):

Theorem 2 (Uniform recovery guarantee). Let the locations
& of the transmit elements be drawn i.i.d. from a distribution
p (£), and the locations ¢ of the receivers be drawn i.i.d. from
a distribution p (C). Let the distributions p (§) and p (¢), and
the uniform grid ¢..c be such that relations hold for
1 =2,...,G. Further, let

1\ 2 1 2
MN >C (K — 2> {longr ilog (2log7) 31
where v & \/1tG/(2€), and the constant C =
(43 + 12\ﬁ) /16 = 4.6718. Then, with probability at least
1 — ¢, for any K-sparse signal x € C¢ measured from MN
MIMO radar measurements y = Ax + e, with ||e||, < o, the

solution X of satisfies

1% = x|, < co, (32)
where c is a constant that depends only on e.
Proof: See Appendix E. ]

The significance of is to indicate the number of
elements necessary to control the peak sidelobe. This is used
to obtain a uniform recovery guarantee for spatial compres-
sive sensing. In addition, the previous theorem ensures exact
recovery of any K -sparse signal using (I3) in the noise-free
case o = 0.

It is important to point out that the number of grid points
G is not a free variable since ¢;.¢ must satisfy . This
point will be explored in subsection IV.D, where we show that
the resolution G must be linearly proportional to the “virtual”
array aperture Z.

Uniform recovery guarantees capture a wWorst case recovery
scenario. Indeed, the average performance is usually much
better than that predicted by uniform recovery guarantees. In
the following section, we show that if we consider a non-
uniform recovery guarantee, then the zero mean conditions
(25) can be relaxed, and we obtain recovery guarantees that
scale linearly with K.

C. Non-uniform recovery

We now investigate non-uniform recovery guarantees. In
recent work [18], it has been shown that for a sufficient
number of ii.d. compressive sensing measurements, non-
uniform recovery is guaranteed if isotropy holds. However,
the result in [18]] cannot be directly used in our framework
since the M N rows of the matrix A, following , are not
1.1.d. This scenario is addressed in [19] in which non-uniform
recovery is guaranteed for a MIMO radar system with N
transceivers if the isotropy property (under the name aperture
condition) holds. The following theorem derives conditions on
grid points ¢1.¢ and probability distributions p (£) and p ({), in
order for the random matrix A to satisfy the isotropy property:

Theorem 3. Let the locations £ of the transmit elements be
drawn i.i.d. from a distribution p (£), and the locations ¢ of the
receivers be drawn i.i.d. from a distribution p (C). For every t,

the t-th row of A in satisfies the isotropy property [[I8],

ie.,

E[AT (t,)A(t,)] =1, (33)
iff p (&), p(¢) and ¢1.¢ are chosen such that, fori =2,..., G,
Y, (u1) =0, (34)

where z = ( + & and uy; = 77 (¢i — ¢1).
Proof: See Appendix F. [ ]

Theorem [3| links grid points ¢;.c and probability distri-
butions p (&) and p(¢) (through the characteristic function
of z) with the isotropy property of A. When (34) holds,
it can be shown that the aperture condition used in [19]]
holds too. Therefore, using the same approach as in [19],
non-uniform recovery of K targets via is guaranteed
in the proposed spatial compressive sensing framework. The
following Theorem customizes Theorem 2.1 in [19] to our
framework:

Theorem 4 (Non-uniform recovery guarantee). Consider a
K-sparse x € CY measured from MN MIMO radar mea-
surements y = Ax + e, where |le||, < o. Let ¢ > 0 be
an arbitrary scalar, and suppose that the random matrix A
satisfies the isotropy property, E[A™ (t,:) A (t,:)] = I V.
Then with probability at least 1 — ¢, the solution X to

obeys
. | K
||X — X||2 S 010' m, (35)
provided that the number of rows of A meets
MN > CK log? <CG) , (36)
€

where C1, C and c are constants.

Proof: The theorem results from Theorem 2.1 in [19]]
by performing the following substitutions: K for s (sparsity),
MN for n? (number of rows of A), and G for N (number
of columns of A). Since in this work we consider K -sparse
signals, in (35) we discarded the term that accounts for nearly-
sparse signals present in [19]]. [ ]

Theorem [ shows that, when the isotropy property is satis-
fied, the proposed framework enables us to localize K targets
using about M N = K (log G)> MIMO radar measurements.

Some comments are in order. First, it is important to stress
that in (36), the number of elements scales linearly with the
sparsity K. This is in contrast with uniform recovery bounds
based on coherence (e.g. (31))), which scale quadratically with
K. Moreover, the significance of the logarithmic dependence
on G is that the proposed framework enables high resolution
with a small number of MIMO radar elements. This is in
contrast with a filled virtual MIMO array where the product
MN scales linearly with G. Again, it is crucial to point out
that the number of grid points G is not a free variable, because
the grid points ¢1.c must satisfy (34). Second, differently
from (33), in the error did not depend on K, M and
N. Third, (33) shows that reconstruction is stable even when
the measurements are noisy. Additionally, we see from (35)
that when o = 0, Theorem E] guarantees exact reconstruction



with high probability, when (36) holds. Both results above can
be extended to approximately sparse vectors, in which case an
extra term appears in the right hand-side of (32)) and (33). This
situation may emerge when targets are not exactly on a grid,
however, the analysis of such scenario is outside the scope
of this paper. Finally, to suggest some intuition into the above
conditions, notice that recovery can be guaranteed by requiring
the matrix A to satisfy the isotropy property, E [Q] = M N -1,
and by controlling the variances of the non-diagonal elements
of Q(which, according to and (23), scale with 1/MN)
through the use of a sufficient number of measurements M N.

D. Element locations and grid-points

We now provide an example of p (§), p(¢) and ¢1.¢ that
meet the requirements of Theorem [I] and Theorem [3]

The conditions needed by each theorem constraint the
characteristic function of the random variables &, (. Let,
Zrx = Zrx = Z/2, such that the random variables ¢ and ¢
are both confined to the interval [—%,2]. The characteristic
function of a uniform random variable ¢ ~ U [f%, %] is the
sinc function, i.e.,

sin (u/2)
u/2

Therefore, when ( is uniformly distributed, by choosing ¢1.¢
as a uniform grid of 2/Z-spaced points in the range [—1, 1],
we have that ¥¢ (u;;) = ¥¢ (2u;;) = 0 for any ¢ # [ (since
u; g = wZ (¢ — ¢i) = 27 |i — I]). The number of grid points
G is not a free variable, because the grid points ¢;.c must
satisfy (25) or (34). For instance, in the example above, ¢1.¢
must be a uniform grid of 2/Z-spaced points between [—1, 1],
and, assuming that Z is an integer, the number of grid points
isG=27+1.

The dependence between the number of grid points G and
the virtual array aperture Z can be understood by noticing
that both (2Z5) and (34) impose that grid points are placed at
the zeros of the characteristic function of the relative random
variable (i.e. the sinc function). The spacing of the zeros
is dictated by the virtual array aperture Z. The bigger the
aperture the more grid points fit in the range [—1, 1].

Summarizing, choose ¢1.¢ as a uniform grid of 2/Z-spaced
points in the range [—1, 1]. Then:

Ye (u) = (37

1) If both ¢ and £ are uniformly distributed, relations
@ hold, and we can invoke Theorem |I| (for uniform
recovery);

2) If either ( or £ are uniformly distributed, relation (34)
holds, and we can invoke Theorem |3| (for non-uniform
recovery).

Note that non-uniform recovery, i.e., @), requires only one
density function, say p({), to be uniform, while the other
distribution, p (£), can be arbitrarily chosen, e.g., it can be even
deterministically dependent on ¢. For instance, (34) is satisfied
in a MIMO radar system with N transceivers, i.e., when (y.y
are i.i.d. uniform distributed and we deterministically set &, =
ey

Finally, we remark that the analysis provided in this section
regarding the statistics of the matrix A may be used with
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Fig. 2. Empirical ccdf of the coherence of the measurement matrix A and

its upper bound as a function of the number of elements. (a) considers the
M transmitters and IV receivers setup and the upper bound is given in ;
(b) considers the NV transceivers setup and the upper bound is given in

block-sparsity results in the compressive sensing literature [4]
to obtain guarantees for the general MMV scenario.

V. NUMERICAL RESULTS

In this section, we present numerical results illustrating the
proposed spatial compressive sensing framework.

We design an example to follow Theorem |1} in which p (§)
and p (¢) are both uniform distributions, and ¢;.¢ represents
a uniform grid of 2/Z-spaced points in the interval [—1,1],
which implies that the number of grid points is G = Z + 1.
The system transmits a total of P pulses. When expressed
in discrete form, each pulse consists of M orthogonal codes
composed by M symbols. In particular, we select the codes
to be the rows of the M x M Fourier matrix. Equal length
apertures were assumed for the transmit and receive arrays,
ie., Zrx = Zrx = Z/2. The target gains were given by
x, = exp (—jpr), with g drawn i.i.d., uniform over [0, 27),
forall k =1,..., K (where K is the number of targets). The
noise (see (13)) was assumed to be distributed as vec (E) ~
CN (0,0°I) and the SNR is defined as —10log;, 0. From
the definition of the measurement matrix A, its columns all
have squared-norm equal to M N. Throughout the numerical
results, we normalize the columns of A to have unit norm.

We first investigate the statistics of the matrix Q discussed
in Section [M] In particular, we analyze the coherence g
of the measurement matrix A compared to the result given
in Theorem [I] The virtual aperture was Z = 250 (thus
G = 251). In Fig. P] we plot the ccdf of the coherence
i, i.e. Pr(p > q), as a function of the number of elements
for (a) the M transmitters and N receivers setup and (b) the
N transceivers setup. As a reference, we also plot the upper
bound given in (29) and (30), respectively. It can be seen how
the upper bound becomes tighter and tighter as the number of
elements increases. In addition, it is interesting to notice that
the coherence of the matrix A for the N’ transceivers setup



is very close to the coherence of the matrix A for the the M
transmitters and NN receivers setup when M = N = N'/2.

We next present localization performance using practical
algorithms. We implemented target localization using LASSO
following the algorithm proposed in [19]] to solve problem
@). In addition, we implement Beamforming, OLS, OMP,
CoSaMP, FOCUSS [31] and MBMP. In the MMV setup we
also compare MBMP, RA-ORMP [26], M-FOCUSS [31]], and
MUSIC [32]. Concerning MBMP, it requires as input a K
length branch vector d, which define the algorithm’s complex-
ity (see [27] for details on setting parameters for MBMP). The
output of MBMP is the estimated support. Notice that, when
d=11,...,1], MBMP reduces to OLS in the SMV scenario,
and to RA-ORMP in the MMV scenario. We define the support
recovery error when the estimated support does not coincide
with the true one. For algorithms that return an estimate X of
the sparse vector x (e.g., LASSO, FOCUSS and MUSIC), the
support was then identified as the K largest modulo entries of
the signal X.

Analyzing how to set the noise parameter o in (T4), or the
sparsity K, without prior information is the topic of current
work [21]], but outside the scope of this paper. Therefore, we
assume that the noise level is available and that the number
of targets K is known (notice that this information is needed
by all the algorithms including MBMP). The virtual aperture
was Z = 250 (thus G = 251), and tests were carried out for
K =5 targets. The SNR was 20 dB throughout.

The main focus of the paper is to reduce the number of
antenna elements while avoiding sidelobes errors and while
preserving the high-resolution provided by the virtual array
aperture Z (i.e., recovering 2/Z-spaced targets). Therefore,
to account for errors due to sidelobes (an erroneous target is
estimated at a sidelobe location) and unresolved targets (the
responses of two targets in consecutive grid-points is merged
in only one grid-point), we consider as performance metric the
support recovery error probability, defined as the error event
when at least one target is estimated erroneously.

We first treat the non-uniform guarantee setting. Monte
Carlo simulations were carried out using independent real-
izations of target gains, targets locations, noise and element
positions. Fig. [3] illustrates the probability of support recovery
error as a function of the number of measurements MN.
From the figure, it can be seen that compressive sensing
algorithms enable better performance (smaller probability of
sidelobe error and better resolution) than beamforming, which
is not well-suited for the sparse recovery framework. Among
compressive sensing algorithms, two main groups appear: on
one side, OLS and OMP, which both have practically the
same performance; on the other side, L1-norm opt., CoSaMP,
FOCUSS and MBMP. Among the latter group, it is important
to point out that, although the recovery guarantee established
in Theorem [ requires the solution of (I3), and thus using
LASSO, MBMP provides a viable and competitive way to
perform target localization.

We next consider uniform guarantees. In this setup, we
first generate a realization of the matrix A by drawing at
random the element positions. Maintaining the matrix A fixed,
we perform 500 Monte Carlo simulations using independent
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Fig. 3. Probability of support recovery error as a function of the number of

rows M N of A. Non-uniform SMV setup. The system settings are Z = 250,
G =251, P =1 and K = 5 targets with |zj| = 1 for all k. The SNR is
20db.
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Fig. 4. Probability of support recovery error as a function of the number
of rows M N of A. Uniform SMV setup. The system settings are Z = 250,
G =251, P =1 and K = 5 targets with x| = 1 for all k. The SNR is
20db.

realizations of target gains, targets locations and noise. For
each recovery method, we defined a support recovery error if
an error occur in any of the 500 simulations. We then average
throughout element positions realizations. Fig. [] illustrates
the probability of support recovery error as a function of
the number of measurements M N. The difference among
OLS/OMP and the more sophisticated methods (i.e., LASSO,
CoSaMP, FOCUSS and MBMP) is even more evident in this
setup (e.g. at M N = 81, the probability of OLS/OMP error
is greater than 0.1), confirming the theoretical finding [33] of
OLS/OMP unfitness to deliver uniform recovery. On the other
hand, MBMP, an extension of OLS, still provides competitive
performance. In particular, MBMP with d = [3,3,3,3,1]
outperform the other methods.

The theoretical results presented in this work focus on the
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Fig. 5. Probability of support recovery error as a function of the number of

rows M N of A. Non-uniform MMV setup. The system settings are Z = 250,
G =251, P =5 and K = 5 targets with !xk’p} =1 for all k£, p. The SNR
is 20db.

SMV setting. However, in practice several snapshots can be
available. To explore the benefits of the proposed MIMO
random array framework in such case, in Fig. [5|we consider an
MMV setting (P = 5) and we compare sparse recovery meth-
ods with the well-known MUSIC algorithm. We evaluate five
different elements configurations: [M, N| = [3, 3], [4, 4], [5, 5],
[6, 6] and [7, 7). The figure illustrates the probability of support
recovery error as a function of the number of measurements
MN (nonuniform setup). Sparse recovery algorithms have
better performances than MUSIC, and the availability of mul-
tiple snapshots allows to considerably reduce the number of
antenna elements. Moreover, in the MMV setting, algorithms
which are able to exploit the signal subspace information (e.g.
MBMP and RA-ORMP) posses a clear advantage over those
algorithms that are unable (e.g. M-FOCUSS). For instance,
this can be appreciated by the difference in performance of
FOCUSS and MBMP with d = [2,2,2,2, 1] when comparing
the SMV (Fig. [3) and MMV (Fig. [5) settings. The numerical
simulations presented in this paper considered a medium SNR
level and show a superior performance of sparse recovery
methods over classical methods (e.g. beamforming or MUSIC)
in the proposed framework. Since the sparsity property, upon
which sparse recovery methods rely, is independent from the
SNR, we expect a similar behavior also at low SNR (e.g.,
SNR= 0 dB or lower).

VI. CONCLUSIONS

We propose a sparse framework to address the source local-
ization problem for a random array MIMO radar system. We
link system design quantities, i.e., the probability distributions
p (&) and p(¢) of the tx/rx sensors location and the sparse
localization grid points ¢1.g, with the statistics of the Gram
matrix Q and the related coherence of the matrix A. Based
on this result, we were able to develop uniform and non-
uniform recovery guarantees for spatial compressive sensing.
We show that within the proposed framework, it is possible

to localize K targets using about MN = K (log G)> MIMO
radar noisy measurements, where G is proportional to the array
aperture and determines the angle resolution. In other words,
the proposed framework supports the high-resolution provided
by the virtual array aperture while using a reduced number of
MIMO radar elements. This is in contrast with a filled virtual
MIMO array for which the product M N scales linearly with
G. Moreover, since the results characterize the product of the
number of transmit and receive elements, MIMO random array
implementation further reduces the total number of antenna
elements needed. From numerical simulations it emerges that,
in the proposed framework, compressive sensing recovery al-
gorithms (e.g. MBMP) are capable of better performance (i.e.,
smaller probability of sidelobe errors and better resolution)
than classical methods, such as beamforming and MUSIC.

VII. APPENDIX
A. Proof of Proposition

1) Mean: The mean 7 (u) is by definition the expectation
of the random array pattern, i.e., E [8 (u)], over 2, = &mn +
Cn- The expectation and the summations can be interchanged
obtaining

| MoN
n(u) = VN Z ZE [exp (Juzmn)] - (38)
n=1

m=1
Moreover, the average of exp [jui; (¢n + &n)] does not de-
pend on the index n and m, since (i.y are identically
distributed, and so are &;.5;. By dropping the indexes of (,
and &, and using z = £+, we have the sum of M N identical
terms, divided by M N. Thus 7 (u) equals E [exp (juz)], the
characteristic function of the random variable z.

2) Variance: Let 0% (u) = Re 3 (u) and 03 (u) = Im 3 (u).
For brevity of notation, we drop the dependency on wu. First
notice that since p(z) is even, its characteristic function
is real, thus so is the mean value of the array pattern 7.
We also have that E[(Ref —n)Imp] = E[RefImf] —
nE [Im 5] = 0, since the real and imaginary parts are uncor-
related and because E [Im 3] = 0. Next, we need to evaluate
o? 2 E [(Reﬁ —77)2} and 02 2 E|(ImpB)?|. In order to
derive these quantities, we consider the expectations given by
E {(6 - n)z} and E [|8 — n|?]. It can be shown that,

E [(5 - n)ﬂ = 02— 2 + 201 (39)

and
E[18 —nl’] = of + 3.

Substituting the definition of the random array pattern [ (u)

(T8) and 1) in (39) and @0), we obtain (22) and 23).

(40)

B. Proof of Lemma []|

From we have that aa; = M N3 (u; ), where u; ; =
wZ (¢; — ¢1). When ¢1.¢ is a uniform grid, ¢; —¢; is constant
whenever ¢ — [ is constant, i.e., along every diagonal of the
matrix Q. Since 5 (u;,;) depends only on the term ¢; — ¢; (not
on the actual ¢; and ¢;), Q is a Toeplitz matrix.



C. Proof of Theorem

We define the array pattern associated with the transmitter

as
(uig) & - Zexp i iGn] = bff b, (4D)
n=1
and with the receiver arrays as:
1
ﬁf (uzl é Z €xXp jul lgm] = MC,{—ICl. (42)

Statistical properties of random arrays were analyzed in [3]
in the case of passive localization (i.e., an array with only
receiving elements). The following lemma customizes useful
results from [5]:

Lemma 2. Let the locations (. of the receiving array be
iid., drawn from an even distribution p(() and consider
a given u. Then B (u) is asymptotically jointly Gaussian
distributed (we neglect the dependency on u):

Re B¢ Y Re ¢ o2 0
Im /BC Im ¢C ’ 0 0'%

where o3 (u) = 2 [1+ ¢ (20)] — 242 (u) and o3 (u) =

— ¢ (2U)}

Proof: See [5]. ]

The joint distribution of Re B¢ (u) and Im B¢ (u) can be
obtained similarly.

For a given i € {2,...,G}, using Lemma [I| and the
assumption that the mean patterns of both the transmitter and
receiver arrays satisfy , ie., Y (u1:) = Ve (Quiy) =
Ye (u1,:) = ¢ (2u1;) = 0, we have that, for both trans-
mitter and receiver arrays, the array pattern evaluated at any
grid point is being drawn from an asymptotically complex
normal distribution with variance defined by the number of
transmit and receive elements, i.e., B¢ (u1,;) ~ CN (0 ( ) M)
and B¢ (u1;) ~ CN (0,%). It follows that the random

(43)

2N[

variable ¢ = % ‘bl Z’ can be approximated as belonging
to Rayleigh distribution, i.c., p(q) = (¢/0?) exp (—¢*/20?),
where 02 = 1/(2N), and similarly the random variable

% |c{{ ci| is governed by a Rayleigh distribution with variance
o =1/(2M).

If € and ¢ are independent (part 1), the two random variables

|be | and + fcl c,| are independent. Using (24])), we have
that the dlstrlbutlon of M ~ ’al az| is the product of two
independent Rayleigh distributed variables. The cumulative
density function of such a variable is given in [34]. It follows
that the cedf of 15 |affa;| satisfies

Pr ——
g <MN
where £ 2/ M Ng.
If §n = (, for all n (part 2) by using (24), we have
that N2 |a1 az} = ( ’bH b; |) Since the random variable
N |bH b‘ has a Rayleigh distribution, N2 |a1 al’ is dis-

tributed as the square of a Rayleigh distribution, which has
cdf 1 — exp (—Ngq). As such, its ccdf satisfies

1
Pr <N2 |aflal-’ > q> <exp(—Ngq).

‘a{{ai| >q> <z-Ki(x), (44)

(45)

Part 3 follows because, from l| the phase of a{{ a; Is
the sum of the phases of bib; and cfc;. In the case of
transceivers the phase of al’a; is evidently uniform since it
is the same phase of bi’b;. In the case of M transmitter and
N receivers, since both b{{ b; and C{I c; are two independent
circular symmetric complex normal variables, the sum of the
phases is itself uniformly distributed over [0, 27).

D. Proof of Corollary [I]

We take the conservative assumption of independence be-
tween the G — 1 random variables |ﬁa{{ a;|, for i =
.,G. If £ and ¢ are independent (part 1), from (26), the
ccdf of the maximum among G — 1 such variables (which
gives the coherence), is upper bounded by

1
P
! (?f“lx VAL 2

>q) <1-[l—z K ()],

(46)
where = £ 2/ M Ny.
If &, = (, for all n (part 2), by using (27), the ccdf of the
maximum among G — 1 such variables, is upper bounded by

Pr (s 5

This concludes the proof.

L@

H
—aja;

> q) <1—[1—exp(Ng)®

E. Proof of Theorem

The theorem follows by combining the claims of Theorem
2.7 in [30] and Corollary E} Theorem 2.7 in [30]] provides
stable recovery guarantees for any K-sparse signal if the
measurement matrix A has RIP o < 2/ (3 + \/m) £
«. The goal is therefore to bound the RIP dox of the
spatial compressive sensing measurement matrix A with
probability higher than 1 — e. In other words, we want
to find how many measurements M N we need to satisfy
Pr(dox <a) > 1 — e By using dox < (2K — 1) 1 [30],
we have that dox < « if (2K — 1) < «. Moreover, the
condition Pr((2K —1)u<a«a) > 1 — € is equivalent to
Pr(u > a/ (2K — 1)) < e. Therefore by invoking in
Corollary [, we can write

Pr(bog >a) <1l—[1—z-K(2)]%" 48)

where, by combining x £ 2¢/MNgq and ¢ = o/ (2K — 1),
we have © = 2V M Na/ (2K — 1). We thus look for the value
M N that makes the right hand-side equal to e.

We first approximate the modified Bessel function of the
second kind K (z) for a large absolute value and small
phase of the argument (in our setting, the argument z is
real) [33]: K; ( \/7 exp ( We thus would like
to enforce 1 — [1 — /5 exp(— )]G_l = e. Defining t £

T exp (—x) and linearizing the function (1 — )" around
t= O we obtain G'\/%F exp (—x) = €, where, for simplicity,
we used G in place of G — 1. This equation can be rewritten
in the form —2x exp (—2x) = —y~2, where v £ ‘fG . The
inverse function of such equation is called the Larnbert w
function [36]. For real arguments, it is not injective, therefore




it is divided in two branches: x > 1/2 or z < 1/2. Since in our
setup « < 1/2, the lower branch, denoted W_1, is considered,
and our solution satisfies —2x = W_; (77’2). By using the
asymptotic expansion W_; (—y72) &~ —2Iny — In(21n~)
and solving for M N we obtain (31)). The claim of the theorem
follows from Theorem 2.7 in [30]. Finally, since in this work
we consider K-sparse signals, in the error term @), we
discarded the term for nearly-sparse signals present in [30].

F. Proof of Theorem [3|

Because the variables (7. are identically distributed, and
so are £1.a, the average E [AF (t,:) A (t,:)] does not de-
pend on the index ¢ = N (m —1) + n, where the last
relation follows from the definition of a,. Therefore, we have
E[AT (t,)A ()] = e oMY E[AT () At:)] =
77+ E [Q]. Thanks to Lemma 1} we can focus only on the first

row of -}~ [Q]. Using , the elements of the first row of
such matrix are 1) (u1 ;) for¢ =1,...,G. From in Propo-
sition (I} we know that 9 (u; ;) = %, (u1,). Thus, requiring
(B4).ie., 9. (u1;) = 0fori =2,...,G, together with the fact
that exp (jzui,1) = 1 (because u1 1 £ 77 (¢ — ¢1) = 0),
gives the “if” direction of the claim.

The “only if”” direction follows by noticing that when (34) is
not satisfied there will be at least one ¢ such that 1 (u; ;) # 0.
Therefore, the matrix A does not satisfy the isotropy property,
showing that (34) is also a necessary condition.
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