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Designing Unimodular Codes via Quadratic

Optimization is not Always Hard

Mojtaba Soltanalian* and Petre Stoidzellow, IEEE

Abstract

The NP-hard problem of optimizing a quadratic form over tmémodular vector set arises in radar
code design scenarios as well as other active sensing anchwoigation applications. To tackle this
problem (which we call unimodular quadratic programmin@®)), several computational approaches
are devised and studied. A specialized local optimizatihrese for UQP is introduced and shown to
yield superior results compared to general local optinoratmethods. Furthermore, monotonically
error-boundimprovingtechnique (MERIT) is proposed to obtain the global optimuna ¢wcal optimum
of UQP with good sub-optimality guarantees. The providdateptimality guarantees are case-dependent
and generally outperform the/4 approximation guarantee of semi-definite relaxation. Bdveimerical
examples are presented to illustrate the performance opithygosed method. The examples show that
for cases including several matrix structures used in radde design, MERIT can solve UQP efficiently

in the sense of sub-optimality guarantee and computatiimal

Index Terms

radar codes, unimodular codes, quadratic programming.

. INTRODUCTION

Unimodular codes are used in many active sensing and consatiori systems mainly as a result of

the their optimal (i.e. unity) peak-to-average-powerad®AR). The design of such codes can be often
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formulated as the optimization of a quadratic form (see sedtion[I-A for examples). Therefore, we

will study the problem

UQP: max s Rs (1)
seQn

where R € C™ " is a given Hermitian matrix(.)"’ denotes the vector/matrix Hermitian transpaQe,
represents the unit circle, i.€2 = {s € C : |s| = 1} and UQP stands for Unimodular Quadratic

Program(ming).

A. Motivating Applications

To motivate the UQP formulation considered above, we pitekair scenarios in which a design
problem in active sensing or communication boils down to &PU
e Designing codes that optimize the SNR or the CRMB:consider a monostatic radar which transmits

a linearly encoded burst of pulses. The observed backsedtsignalv can be written as (see, e.g! [1]):
v=a(c®p)+w, (2)

wherea represents both channel propagation and backscattefegi<to is the disturbance/noise com-

ponent,c is the unimodular vector containing the code elemepts; (1,727 /aTr ... i2r(n=1)faT:)T

is the temporal steering vector withy and 7, being the target Doppler frequency and pulse repetition

time, respectively, and the symbal stands for the Hadamard (element-wise) product of matrices

Under the assumption thab is a zero-mean complex-valued circular Gaussian vectdn wiown

positive definite covariance matriR[ww’’] = M, the signal-to-noise ratio (SNR) is given by [2]
SNR= |a*c Re (3)

where R = M~ © (pp™)* with (.)* denoting the vector/matrix complex conjugate. Therefdine,

problem of designing codes optimizing the SNR of the radatesy can be formulated directly as an

UQP. Additionally, the Cramer-Rao lower bound (CRLB) foettarget Doppler frequency estimation

(which yields a lower bound on the variance of any unbiasegkteDoppler frequency estimator) is given
by [2]
CRLB = (2af*(copouw)’M ' (copou) (4)
= (2\@]2CHR'C)_1
where u = (0,521Ty,--- ,j2x(n — 1)T,)T and R = M~ © (pp")* ® (uu'?)*. Therefore the

minimization of CRLB can also be formulated as an UQP. Fordineultaneous optimization of SNR
and CRLB se€[]2].
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e Synthesizing cross ambiguity functions (CAFEe ambiguity function (which is widely used in
active sensing applications] [3][4]) represents the twuatisional response of the matched filter to a
signal with time delayr and Doppler frequency shiff. The more general concept of cross ambiguity
function occurs when the match filter is replaced by a mishretdilter. The cross ambiguity function
(CAF) is defined as

x(1, f) = /_OO u(t)v* (t + T)ejzwftdt (5)

wherew(t) andwv(t) are the transmit signal and the receiver filter, respegtifitle ambiguity function

is obtained from[(5) withv(¢) = u(t)). In several applications(¢) andv(t) are given by:

n

u(t) =Y wpi(t),  v(t) = yrpr(t) (6)
k=1

k=1
where{py(t)} are pulse-shaping functions (with the rectangular pulsa esmmon example), and

= (z12,)", y=(1 )" (7)

are the code and, respectively, the filter vectors. The dgwigblem of synthesizing a desired CAF has a
small number of free variables (i.e. the entries of the wscioandy) compared to the large number of
constraints arising from two-dimensional matching ciététo a given|x(r, f)|). Therefore, the problem
is generally considered to be difficult and there are not maeyhods to synthesize a desired (cross)
ambiguity function. Below, we describe briefly the cyclicpapach of [5] for CAF design.

The problem of matching a desirég(r, f)| = d(r, f) can be formulated as the minimization of the

criterion [5]

s@w.0) = [ [t pldrnes™ )y el ©

whereJ (7, f) € C"*™ is given,w(, f) is a weighting function that specifies the CAF area which seed
to be emphasized ang(r, /) represent auxiliary phase variables. It is not difficult &= ghat for fixed
x andy, the minimizeré(r, f) is given by é(r, f) = arg{y™ J (7, f)x}. For fixed 4(r, f) and z, the

criterion g can be written as
9(y) = y"Diy—y"B"z -z By + const @)
= (y—D7'B"z)"D(y — D;'B"z) + const

whereB and D; are given matrices i©”*" [5]. Due to practical considerations, the transmit coedfits

{zx} must have low PAR values. However, the receiver coefficiént$ need not be constrained in such
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a way. Therefore, the minimizey of g(y) is given byy = Dl‘lBHa:. Similarly, for fixed¢(r, f) and

y, the criteriong can be written as
g(x) = 2’ Doz — 2 By — y B¥x + const (20)

where D, € C"*™ is given [B]. If a unimodular code vectat is desired then the optimization gfx)

is an UQP agj(x) can be written as

H
gl) =1 | +const (11)
el® —(By)" 0 el®

wherey € [0,27) is a free phase variable.

e Steering vector estimation in adaptive beamformi@gnsider a linear array with antennas. The

output of the array at time instaitcan be expressed ds [6]
T = Spa + ny (12)

with {s;} being the signal waveformy the associated steering vector (wjta];| =1, 1 <1 < n), and
ny, the vector accounting for all independent interferences.

The true steering vector is usually unknown in practice, iaman therefore be considered as an uni-
modular vector to be determined [7]. Define the sample camag matrix of x; } asR = % Z;‘::l zrxl
whereT is the number of training data samples. Assuming some priowkedge ona (which can be
represented byirg(a) being in a given secto®), the problem of estimating the steering vector can be
formulated as[[B]

min aHI?i_la (13)

a

s.t. arg(a) € O,

hence an UQP-type problem. Such problems can be tackled gsimeral local optimization techniques
or the optimization scheme introduced in Secfioh IlI.

e Maximum likelihood (ML) detection of unimodular codéssume the linear model
y=Qs+n (14)

where @ represents a multiple-input multiple-output (MIMO) chahny is the received signah is the
additive white Gaussian noise asdcontains the unimodular symbols which are to be estimatée. T

ML detection ofs may be stated as
Sy = arg min [ly — Qs2 (15)
seQn
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It is straightforward to verify that the above optimizatiproblem is equivalent to the UQP][9]:

min s7Rs (16)

seQntt

H P H ;
R(QQ Qy),s<e%> (17)
—yHQ 0 ey

andy € [0,27) is a free phase variable.

where

B. Related Work

In [10], the NP-hardness of UQP is proven by employing a rédodrom an NP-complete matrix
partitioning problem. The UQP iri](1) is often studied alonighvithe following (still NP-hard) related

problem in which the decision variables are discrete:

m-UQP: max s” Rs (18)

seQn
where Q,, = {1,e/,--- e/ (™1} Note that the latter problem coincides with the UQP [h (1)
asm — oo. The authors of[[11] show that when the mat#ikis rank-deficient (more precisely, when
d =rank(R) behaves like)(1) with respect to the problem dimension) theUQP problem can be solved
in polynomial-time and they propose@((mn/2)%¢)-complexity algorithm to solvé(18). However, such
algorithms are not applicable to the UQP which correspoadmtinfinite .

Studies on polynomial-time algorithms for UQP (andUQP) have been extensive (e.g. see [9]-[19]
and the references therein). In particular, the semi-defi@laxation (SDR) technique has been one of
the most appealing approaches to the researchers. To @eri8®R, we note that”’ Rs = tr(s” Rs) =

tr(Rss'). Hence, the UQP can be rewritten as
max tr(RS) (19)
st.S=ss seqn

If we relax [19) by removing the rank constraint éhand the unimodularity constraint anthen the

result is a semi-definite program:

SDP: maxtr(RS) (20)

S is positive semi-definite.
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The above SDP can be solved in polynomial time using intgrant methods[[15]. The approximation
of the UQP solution based on the SDP solution can be accdmepli:n several ways. For example,
we can approximate the phase values of the solutiarsing a rank-one approximation &. A more
effective approach for guessingis based on randomized approximations (seé [10], [16] a@f).[A
detailed guideline for randomized approximation of the Uspiution can be found i [17]. In addition,
we refer the interested reader to the survey of the richalitee on SDR in[[18].

Analytical assessments of the quality of the UQP solutidnsioed by SDR and randomized approx-
imation are available. Letspr be the expected value of the UQP objective at the obtainedbraized

solution. Letv,,; represent the optimal value of the UQP objective. We have

YVopt <wspr < Vopt (21)

with the sub-optimality guarantee coefficient= 7/4 [10][19]. Note that the sub-optimality coefficient
of the solution obtained by SDR can be arbitrarily closerfd (e.g., seel[[19]).

C. Contributions of this Work

Besides SDR, the literature does not offer many other nuwaleaipproaches to tackle UQP. In this paper,
a specialized local optimization scheme for UQP is propo3ée proposed computationally efficient
local optimization approach can be used to tackle UQP asagelinprove upon the solutions obtained
by other methods such as SDR. Furthermormanotonicallyer ror-boundimproving technique (called
MERIT) is introduced to obtain the global optimum or a locptimum of UQP with good sub-optimality

guarantees. Note that:

« MERIT provides case-dependent sub-optimality guarantéesthe best of our knowledge, such
guarantees for UQP were not known prior to this work. Usirgggloposed method one can generally
obtain better performance guarantees compared to thet@mahlworst-case guarantees (such as
~v = 7 /4 for SDR).

« The provided case-dependent sub-optimality guaranteesfaoractical importance in decision mak-
ing scenarios. For instance in some cases the UQP solutiamel by SDR (or other optimization
methods) might achieve good objective values. Howeveeasthe goodness of the obtained solution
is known (this goodness can be determined using the profmaetls), the solution cannot be trusted.

« Using MERIT, numerical evidence is provided to show thatesaVUQPs (particularly those which
occur in active sensing code design) can be solved effigiamtihout sacrificing the solution

accuracy.
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Finally, we believe that the general ideas of this work caratiepted to tacklen-UQP as the finite

alphabet case of UQP. However, a detailed studyreflQP is beyond the scope of this paper.

D. Organization of the Paper

The rest of this work is organized as follows. Secfidn Il dsses several properties of UQP. Section
[Mintroduces a specialized local optimization methodct®m [IV] presents a cone approximation that is
used in Sectiof V to derive the algorithmic form of MERIT foQB. Several numerical examples are
provided in sectiof V1. Finally, Sectidn VIl concludes thaper.

Notation: We use bold lowercase letters for vectors/sequences addupplercase letters for matrices.
()T denotes the vector/matrix transpodeand 0 are the all-one and all-zero vectors/matriceg.is
the k' standard basis vector i@". |||, or thel,-norm of the vecto is defined ag", |a:(l<:)|")%
where{z(k)} are the entries ak. The Frobenius norm of a matriX (denoted by| X || ) with entries
{X (k,1)} is equal to (Zk’l ]X(k:,l)\?)%. We useR(X) to denote the matrix obtained by collecting
the real parts of the entries oX. The matrixe/X is defined element-wisely aﬁeﬂ'x]k’l = eIXlkt,
arg(.) denotes the phase angle (in radians) of the vector/magunaent.E[.| stands for the expectation
operator.Diag(.) denotes the diagonal matrix formed by the entries of theovemtgument, whereas
diag(.) denotes the vector formed by collecting the diagonal estoiethe matrix argumenio;(X)
represents thé!” maximal eigenvalue ofX. Finally, R and C represent the set of real and complex

numbers, respectively.

Il. SOME PROPERTIES OFUQP

In this section, we study several properties of UQP. Theudised properties lay the grounds for a

better understanding of UQP as well as the tools proposedlctdet it in the following sections.

A. Basic Properties

The UQP formulation in[{1) covers both maximization and mmiziation of quadratic forms (one can
obtain the minimization of the quadratic form il (1) by caieing —R in lieu of R). In addition,
without loss of generality, the Hermitian matrR can be assumed to be positive (semi)definiteRIfs
not positive (semi)definite, we can make it so using the diafjtoading technique (i.eR < R + \I
where A > —o,(R)). Note that such a diagonal loading does not change thei@olof UQP as

s (R+\Is = s” Rs+ \n. Next, we note that i is a solution to UQP thew’?3 (for any ¢ < [0, 27))
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is also a valid solution. To establish connections amonigrdint UQPs, Theorem 1 presents a bijection

among the set of matrices leading to the same solution.

Theorem 1. Let K(s) represent the set of matricd® for which a givens € Q™ is the global optimizer
of UQP. Then

1) K(s) is a convex cone.

2) For any two vectorss, s € 2", the one-to-one mapping (whesg = s7 © s2)
R e K(s)) <= RO (s0sl!) € K(s2) (22)
holds among the matrices iK(s;) and KC(s2).

Proof: See the Appendix. [ |

It is interesting to note that in light of the above resulte ttharacterization of the con€(s) for
any givens = s leads to a complete characterization of &lls), s € ™, and thus solving any UQP.
However, the NP-hardness of UQP suggests that such a old@ation cannot be expected. Further

discussions regarding the characterizatiork¢§) are deferred to Sectidn]V.

B. Analytical Solutions to UQP

There exist cases for which the analytical global optima @RJare easy to obtain. In this sub-section,
we consider two such cases which will be used later to proaidapproximate characterization /6fs).
A special example is the case in whief?8(®) (see the notation definition [ TID) is a rank-one matrix.
More precisely, letR = Ry ©® (’§§H) where R; is a real-valued Hermitian matrix with non-negative
entries ands € Q" (a simple special case of this example is whgns a rank-one matrix itself). In
this case, it can be easily verified thRy € K(1,x1). Therefore, using Theorem 1 one concludes that
R € K(s) i.e. s = s yields the global optimum of UQP. As another example, TheoBeconsiders the

case for which several largest eigenvalues of the md®iare identical.

Theorem 2. Let R be a Hermitian matrix with eigenvalue decompositiBn= UXU*. Suppose is

of the form

3 :Diag( o1 -+ 01 02 "¢ Un—m+1]T) (23)

m times

01>022 2 Op—m+1
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and letU,, be the matrix made from the first columns ofU. Now suppos& € Q" lies in the linear

space spanned by the columnslof,, i.e. there exists a vectak € C™ such that
s =Upa. (24)
Thens is a global optimizer of UQP.

Proof: Refer to the Appendix. |

We end this section by noting that the solution to an UQP isnmemtessarily unique. For any set of
unimodular vectorgsi, s, - , sk}, k < n, we can use the Gram-Schmidt process to obtain a unitary
matrix U the firstk columns of which span the same linear space;ass, - - - , si. In this case, Theorem
2 suggests a method to construct a malixby choosing a with & identical largest eigenvalues) for

which all s, s9,--- , s, are global optimizers of the corresponding UQP.

[1l. SPECIALIZED LOCAL OPTIMIZATION OF UQP

Due to its NP-hard nature, UQP has in general a highly muttitah optimization objective. Finding
and studying the local optima of UQP is not only useful to tadke problem itself (particularly for
UQP-related problems such ds](13)), but also to improve Q¥ @pproximate solutions obtained by
SDR or other optimization techniques. In this section, wieiluce a computationally efficient procedure
to obtain a local optimum of UQP.

Note that, while the risk for this to happen in practice is rheaero, local optimization methods
can in theory converge to a saddle point. Consequently,@énsdguel we lef represent the set of all
local optima and saddle points of UQP. Moreover, we assumeRhis positive definite. Consider the

following relaxed version of UQP:
(RUQP) max R(siRs,) (25)
8178269"
We note that for fixeds; the maximizer of RUQP is given by
s = el 8(fs2) (26)
Similarly, for any fixeds; the maximizer of RUQP is given by

sy = ¢l reBe), (27)

In the following, we show that such a cyclic maximization BBJ can be used to find local optima of

UQP. Itis not difficult to see that the criterion in(25) inases and is upper bounded (bY, ; | R(, 1))
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through the iterations in_(26)-(27), thus the said iterati@re convergent in the sense of associated

objective value. Next consider the identity
2R(sRsy) = si'Rs; + sl Rs, (28)
— (81 — SQ)HR(Sl — 82).

Definees = ||s1 — s2/|3 and suppose that, is fixed and its associated optimal is obtained by[(26).
It follows from (28) that

1 s
R(siRsy) < 3 (siRs1 + s¥ Rsy) — %an(R). (29)

Now suppose, is the optimal vector if2" obtained by[(27) for the abovg. Observe thak(s{ Rs}) >
R(sf Rsy) and thatR(s Rs)) > R(si’ Rsy) > R(sl Rsy) which imply

R(s{'Rsh) > = (si'Rsi+ st Rsy) (30)

N | —

> R(siRsy) + %san(R).
It follows from (30) that

£s < _2 |R(s{ Rsh) — R(s{' Rsy)| . (31)

~ on(R)

The right-hand side of(31) vanishes through the cyclic mination in [26){(2V) which implies that,
converges to zero at the same time. Note that the above argsiroan be repeated for fixed. We
conclude that the iterations il_(26)-(27) are convergert also that they cannot converge (&, s2)
with s; # so. Moreover, ass”! Rs = R(si’ Rs,) for any s; = s = s then any local optimungsy, s3)

of RUQP satisfyings; = s; = s yields a local optimuns of UQP. Based on the above discussions, the
cyclic optimization of RUQP can be used to find local optimal@pP. Particularly, starting from any

vectors(9) € Q", the power methodike iterations

s(t+1) — ¢l arg(Rs(®)) (32)

converge to an element ih. As an aside remark, we show that the objective of UQP is alsmeasing
through the iterations of (82). Using(28) with = s(‘t1), andsy = s® (sttD) £ s implies that

sTHHRED . _OHR® 4 oR(st+DHRsM)
> sOHRGH), (33)

Note that while [(3R) can obtain the local optima of UQP, it htigot converge to every of them. To

observe this, les; be a local optimum of UQP and initializE (32) with?) = 57. Let 53 be another local
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11

optimum of UQP but with a larger value of UQP than thasatNow one can observe fror (28) thatsi
is sufficiently close tos; then the above power method-like iterations can move away &, meaning
that they can converge to another local optimum of UQP withrgdr value of the UQP objective than
that ats;. Therefore,[(3R) bypasses some local optima of UQP withivels small UQP objective values
(which can be considered as an advantage compared to a blecaiaptimization method). Moreover,
one can note that there exist initializations for which] (82ds to the global optimum of UQP (i.e. the
global optimum is not excluded from the local optima to wh{@&) can converge).

Next, we observe that arg/c L obtained by the above local optimization can be charaeériw the

equation
arg(s) = arg(RS). (34)

We refer to the subset df satisfying [3#) as the hyper points of UQP. Note thak if Q" is a hyper
point of UQP, then[(34) follows from the convergence [of] (32h the other hand, if(34) is satisfied,
it implies the convergence of the iterations [n1(32) and asslt’s being a hyper point of UQP. The

characterization given in_(84) is used below to motivate dharacterization approach of Theorem 3.

IV. RESULTS ON THE CONEK(s)

While a complete characterization &f(s) cannot be expected (due to the NP-hardness of UQP),
approximate characterizations 6fs) are possible. The goal of this section is to provide an apprate
characterization of the con€(s) which can be used to tackle the UQP problem. Our main resals is

follows:

Theorem 3. For any givens = (e/%,--- ,e/%)T € Q", let { By} be a set of matrices defined as
By, = (erell +eell) © (sst) (35)

andVy, = {By,;:1 <k <[l <n}u{-I,}. LetC(Vs) represent the convex cone associated with the
basis matrices inV,. Also letCs represent the convex cone of matrices witlbeing their dominant
eigenvector (i.e the eigenvector corresponding to the makeigenvalue). Then for ani € K(s), there

existsag > 0 such that for alloe > «y,

R+ assfl e C(V,) UC,. (36)

The proof of Theorem 3 will be presented in several steps dildmas 4-7 and thereafter). Note that

we show that[(36) can be satisfied evemsifs a hyper point of UQP (satisfying (34)). However, since
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s is the global optimum of UQP for all matrices @, andC(Vs), the case ofyy = 0 can occur only
when s is a global optimum of UQP associated with
Supposes is a hyper point of UQP associated with a given positive difimatrix R, and letf,, ; =

larg(R)]x,;. We define the matrix . as

R { [R(k, ) cos(6e1 — (60— 6)) (K1) € O, @

0 otherwise

where© represents the set of glk, ) such that|f, ; — (¢r — ¢1)| < /2. Now, letp be a positive real

number such that

P> max {|R(k,1) cos(Oky — (o — du))|} (38)
and consider the sequence of matri¢da*)} defined (in an iterative manner) lg®) = R, and

R — R _ (RE:) — plosn) ® (SSH) (39)

for t > 0. The next two theorems (whose proofs are given in the App@rstiidy some useful properties

of the sequencéR")}.
Theorem 4. {R®} is convergent in at most two iterations:
RY =R® vit>2 (40)

Theorem 5. R® is a function ofp. Let p and p’ both satisfy the criterion{38). At the convergence of
{R®} (which is attained fort = 2) we have:

R (o) = RP(p) + (o' — p)(ss™). (41)

Using the above results, Theorems 6 (whose proof is givehd@nAppendix) and 7 pave the way for

a constructive proof of Theorem 3.

Theorem 6. If s is a hyper point of the UQP associated wilt(®) = R then it is also a hyper point
of the UQPs associated witR") and R®. Furthermore,s is an eigenvector oR® corresponding to

the eigenvaluep.

Theorem 7. If s is a hyper point of UQP forR(®) = R then it will be the dominant eigenvector of
R® if p is sufficiently large. In particular, let. be the largest eigenvalue @® which belongs to an

eigenvector other thags. Then for anyp > n/n, s is a dominant eigenvector ar?,
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Proof: We know from Theorem 6 that is an eigenvector oR?) corresponding to the eigenvalue
np. However, if s is not the dominant eigenvector @(?), Theorem 5 implies that increasingwould
not change any of the eigenvalues/vectorsRt) except that it increases the eigenvalue corresponding
to s. As a result, fors to be the dominant eigenvector &) we only needp to satisfynp > u or

equivalentlyp > 1/n, which concludes the proof. |

Returning to Theorem 3, note th& can be written as
R = R© (42)
— R® 4 (RS?) + Rsrl)) © (ssf) —2pss™.
For sufficiently largep (satisfying both[(38) and the condition of Theorem 7) we htinz
R+ 2pss’’ = R® + (RSS) + Rgrl)) ® (ss) (43)

where R® ¢ ¢, and (R + R) © (ss”) € C(V.). Theorem 3 can thus be directly satisfied using
Eqg. (43) withag = 2p.

We conclude this section with two remarks. First of all, thewe proof of Theorem 3 does not attempt
to derive the minimaky. In the following section we study a computational methodbdain anayg
which is as small as possible. Secondly, we can@dé) U Cs; as an approximate characterization of
K(s) noting that the accuracy of such a characterization can tesuned by the minimal value af,.

An explicit formulation of a sub-optimality guarantee forsalution of UQP based on the abok&s)

approximation is derived in the following section.

V. MERIT FORUQP

Using the previous results, namely the one-to-one mappitigduced in Theorem 1 and the approx-
imation of K(s) derived in Sectioh IV, we build a sequence of matrices (foicWwithe UQP global
optima are known) whose distance from a given matrix is desing. The proposed iterative approach
can be used to solve for the global optimum of UQP or at leaebtain a local optimum (with an upper
bound on the sub-optimality of the solution). The sub-optity guarantees are derived noting that the
proposed method decreases an upper bound on the sub-dytioiahe obtained UQP solution in each
iteration.

We know from Theorem 3 that i§ is a hyper point of the UQP associated wiihthen there exist

matricesQ, € Cs, Ps € C(Vs) and a scalary > 0 such that
R+agss" = Q, + Ps. (44)
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Eqg. (43) can be rewritten as
R+ agss! = (Q, + P1) © (ss) (45)

where @, € C1, P1 € C(V1). We first consider the case of; = 0 which corresponds to the global

optimality of s.

A. Global Optimization of UQP (the Case afy = 0)

Consider the optimization problem:

i R—(Qy+P1) 0o (ss" 46
seﬂn,Qlénclll,lPleC(vl)” (@1 +P1) © (ss7)llr (46)

Note that, as’; U C(V;) is a convex cone, the global optimize@s, and P, of (48) for any givens
can be easily found. On the other hand, the problem of findmggtimal s for fixed Ry = Q; + P1
is non-convex and hence more difficult to solve globally (belw for details).

We will assume thaiR; is a positive definite matrix. To justify this assumption Bt= R ® (ss'?)*
and note that the eigenvalues Bf are exactly the same as those Bf henceR is positive definite.

Suppose that we have

x"Rx > ¢, V unit-normz € C**!

_ (47)
|R—Ra|r<e
for somee > 0. It follows from (47) that
iRz > xRz — |z Rx — " Ryx| (48)

> ¢— |z (R — Ry)z|
> €—|01(R—R1)|
> e~ |R~Ru|r =0

which implies thatR; is also a positive definite matrix. The conditions [n](47) teEnmet as follows.
By considering only the component @, in C(V7) (namely P,) we observe that any positive (i.e.
with A > 0) diagonal loading ofR, which leads to the same diagonal loadingRf(as R + \I =
RO (ss)* + AT = (R+M\I)® (ss'?)*), will be absorbed inP;. Therefore, a positive diagonal loading
of R does not changéR — R, || but increases’” Rx by \. We also note that due tOR — Ry ||
being monotonically decreasing through the iterationshef rnethod, if the conditions i_(¥7) hold for

the solution obtained in any iteration, it will hold for alié iterations afterward.
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In the following, we study a suitable diagonal loading Bfthat ensures meeting the conditions in
(47). Next the optimization of the function ih_(46) is dissesd through a separate optimization over the
three variables of the problem.

e Diagonal loading ofR: As will be explained later, we can compu@y and P+, (henceR; = Q+P1)

for any initialization ofs. In order to guarantee the positive definitenesRqef define
g0 2 |R — Ryl (49)
Then we suggest to diagonally lod® with A > \g = —0,,(R) + 0:
R+ R+ A (50)
e Optimization with respect t6),: We restate the objective function ¢f {46) as
IR~ (Q1 + P1) © (ss")|F (51)

= [ (R® (ss")" — P1) Q4] r.

Rq

Given Ry, (48) can be written as
in [|[Rg — . 52
anin. [Rq — Qullp (52)
In [20], the authors have derived an explicit solution foe thptimization problem
min || Rg — Qulr (53)
s.t. Q.1 = pl. (p =given)

The explicit solution of [(B3) is given by

Qup) = pIu+ Iy~ T2%)(Rg — pL)(I, — 22 (54)
= Ro+ L1 — Z(Rolu) + = (L RaLn)
Note that
Q1(p") — Q1(p) = (¢ — p)(Lux1 /V1) (Lnxa /) (55)

which implies that except for the eigenpair,,.1//n,p), all other eigenvalue/vectors are independent
of p. Let py represent the maximal eigenvalue @, (0) corresponding to an eigenvector other than

1,x1/+/n. Therefore,[(BR) is equivalent to
min |Rg — Qa1 (p)]|r (56)
s.t.p > po-
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It follows from (54) that

n

IRq — Q(p)lF =) n
k=1

E_24 5 (57)

whereG, and H are the sum of thé&'" row and, respectively, the sum of all entriesRf). The p that

minimizes [5Y) is given by

1 H\ H
which implies that the minimizep = p, of (&8) is equal to
H H -
0w = Pos

po Otherwise.

Finally, the optimal solutiorQ, to (52) is given by
Q1 = Q1(ps)- (60)
e Optimization with respect td;: Similar to the previous casd, (46) can be rephrased as

min ||Rp — Pq||F (61)
Qlec(vl)

whereRp = R ® (ss)* — Q. The solution of[(Bl1) is simply given by

R (k1) Rp(k,l)>0o0rk=1I,
Py -4 TR0 Rl 2 )
0 otherwise

where R, = R{Rp}.

e Optimization with respect t@: Suppose tha®); and P, are given and thaR; = Q; + Py is a
positive definite matrix (see the discussion on this aspaltawing Eq. [46)). We consider a relaxed
version of [46),

min ||R — Ry @ (s183)| (63)
81,8269"
The objective function in[{63) can be re-written as
IR~ Ry ® (s187)II% (64)
= ||R — Diag(s:) R: Diag(s)|[%
= tr(R?) +tr(R?) — 2R{tr(R Diag(s;) Ry Diag(s}))}.
Note that only the third term of (64) is a function sf and s,. Moreover, it can be verified thdt [21]

tr(R Diag(s;) Ry Diag(s})) = st (R® RT)s;. (65)
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TABLE |
THE MERIT ALGORITHM

(A) The case ofag =0

Step O: Initialize the variablexQ,; and P with I. Let s be a random vector

in Q".

Step 1: Perform the diagonal loading aR as in [49){(BD) (note that this
diagonal loading is sufficient to keelg; = Q, + P31 always positive definite).
Step 2: Obtain the minimum of[{46) with respect @, as in [ED).

Step 3: Obtain the minimum of[(46) with respect ;1 using [62).

Step 4: Minimize {48) with respect ta using [66).

Step 5: Goto step 2 until a stop criterion is satisfied, g|® — (Q, + P1) ©
(ss™)||r < eo (or if the number of iterations exceeded a predefined maximum

number).

(B) The case ofxg > 0

Step 0: Initialize the variableq(s, Q,, P1) using the results obtained by the
optimization of [46) as in Tablg I-A.

Step 1: Setd (the step size for increasingo in each iteration). Let, be the
minimal § to be considered ando = 0.

Step 2: Let o8 = ap, af®™ = ag + 6 and R’ = R + aj“ss™.

Step 3: Solve [67) using the steps 2-5 in Table I-A (particularlgps® must

be applied to[(69)).
Step 4 If |R' — (Q, + P1) © (ss™)||r < e do:

o Step 4-1: If 6 > o, let § + /2 and initialize [67) with the previously
obtained variablegs, Q,, P1) for ap = of"°. Goto step 2.
o Step 4-2: If 6 < do, Stop.

Else, letap = ai®? and goto step 2.

As R ® R is positive definite, we can employ the power method-likeaiiens introduced in{32) to
obtain a solution to[{46) i.e. starting from the current s(), a local optimum of the problem can be

obtained by the iterations

S(t—i—l) _ ej arg((R@RlT)s(‘)). (66)

Finally, the proposed algorithmic optimization ¢f [46) bdson the above results is summarized in
Table[]-A.
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B. Achieving a Local Optimum of UQP (the Casengf> 0)

There exist examples for which the objective function[in)(d6es not converge to zero. As a result,
the proposed method cannot obtain a global optimum of UQRi¢h sases. However, it is still possible

to obtain a local optimum of UQP for some > 0. To do so, we solve the optimization problem,

SGQ,QlercI}ll,I}%eC(vl)” (@1 +P1) © (ss7)]F (67)

with R' = R + agss’?, for increasingag. The above optimization problem can be tackled using the
same tools as proposed f@r [46). In particular, note thakeasinga, decreased (67). To observe this,
suppose that the solutiofs, Q,, P1) of (€7) is given for anay > 0. The minimization of [(67) with
respect toQ, for ag®” = ag+ 94 (6 > 0) yields Q, € C; such that

IR+ aj®sst — (Qy + P1) © (ss™)|r (68)
< IR+ af®ss™ — ((Qq + 6117) + P1) @ (ss™)|| ¢
= HR—FaossH— (Q1+P1)®(SSH)HF

whereQ; + 6117 € C;. The optimization of[(67) with respect tB; can be dealt with as before (see

(46) and it leads to a further decrease of the objective fancFurthermore,
IR+ agss™ —(Qq + P1) @ (ss™)|F (69)
= |[R+NI—(Qq + Py —all” + N1I)© (ss™)|r

which implies that a solutios of (€7) can be obtained via optimizing {69) with respecstim a similar
way as we described fdr (46) provided that> 0 is such thaQ, + P; —ao117 + )T is positive definite.
Finally, note that the obtained solutids, Q,, P1) of (46) can be used to initialize the corresponding
variables in[(6l7). In effect, the solution &f {67) for any can be used for the initialization df (67) with
an increasedy.

Based on the above discussion and the fact that small vafugsare of interest, a bisection approach
can be used to obtainy. The proposed method for obtaining a local optimum of UQm@lwith the

correspondingy, is described in Tablg I-B.

C. Sub-optimality Analysis

In this sub-section, we show that the proposed method candara sub-optimality guaranteg)(that

is close tol. Let ag = 0 (as a resultR’ = R) and define

E£R —(Q, +P1)o(ss") (70)

R,
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whereQ; € C1 and Py € C(V4). The global optimum of the UQP associated wi#y is s. We have
that

max 7 Rs’ < max s""Rys' + max s’ Es’ (71)
s'eqQn s'eqQn s'eqQn
< max s Rys' +noy(E)
s'eqQn

= s"R,s +no(E)

Furthermore,
max s"Rs" > max s’ Rys' + min s’ Es’ (72)
s'eQn s'eQn s'eQn
> max s Rys' 4 no,(E)
s'eQn

= sfR.s+no,(E)

As a result, an upper bound and a lower bound on the objeativetibn for the global optimum of (46)

can be obtainedt each iteration Furthermore, as
lo1(E)| < ||EllF, |on(E)| < || ElF (73)
if | E||r converges to zero we conclude for¥71) and (72) that

max s"Rs' = s"Rys = s Rs (74)
s'efQdn

and hences is the global optimum of the UQP associated wiih(i.e. a sub-optimality guarantee of
~ =1 is achieved).

Next, suppose that we have to increagen order to obtain the convergence|d || » to zero. In such a
case, we have tha® = R, — agss’ and as a resulipaxy co» s’ Rgs’ —agn? < maxgecqr ST Rs’ <

maxgcon s Rys' or equivalently,

sRys — agn® < max s'"Rs' < s Rys. (75)
Sle n

The provided sub-optimality guarantee is thus given by

s"Rs agn?
=__"" —-1— . 76
sHR,s sHR,s (76)

v

Note that while solving the optimization problein [67) doex necessarily yield the exact optimal
solution to UQP, the so-obtained solution can be still optinwe also note thaf (¥Y6) generally yields
tighter sub-optimality guarantees than the currently km@approximation guarantee (i.e/4 for SDR).

The following section provides empirical evidence for sicfact.
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Fig. 1. Different metrics versus the iteration number foll QP solved by MERIT. (a) the UQP objective correspondinghto t
true matrix R), the approximated matrixR,) and also the upper/lower bounds at each iteration. Theoptitrality bounds

are updated using (¥ 1)-(72). (b) the criterip®||» = ||R — Rs||r (it reaches values which are practically zero).

VI. NUMERICAL EXAMPLES

In order to examine the performance of the proposed methederal numerical examples will be

presented. Random Hermitian matricBsare generated using the formula
n
R=> xzf (77)
k=1

where {x;} are random vectors it whose real-part and imaginary-part elements are i.i.dh \&it
standard Gaussian distributiodi(0,1). In all cases, we stopped the iterations whe| » < 1077,

We use the MERIT algorithm to solve the UQP for a random pasitiefinite matrix of sizex = 16.
The obtained values of the UQP objective for the true mati} &nd the approximated matrixR() as
well as the sub-optimality bounds (derived in](71) ahd (7#2)p depicted in Fig. 1 versus the iteration
number. In this example, a sub-optimality guarantee ef 1 is achieved which implies that the method
has successfully obtained the global optimum of the consdl&dQP. A computational time of 3.653 sec
was required on a standard PC to accomplish the task.

Next, we solve the UQP faz0 full-rank random positive definite matrices of sizes {8, 16, 32,64}.
Inspired by [11] and[[22], we also consider rank-deficientrinas R = Zﬁzl zrxl where{z;} are as
in (Z7), butd < n. The performance of MERIT for different values@fs shown in Tabl&ll. Interestingly,

the solution of UQP for rank-deficient matrices appears tolained more efficiently than for the full-
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n | Rank @) | #problems for| Average~y Minimum -~y Average CPU| #problems
whichy =1 time (sec) solved by SDR
8 2 17 0.9841 0.8184 0.13 4
8 16 0.9912 0.9117 0.69 7
2 15 0.9789 0.8301 1.06 2
16 4 13 0.9773 0.8692 1.58 10
16 4 0.9610 0.8693 3.54 13
2 9 0.9536 0.8190 47.04 3
32 6 4 0.9077 0.8106 55.59 7
32 2 0.9031 0.8021 94.90 16
3 0.8893 0.8177 406.56 4
64 8 1 0.8567 0.7727 560.35 10
64 0 0.8369 0.7811 1017.69 15
TABLE I

COMPARISON OF THE PERFORMANCE OMERIT (SEETABLE[) AND SDR [17]WHEN SOLVING THE UQP FOR 20 RANDOM

POSITIVE DEFINITE MATRICES OF DIFFERENT SIZE® AND RANKS d.

rank matrices. For each problem solved by MERIT, we alsohet3DR algorithm of [17] use the same
computational time for solving the problem. The SDR aldurmitis able to solve the problem only if its
core semi-definite program can be solved within the avaglaiohe. Any remaining time is dedicated to
the randomization procedure. The results can be found iteMBMNote that the maximum UQP objective
values obtained by MERIT and SDR were nearly identical inséhoases in which SDR was able to
solve the UQPs in the same amount of time as MERIT. Note alabgiven the solutions obtained by
MERIT and SDR as well as the sub-optimality guarantee of MERI case-dependent sub-optimality

guarantee for SDR can be computed as

USDR
VSDRéVMERﬂ'<aZ;§;>- (78)

This can be used to examine the goodness of the solutionsmietithy SDR.
Besides random matrices, we also consider several otheixnstitictures for which solving the UQP

using the proposed method is not “hard”, as explained below.

« Case 1:An exponentially shaped disturbance matfix [1] with catiein coefficient; = 0.8,

M(k,1)=n*U 1<ki<n. (79)
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o Case 2:A disturbance matrix with the structure
M(k,1) = plFe2met=0 o 10plF=1 4 10-21(k,1), 1<k, 1<n (80)

whose terms represent the effects of sea clutter, landeclatid thermal noise, respectively. The
values of(n;, 12, p) are set t0(0.8,0.9,0.2) in accordance to an example provided|in|[23].
» Case 3:A disturbance matrix accounting for both discrete clutatterers and thermal noise [17],
Ne
M = 0Py, P, + 1 (81)

k=1
wheren, = 10, n, = 103, vgy = (k — 1)/2,

p’l)d,k = (17 ej27wd'k7 U >€j27r(n_1)vd'k)T7 1 < k < Ne, (82)

andn = 10~2. The chosen values are the same as those considered in [17].

We letR = M~ (pp™)* (see [B) and the following discussion) wheseis an unimodular vector
with a structure similar to that ofp,, , } in (82). The UQP for the above cases is solved via MERIT
using 20 different random initializations for sizes € {8, 16, 32,64}. Similar to the previous example,
we also used SDR to solve the same UQPs. The results are shovablie[Ill. The obtained solutions
can be considered to be quite accurate in the sense of a sinfabfy guaranteey close to one.

A different code design problem arises when synthesizingefeams that have good resolution prop-
erties in range and Doppler [3]-[5],[24]-[26]. In the folling, we consider the design of a thumbtack
CAF (see the definitions in sub-sectionl-A):

d(T, f) _ n (T7 f) - (070)7 (83)

0 otherwise.

Supposen = 53, let T' be the time duration of the total waveform, and dgt= T'/n represent the time

duration of each sub-pulse. Define the weighting function as

wir, = b DD E T (84)

0 otherwise,
whereV = [—10t,,10t,]x[—2/T,2/T] is the region of interest anll,,,; = ([—t;, t,]\{0}) x([—1/T,1/T]
\{0}) is the mainlobe area which is excluded due to the sharp clsamegr the origin ofi(r, f). Note
that the time delay- and the Doppler frequency are typically normalized by” and1/7", respectively,
and as a result the value of can be chosen freely without changing the performance of Gésign.
The synthesis of the desired CAF is accomplished via theiccyainimization of [8) with respect ta

andy (see sub-sectidn [HA). In particular, we use MERIT to obtainnimodularz in each iteration. A
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n | Rank @) | #problems for| Average~y Minimum -~y Average CPU| #problems
whichy =1 time (sec) solved by SDR
Case 1l | 20 1.0000 1.0000 2.82 17
8 Case 2 | 20 1.0000 1.0000 0.60 20
Case 3 | 20 1.0000 1.0000 0.27 10
Case 1l | 20 1.0000 1.0000 42.83 20
16 Case 2 | 18 0.9812 0.8075 21.58 20
Case 3 | 20 1.0000 1.0000 2.01 12
Case 1l | 20 1.0000 1.0000 990.90 20
32 Case 2 | 19 0.9995 0.9913 525.34 20
Case 3 | 20 1.0000 1.0000 7.52 7
Case 1l | 17 0.9901 0.9862 5574.98 20
64 | Case?2 | 16 0.9540 0.8359 2053.26 20
Case 3 | 20 1.0000 1.0000 22.78 9
TABLE Il

COMPARISON OF THE PERFORMANCE OMERIT (SEETABLE[) AND SDR [17]WHEN SOLVING THEUQP FOR THE

MATRIX STRUCTURES DESCRIBED INCASES1-3 USING 20 DIFFERENT INITIALIZATIONS AND FOR DIFFERENT SIZESn.

Bjorck code is used to initialize both vectarsandy. The Bjorck code of lengtm = p (wherep is a
prime number for whiclp = 1 (mod 4)) is given byb(k) = /() @ecos(/0+VP) o < | < p, with (%)
denoting the Legendre symbol. Fig. 2 depicts the normal2a& modulus of the Bjorck code (i.e. the
initial CAF) and the obtained CAF using the UQP formulation{11) and the proposed method. Despite
the fact that designing CAF with a unimodular transmit veatas a rather constrained problem, MERIT

is able to efficiently suppress the CAF sidelobes in the regibinterest.

VIl. CONCLUDING REMARKS

A computational approach to the NP-hard problem of optingjz quadratic form over the unimodular

vector set (called UQP) has been introduced. The main eesalt be summarized as follows:

« Some applications of the UQP were reviewed. It was shown tih@tsolution to UQP is not
necessarily unique. Several examples were provided foctwéin accurate global optimum of UQP
can be obtained efficiently.

« Using a relaxed version of UQP, a specialized local optitionascheme for UQP was devised and

was shown to yield superior results compared to any genecal bptimization of UQP.
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Fig. 2. The normalized CAF modulus for (a) the Bjorck codelaigthn = 53 (i.e. the initial CAF), and (b) the UQP
formulation in [I1) and MERIT.

« It was shown that the set of matricéS(is)) leading to the same solutior)(as the global optimum of
UQP is a convex cone. An one-to-one mapping between any talo sanvex cones was introduced
and an approximate characterizationtofs) was proposed.

« Using the approximate characterizationfofs), an iterative approach (called MERIT) to the UQP
was proposed. It was shown that MERIT provides case-depersid-optimality guarantees. The

available numerical evidence shows that the sub-optiynaitarantees obtained by MERIT are
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generally better than the currently known approximatioargatee (ofr/4 for SDR).

« Numerical examples were provided to examine the potenfidIBRIT for different UQPs. In
particular, it was shown that the UQP solutions for certaiatrines used in active sensing code
design can be obtained efficiently via MERIT.

We should note that no theoretical efficiency assessmeriteofrtethod was provided. It is clear that

C(Vs) UCs C K(s). A possible approach would be to determine how large is thie gfakC(s) that is
“covered” byC(Vs) UCs. However, this problem is left for future work. Furthermpaestudy ofm-UQP

using the ideas in this paper will be the subject of anoth@epa

APPENDIX
A. Proof of Theorem 1

In order to verify the first part of the theorem, consider awg tmatricesR;, R, € K(s). For any

two non-negative scalarg, > we have that
s (y1 Ry +12R2)s = 1187 Rys + 728" Rys. (85)
Clearly, if somes = 3 is the global maximizer of bote” R, s ands!’ Ry s then it is the global maximizer
of s¥ (41 Ry + 72 Ry)s which impliesy; Ry + 2Ry € K(3).
The second part of the theorem can be shown noting that
sH(RO (sps))sy = (850 s2)R(s5® s3) (86)
= silRs;
for all s;,s2 € Q" and sy = s} ® s2. Therefore, if R € K(s;) then R ® (5056{) € K(sq) (for

Sp = 8] ® 82) and vice versa.

B. Proof of Theorem 2
It is well-known thatz’ Rz < o4||z|3 for all vectorsz € C". Let

«

o = . (87)
O(n—m)xl
It follows from (24) thats = U«a’ and therefore
7R = o'3d =013 (88)

= a1l[3]3 = no
which implies the global optimality 0§ for the considered UQP.
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C. Proof of Theorem 4

It is worthwhile to observe that the convergence rate{Bf(t)} is not dependent on the problem
dimension {), as each entry o{R(t)} is treated independently from the other entries (i.e. adl th
operations are element-wise). Therefore, without loss esfegality we study the convergence of one
entry (say{R"Y (k,1)} = {re/?}) in the following.

Note that in cases for whiclf; — (¢, — ¢1)| > 7/2, the next element of the sequenfoge’%} can be

written as
,r,t+1ej9t+l — Ttejet + pej(¢k_¢l) (89)

which implies that the proposed operation tends to nfakeloser to(¢r — ¢;) in each iteration, and
finally puts#é; within the /2 distance from(¢, — ¢;).
Let us suppose thafy — (¢ — ¢;)| > 7/2, and that the latter phase criterion remains satisfied for al

0;, t < T. We have that
rpe??t = rgel?% 4 T ped (P90 (90)
which yields
7 cos(Or — (¢r — ¢1)) = rocos(0o — (¢, — ¢1)) + T'p. (91)

Therefore it takes onlyf” = [—rgcos(fp — (¢ — ¢1))/p| = 1 iteration for 6, to stand within ther/2
distance from(¢y — ¢;).

Now, suppose thaby — (¢ — ¢;)| < 7/2. For everyt > 1 we can write that
rt+1ej9t“ = el 4 pej(d”“_(z’l) (92)
— rpcos(f; — (¢ — dr))e! )
= ) (pt jrysin(0y — (o — ¢1))) -
Let 6,1 = rep1e??+ — red% . The first equality in[(92) implies that
Sr41 = P (p— 1y cos(0; — (dr — 1)) (93)
On the other hand, the second equality[in] (92) implies that
Srp1 = jel O (ry sin (6, — (dk — 1)) (94)

—ri_18in(0i—1 — (¢p — #1)))
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for all t > 1. Note that in[(9B) and(94)y,.1 is a complex number having different phases. We conclude
§i41=0, Vt>1 (95)

which shows that the sequenfge’?t} is convergent in one iteration. In sum, every entry of therixat
R will converge in at most two iterations (i.e. at most one thiaee a phase value within the/2

distance from(¢y — ¢;), and one iteration thereafter).

D. Proof of Theorem 5
We use the same notations as in the proof of Theorem Wy K- (¢ — ¢;)| < w/2 then
L —

ro€ riel?® (96)

_ ppedfo 4 pei(er—d)

— rocos(fo — (d — ¢1))e P9,
On the other hand, ifdy — (¢r — ¢;)| > 7/2 we have thaire?? = rgei% 4 pel(?=9) As a result,
r1cos(0h — (¢ — ¢1)) = p + 1o cos(6p — (ér — ¢1)) Which implies

R ) 97)

— ricos(0h — (o — ¢r))e? )

_ ppedfo 4 peilon—t)

— rocos(fy — (¢ — ¢y))e? P9,

Now, it is easy to verify thaf (41) follows directly fronh (P@)nd [97).

E. Proof of Theorem 6

If sis a hyper point of UQP associated wiR” = R then we have thatrg(s) = arg(Rs). Let

Rs = v ® s wherewv is a non-negative real-valued vector®¥. It follows that

v(k)e’ = |R(k,1)|e/% 1 (98)
=1
or equivalently

v(k) = Y IR(k. D]/ =) (99)
=1
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which implies that
S [R(E, D] cos(Ory — (¢ — d1)) >0 (100
Yo [R(k, )| sin(Or; — (¢ — #1)) =0

for all 1 < k < n. Now, note that the recursive formula of the seque{ﬁ'ét)} can be rewritten as

R) = RY — Diag(s) (R — p1,,) Diag(s") (101)
and as a result,
R*Ys = RMs — Diag(s) (Rgf) — ploxn) 1oxa. (102)

It follows from (I02) that ifs is a hyper point of the UQP associated wiltl") (which implies the
existence of non-negative real-valued veat6t such thatR)s = v(!) @ s), then there exists(**1) ¢ R™

for which RtV s = v(t+1) & s and therefore,

v(t+1)(k‘) I — Z |R(t)(k’, l)|ej€"’lej¢l (203)
=1
- <<Z RSf)(k‘, l)) - np) eI,
=1

Eg. (I03) can be rewritten as

v(t—l—l)(k) _ Z |R(t)(k‘, l)|ej(€k,1_(¢k_¢l)) (204)
=1

- (2”: RS?(k:,l)) +np
=1

As indicated earliers being a hyper point folR(?) assures that the imaginary part B (1L04) is zero. To
show thats is a hyper point of the UQP associated WA D we only need to verify thas*+1) (k) > 0:

o (k) = Y |RY(k,1)] cos(6h1 — (1 — b)) (105)
=1
- (ZR@(k,l)) +np
=
= np '
+ > IRY(E, )| cos(Oks — (¢ — ¢1))
I (k1)¢0

Now note that the positivity ob**+1) (k) is concluded from[{(38). In particular, based on the discunssi
in the proof of Theorem 4, fot = 1, there is nof,; such that|6,; — (¢, — ¢;)| > /2 and therefore

v@ (k) =np for all 1 < k < n. As a result,

R®s = nps (106)

March 4, 2013 DRAFT



29

which implies thats is an eigenvector oR(® corresponding to the eigenvalug.
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