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Decomposition by Partial Linearization:
Parallel Optimization of Multi-Agent Systems

Gesualdo Scutari, Francisco Facchinei, Peiran Song, DBnkalomar, and Jong-Shi Pang

Abstract—We propose a novel decomposition framework for ~ In an effort to obtain distributed albeit suboptimal algo-
the distributed optimization of general nonconvex sum-utility rithms a whole spectrum of approaches has been explored,
functions arising naturally in the system design of wireles multi- trying to balance practical effectiveness and coordimatio
user interfering systems. Our main contributions are: i) the ; .
development of the first class of (inexact)acobi best-response requ're_ments' At one end of the sp_ectrum we find game-
algorithms with provable convergence, where all the usersimul- ~ theoretical approaches, where users in the network are mod-
taneously and iteratively solve a suitably convexified veisn of eled as players that greedily optimize their own objective
the original sum-utility optimization problem; ii) the der ivation  function. Game-theoretical models for power control prob-
of a general dynamic pricing mechanism that provides a unifid lems over ICs have been proposed i [7]+[11] ahdl [12]-

view of existing pricing schemes that are based, instead, on .
heuristics; and iii) a framework that can be easily particularized [14] for SISO and MISO/MIMO systems, respectively. Two

to well-known applications, giving rise to very efficient practical recent tutorials on the subject are [15]. [16], while recent
(Jacobi or Gauss-Seidel) algorithms that outperform exishg ad-  contributions using the more general mathematical theéry o

hoc methods proposed for very specific problems. Interestiyly, Variational Inequalities[[17] are[ [18]=[20]. The advargag
our framework contains as special cases well-known gradié¢n of game-theoretic methods is that they lead to distributed
algorithms for nonconvex sume-utility problems, and many bbck- . . . .. .
coordinate descent schemes for convex functions. implementations (only local channel information is regdir

at each user); however they converge to Nash equilibria that
in general are not even stationary solutions of the nonconve

social problem. In contrast, other methods aim at reaching
W IRELESS networks are composed of users that M&Yationary solutions of the nonconvex social problem, at th

have different objectives and generate interferencg,st of more signaling and coordinatiofequential decom-
when no mult_|plexmg scheme is imposed a priori to regU|a[tﬁ)sition algorithms were proposed in [21]24] for the sum-
the transmissions; examples are peer-to-peer, ad-hoGad yate maximization problem over SISO/MIMO ICs, and iil[25]
nitive radlp systems. A u_sual and_ C(_)n_vement way of desg.ynuﬁor more general (nonconvex) functions. In these algorithm
such multiuser systems is by optimizing the “social fumttio 1y one agent at a time is allowed to update his optimization
e, the (weighted) sum of the users’ objective functionggrigpies: a fact that in large scale networks may lead to
Since centralized solution methods are too demanding it M@ essive communication overhead and slow convergence.
applications, the main difficulty of this formulation lies i The aim of this paper is instead the study of more appealing
performing the optimization in a distributed manner withdi - 4 1\,itaneous distributed methods foigeneral nonconvex sum-

ited signaling among the users. When the social problem ig, &t problems, whereall users can update their variables at
sum-separableonvex programming, many distributed method$pe same time. The design of such algorithms with provable

have been proposed, based on primal and dual decompositigyergence is much more difficult, as also witnessed by
techniques; see, e.gl.[2]+[4] and references thereinhis tyho scarcity of results available in the literature. Besittee
paper we address the more frequent and difficult case in whighyjication of the classical gradient projection algaritto the

the social function is nonconvext is well known that the ¢ rate maximization problem over MIMO IG5 [26], parallel
problem of finding a global minimum of the social functiong ative algorithms (with message passing) for DSL/ad-ho
is, in general, NP hard (see e.gl [5]), and centralized ®0lut 5|50 networks and MIMO broadcast interfering channels
method§ (e.g., based on co_mblnatorlal approaches) are ja9¢ proposed i [27]=[29] and [30], respectively. Unfertu
demanding in most applications. As a consequence, reclfe|y the gradient schemés|[26] suffer from slow converge
research efforts have been focused on finding efficientiy hig4 4o not exploit any degree of convexity that might be

quality suboptimal solutions via easy-to-implement (g3 resent in the sum-utility functionf [27/=[29] hinge cratty
distributed algorithms. A recent survey on NONCONVeX resdu o the special log-structure of the users’ rate functioms} a
allocation problems in interfering networks modeled asSSau[@] is based on the connection with a weighted MMSE
sian Interference Channels (ICs) s [6]. problem. This makes [27]=[30] not applicable to different

G. Scutari and P. Song are with the Dpt. of Electrical EngateStUniv. classes of sum-utility prOblems'
of New York at Buffalo, Buffalo, USA. F. Facchinei is with thBpt. of BUIldIng on the idea first introduced ”D[l]’ the main

Computer, Control, and Management Eng., Univ. of Rome “Lai&@ma”, contribution of this paper is to propose a new decomposition

Rome, Italy. J.-S. Pang is with the Dpt. of Industrial and t8ys Eng., method thati) converges to stationary points of a large class of
Univ. of Southern California Viterbi School of Eng., Los Aglgs, USA.

D. Palomar is with the Dpt. of Electronic and Computer Engongl Kong (nonconvex) social prObIemS' encompassing most Sumyut'“

Univ. of Science and Technology, Hong Kong. Emailsgesual do,  functions of practical interest (including functions ofneplex

pei ranso>@uf f al o. edu; facchi nei @i s. uniromal.it; variables);ii) decomposes well across the users, resulting in

j ongshi p@isc. edu; and pal omar @ist . hk. h allel soluti i b bl f h .
Part of this work has been presented at the 5th Int. Conf. otwadik the par solution ofconvex subproblems, one for each user;

Games, Control and Optimization (NetGCooP 2011), Oct. 422011, [1]. iii) converges also if the users’ subproblems are solved in an

I. INTRODUCTION


http://arxiv.org/abs/1302.0756v2

inexact way; andv) contains as special case the gradient algetrategy profile isx=(x;)!_,, and the joint strategy set of the
rithms for nonconvex sum-utility problems, and many blockasers isk £ HjeZ KC;. The system design is formulated as
coordinate descent schemes for convex functions. Moreover '

the proposed framework can be easily particularized to-well minimize  U(x) < > filx)
known applications, such as [21]=[24], [29], [31], givinige _ = 1)
in a unified fashion to distributed simultaneous algorithhat subject to x; € K;, Vi€,

outperform existingad-hoc methods both theoretically and

with Z; £ {1,...,I;}. Observe that, in principle, the s&
numerically. We remark that while we follow the seminal ide pod } g o ¥

f di in thi besid iding full of %f objéctive functions is different from the s&tof users; we

p?t horwar Im D]’ In this Paper, .gs' es pI‘O\t/1I mg u Ip 9 show shortly how to explore this extra degree of freedom to
0 t. e results in[ll], we |)_con_S| €r a much wider class Oéood effect. Of course[(1) contains the most common case
social-problems and (possibly inexact) algorithms, id0ig hqre there is exactly one function for each user,fi.e- I;.

ﬂlfﬂ as srl)emal (_:asles, i) (;|§puss in detail the _caTIe of fansti Assumptions. We make the following blanket assumptions:
of complex variables, and iii) compare numerically to stafte Al) Eachk;, is closed and convex:

the-art alternative methods. To the best of our knowledys, tA2) Each f; is continuously differentiable of:

paper is the first attempt toward the development of decomggs) EachV, f; is Lipschitz continuous ofiC, with constant
sition techniques fogeneral nonconvex sum-utility problems Ly let Lyp 23 Loy,
i 7 i

that allow distributed simultaneous (possibly inexact) best- A4) The lower level se’(x°) 2 {x € K : U(x) < U(x°)}

response-based updates among the users. _ of the social functiorl/ is compact for some&® € K.

On one hand, our approach draws on the Successive CONVe¥ne assumptions above are quite standard and are satisfied
Approximation (SCA) paradigm, but relaxes the key requirgyy 5 |arge class of problems of practical interest. In pakic
ment that the convex approximation must be a tight globglition A4 guarantees that the social problem has a soluti

upper bound of the social function, as required instead e when the feasiblé is not bounded; ik is bounded A4 is
[27], [32], [33] (see Se€ V! for a detailed comparison withyjyia|ly satisfied. A sufficient condition for A4 whek is not

[27], [32], [33]). This represents a turning point in the @S ecegsarily bounded is thét be coercive [i.e.[(x) — +oc
of distributed SCA-based methods, since up to date, findigg x| — 400, with x € K]. Note that, differently from

such an upper bound convex approximation for sum-utilitfassjcal Network Utility Maximization (NUM) problems, fes
functions having no specific structure (as, elg.| [24-H#80]) e do not assume any convexity of the functigiasthus, [1) is

has been an elusive task. a nonconvex minimization problem. For the sake of simpljcit

On the other hand, our method also sheds new light @0 ) e assume that the users’ strategies are real veators;

widely used pricing mechanisms: indeed, our scheme can §&:1y, e extend our framework to complex matrix strategies
viewed as a dynamic pricing algorithm where the pricing rulg, - ver also the design of MIMO systems.

derives from a deep understanding of the problem charaeteli motivating example. The social problem[{1) is general
tics and is not obtained on an ad-hoc basis, as insteadlir [2L],5ugh to encompass many sum-utility problems of practical
[24], [31]. We conclude this review by mentioning the recenferest. It also includes well-known utility functionsustied
work [34], where the authors, developing ideas contained {ij i jiterature: an example is given next. Consider&n

[30], [33], proposed parallel schemes based of the SCA idgga|ie| Gaussian IC composed bfactive users, and let
that are applicable (only) to the class of sum-utility pesbk
for which a connection with a MMSE formulation can be A e |Hi; (K)|? pir
established. Note thaf [B3[[B4], which share some ideab wit ri(pip-i) £ ) log { 1+ o2 + 3 . |Hij (K)] pj
our approach, appeared after [1]. =1 ik g !
The rest of the paper is organized as follows. 9ek. e the maximum achievable rate on link where p; £
introduces the sum-utility optimization problem along twit (i), denotes the power allocation of useover the N
some motivating examples. Sdc.] Ill presents our novel dearallel channelsp_; £ (p;);-; is the power profile of all
composition mechanism based on partial linearizations; tthe other userg # 4, |H,; (k)|* is the gain of the channel
algorithmic framework is described in SEC] IV. SE¢. V exendetween thej-th transmitter and the-th receiver,o7, is the
our results to sum-utility problems in the complex domairvariance of the thermal noise over carrieat the receivet,
further generalizations are discussed in $eg. VI. In Bedl. \and}_,; [H;; (k)|” p;x represents the multiuser interference
we apply our new algorithms to some resource allocatigenerated by the usejs# i at the receivei. Each transmitter
problems over SISO and MIMO ICs, and compare theiris subject to the power constraints € P;, with
performance with the state-of-the-art decomposition s P, o {pi c Rﬁ  Wip; < Izr-na"} 7 @)

Finally, Sec[ VIl draws some conclusions.
where the inequality, with gived}®* < R and W; €

RN s intended to be component-wise. Note that the
We consider the design of a multiuser system composéd olinear (vector) constraints ifiJ(2) are general enough toehod

coupled userg = {1,...,I}. Each usei makes decisions on classical power budget constraints and different interfee

his ownn;-dimensional real strategy vectgy, which belongs constraints, such as spectral mask or interference-texhper

to the feasible sek’;; the vector variables of the other useréimits. Finally, letd; : R, — R be the utility functions of the

is denoted byx_; = (x;)z € K_; £ [1,.: K;; the users’ users’ rates. The system design can then be formulated as

Il. PROBLEM FORMULATION



maximize 0; (r;(pi, P—i

P1s-PI ; (i) (3) Si={jeZs:fi(e,x_;)is convex onk;,Vx_; € K_;} (6)
subjectto p; € Pi, Vi€ T and letC; C S, be a given subset &;. The idea is to preserve
Note that [(8) is an instance dfl(1), witfy = I; moreover the convex structure of the functions @ while linearizing
assumptions Al1-A4 are satisfied if the utility functiofi$z) the rest. Note that we allow the possibility ti&t= 0, even if
are i) concave and nondecreasinglop, and ii) continuously e “hope” thatS; # (), and actually this latter case occurs in
differentiable with Lipschitz gradients. Interestinglijis class most of the applications of interest, see $ecl VII. For eaet u

of functions#;(z) includes many well-known special case$ ¢ 7, we can introduce the following convex approximation
studied in the literature, such as the weighted sum-rate-fupf {/(x) aroundx™ € K:

tion, the harmonic mean of the rates, the geometric mean of _

(one plus) the rates, etc.; see, e.gl, [6]J [2]] [22]] [35]. Je.(xix™) £ ij(xi, x™,) + me, (x™)" (x; — x})
Since the class of problemE] (1) is in general nonconvex JEC;

(general!y NP hard]5]), the focus of this paper is on .the de- +ﬁ (xi — x;‘)T H(x") (xi — x7)  (7)

sign of distributed solution methods for computing stationary 2

solutions (possibly local minima) of](1). Our major goal @ t with

devisesimultaneous best-response schemes fully decomposed e, (x") & Z Vi 5 () gy » (8)

across the users, meaning that all the users can dalve jec_;

parallel a sequence of convex problems while converging {gnerec .

) : ot £ T;\C; is the complement of;, 7; is a given
a stationary solution of the original nonconvex problem.

nonnegativeconstant, andH;(x™) is ann; x n; uniformly
positive definite matrix (possibly dependent ot), i.e.
HI. AN Ew DECOMPOSITIONTECHNIQUE H;(x") — cy,I = 0, for some positivecy,. For notational

We begin by introducing an informal description of ousimplicity, we omitted infc, (x;;x") the dependence on
new algorithms that sheds light on the core idea of thendH;(x"). Note that in[[¥), we added a proximal-like reg-
novel decomposition technique and establishes the caoneciularization term, in order to relax the convergence cooddi
with classical descent gradient-based schemes. This lsdl aof the resulting algorithm or enhance the convergence speed
explain why our scheme is expected to outperform curre@f. Sec[1V).A key feature offc, we will always require is
gradient methods. A formal description of the proposed-algghat f.. (e; x) be uniformly strongly convex. By this we mean
rithms along with their main properties is given in Sed IV fothe following. Lete,, (x) be the constant of strong convexity
the real case, and in Sdcl V for the complex case. of J?ci(ﬂX)- We require that

A. What do conditional gradient methods miss? ¢r, & inf ey, (x) > 0. 9)

A classical approach to solve a nonconvex problem like ToxeK
(D) would be using some well-known gradient-based descéete that thisis not an additional assumption, but just a
scheme. A simple way to generate a (feasible) descent thguirement on the way; is chosen. Under the uniformly
rection is for example using the conditional gradient methgpositive definiteness oF;(x"), condition [9) is always sat-
(also called Frank-Wolfe method)|[4]: given the currentate isfied if ; > 0; however it is also satisfied with; = 0 if
x" = (x')L_,, the next feasible vectat"*+! is given by > jec, fi(e,x_;) is uniformly strongly convex oiC_;; a fact
that occurs in many applications, see, e.g., 5ed. VII.

Associated with eaclfc, (x;; x™) we can define the follow-
whered™ £ x" — x", X" = (X")_, is the solution of the ing “best response” map that resemblés (5):

following set of convex problems (one for each user):

xn+1 = x" + ,yn d»

Xe, (x", 1) & argmin]’”vci (xi;x™). (10)
%) = argmin{ V..U (x")" (x: = x}) } (5) ek
xi€ki Note that, in the setting abov&., (x", ;) is always well-

for all i € Z, andy™ € (0, 1] is the step-size of the algorithmdefined, since the optimization problem {n(10) is strongly
that needs to be properly chosen to guarantee convergenceonvex and thus has a unique solution. Givienl (10), we can

Looking at [$) one infers that gradient methods are based istroduce the best-response mapping of the users, defined as
solving a sequence of parallel convex problems, one for each N A I
user, obtained by linearizing thehole utility function U (x) K3y Xely,m) = ey 7mi))izs 5 (11)
aroundx”, a fact that does not exploit any “nice” structurgynd also setr 2 (r;)._,. The proposed search direction
that the original problem may potentially have. d" at pointx™ in (@) becomes the®c(x", ) — x". The

At the Dbasis of the proposed decomposition techniquehallenging question now is whether such direction is still
there is instead the attempt to properly exploit any degrgedescent direction for the functioli at x” and how to
of convexity that might be present in the social function. Tenoose the free parameters (suchras y™'s, andH;(x")’s)
capture this idea, for each usee Z, let S; C 7y be the set i order to guarantee convergence to a stationary solution o
of indices of all the functiong; (x;,x;) that are convex in the original nonconvex sum-utility problem. These issues a
x; on K;, for any givenx_; € K_: addressed in the next sections.



B. Properties of the best-response mapping X¢ (y, 7) IV. DISTRIBUTED DECOMPOSITIONALGORITHMS

Before introducing a formal description of the proposed We are now ready to introduce our new algorithms, as a
algorithms, we derive next some key properties of the beslirect product of Prod]1. We first focus on (inexact) Jacobi
response magc(y, ), which shed light on how to chooseschemes (cf. Se€_TViA); then we show that the same results
the free parameters i (10) and prove convergence. hold also for (inexact) Gauss-Seidel updates (cf. Bec.)IvV-C

Proposition 1. Given the social probleni(1) under A1)-A4),
suppose that eacH;(x) — cy,I = 0 for all x € K and some A. Exact Jacobi best-response schemes

cy, > 0, and (¢;,)/_; > 0. Then the mappingC > y — The first algorithm we propose is a Jacobi scheme where

X(y, 7) has the following properties: _ all users update simultaneously their strategies based®n t
(@) Xc (e, 7) is Lipschitz continuous oifC, i.e., there exists a pest-responsgc, (e, 7) (possibly with a memory); the formal
positive constanf. such that description is given in Algorithri1 below, and its convergen

Vy,z € K; (12) properties are given in Theordm 3.

Algorithm 1 : Exact Jacobi SCA Algorithm
Data: 7 > 0, {y"} > 0, x° € K. Setn = 0.

”ic(va) - §C(zv'T)” < i’ Hy - ZH )

(b) The set of the fixed-points &¥: (e, 7) coincides with the
;it(;fjaﬁiggZﬁifggfgg?nim the social problet (terefore (S 1) :If x” sgtisfies a termigation criterion: STOP;
(c) Fc’)r every givery € K, tr,1e vectoke(y, 7)—y is a descent g 2 g; gg;jllfleé{'{f 1%&“;;?(;5 n;;_ Z [SL')@)];
direction of the social functiol/(x) aty such that (S: 4) n<n+1,and go tof S. 1)’. ’

~ T ~ 2
_ LUly) < — ,T) — , (13 . :
Xe(y,7)—y) VxU(y) < —c|xXc(y, ) =yl (13) Theorem 3: Given the social problemi}1) under Al-A4,
for some positive constamt> c.., with suppose that one of the two following conditions is satisfied
2 minfe 14y (@) For eachi, H;(x) is such thaftl;(x) — cg,1 = 0 for all
or T ler {en} (14) x € K and somecy, > 0; furthermore{y"} andT >0 are

(d) If VxU(x) is bounded onk, then there exists a finite Ch0Sen so that

constant > 0 such that 0 < infy” <supy” <™ <1 and2c¢, > " Lyy,
IRe(y,7) ~ ¥l < @, ¥y €K (15) § (17)
_ with ¢, defined in [TH).
Proof: See Appendix A. B (b) For eachi, H;(x) is such thatH;(x) — cx,I = 0 for all

Proposition[]l makes formal the idea introduced in Ses.€ K and somecy, > 0, 7 > 0 is such thaic, > 0, and
[MI=AJand thus paves the way to the design of distributed-bedtrthermore{»"} is chosen so that
response-like algorithms fdrl(1) basedxy(e, 7). Indeed, the " " 0
inequality [I3B) states that eithéke (x) — x™)” V, U (x") < 7" €01, 7" =0, and 9" =+oo.  (18)

< ny _ n n A 3 n n . . o .

0 or Xe(x") = x". In the formern(.:gsed = Xe(x )_nx_ Then, either AlgorithmJ1 converges in a finite number of
is a descent direction df (x) atx"; in the latter casex™ IS jterations to a stationary solution dfl (1) or every limit poi
a fixed-point of the mappingc (e, 7) and thus a stationary s the sequencéx™ >, (at least one such point exists) is a

solution of the original nonconvex problefd (1) [Prép. 1 (b)]stationary solution off{1)Moreover, none of such points is a
Quite interestingly, we can also provide a characteripatio |qca1 maximum oft/.

the fixed-points ofk¢ (y, 7) [and thus the stationary solutions Proof: See Appendix B. -

of @] in terms of Nash equilibria of a game with a propefain features of Algorithm [l The algorithm implements

pricing mechanism. Formally, we have the following. a noveldistributed SCA decomposition: all the users solie
Proposition 2: Any fixed-pointx* of X¢(e,7) is a Nash parallel a sequence afecoupled strongly convex optimization

equilibrium of the game where each usee 7 solves the problems as in[{10). The algorithm is expected to perform

following priced convex optimization problem: given ;, better than classical gradient-based schemes (at leastnis t
_ of convergence speed) at the cost of no extra signalinguiseca
*\T
xme','%zfﬂ (xi, i) + e, (x7) " (16)  the structure of the objective functions is better presirie
JE€C;

is guaranteed to converge under very mild assumptions (the
According to the above proposition, the stationary sohgio weakest available in the literature) while offering someifle
of (@) achievable as fixed-points &, (e, 7) areunilaterally bility in the choice of the free parameters [conditions (afl)
optimal for the objective functions i _(IL6). This result is i of TheoreniB]. This degree of freedom can be exploited, e.g.,
agreement with those obtained in_[22], [23] for the sunte achieve the desired tradeoff between signaling, comverg
rate maximization problem over SISO frequency selectivepeed, and computational effort, as discussed next.
channels. Despite its theoretical interest, however, lalmes  As far as the computation of the best-respoRse(x", 7)
not help in practice to solve](1). Indeed, the computatide concerned, at each iteration, every user needs to known
of a Nash equilibrium of the game if_{16) would requirijeci fi(e,x™,) and m¢,(x"). The signaling required to
the a-priori knowledge of the prices¢,(x*) and thus the acquire this information is of course problem-dependent. |
equilibrium itself, which of course is not available. the problem under consideration does not have any specific



structure, the most natural message-passing strategy isstich that: )0 < a(n) < S(n); and ii) a(n)/5(n) — 0 as

communicate directlx”; and(Vy, f;(x"))¢c,. However, in n — oo while ) (a(n)/B(n)) = oco. Examples of such(n)

many specific applications much less signaling may be needadd 5(n) are:a(n) = a or a(n) = log(n)*, ands(n) = fn

see Sed_Vll for some examples. or 3(n) = B+/n, wherea, 3 are given constants satisfying

On the choice of the free parameters.Convergence of a € (0,1), 8 € (0,1), anda < S.

Algorithm[dl is guaranteed either using a constant steprgize ~ Another issue to discuss is the choice of the free posi-

[cf. [@D)] or a diminishing step-size rule [cf_(118)]. Monesr, tive definite matricedH;(y). Mimicking (quasi-)Newton-like

different choices of{C;} are in general feasible for a givenschemes[[36], a possible choice is to considerHp(x™) a

social function, resulting in different best-responsections proper (diagonal) uniformly positive definite “approxiricat’

and signaling among the users. of the Hessian matrixviiU(x"). The exact expression to
1) Constant step-size: In this casey™ = v < 4™ for consider depends on the amount of signaling and computa-

all n, wherey™a* ¢ (0, 1] needs to be chosen together withional complexity required to compute suchH(x™), and

T > 0 and(H;(y))._, so that the conditioR ¢, > y™** Ly  thus varies with the specific problem under consideration.

is satisfied, withc, defined in [I4). This can be done in 3) On the choice of C;’s: In general, more than one

several ways. A simple (but conservative) choice satigfyir(feasible) choice ofC,} is possible for a given social function,

that condition is, e.g3; = 7 > 0 for all i € Z, y™** € (0,1], resulting in different decomposition schemes. Some iiaiste

and v/ < 2/Lyy. Note that this condition imposes aexamples are discussed next.

constraint only on the ratie//7, leaving free the choice of Example #1— (Proximal) gradient/Newton algorithms: If each
one of the two parameters. S C; = 0 and I = Ij, %¢,(x",7;) reduces to the gradient
An interesting special case worth mentioning i8: = response[{5) (possibly with a proximal regularization). It
yme =1 for all n, Hi(y) = I'foralli € Z, andt > 0 tyms out that (exact and inexact) gradient algorithms galon
large enough so thatc, > Lyy. This choice leads to the yjth their convergence conditions are special cases of our
classical Jacobi best-response scheme (but with a proxim@hework. Note that ifS; = ) for everyi (i.e., no convexity
regularization), namely: at each iteration whatsoever is present iff), this is the only possible choice,
v and indeed our approach reduces to a gradient-like method. O
el
the other hand, as soon as at least s&ng (), we may depart
To the best of our knowledge, this algorithm along with its'om the gradient method and exploit the available conyexit
convergence conditions [Theoréin 3a)] represents a nevt resuNote that our framework contains also Newtown-like up-
in the optimization literature; indeed classic best-remgo dates. For instance, iU/(x;,x™;) is convex inx; € K;
nonlinear Jacobi schemes require much stronger (sufficiefar any x*, € K_;, a feasible choice i€; = § and
conditions to converge (implying contraction) [4, Ch. 3]3. H;(x") = V3 U(x"), resulting in:
Note that the choice of;'s to guarantee convergence [ie., _ N i T N
2¢, > Lyy] can be done locally by each user with no sig- Xi(x", i) = argmin { Vs, U(x")" (x; — x7)

X?+1 = ﬁci (Xnv T) )

x; €IC;
naling exchange, once the Lipschitz constagt; is known. 1 AT o2 N N
As a final remark, we point out that in the case of constant +§ (xi —x7)" V3, U(X")(x; — x7)
and “sufficiently” small step-size™, one can relax the syn- Ti iy n||2
L . . . +o % =%
chronization requirements among the users allowing @&} 2

(21)

asynchronous updates of users best-responses (in theden%essentially [21) corresponds to a Newton-like step of user
[4]); we omit the details because of space limitation. in minimizing the “reduced” problenminy, cxc, U (x;, x™.)
X4 i vy ™ —q /)"

) ) . n
2) Variable step-size: In scenarios where the knowledge oiExampIe#Z—Pricing algorithms in [d: Suppose thaf — I
the system parameters, e.fyy, is not available, one can and eachS; = {i} (implying that f,(e,x ;) is convex on}Ci’

use the d|m|n|sh|ng step-size ruIE_[l&)nder such a rule, for anyx_; € K_,). By taking eaclt; — {i} andH, (x") — T,
convergence is guaranteed fmy choice ofH;(x) —cy,I = 0 we obtain the pricing-based algorithms i@ [1]:

andT > 0 such thate, > 0. Note that if} .. fj(e,x—;) is '
strongly convex onC; for anyx_; € K_;, one can also set g, (x" r,) £ al’gminfi(xi,x’_li)—i—m(x”)Txi—i—E lx; — x7||
7, = 0, otherwise any arbitrary but positive is necessary. X €K; 2

We will show in the next section that a diminishing step- .
. . . ng pwhereﬂ-i(x") 25V, fi(x™). Algorithm[1 based on the
size rule is also useful to allow an inexact computation ef th gFL " X -
—~ " . . above best-response implements naturally a pricing mecha-
best-responsg, (x™, T) while preserving convergence of the

algorithm. Two classes of step-size rules satisfylig (18) o Nism; indeed, eachr;(x™) represents a dynamic pricing that

)

measures somehow the marginal increase of the sum-utility o

given~? =1, o .
the other users due to a variation of the strategy of user
Rule#l: ~" = A""! (1 — 67”—1) ., n=1,..., (19) roughly speaking, it works like a punishment imposed to each
n—1 user for being too aggressive in choosing his own strategy
7"+ aln) : 0° .
Rule#2: ~" = W, n=1,..., (20) and thus “hurting” the other users. Pricing algorithms base

on heuristics have been proposed in a number of papers for
where in [I®)e € (0,1) is a given constant, whereas [0}20Yhe sum-rate maximization problem over SISO/SIMO/MIMO
a(n) and B(n) are two nonnegative real functions of> 1 ICs [21]-[23], [31], [37]. However, on top of beirgpquential



schemes, convergence of algorithms in the aforementionsfdthe best-response functiois, (x™, 7). Algorithm[2 is a
papers is established under relatively strong assumpteegs variant of Algorithm[1, in which suitable approximations of
limited number of users, special classes of functions,ifipecxc, (x™,T) can be used.

channe_l _merIs and transm|s§|on schemes, efc...)[sée rﬁéorithm 2 : Inexact Jacobi SCA Algorithm

The pricing in our framework is instead the natural conse -
quence of the proposed SCA decomposition technique angt@: {&i'} fori € Z, 7 >0, {y"} >0, ’_‘0 € K. Setn = 0.
leads tosimultaneous algorithms that can be applied (with(S: 1) :If x" satisfies a termination criterion: STOP;
convergence guaranteed) to a very large class of problefhs: 2) : For alli € Z, solve [10) within the accuracy; :

even when[[21]]23],131][137] fail. Find 27 s.t. |27 —Xc, (x",7) || <ef;
. . . . . (S.3) : Setx"t! £ x" 4 4™ (z" — x");
Example #3—(Proximal) Jacobi algorithms for a single jointly (S.4) :n+n+1,and go toS. 1)

convex function: Suppose that the social function is a sing|
(jointly) convex function f(xi,...,x7) on K = [[, K;. Of The error terme?” in Step 2 measures the accuracy used
course, this optimization problem can be interpreted asaaiterationn in computing the solutiorxe, (x", 7) of each
special case of the frameworl (1), with = S; = {1} =Z;, problem [ID). Note that if we set? = 0 for all n and i,

for all i € 7 and fi(x) = f(x). Then, settingH;(x™) = I, Algorithm [2 reduces to Algorithnil1. Obviously, the errors
the best-response{10) of each useeduces to e?'s and the step-size™'s must be chosen according to some
suitable conditions, if one wants to guarantee convergence
These conditions are established in the following theorem.

) ) Theorem 4: Let {x"}>°, be the sequence generated by
Algorithm [ based onl{22) reads as a block-Jacobi schemggorithm 2, under the setting of Theordh 3 where however
converging to the global minima of (x,...,xs) over K e reenforce assumption A4 by assuming thais coercive

(cf. Theorem[B). To the best of our knowledge, these agg x . Suppose that the sequendeg'} and {"} satisfy the
new algorithms in the literature; moreover their convemgen{o|iowing conditions: i)y" € (0, 1]; i) 4 — 0; i) 3, 7" =
conditions enlarge current ones; see, €.d., [4, Sec. 3Quile +oo; V) 3 (,yn)Q < +oo; and V)Y, ey < +oonfor all
interestingly, this new algorithm can be readily applied tp_ 7 " " 7" Then, either Algorithni]2 converges in a finite
solve the sum-rate maximization over MIMQultiple access  ,mper of iterations to a stationary solution BF (1) or every

channels [[38], resulting in the first (_inexacﬂ)_multanequs limit point of the sequencéx™}°° , (at least one such points
MIMO iterative waterfilling algorithm in the literature; we exists) is a stationary solution dfl(1)

omit the details because of the space limitation.

e, (", 7.) £ argminf (x, x") + 5 = x{F. (22)
x; €IC;

Proof: See Appendix B. |

Example #4—Algorithms for DC programming. The proposed As expected, in the presence of errors, convergence of
framework applies naturally to sum-utility problems whére Algorithm [2 is guaranteed if the sequence of approximated
users’ functions are the difference of two convex functionproblems [(ID) is solved with increasing accuracy. Note, that

namely: in addition to requiringe} — 0, condition v) of Theorem
minimize cvx cov [4 imposes alsp a constraint on the rate by which glie
X1, X1 ;fz (x) + ;fz (x) (23) 9o to zero, which depends on the rate of decreaséy6f.
subjectto x; € K;, Vi€ T Two instances of step-size rules satisfying the summubilit

condition iv) are given by[(19) and (some choices 6&f) (20).
where f7(x) and f7'(x) are convex and concave functions\n example of error sequence satisfying condition V) is
on K, respectively. Letting e < ¢;7", wherec; is any finite positive constant. Such

A cvx a cov a condition can be forced in Algorithid 2 in a distributed way,
filx) £ ) and fo(x) £ f(x), using classical error bound results in convex analysis;esge
o . [17, Ch. 6, Prop. 6.3.7].
the optimization problen{(23) can be interpreted as a speciafinally, it is worth observing thatlgorithm[2 (and) with a
case of the framework)(1), withi; = {1,2}, C; = {1} for all " giminishing step-size rule satisfying i)-iv) Fheorenitcan be
i € Z. The best-responsg {10) of each useeduces then to made robust against (stochastic) errors on the price estima

i€l i€L

N . due to an imperfect communication scenario (random link
Xe, (X", 1) = argmin X, X%) + 7 (x") T, . . ) o
¢ (X" 7i) xige;ci {1 x2) + (") failures, noisy estimate, quantization, etc...). Becanfs¢éhe
Ti space limitation, we do not further elaborate on this hege; s
+ 2 Il — %} (24) P .
2 [39] for details.

where;(x") £ Vi, f2(x") andH,(x") = I. The above de- ¢. (Inexact) Gauss-Seidel best-response schemes

composition can be applied, e.g., to the sum-rate maximizat The Gauss-Seidel implementation of the proposed SCA

(3. when allt;(z) = w; z, with w; > 0; see Sed_V]I. decomposition is described in Algorithih 3, where the users

solve sequentially, in an exact or inexact form, the convex

subproblems[{10). In the algorithm, we used the notation
In many practical network settings, it can be useful te!f' £ (x{*' ... x!T]) andxl, £ (x,...,x!).

further reduce the computationeffort needed to solvasers’ Note that one round of Algorithid 3 (i.€.« t+1) wherein

(convex) sub-problem§&{JL0) by allowing inexact computatio all users sequentially update their own strategies, cpords

B. Inexact Jacobi best-response schemes



Algorithm 3 : Inexact Gauss-Seidel SCA Algorithm constraintdJ” Q; =0, whereU, e C" " is a full rank matrix
Data: {e!} fori € Z, 7 > 0, {7'} > 0,x" € K. Sett =0.  with r; < n,; ii) soft-shaping constraintsr (GZ Q;G;) <

(S. 1) : If x! satisfies a termination criterion: STOP; I2¥¢, with G; e C™*™¢c: for somemg, > 0; iii) peak-power
(S.2) :Fori=1,...,1, constraints\yax (F7 Q;F;) < Ifeak, with F; € Crixmr; for

a) Findz! s.t. ||zt — %X¢, (x/T',x.),7) | <&l somemp, > 0; and iv) per-antenna constraif@;], < ci.

b) Setx!™ £ x! + 41 (z! —x!) Note that the optimization problems in 23], [24],[26] are
(S.3) :t+t+1,and goto(S. 1). special cases of (26).

A. Distributed decomposition algorithms

to I consecutive iterationa of the Jacobi updates described At the basis of the proposed decomposition techniques
in Algorithms[1 and®. In Appendix C we prove that, quitéor (25) there is the (second order) Taylor expansion of a
interestingly, Algorithm[B can be interpreted as an inexaéPntinuouslyR-differentiable functionf : C**™ — R [41]:
Jacobi scheme based on the best-respgpge, T), satisfying FX 4+ AX) — f(X) & 2(AX, Vx- f(X))

Theorem[#. It turns out that convergence of Algorithin 3 1 . .
follows readily from that of AlgorithniR, and is stated next. T3 VEA[AX, AX"))THxx- f(X) veq[AX, AX ])(728)

Theorem 5: Let {x"}>°, be the sequence generated b%here (A, B) £ Reltr(A¥B)}, veqs) denotes the “vec’

Algorithm [3, under the setting of Theorel 4. Then, the . -
conclusions of Theoreidi 4 holds operator, and{xx- f(X) is the so-calleciugmented Hessian

Proof: See Appendix C. [ | of f, defined as[[41]

e 9 orx) \"
V. THE COMPLEX CASE Hxx F(X) = aved[X, X*])T (aveo([X*,X])T> '

In this section we show how to extend our framework to (29)
sum-utility problems where the users’ optimization vakab N [41], we proved thatHxx- f(X) plays the role of the

are complex matrices. This will allow us to deal with thalessian matrix for functions of real variables. In partaul

design of MIMO multiuser systems. Let us consider thé iS Strongly convex orC™*™ if and only if there exists a
following sum-utility optimization: cpe > 0, the constant of strong convexity ¢f such that

T(inim)igzle UX)2 Y fi(X) ved[Y, Y*)) T Hxx- f(X) ved[Y,Y*]) > cpc |[Y]7, (30)

Lyeeny
subject 1o X € ¥, fezvf.ez @9 foral X € Cvm oand Y e Cc™™, where ||o| , de-
) ! o VEES notes the Frobenius norm. Wheln [(30) holds, we say that
whereX £ (X;);ez, with X; € C"*™: being the (matrix) Hxx-f(X) is augmented uniformly positive definite, and
. . T Xy . i A
straAtegy of u.sen, X € C ,Aand fo o X = R, with write Hxx- f(X) — ¢zl = 0 [41]. If f is only convex but
A = [Lier 4 let define alsot; =1, &;. We study[2b) |, strongly convex, then,c in 30) is zero
under the same assumptions Al-A4 stated for the real cas : i 4 : ) .
SMotivated by the Taylor expansion (28), and using the same

where in A2 the differentiability condition is now replacby
. - . symbolsS; and(C; to denote the complex counterparts&f
the R-differentiability (see, e.g.L120]L[41]), and in AB (X) and C; introduced for the real case [cf](6)], let us consider

Is required to have Lipschitzonjugate-gradient V. U(X) for each uset the following convex approximation df (X)
on K, with constantL$,;, whereX* is the conjugate oX. at X": denoting byAX; £ X, — X7

A motivating example. An instance of [(2b) is the MIMO _

version of [3): fe,(X;;Xm) £ ij(xi, X))+ (e, (X™), AX;)
imi i (Ri(Qi, Qi , Jec (31)
Rl ; (Bi(Qi, Q-2)) (26)  +Ved[AX, AX])H:(X") ved[AX;, AX;])
subjectto Q; € Q;, VieZ. with N
I, (X™) = Z Vx: [5(X)|x_xcn » (32)

whereR;(Q;, Q—;) is the rate over the MIMO link, e

Ri(Qi, Q—;) £ logdet (I+ HIR;(Q_;) 'H;Q;), (27) where Hi(X")J‘ils any given2nm x 2nm matrix such that

Q; is the covariance matrix of transmittér R;(Q_;) £ Hi(X) —cn, 1= 0, forall X € & and somery;, > 0. Note
R, + Z#i HijQJ—Hg is the covariance matrix of the mul-that if #i(X) . I, the quadrat_lc term |rﬂ3§n1)2reduces to the
tiuser interference plus the thermal noRg, (assumed to be Standard proximal regularization || X; — X|/%-. Then, the
full-rank), with Q_; 2 (Q;);»:, H,; is the channel matrix best-response matrix function of each user is
between thej-th transmitter and the-th receiver, and; is Xe, (X", 7;) £ argminfe, (X;; X™). (33)
the set of constraints of useér X, €X;
A ) nixXng . (y. } A . Decomposition algorithms fof_(25) are formally the same

2 ={Qiec 1Qi=0.(Qi) < P, Qi € Zif as those proposed in Sdc.]IV fdr (1) [namely Algorithms

In Q; we also included an arbitrary convex and closedZet 3], where the real-valued best-response Rapx”, r) is

which allows us to add additional constraints, such as: i) nueplaced with the complex-valued counterpﬁr@(X", T) 2



(Xe, (X", 7;))._,. Convergence conditions read as in TheA. Sum-Rate Maximization over SO ICs

oremsEHEBé un_(_ller the fol!qwing natural changes: Ly Consider the social problerfil(3), with(z) = w; z, where
becomesLy;;; i) the condltlan H;(x) —cy, I = 0 forall . are positive given weights: to avoid redundant constraints
x € K reads ag{;(X) — ¢y, 1 = 0, for all X € x; and iii) in let also assume w.l.0.g. that all the columndWt are linearly
the constant, defined in[T¥), (x) is replaced with:,, (X), independent. We describe next two alternative decompasiti

wherec,, (X) is the constant of strong convexity ¢§, (s; X) for (3) corresponding to differ choices @} and{C;}.
. 1) Decomposition #1—Pricing Algorithms. Since each
user’s rater;(p;, p—i) is concave inp, € P;, a natural choice

<Zi - W;, Vx: fe(Zi;X) — Vx: fe. (Wi X)> is Z; = Z andC; = {i}, which leads to the following class of
> er (X) |Zi — Will%, VZi, W, € X, strongly concave subproblems [df] (7)]: giveft = (p)L_,
and choosindd;(p™) = I, the best-response of users
pi(p") =

VI. EXTENSIONS AND RELATED WORKS _ 9
argmax{w; ri(pi. p,) — mi(p") i — [P — oY} -

The key idea in the proposed SCA schemes, €.dl, (33), ip, € P;

to convexify the nonconvex part @f via partial linearization . - .

of ¥ec %j(X), resulting inpthe tem(l'fci (X™), AX,). In wherem;(p™) £ (m;,(p™))A_, is the pricing factor, given by

the same spirit of( [27],[132],[133], it is not difficult to show s A 5 snri

that one can generalize this idea and replace the linear teffk(P") = = Z wj |Hji (k)| (1+snre) - nui n

(I, (X™), AX;) in (31) with a nonlinear scalar function JEN: ! !

e, (e;X™) : X; 5 X; ~— Il (X;;X™). All the results N; denotes the set of neighbors of useri.e., the set of

presented so far are still valid provided tfikg, (e; X™) enjoys usersj’s which useri interferers with; andnr 7, andmui 7,

the following properties: for alX™ € X, are the SINR and the multiuser interference-plus-noisegpow

P1)TIc, (e; X™) is R-continuously differentiable of; experienced by usef, generated by the power profie":
P2) Vx: e, (X7 X") = > ice, Vxs f3(X7); a W
P3) Vx:1Ilc, (X}'; ) is uniformly Lipschitz on.X; S i, poy

P4) I, (X;;: X™) is continuous iN(X;; X*) € &; x X The best-responsp;(p™) can be computed in closed form

Similar conditions can be written in the real case for th@ip to the multipliers associated with the inequality coaists

nonlinear functionze,(e;x™) : K; > x; — m¢,(x;;x™) in P;) according to the following multi-level waterfilling-like
replacing the linear pricing-axi. It is interesting to compare expression[[41]:

P1-P3 with conditions in[[27],[132],[[33]. First of all, our [

(34)

sNr g, L mui B2 0%+ > H (k) Pl

conditions do not require that the approximation functien ip;(p") = |- p} o (1 — (snr ?)*1) +

a global upper bound of the original sum-utility function, a 2 +
constraint that remains elusive for sum-utility problemisghw — (ﬁi_\/[ﬁi —7ipto(1+(snr ?)_1)]2 + 4Tiwi1)
no special structure. Second, even when the aforementionedlTi (35)

constraint can be met, it is not always guaranteed that th

resulting convex subproblems are decomposable across Rere o denotes the Hadamard produgtsnr i)' =
n N . 2w (p” Ty, Wi ipli
users, implying that a centralized implementation might b anr““)’“:l andji; = mi(p") + W ,, with the multiplier

required. Third, SCA algorithms$ [27]._[82],I33], even Wheﬁ/ecm.r.“i chosen to Sat:f:¥ the TO”'L[‘ear complemgntanty

i . condition (CC)0 < p, L IM*>*_—W,p,;(p™) > 0. The optimal
distributed, are generalgequential schemes (unless the sum- - satisfying the Cé canz be efficiently computed (in a finite
utility has a special structure). On the contrary, the atbors Hi 9 y P

proposed in this paper do not suffer from any of the abo\péjmber of steps) using a multiple nested bisection method

drawbacks, which enlarges substantially the class of eélaraS described inl[21, Alg. 6], we omit the details because of

scale) nonconvex problems solvable using our framework e space limitation. Note that, in the presence of the power
P 9 " budget constraint only (as in [23]. [29], [30], reduces to

a scalar quantity,; such thatd < p; L P, — 17p;(p™) > 0,
VII. APPLICATIONS AND NUMERICAL RESULTS whose solution can be obtained using the classical bisectio

In this section, we customize the proposed decompositiglg°rithms (or the methods i [42]). .
framework to the SISO and MIMO sum-rate maximization GiVen pi(p"), one can now use any of the algorithms
problems introduced iffi{3) an@{26), respectively, and camap introduced in Sed.IV. For instance, a good candidate is the
the resulting new algorithms with state-of-the-art schemg*act Jacobi scheme with diminishing step-size (Algorithm
[23], [24], [29], [3C], [33]. Quite interestingly, our algithms (1), whose convergence is guaranteed if, e.g., ruleEih (19) o
are shown to outperform current schemes, in terms of convi¢d) are used for the sequenge”} (TheorenfB). Note that
gence speed and computational effort, while reaching msa_the proposed algorithm is fairly distributed. Indeed, gitke
sum-rate. It is worth mentioning that this was not obvious 4itérference generated by the other users [and thus the MUI
all, because algorithms i [23[, [24]. [29]. [30]. [33] aré-aoc coefficientsmui 7] a@n_d the current interference pnm(p”),_
schemes for the sum-rate problem, whereas our framework §&§h user can efficiently and locally compute the optimal
been introduced for general sum-utility problems. power allocationp,(p™) via the waterfilling-like expression

A



(38). The estimation of the pricesy(p™) requires however
some signaling among nearby users. Interestingly, thengric \ ~ N :
expression in[(34) as well as the signaling overhead negess Werter :
to compute it coincides with that in_[23]. But, because c ,
their sequential nature, algorithms in_[23] require mord C! 10° ;
exchange in the network then osimultaneous schemes. g ' i
2) Decomposition #2—DC Algorithms: An alternative class ~ § f+—+—" 4¢—
of algorithms for the sum-rate maximization problem unde 210 :
consideration can be obtained exploring the D.C. nature /
the rate functions (cf. Examplg4 in Sec[TV-A). The sum- 10* a—
rate can indeed be decomposed as the sum of a concave ,./"f' ; :Z;F; o e E(one siep)
convex function, namely/ (p) = f1(p) + f2(p), where v | |3t e
0 i i i i i i | | | | | | i | | | | |
filp) 2 Z wizlog(‘jzk T Z \H,; (k)Iijk) 105 101520253035 ﬁlouﬁbior e(s)sf Sosgzrssm 75 80 85 90 95100
! i ! Fig. 1: Average number of iterations versus number of users in SISO
folp) & — Zwi Zlog(aik + Z |H,j (l<:)|2pjk)7 frequency-selective ICs. Note that all algorithms are diameous except
f P oy MDP; this means that, at each iteration, in MDP there is onhg aiser

updating his strategy, whereas in the other algorithms s@tsido so).
which is an instance of(23) witll; = {1,2}. A natural
choice ofC; is thenC; = {1} for all i € Z, resulting in the 4 40rithms to converge versus the number of users; the geera
best-response: . . T

T_ is taken over100 independent channel realizations; we set
ﬁi(pn)é argmax{fl(pi,p’ii) — ﬂ'i(pn)Tpi — EZ sz — p?”2} s d”/d“ =3 anddij = dji andd“‘ = djj for all 7 andj }é i. As

pi € Pi benchmark, we also plot two instances of proximal condéion
oy A N ) gradient algorithms[]4], which can be interpreted as specia
wherem;(p”) = (mik (P")) =1, with cases of our SIBR witl; = 0 for all i € Z (cf. Ex. #1 in
min(p") 2 — Z w; | Hji (k) |? ——. (36) Sec[TV-A). In one instance [termed_ Gradient (SJBR t_unlng)]
Jen mui i we set the free parametersande as in SIBR, whereas in the

We remark that the best-respongg(p™) can be efficiently Other one [termed Gradient (opt. tuning)] we chose= 50
computed by a fixed-point iterate, in the same spirif.of [26]: forallieZ a_nde = le-2, Whlch Ieads_ experimentally to the
omit the details because of the space limitation. Note that tf@stest behavior of the gradient algorithm.

communication overhead to compute the pri¢es (34) (36)All the algorithms reach the same average sum-rate (that
is the same, but the computationf(p™) requires more CSI thus is not reported here, s¢é3]), but their convergence
exchange in the network than that pf(p™), since each user behavior is quite different. The figure clearly shows that
i also needs to estimate the cross-chanfigig; (/{)|2}j€M_ our SJBR outperforms all the others (note that SCALE,
Numerical Example. We compare now Algorithm 1 basedWMMSE, and the proximal gradient are also simultaneous-
on the best-responsp;(p™) in (@3) (termed SJBR), with based schemes). For instance, the gap with the WMMSE
those proposed in[[29] [termed SCALE and SCALE onds about one order of magnitude, for all the network sizes
step, the latter being a simplified version of SCALE whereonsidered in the experiment, while the gap with MDP is
instead of solving the fixed-point equation (16) [in1[29], ynlup to three orders of magnitude. The good behavior of our
one iteration of (16) is performed], [23] (termed MDF), [30pcheme has been observed also for other choicek; ¢,
(termed WMMSE). Since in the aforementioned papers onl§rmination tolerances, and step-size rules; we cannsepte
power budget constraints can be dealt with, to allow tHere more experiments because of space limitation; we refer
comparison, we simplified the sum-rate maximization problethe interested reader to the technical ref§ég] for more nu-
described above and considered only power budget coristralfierical results. Note that SJIBR, SCALE one-step, WMMSE,
(and allw; = 1). We assume the same power budfet= P, MDP, and gradient schemes have similar per-user computa-
noise variances?, = o2, andsnr = P/o* = 3dB for all the tional complexity, whereas SCALE is much more demanding
users. We simulated SISO frequency channels with= 64 and is not appealing for a real-time implementation. Thenesf
subcarriers; the channels are generated as FIR filters ef orfiig.[ provides also a rough indication of the per-user ope i

L = 10, whose taps are i.i.d. Gaussian random variables wigh SJBR, SCALE one-step, WMMSE, and gradient algorithms.
zero mean and variancb/(d%(L + 1)?), whered,; is the It is also interesting to compare the proposed algorithm
distance between the transmittgrand the receiver. All  with gradient schemes. A first natural question is whether th
the algorithms are initialized by choosing the uniform powepartial linearization (as performed in SJBR) really impmsv
allocation, and are terminated when (the absolute valu#jeof the convergence speed of the algorithm. The answer is given
sum-utility error in two consecutive rounds becomes smallby the comparison in FidJ1 between SIJBR and “Gradient
than 1le-6. The accuracy in the bisection loops (required b§&JBR tuning)”. One can see that, under the same choice
all methods) is set tde-7. In our algorithm, we used rule of {y"} and (r;)._,, the former is almost three order of
(I9) with ¢ = 1e-2 and set allr; = 0. In Fig.[d, we plot the magnitude faster then the latter, for all the network sizes
average number of iterations required by the aforementioneonsidered in the experiment. If an independent, ad hooguni
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of {v"} and (r;)L_, is performed for the gradient algorithm,
the gap reduces up to one order of magnitude, still in fave{_(Qn ) & argmax{w-r-(Q- ) (IL(QM), Qi — Q)

of SJBR. This result supports the intuition motivating this"" Q €0 o
work: preserving the structure of the problem via a partial ’ e Q?HQF}
linearization can significantly improve the convergenceesp (37)
of the algorithm. with

The comparison with gradient algorithms also reveals a I1,(Q") & Z w; Hgﬁj(Qﬁj)Hﬁ,
well-known issue of these schemes: the convergence behavio JEN;

strongly dep_ends on the chome of the step-size sequerice where\; is defined as in the SISO case, and
and the proximal gains;. It is then natural to ask whether also

the propoged algqrithms s.uffer from the same drawback. ch{j(Qﬁj) £ Rj(Qﬁj)—l - (R;(Q")) + Hij;?Hg)‘l.
answer this question, in Figl 2 we compare the convergence _ o

behavior of the proximal condition gradient algorithm with NOt€ that, once the price matrbl;(Q") is given, the best-
that of SJBR, using the step-size rdle](19), but changing tHRSPONSeQ:(Q",7;) can be computed locally by each user
free parameter € (0,1) by several orders of magnitude. ForS°|V'r_‘9 a convex optimization _problem. Moreover, for some
gradient schemes, we considered two choices; phamely: specific structures of the fea3|ble sads, the case qf fu_II-

7 =0 andn = 50 (as in Fig.[l); the latter resulting in the0lumn rank channel matricéd;, andr; = 0, a solution in
experimentally fastest behavior of gradient schemes (&ge FEl0Sed form (up to the multipliers associated with the power
). More specifically, in Figll2, we plot the average numbdidget constraints) is also available [24]. Given(Q™, i),

of iterations needed to reach convergence within the acgur£"€ can now use any of the algorithms introduced in Sec.
of 1e-6 versuse € (0, 1), for different number of users (theld TO the best of our knowledge, our schemes are the first
rest of the setting is as in Figl 1). The figure clearly show&ass ofbest-response Jacobi (inexact) algorithms for MIMO
that, differently from gradient algorithms, the convergen !C Systems based qricing with provable convergence.
behavior of our scheme appears to be almost independéamplexity Analysis and Message Exchange. It is interesting

of the choice ofe. This is a very desirable feature that let$o compare the computational complexity and signaling,(i.e
one avoid the expensive and difficult tuning of the stepsizeessage exchange) of our algorithms, e.g., Algorithm 1dase
thus making the proposed algorithms a very good candidatedin the best-respon€®;(Q", ;) (termed MIMO-SJBR) with
many applications. We remark one more time that the gradighose of the schemes proposed in the literature for a similar
method is very sensitive to the choice of parameters; indeg@ioblem, namely the MIMO-MDHF [23][[24], and the MIMO-
based on further simulations that we do not report here f&dMMSE [30]. We assume that all channel matriddg’s are
lack of space, the behavior of the gradient method is vefyll-column rank, and set; = 0 in (37). For the purpose
sensitive to the number of users and characteristics of thiecomplexity analysis, since all algorithms include a $ami
network (SNR, pair distances, etc...) and its optimal biirav bisection step which generally takes few iterations, wed wil

requires different tunings of parameters each time. ignore this step in the computation of the complexity (as in
[3Q]). Also, WMMSE and SJBR are simultaneous schemes,
10 SR 0 Sweey - Graden=0.5 U while MDP is sequential; we then compare the algorithms by
: : .;;:Igj:gg:g; T | oo 19 v given theper-round comple>_(ity, where one round means one
10° : T < Gradent(c=50, vses) update of all users. Denoting by, (resp.nr) the number of
: ; ; "f‘-‘~= oeraqiemu:soi 15 users) antennas at each transmitter (resp. receiver), the comgnaa
10* h T— complexity of the algorithms is:
g -..:::-.::-.::::::; o MIMO-MDP: O(IQ(HTTL% +nZng + ni’%) + Inz})
5105 e MIMO-WMMSE: O (I%(nyn%, + nfng +ni) + I n%) [80]
g [ e MIMO-SJBR: O(I%(nyn3, + nng) + 1(n +n%)).
2| el M . . . .
10 T M , ; It is clear that the complexity of the three algorithms iswer
TS gimjlar, and same in order in the case in whigh= n (£ n),
10% : given by O(I?n3).
We remark that, in a real system, the MUI covariance
10° matricesR;(Q_;) come from an estimation process. It is thus
10 10° e 107 10" i(Q-1) P

interesting to understand how the complexity changes when
Fig. 2: Proximal conditional gradient algorithms versus SJBR: rage the computation oR;(Q_;) fromR,,, +Zj¢i HiijHg- is

number of iterations versuse (0, 1) [cf. (L9)]- not included in the analysis. We obtain the following:
e MIMO-MDP: O(I%(nyn% + ning +n%) + I nd.)
B. Sum-Rate Maximization over MIMO ICs e MIMO-WMMSE: O(I?(nfng + n¥) + I(n;, + nrn¥))
Let us focus now on the MIMO formulatiof(26), assuming MIMO-SJBR: O(I*(nrng +ngng) + I(nf +n%)).
fi(z) = w; x, with w; > 0. Finally, if one is interested in the time necessary to coteple
1) Decomposition #1: Pricing Algorithms: Choosing/; = one iteration, it can be shown that it is proportional to the

I, C; = {i}, andH;(Q™) =1, the best-response of useis  above complexity divided by.
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As far as the communication overhead is concerned, tfe even better) computational complexity. Interestinghe
same remarks we made about the schemes described initi@tion gap with the other schemes reduces with the distan
SISO setting, apply also here for the MIMO case. The onbnd the termination accuracy. More specifically: i) SIBRvsee
difference is that now the users need to exchange a (pricinig) be much faster than all the other schemes (about one
matrix rather than a vector, resulting (1% n%) amount of order of magnitude) whed,; /d;; = 3 [say low interference
message exchange per-iteration for all the algorithms. scenarios], and just a bit faster (or comparable to MIMO-

2) Decomposition #2—WMMSE Algorithms: In [30], the WMMSE) whend;;/d;; = 1 [say high interference scenarios];
authors showed that the MIMO problem126) (under powend ii) SIBR is much faster than all the others, if an high
constraints only) is equivalent to the following sum-MSHEermination accuracy is set (see Table 1). Also, the corermeg
minimization: writing Q; = V,VH, V £ (V,)/_,, and speed of SIBR is not affected too much by the number of
introducing the auxiliary matrix variable®J £ (U;)!_,, users. Finally, in our experiments, we also observed that th
w2 (W)L, performance of SIBR are not affected too much by the choice

, o of the parametet in the [19): a change of of many orders
erl'{lvf (W, U, V) = Zwi (tr (W, Ei(U, V) ~log det(W:)) of magnitude leads to a difference in the average number of

st W(V,VH) < Pi,ie\%vi ~0. Viel icteration_s which is within 5%; we refer the reader [43]

(38 or details, vyhere one can also find a comparison of several
whereE; (U, V) is the MSE matrix at the receivér(see (3) other step-size rules. We must stress howeve_r that _MIMO-
in [30]). The formulation[(38) has some desirable propertie¥PP and MIMO-WMMSE do not need any tuning, which is
namely: i) f(W,U,V) is continuously R-)differentiable 2" advantage with respect to our method.
with .Il_ipschitz continyous (Conj_ugate) grad.ient on the ilglas 4 of users= 10 4 of users= 50 4 of users= 100
set; i) f(W,U,V) is convex in each variable®&, U, V; d=1  d=2 d=3|d=1  d=2 d=3‘ d=1  d=2  d=3
iii) the minimization of f (W, U, V) w.r.t. to eachw, U, v MbP 1370.5 187 54% 1485 1148 34? 8818 1904 704

. . . VéMMSE 169.2 68.8 53.3 1385 115.2 76.1 154.3 126.9 103.2
can be performed in parallel by the users; and iv) the optimaber | 169.2 243 6.9|1152 343 9.3|1143 284 9.7
solutions of the individual minimizations are avallable_ N TABLE I; Average number of iterations (termination accuyrate-6)
closed form, seé [30] for details. We will denote such optima
solutions asw;(U, V), U,;(U,V), and V,;(U, W), for all # of users= 10 | # of users=50 | # of users= 100
; L - d=1 d=2 d=3|d=1 d=2 d=3|d=1 d=2 d=3
1 € Z, where we made explicit the dependence on the variablgss 50 d 743 3 17395 4655 203 3795 889 4436
that are kept fixed. In[[30] the authors proposed to use themmse

51.6 19.2 14.7) 59.6 24.9 16.3 69.8 26.0 19.2
(Gauss-Seidel) block coordinate descent method to soB)e (3 7SBR

48.6 94 4.0 |46.9 12,6 51497 12 5.5

resulting in the so-called MIMO-WMMSE algorithm. TABLE II: Average number of iterations (termination acotyale-3)
It is not difficult to see that the formulatio _(38) can
be cast into our framework, resulting in the following best- VIIl. CONCLUSION

. - * n n n A
response mapping for each user X; (W, U", V") = In this paper, we proposed a novel decomposition frame-

(Wi(Unvvn)a U, (Un, Vn)vvi(Unvwn))- We can then work, based on SCA, to compute stationary solutions of
compute a stationary solution ¢f(38) and thius| (26) using aggneral nonconvex sum-utility problems (including social
of the Jacobi algorithms introduced in the previous sectionfunctions of complex variables). The main result is a new
based orX,; (W, U™, V") (or its inexact computation). Note class of convergerdistributed Jacobi (inexact) best-response
that the computational complexity as well as the communicalgorithms, where all usersmultaneously solve (inexactly)

tion overhead of such algorithms are roughly the same okthas suitably convexified version of the original social prable

of the MIMO-WMMSE [30]. Our framework contains as special cases many decomposition

Numerical Example. In Tables | and Il we compare themethods already proposed in the literature, such as gradien
MIMO-SJBR, the MIMO-MDP [28], [24], and the MIMO- algorithms, and many block-coordinate descent schemes for
WMMSE [23], [24], in terms of average number of iteration§onvex functions. Finally, we tested our methodology onsom
required to reach convergence, for different number ofgjsepum-rate maximization problems over SISO/MIMO ICs; our
normalized distances £ d;; /d;; (with d;; = dj; andd;,; = €xperiments show that our algquthms are faster than ad-
d;; for all i andj +# i), and termination accuracy (namekg- hoc state-of-the-art methods while having the same (user)
3 and1e-6). We considered the following setugll the trans- computational complexity in the SISO case and similar (or
mitters/receivers are equipped withantennas; we simulatedbetter) complexity in the MIMO case. Some interesting fatur
uncorrelated fading channel model, where the coefficieres alirections of this work are under investigation, e.g., haw t
Gaussian distributed with zero mean and variahté ; and adaptively choose the step-size rule (so that no a-priag

we setR,,, = o2I for all i, andsnr 2 P/o? = 3dB. We used is needed), and how to generalizg our framewqu to scenarios
the step-size rulé{19) with= 1e-5 andr; = 0. We computed when only long-term channel statistics are available.

the best-responsE_(37) using the closed form solufioh [24].

In our simulations all the algorithms reached the same aver-
age sum-rate. Given the results in Tables | and Il, the fadlgw ~ The authors wish to thank the Associate Editor, Prof.
comments are in order. The proposed SJBR outperforms Atithony So, and the anonymous reviewers for their valuable
the others schemes in terms of iterations, while havinglaimicomments. The authors are also deeply grateful to Prof.
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APPENDIX

For notational simplicity, in the following we will omit in

eachxc, (y, ;) [andX¢(y, )] the dependence of; and r;,
and writex; (y) [andX(y)]; also, we introducee, (x;, x_;) =

Yiee, fitxi,x i) and fe  (xi,x i) £ 30 fi(xi,x ).

A. Proof of Proposition [

(%(2) = %)) (VS (R(2):2) — V] (R(¥):2))

(45)
Using [39) we can now lower bound the left-hand-sideof (45)
as

() = 2(y)" (Vo] R(2):2) = Vuf (R():2))  pq

> cr |R(2) — R(y)]1?,
whereas the right-hand side 6f{45) can be upper bounded as

(R(y) = %) (Vo] R(¥)i2) = VT &3):9)) 4y
< Lej IX) %) lly — 2

Before proving the proposition, let us introduce the folghere the inequality follows from the Cauchy-Schwartz in-
lowing intermediate result whose proof is a consequence @(ﬁuality and[[2D). Combining #5)_T¥6), afdi(47), we obtain

assumptions A1-A3 and thus is omitted.

Lemma 6: Let f(x;y) £ 32, fe,(xiy), with fe,(xi;y)
defined in [¥). Then the following hold:

0] f(o; y) is uniformly strongly convex o with constant
cr >0, l.e.,

(=) (Vaf (53) = Vf (W) = ex [ = w® .
(39)
for all x,w € K and giveny € K;
(i) Vi f(x;e) is uniformly Lipschitz continuous oft, i.e.,
there exists & < L, 7 < oo independent ox such that

|VxF Geiy) = Vaf Gaw) | < Lg lly = wll. (40)

for all y,w € K and givenx € K.

We prove now the statements of Propositioh 1 in thg Proof of Theorems

following order (c)-(a)-(b)-(d).
(c): Giveny € K, by definition, eachx;(y) is the unique

the desired Lipschitz property &f(e).

(b): Letx* € K be a fixed point ofk(y), that isx* = X(x*).
By definition, eachx;(y) satisfies[(4l1), for any givey € K.
Settingy = x* and usingx* = x(x*), (@) reduces to

(zi — x) ! Vi, U(x*) >0, (48)

for all z; € K; andi € Z. Taking into account the Cartesian
structure of K and summing[{48) ovei € Z we obtain

(z —x*)T VyU(x*) >0, forallze Kk, with z 2 (z,)L,;
thereforex* is a stationary solution of]1).

The converse holds becausexijx*) is the unique optimal
solution of [I0) withy = x*, and ii) x* is also an optimal
solution of [10), since it satisfies the minimum principle.
(d): It follows readily from [(48). O

Band@
We prove Theorent]4; Theorefd 3(b) is a special case;

solution of the problem{310) and thus satisfies the minimufie proof of simpler Theorerll 3(a) is omitted and can be

principle: for allz; € K,
(2 — %i(y))"

(Vx, fe,Xi(y), y—i) + e, (y) + 7 Hi(y) (Xi(y) — yi)) > 0.
(41)

Summing and subtractingy, fe, (y:, y—:) in (Z1), choosing
Zi =Yis and USingﬂ-Ci (y) £ vxifc—i(y)’ we get

(vi = %) (Ve fe: Rily), ¥-i) = Vo fe, (vir y—2)
+(yi —%i(¥)" Vi U()
—7i (Xi(y) —yi)" Hi(y) (Xi(y) = yi) >0,
(42)
for all i € Z. Recalling the definition of.- [cf. (I4)] and using
(42), we obtain

(yi = %) Va Uly) = er [IRi(y) — yil *.

for all i € Z. Summing [(4B) ovei we obtain [IB).
(a): Let us use the notation as in Lemfda 6. Giger € K,
by the minimum principle, we have

(v—%(y)" foN(ﬁ(y); y)
(W —(2))" Vi f (RX(2);2)

(43)

0 Vv ek

>
> 0 VYwek. (44)

obtained following similar steps. The line of the proof is
based on standard descent arguments, but suitably combined
with the properties ok(y) (cf. Prop[1), and the presence of
errors{e?}. We will also use the following lemma, which is
the deterministic version of the Robbins-Siegmund resurit f
random sequences [44, Lemma 11] (but without requiring the
nonnegativity ofX™ and Z" as instead in[[44, Lemma 11]).
Lemma 7: Let {X"}, {Y™}, and{Z"} be three sequences
of numbers such that™ > 0 for all n. Suppose that

Xl xn_yn 42" ¥Yn=0,1,...

and )", Z"™ < oo. Then eitherX™ — —oo or else{X"}
converges to a finite value arid,, Y™ < co. O

We are now ready to prove Theor&i 4. For any given 0,
the Descent Lemma [36] yields

Ut < UE")+4" ViU xM)7" (2" — x")

(’Vn)QLVU Hzn
2

with z* £ (z!)[_,, and z? defined in Step 2 (Al-

gorithm [2). Using [lz" —x"|* < 2|%(x")—x"|> +

) (49)
+ —x"|

)
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25 [z — % (x™)]]? < 2[|R(x") — x™|*+2 3, (e7)%, where  We show next tha{{89) is in contradiction with the conver-

in the last inequality we useftz? — x;(x")|| < 7, and gence of{U(x")},. To do that, we preliminary prove that,
N . N for sufficiently largen € N, it must be|Ax(x™)|| > §/2.
ViU (x")" (2" = X(x") + xX(x") —x") < (50) Proceeding as ir(58), we have: for any giver V',
—cr [[X(x") — Xn||2 + Zz i V<, U, HAQ(XnJrl)H — AR < ( nt+l _ Xn”
which follows from Prop[1L(c),[(49) yields: for alt > 0, < (1+ D)y (| AR(x™)|| + ™) |

U (x") <U(x") = 4" (¢r — 7" Lyy) |R(x") — x"||* + T, It turns out that for sufficiently large. € A so that(1 +
(51) L)y™ < 6/(d + 2e™*>), it must be

whereT,, £ 4" . &7 [ Vo, U™ + (1) Lvw 3,(0)> e |

Note that, under the assumptions of the theor@ﬁ‘;o T, < 1A% = 6/2; (60)

co. Sincey™ — 0, we have for some positive constahtand otherwise the conditiofj Ax(x"*)|| > 6 would be violated

sufficiently largen, sayn > 7, [cf. (BH)]. Hereafter we assume w.l.0.g. thiatl(60) holdsdtbr
N . U N n € N (in fact, one can alway restridtx"},,cs to a proper

U (X +1) < U(X ) —7"h ”X(X ) - X H2 + T (52) Subsequence)_

Invoking LemmaY with the identification&” = [/ (x"+1), We can show now tha{{b9) is in contradiction with the

Yo = 4n8 |R(x") —x"|? and Z® — T, while using Convergence 01{;] (Xy.l)f}”' Ufsf!n-g ?)| (possjlsly over & sub-
S T, < o0, we deduce from[(82) that eithdi/ (x")} — sequence), we have: for sufficiently large= \,
—oo or else{U (x™)} converges to a finite value and , o f
) Uxn) < URY=B8 Y A [|are)|” + 2T
. ) 2 =n
Jim 30 o) = < +oc. (53) . A

¢ 2

Since U(x) is coercive,U(x) > minyex U(y) > —oo, < UG = 5(07/4) Z Ui Z T (e1)
implying that {U (x")},, is convergent; it follows from[(33 . .
anzyz J e {_ OE) tr?;thmmfn_mng( ") — x| = 0. [53) where in (a_) we used (b5) anﬂ]GO) afigl is some positive

Using Prop[L, we show next thén,, .. [&(x") —x"| = constant SinceU (x )l}n_(lzor;\verges antl’, — T < oo, ()
0; for notational simplicity we will writeAR(x") £ g(x") —  MPleslimasn—o 3540, 7' = 0, which contradicts[(J9).
X", Suppose, by contradiction, thatsup,, , _ [AR(x")] > Flngl!y, since the sequenc{ec } is bounded [due_ to the
0. Then, there exists & > 0 such that| AX(x")| > 26 for COE'ClVity of U(x) and the convergence QU (x")}n], it has

infinitely manyn and also| AZ(x™)|| < § for infinitely many at least one limit poink that must belong t@C. By the con-

n. Therefore, one can always find an infinite set of indexeténUIty OLX( ) [PLOR'Déa)]Pandig";‘io ||§(>|c") — x| — 0,
say ', having the following properties: for any € A, there = MuSt ex(x) = x. By Prop.L1(b)x is also a stationary
exists an integef,, > n such that solution of the social probleni](1).

" Note that, in the setting of Theordmh & = 0 for all ; and

IAR(x™)| <6, ||A%(x")| >25  (54) n; thereforeT,, = 0 for all n. It follows from (52) thatl/ (x")
5 < HA;((XJ‘)H <95 n<ij<i (55) is a decreasing sequence, which entails that no limit pdint o
- - " {x"} can be a local maximum. O

Given the above bounds, the following holds: for alE N,
C. Proof of Theorem[H

—~
S
N

§ < ||arE")|| - |AREY)|| The main idea of the proof is to interpret Algorittith 3 as an
< Hg(xin) _ i(x”)H + sz _ XnH (56) instance of the inexact Jacobi scheme described in Algorith
(_b) [, and show that Theorel 4 is satisfied. It is not difficult to
< (L+LD)x - x| (57) show that this reduces to prove that, forak 1,...,1, the
© in—1 sequence! in Step 2a) of Algorithni3 satisfies
SRP PR Gl b bl ot~ %) <. 62)
(d) . in—1 for some{&/} such that)", £/ 7 < oo. The following holds
< (1+D)20+em) ) A, (58) for the LHS of [B2):
t=n
|1z —Xz( O < IIRa(Eh xis ) = % (x4 [125 — i (xi 2 ] )l
where (@) follows from[[54) and(55); (b) is due to Pro < <
[M(a); (c) comes from the triangle inequality and the upcgatln g Hii(xﬁil,x‘;z) — % (x| +¢&f
rule of the algorithm; and in (d) we usefl {54).1(55), and ®)
|z —x(x')| < >, ¢!, wheree™™ £ max, > . e < oc. < ﬁH x| +ef
It follows from (58) that
© - St ot t\i—1 t t
n1 5 < Ly (H(Xa‘(xa‘< X)) — Xj)j:lH + i ?a‘) &
liminf Y 4 > . >0.  (59) @ ., . L
[ (1+ L)(26 + emax) < Ly'Bi+ Ly Zj<i gj +e&;,
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where (a) follows from the error bound in Step 2a) of3]
Algorithm[3; in (b) we used Profy] 1a); (c) follows from Step
2b); and in (d) we used Prop] 1d), withy < oo being a
positive constant. It turns out thdf (62) is satisfied chogsi [24]
EL 2 NG+ Lyt di<i ef+el. O
[25]
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