
ar
X

iv
:1

30
3.

01
52

v1
  [

cs
.S

Y
]  

1 
M

ar
 2

01
3

1

Designing Unimodular Codes via Quadratic

Optimization is not Always Hard
Mojtaba Soltanalian* and Petre Stoica,Fellow, IEEE

Abstract

The NP-hard problem of optimizing a quadratic form over the unimodular vector set arises in radar

code design scenarios as well as other active sensing and communication applications. To tackle this

problem (which we call unimodular quadratic programming (UQP)), several computational approaches

are devised and studied. A specialized local optimization scheme for UQP is introduced and shown to

yield superior results compared to general local optimization methods. Furthermore, amonotonically

error-boundimprovingtechnique (MERIT) is proposed to obtain the global optimum ora local optimum

of UQP with good sub-optimality guarantees. The provided sub-optimality guarantees are case-dependent

and generally outperform theπ/4 approximation guarantee of semi-definite relaxation. Several numerical

examples are presented to illustrate the performance of theproposed method. The examples show that

for cases including several matrix structures used in radarcode design, MERIT can solve UQP efficiently

in the sense of sub-optimality guarantee and computationaltime.

Index Terms

radar codes, unimodular codes, quadratic programming.

I. INTRODUCTION

Unimodular codes are used in many active sensing and communication systems mainly as a result of

the their optimal (i.e. unity) peak-to-average-power ratio (PAR). The design of such codes can be often
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formulated as the optimization of a quadratic form (see sub-section I-A for examples). Therefore, we

will study the problem

UQP: max
s∈Ωn

sHRs (1)

whereR ∈ Cn×n is a given Hermitian matrix,(.)H denotes the vector/matrix Hermitian transpose,Ω

represents the unit circle, i.e.Ω = {s ∈ C : |s| = 1} and UQP stands for Unimodular Quadratic

Program(ming).

A. Motivating Applications

To motivate the UQP formulation considered above, we present four scenarios in which a design

problem in active sensing or communication boils down to an UQP.

• Designing codes that optimize the SNR or the CRLB:We consider a monostatic radar which transmits

a linearly encoded burst of pulses. The observed backscattered signalv can be written as (see, e.g. [1]):

v = a(c⊙ p) +w, (2)

wherea represents both channel propagation and backscattering effects,w is the disturbance/noise com-

ponent,c is the unimodular vector containing the code elements,p = (1, ej2πfdTr , · · · , ej2π(n−1)fdTr)T

is the temporal steering vector withfd andTr being the target Doppler frequency and pulse repetition

time, respectively, and the symbol⊙ stands for the Hadamard (element-wise) product of matrices.

Under the assumption thatw is a zero-mean complex-valued circular Gaussian vector with known

positive definite covariance matrixE[wwH ] = M , the signal-to-noise ratio (SNR) is given by [2]

SNR= |a|2cHRc (3)

whereR = M−1 ⊙ (ppH)∗ with (.)∗ denoting the vector/matrix complex conjugate. Therefore,the

problem of designing codes optimizing the SNR of the radar system can be formulated directly as an

UQP. Additionally, the Cramer-Rao lower bound (CRLB) for the target Doppler frequency estimation

(which yields a lower bound on the variance of any unbiased target Doppler frequency estimator) is given

by [2]

CRLB =
(
2|a|2(c⊙ p⊙ u)HM−1(c⊙ p⊙ u)

)−1
(4)

=
(
2|a|2cHR′c

)−1

where u = (0, j2πTr , · · · , j2π(n − 1)Tr)
T and R′ = M−1 ⊙ (ppH)∗ ⊙ (uuH)∗. Therefore the

minimization of CRLB can also be formulated as an UQP. For thesimultaneous optimization of SNR

and CRLB see [2].
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• Synthesizing cross ambiguity functions (CAFs):The ambiguity function (which is widely used in

active sensing applications [3][4]) represents the two-dimensional response of the matched filter to a

signal with time delayτ and Doppler frequency shiftf . The more general concept of cross ambiguity

function occurs when the match filter is replaced by a mismatched filter. The cross ambiguity function

(CAF) is defined as

χ(τ, f) =

∫ ∞

−∞
u(t)v∗(t+ τ)ej2πftdt (5)

whereu(t) andv(t) are the transmit signal and the receiver filter, respectively (the ambiguity function

is obtained from (5) withv(t) = u(t)). In several applicationsu(t) andv(t) are given by:

u(t) =

n∑

k=1

xkpk(t), v(t) =

n∑

k=1

ykpk(t) (6)

where{pk(t)} are pulse-shaping functions (with the rectangular pulse asa common example), and

x = (x1 · · · xn)T , y = (y1 · · · yn)T (7)

are the code and, respectively, the filter vectors. The design problem of synthesizing a desired CAF has a

small number of free variables (i.e. the entries of the vectors x andy) compared to the large number of

constraints arising from two-dimensional matching criteria (to a given|χ(τ, f)|). Therefore, the problem

is generally considered to be difficult and there are not manymethods to synthesize a desired (cross)

ambiguity function. Below, we describe briefly the cyclic approach of [5] for CAF design.

The problem of matching a desired|χ(τ, f)| = d(τ, f) can be formulated as the minimization of the

criterion [5]

g(x,y, φ) =

∫ ∞

−∞

∫ ∞

−∞
w(τ, f)

∣∣∣d(τ, f)ejφ(τ,f) − yHJ(τ, f)x
∣∣∣
2
dτdf (8)

whereJ(τ, f) ∈ Cn×n is given,w(τ, f) is a weighting function that specifies the CAF area which needs

to be emphasized andφ(τ, f) represent auxiliary phase variables. It is not difficult to see that for fixed

x andy, the minimizerφ(τ, f) is given byφ(τ, f) = arg{yHJ(τ, f)x}. For fixedφ(τ, f) andx, the

criterion g can be written as

g(y) = yHD1y − yHBHx− xHBy + const1 (9)

= (y −D−1
1 BHx)HD1(y −D−1

1 BHx) + const2

whereB andD1 are given matrices inCn×n [5]. Due to practical considerations, the transmit coefficients

{xk} must have low PAR values. However, the receiver coefficients{yk} need not be constrained in such
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a way. Therefore, the minimizery of g(y) is given byy = D−1
1 BHx. Similarly, for fixedφ(τ, f) and

y, the criteriong can be written as

g(x) = xHD2x− xHBy − yHBHx+ const3 (10)

whereD2 ∈ Cn×n is given [5]. If a unimodular code vectorx is desired then the optimization ofg(x)

is an UQP asg(x) can be written as

g(x) =


 ejϕx

ejϕ




H 
 D2 −By

−(By)H 0




 ejϕx

ejϕ


+ const3 (11)

whereϕ ∈ [0, 2π) is a free phase variable.

• Steering vector estimation in adaptive beamforming:Consider a linear array withn antennas. The

output of the array at time instantk can be expressed as [6]

xk = ska+ nk (12)

with {sk} being the signal waveform,a the associated steering vector (with|[a]l| = 1, 1 ≤ l ≤ n), and

nk the vector accounting for all independent interferences.

The true steering vector is usually unknown in practice, andit can therefore be considered as an uni-

modular vector to be determined [7]. Define the sample covariance matrix of{xk} asR̂ = 1
T

∑T
k=1 xkx

H
k

whereT is the number of training data samples. Assuming some prior knowledge ona (which can be

represented byarg(a) being in a given sectorΘ), the problem of estimating the steering vector can be

formulated as [8]

min
a

aHR̂
−1

a (13)

s.t. arg(a) ∈ Θ,

hence an UQP-type problem. Such problems can be tackled using general local optimization techniques

or the optimization scheme introduced in Section III.

• Maximum likelihood (ML) detection of unimodular codes:Assume the linear model

y = Qs+ n (14)

whereQ represents a multiple-input multiple-output (MIMO) channel, y is the received signal,n is the

additive white Gaussian noise ands contains the unimodular symbols which are to be estimated. The

ML detection ofs may be stated as

ŝML = arg min
s∈Ωn

‖y −Qs‖2 (15)
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It is straightforward to verify that the above optimizationproblem is equivalent to the UQP [9]:

min
s∈Ωn+1

sHRs (16)

where

R =


 QHQ −QHy

−yHQ 0


 , s =


 ejϕs

ejϕ


 (17)

andϕ ∈ [0, 2π) is a free phase variable.

B. Related Work

In [10], the NP-hardness of UQP is proven by employing a reduction from an NP-complete matrix

partitioning problem. The UQP in (1) is often studied along with the following (still NP-hard) related

problem in which the decision variables are discrete:

m-UQP: max
s∈Ωn

m

sHRs (18)

where Ωm = {1, ej 2π

m , · · · , ej 2π

m
(m−1)}. Note that the latter problem coincides with the UQP in (1)

asm → ∞. The authors of [11] show that when the matrixR is rank-deficient (more precisely, when

d =rank(R) behaves likeO(1) with respect to the problem dimension) them-UQP problem can be solved

in polynomial-time and they propose aO((mn/2)2d)-complexity algorithm to solve (18). However, such

algorithms are not applicable to the UQP which corresponds to an infinitem.

Studies on polynomial-time algorithms for UQP (andm-UQP) have been extensive (e.g. see [9]-[19]

and the references therein). In particular, the semi-definite relaxation (SDR) technique has been one of

the most appealing approaches to the researchers. To derivean SDR, we note thatsHRs = tr(sHRs) =

tr(RssH). Hence, the UQP can be rewritten as

max
S

tr(RS) (19)

s.t.S = ssH , s ∈ Ωn.

If we relax (19) by removing the rank constraint onS and the unimodularity constraint ons then the

result is a semi-definite program:

SDP: max
S

tr(RS) (20)

s.t. [S]k,k = 1, 1 ≤ k ≤ n,

S is positive semi-definite.

March 4, 2013 DRAFT
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The above SDP can be solved in polynomial time using interior-point methods [15]. The approximation

of the UQP solution based on the SDP solution can be accomplished in several ways. For example,

we can approximate the phase values of the solutions using a rank-one approximation ofS. A more

effective approach for guessings is based on randomized approximations (see [10], [16] and [17]). A

detailed guideline for randomized approximation of the UQPsolution can be found in [17]. In addition,

we refer the interested reader to the survey of the rich literature on SDR in [18].

Analytical assessments of the quality of the UQP solutions obtained by SDR and randomized approx-

imation are available. LetvSDR be the expected value of the UQP objective at the obtained randomized

solution. Letvopt represent the optimal value of the UQP objective. We have

γvopt ≤ vSDR ≤ vopt (21)

with the sub-optimality guarantee coefficientγ = π/4 [10][19]. Note that the sub-optimality coefficient

of the solution obtained by SDR can be arbitrarily close toπ/4 (e.g., see [19]).

C. Contributions of this Work

Besides SDR, the literature does not offer many other numerical approaches to tackle UQP. In this paper,

a specialized local optimization scheme for UQP is proposed. The proposed computationally efficient

local optimization approach can be used to tackle UQP as wellas improve upon the solutions obtained

by other methods such as SDR. Furthermore, amonotonicallyerror-boundimproving technique (called

MERIT) is introduced to obtain the global optimum or a local optimum of UQP with good sub-optimality

guarantees. Note that:

• MERIT provides case-dependent sub-optimality guarantees. To the best of our knowledge, such

guarantees for UQP were not known prior to this work. Using the proposed method one can generally

obtain better performance guarantees compared to the analytical worst-case guarantees (such as

γ = π/4 for SDR).

• The provided case-dependent sub-optimality guarantees are of practical importance in decision mak-

ing scenarios. For instance in some cases the UQP solution obtained by SDR (or other optimization

methods) might achieve good objective values. However, unless the goodness of the obtained solution

is known (this goodness can be determined using the proposedbounds), the solution cannot be trusted.

• Using MERIT, numerical evidence is provided to show that several UQPs (particularly those which

occur in active sensing code design) can be solved efficiently without sacrificing the solution

accuracy.
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Finally, we believe that the general ideas of this work can beadopted to tacklem-UQP as the finite

alphabet case of UQP. However, a detailed study ofm-UQP is beyond the scope of this paper.

D. Organization of the Paper

The rest of this work is organized as follows. Section II discusses several properties of UQP. Section

III introduces a specialized local optimization method. Section IV presents a cone approximation that is

used in Section V to derive the algorithmic form of MERIT for UQP. Several numerical examples are

provided in section VI. Finally, Section VII concludes the paper.

Notation: We use bold lowercase letters for vectors/sequences and bold uppercase letters for matrices.

(.)T denotes the vector/matrix transpose.1 and 0 are the all-one and all-zero vectors/matrices.ek is

the kth standard basis vector inCn. ‖x‖n or the ln-norm of the vectorx is defined as(
∑

k |x(k)|n)
1

n

where{x(k)} are the entries ofx. The Frobenius norm of a matrixX (denoted by‖X‖F ) with entries

{X(k, l)} is equal to
(∑

k,l |X(k, l)|2
) 1

2

. We useℜ(X) to denote the matrix obtained by collecting

the real parts of the entries ofX. The matrixejX is defined element-wisely as
[
ejX

]
k,l

= ej[X]k,l .

arg(.) denotes the phase angle (in radians) of the vector/matrix argument.E[.] stands for the expectation

operator.Diag(.) denotes the diagonal matrix formed by the entries of the vector argument, whereas

diag(.) denotes the vector formed by collecting the diagonal entries of the matrix argument.σk(X)

represents thekth maximal eigenvalue ofX . Finally, R andC represent the set of real and complex

numbers, respectively.

II. SOME PROPERTIES OFUQP

In this section, we study several properties of UQP. The discussed properties lay the grounds for a

better understanding of UQP as well as the tools proposed to tackle it in the following sections.

A. Basic Properties

The UQP formulation in (1) covers both maximization and minimization of quadratic forms (one can

obtain the minimization of the quadratic form in (1) by considering−R in lieu of R). In addition,

without loss of generality, the Hermitian matrixR can be assumed to be positive (semi)definite. IfR is

not positive (semi)definite, we can make it so using the diagonal loading technique (i.e.R ← R + λI

where λ ≥ −σn(R)). Note that such a diagonal loading does not change the solution of UQP as

sH(R+λI)s = sHRs+λn. Next, we note that if̃s is a solution to UQP thenejφs̃ (for anyφ ∈ [0, 2π))

March 4, 2013 DRAFT
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is also a valid solution. To establish connections among different UQPs, Theorem 1 presents a bijection

among the set of matrices leading to the same solution.

Theorem 1. LetK(s) represent the set of matricesR for which a givens ∈ Ωn is the global optimizer

of UQP. Then

1) K(s) is a convex cone.

2) For any two vectorss1, s2 ∈ Ωn, the one-to-one mapping (wheres0 = s∗1 ⊙ s2)

R ∈ K(s1)⇐⇒ R⊙ (s0s
H
0 ) ∈ K(s2) (22)

holds among the matrices inK(s1) andK(s2).

Proof: See the Appendix.

It is interesting to note that in light of the above result, the characterization of the coneK(s) for

any givens = s̃ leads to a complete characterization of allK(s), s ∈ Ωn, and thus solving any UQP.

However, the NP-hardness of UQP suggests that such a characterization cannot be expected. Further

discussions regarding the characterization ofK(s) are deferred to Section IV.

B. Analytical Solutions to UQP

There exist cases for which the analytical global optima of UQP are easy to obtain. In this sub-section,

we consider two such cases which will be used later to providean approximate characterization ofK(s).
A special example is the case in whichej arg(R) (see the notation definition in I-D) is a rank-one matrix.

More precisely, letR = R1 ⊙ (s̃s̃H) whereR1 is a real-valued Hermitian matrix with non-negative

entries and̃s ∈ Ωn (a simple special case of this example is whenR is a rank-one matrix itself). In

this case, it can be easily verified thatR1 ∈ K(1n×1). Therefore, using Theorem 1 one concludes that

R ∈ K(s̃) i.e. s = s̃ yields the global optimum of UQP. As another example, Theorem 2 considers the

case for which several largest eigenvalues of the matrixR are identical.

Theorem 2. Let R be a Hermitian matrix with eigenvalue decompositionR = UΣUH . SupposeΣ is

of the form

Σ = Diag([σ1 · · · σ1︸ ︷︷ ︸
m times

σ2 · · · σn−m+1]
T ) (23)

σ1 > σ2 ≥ · · · ≥ σn−m+1

March 4, 2013 DRAFT
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and letUm be the matrix made from the firstm columns ofU . Now supposẽs ∈ Ωn lies in the linear

space spanned by the columns ofUm, i.e. there exists a vectorα ∈ Cm such that

s̃ = Umα. (24)

Thens̃ is a global optimizer of UQP.

Proof: Refer to the Appendix.

We end this section by noting that the solution to an UQP is notnecessarily unique. For any set of

unimodular vectors{s1, s2, · · · , sk}, k ≤ n, we can use the Gram-Schmidt process to obtain a unitary

matrixU the firstk columns of which span the same linear space ass1, s2, · · · , sk. In this case, Theorem

2 suggests a method to construct a matrixR (by choosing aΣ with k identical largest eigenvalues) for

which all s1, s2, · · · , sk are global optimizers of the corresponding UQP.

III. SPECIALIZED LOCAL OPTIMIZATION OF UQP

Due to its NP-hard nature, UQP has in general a highly multi-modal optimization objective. Finding

and studying the local optima of UQP is not only useful to tackle the problem itself (particularly for

UQP-related problems such as (13)), but also to improve the UQP approximate solutions obtained by

SDR or other optimization techniques. In this section, we introduce a computationally efficient procedure

to obtain a local optimum of UQP.

Note that, while the risk for this to happen in practice is nearly zero, local optimization methods

can in theory converge to a saddle point. Consequently, in the sequel we letL represent the set of all

local optima and saddle points of UQP. Moreover, we assume that R is positive definite. Consider the

following relaxed version of UQP:

(RUQP) max
s1,s2∈Ωn

ℜ(sH1 Rs2) (25)

We note that for fixeds2 the maximizer of RUQP is given by

s1 = ej arg(Rs2). (26)

Similarly, for any fixeds1 the maximizer of RUQP is given by

s2 = ej arg(Rs1). (27)

In the following, we show that such a cyclic maximization of (25) can be used to find local optima of

UQP. It is not difficult to see that the criterion in (25) increases and is upper bounded (by
∑

k,l |R(k, l)|)

March 4, 2013 DRAFT
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through the iterations in (26)-(27), thus the said iterations are convergent in the sense of associated

objective value. Next consider the identity

2ℜ(sH1 Rs2) = sH1 Rs1 + sH2 Rs2 (28)

− (s1 − s2)
HR(s1 − s2).

Defineεs = ‖s1−s2‖22 and suppose thats2 is fixed and its associated optimals1 is obtained by (26).

It follows from (28) that

ℜ(sH1 Rs2) ≤
1

2

(
sH1 Rs1 + sH2 Rs2

)
− εs

2
σn(R). (29)

Now supposes′2 is the optimal vector inΩn obtained by (27) for the aboves1. Observe thatℜ(sH1 Rs′2) ≥
ℜ(sH1 Rs1) and thatℜ(sH1 Rs′2) ≥ ℜ(sH1 Rs2) ≥ ℜ(sH2 Rs2) which imply

ℜ(sH1 Rs′2) ≥
1

2

(
sH1 Rs1 + sH2 Rs2

)
(30)

≥ ℜ(sH1 Rs2) +
εs
2
σn(R).

It follows from (30) that

εs ≤
2

σn(R)

∣∣ℜ(sH1 Rs′2)−ℜ(sH1 Rs2)
∣∣ . (31)

The right-hand side of (31) vanishes through the cyclic minimization in (26)-(27) which implies thatεs

converges to zero at the same time. Note that the above arguments can be repeated for fixeds1. We

conclude that the iterations in (26)-(27) are convergent and also that they cannot converge to(s1, s2)

with s1 6= s2. Moreover, assHRs = ℜ(sH1 Rs2) for any s1 = s2 = s then any local optimum(s1, s2)

of RUQP satisfyings1 = s2 = s yields a local optimums of UQP. Based on the above discussions, the

cyclic optimization of RUQP can be used to find local optima ofUQP. Particularly, starting from any

vectors(0) ∈ Ωn, the power method-like iterations

s(t+1) = ej arg(Rs(t)) (32)

converge to an element inL. As an aside remark, we show that the objective of UQP is also increasing

through the iterations of (32). Using (28) withs1 = s(t+1), ands2 = s(t) (s(t+1) 6= s(t)) implies that

s(t+1)HRs(t+1) > −s(t)HRs(t) + 2ℜ(s(t+1)HRs(t))

≥ s(t)HRs(t). (33)

Note that while (32) can obtain the local optima of UQP, it might not converge to every of them. To

observe this, let̃s1 be a local optimum of UQP and initialize (32) withs(0) = s̃1. Let s̃2 be another local
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optimum of UQP but with a larger value of UQP than that ats̃1. Now one can observe from (28) that if̃s2

is sufficiently close tos̃1 then the above power method-like iterations can move away from s̃1, meaning

that they can converge to another local optimum of UQP with a larger value of the UQP objective than

that ats̃1. Therefore, (32) bypasses some local optima of UQP with relatively small UQP objective values

(which can be considered as an advantage compared to a general local optimization method). Moreover,

one can note that there exist initializations for which (32)leads to the global optimum of UQP (i.e. the

global optimum is not excluded from the local optima to which(32) can converge).

Next, we observe that anỹs ∈ L obtained by the above local optimization can be characterized by the

equation

arg(s̃) = arg(Rs̃). (34)

We refer to the subset ofL satisfying (34) as the hyper points of UQP. Note that ifs̃ ∈ Ωn is a hyper

point of UQP, then (34) follows from the convergence of (32).On the other hand, if (34) is satisfied,

it implies the convergence of the iterations in (32) and as a result s̃ being a hyper point of UQP. The

characterization given in (34) is used below to motivate thecharacterization approach of Theorem 3.

IV. RESULTS ON THE CONEK(s)

While a complete characterization ofK(s) cannot be expected (due to the NP-hardness of UQP),

approximate characterizations ofK(s) are possible. The goal of this section is to provide an approximate

characterization of the coneK(s) which can be used to tackle the UQP problem. Our main result isas

follows:

Theorem 3. For any givens = (ejφ1 , · · · , ejφn)T ∈ Ωn, let {Bk,l} be a set of matrices defined as

Bk,l = (eke
H
l + ele

H
k )⊙ (ssH) (35)

and Vs = {Bk,l : 1 ≤ k ≤ l ≤ n} ∪ {−In}. Let C(Vs) represent the convex cone associated with the

basis matrices inVs. Also let Cs represent the convex cone of matrices withs being their dominant

eigenvector (i.e the eigenvector corresponding to the maximal eigenvalue). Then for anyR ∈ K(s), there

existsα0 ≥ 0 such that for allα ≥ α0,

R+ αssH ∈ C(Vs) ∪ Cs. (36)

The proof of Theorem 3 will be presented in several steps (Theorems 4-7 and thereafter). Note that

we show that (36) can be satisfied even ifs is a hyper point of UQP (satisfying (34)). However, since
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s is the global optimum of UQP for all matrices inCs andC(Vs), the case ofα0 = 0 can occur only

whens is a global optimum of UQP associated withR.

Supposes is a hyper point of UQP associated with a given positive definite matrixR, and letθk,l =

[arg(R)]k,l. We define the matrixR+ as

R+(k, l)=




|R(k, l)|cos(θk,l − (φk − φl)) (k, l)∈ Θ,

0 otherwise
(37)

whereΘ represents the set of all(k, l) such that|θk,l − (φk − φl)| < π/2. Now, let ρ be a positive real

number such that

ρ > max
(k,l)/∈Θ

{|R(k, l) cos(θk,l − (φk − φl))|} (38)

and consider the sequence of matrices{R(t)} defined (in an iterative manner) byR(0) = R, and

R(t+1) = R(t) − (R
(t)
+ − ρ1n×n)⊙ (ssH) (39)

for t ≥ 0. The next two theorems (whose proofs are given in the Appendix) study some useful properties

of the sequence{R(t)}.

Theorem 4. {R(t)} is convergent in at most two iterations:

R(t) = R(2), ∀ t ≥ 2. (40)

Theorem 5. R(t) is a function ofρ. Let ρ and ρ′ both satisfy the criterion (38). At the convergence of

{R(t)} (which is attained fort = 2) we have:

R(2)(ρ′) = R(2)(ρ) + (ρ′ − ρ)(ssH). (41)

Using the above results, Theorems 6 (whose proof is given in the Appendix) and 7 pave the way for

a constructive proof of Theorem 3.

Theorem 6. If s is a hyper point of the UQP associated withR(0) = R then it is also a hyper point

of the UQPs associated withR(1) andR(2). Furthermore,s is an eigenvector ofR(2) corresponding to

the eigenvaluenρ.

Theorem 7. If s is a hyper point of UQP forR(0) = R then it will be the dominant eigenvector of

R(2) if ρ is sufficiently large. In particular, letµ be the largest eigenvalue ofR(2) which belongs to an

eigenvector other thans. Then for anyρ ≥ µ/n, s is a dominant eigenvector ofR(2).
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Proof: We know from Theorem 6 thats is an eigenvector ofR(2) corresponding to the eigenvalue

nρ. However, ifs is not the dominant eigenvector ofR(2), Theorem 5 implies that increasingρ would

not change any of the eigenvalues/vectors ofR(2) except that it increases the eigenvalue corresponding

to s. As a result, fors to be the dominant eigenvector ofR(2) we only needρ to satisfynρ ≥ µ or

equivalentlyρ ≥ µ/n, which concludes the proof.

Returning to Theorem 3, note thatR can be written as

R = R(0) (42)

= R(2) + (R
(0)
+ +R

(1)
+ )⊙ (ssH)− 2ρssH .

For sufficiently largeρ (satisfying both (38) and the condition of Theorem 7) we havethat

R+ 2ρssH = R(2) + (R
(0)
+ +R

(1)
+ )⊙ (ssH) (43)

whereR(2) ∈ Cs and (R
(0)
+ +R

(1)
+ ) ⊙ (ssH) ∈ C(Vs). Theorem 3 can thus be directly satisfied using

Eq. (43) withα0 = 2ρ.

We conclude this section with two remarks. First of all, the above proof of Theorem 3 does not attempt

to derive the minimalα0. In the following section we study a computational method toobtain anα0

which is as small as possible. Secondly, we can useC(Vs) ∪ Cs as an approximate characterization of

K(s) noting that the accuracy of such a characterization can be measured by the minimal value ofα0.

An explicit formulation of a sub-optimality guarantee for asolution of UQP based on the aboveK(s)
approximation is derived in the following section.

V. MERIT FOR UQP

Using the previous results, namely the one-to-one mapping introduced in Theorem 1 and the approx-

imation of K(s) derived in Section IV, we build a sequence of matrices (for which the UQP global

optima are known) whose distance from a given matrix is decreasing. The proposed iterative approach

can be used to solve for the global optimum of UQP or at least toobtain a local optimum (with an upper

bound on the sub-optimality of the solution). The sub-optimality guarantees are derived noting that the

proposed method decreases an upper bound on the sub-optimality of the obtained UQP solution in each

iteration.

We know from Theorem 3 that ifs is a hyper point of the UQP associated withR then there exist

matricesQs ∈ Cs, P s ∈ C(Vs) and a scalarα0 ≥ 0 such that

R+ α0ss
H = Qs + P s. (44)
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Eq. (44) can be rewritten as

R+ α0ss
H = (Q

1
+ P 1)⊙ (ssH) (45)

whereQ
1
∈ C1, P 1 ∈ C(V1). We first consider the case ofα0 = 0 which corresponds to the global

optimality of s.

A. Global Optimization of UQP (the Case ofα0 = 0)

Consider the optimization problem:

min
s∈Ωn,Q

1
∈C1,P 1∈C(V1)

‖R − (Q
1
+ P 1)⊙ (ssH)‖F (46)

Note that, asC1 ∪ C(V1) is a convex cone, the global optimizersQ
1

andP 1 of (46) for any givens

can be easily found. On the other hand, the problem of finding an optimals for fixed R1 = Q
1
+ P 1

is non-convex and hence more difficult to solve globally (seebelow for details).

We will assume thatR1 is a positive definite matrix. To justify this assumption letR = R⊙ (ssH)∗

and note that the eigenvalues ofR are exactly the same as those ofR, henceR is positive definite.

Suppose that we have




xHRx > ε, ∀ unit-normx ∈ Cn×1

‖R−R1‖F ≤ ε
(47)

for someε ≥ 0. It follows from (47) that

xHR1x ≥ xHRx− |xHRx− xHR1x| (48)

> ε− |xH(R−R1)x|

≥ ε− |σ1(R −R1)|

≥ ε− ‖R−R1‖F ≥ 0

which implies thatR1 is also a positive definite matrix. The conditions in (47) canbe met as follows.

By considering only the component ofR1 in C(V1) (namelyP 1) we observe that any positive (i.e.

with λ > 0) diagonal loading ofR, which leads to the same diagonal loading ofR (as R + λI =

R⊙ (ssH)∗+λI = (R+λI)⊙ (ssH)∗), will be absorbed inP 1. Therefore, a positive diagonal loading

of R does not change‖R −R1‖F but increasesxHRx by λ. We also note that due to‖R −R1‖F
being monotonically decreasing through the iterations of the method, if the conditions in (47) hold for

the solution obtained in any iteration, it will hold for all the iterations afterward.

March 4, 2013 DRAFT



15

In the following, we study a suitable diagonal loading ofR that ensures meeting the conditions in

(47). Next the optimization of the function in (46) is discussed through a separate optimization over the

three variables of the problem.

• Diagonal loading ofR: As will be explained later, we can computeQ
1

andP 1, (henceR1 = Q
1
+P 1)

for any initialization ofs. In order to guarantee the positive definiteness ofR1, define

ε0 , ‖R−R1‖F . (49)

Then we suggest to diagonally loadR with λ > λ0 = −σn(R) + ε0:

R← R+ λI. (50)

• Optimization with respect toQ1: We restate the objective function of (46) as

‖R − (Q
1
+ P 1)⊙ (ssH)‖F (51)

= ‖
(
R⊙ (ssH)∗ − P 1

)
︸ ︷︷ ︸

RQ

−Q
1
‖F .

GivenRQ, (46) can be written as

min
Q

1
∈C1

‖RQ −Q
1
‖F . (52)

In [20], the authors have derived an explicit solution for the optimization problem

min
Q

1

‖RQ −Q
1
‖F (53)

s.t.Q
1
1 = ρ1. (ρ =given)

The explicit solution of (53) is given by

Q1(ρ) = ρIn + (In −
1n×n

n
)(RQ − ρIn)(In −

1n×n

n
) (54)

= RQ +
ρ

n
1n×n −

2

n
(RQ1n×n) +

1

n2
(1n×nRQ1n×n)

Note that

Q
1
(ρ′)−Q

1
(ρ) = (ρ′ − ρ)(1n×1/

√
n)(1n×1/

√
n)T (55)

which implies that except for the eigenpair(1n×1/
√
n, ρ), all other eigenvalue/vectors are independent

of ρ. Let ρ0 represent the maximal eigenvalue ofQ
1
(0) corresponding to an eigenvector other than

1n×1/
√
n. Therefore, (52) is equivalent to

min
ρ
‖RQ −Q

1
(ρ)‖F (56)

s.t. ρ ≥ ρ0.
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It follows from (54) that

‖RQ −Q
1
(ρ)‖2F =

n∑

k=1

n

∣∣∣∣
ρ

n
− 2Gk

n
+

H

n2

∣∣∣∣
2

(57)

whereGk andH are the sum of thekth row and, respectively, the sum of all entries ofRQ. Theρ that

minimizes (57) is given by

ρ =
1

n

n∑

k=1

ℜ
(
2Gk −

H

n

)
=

H

n
(58)

which implies that the minimizerρ = ρ⋆ of (56) is equal to

ρ⋆ =





H
n

H
n ≥ ρ0,

ρ0 otherwise.
(59)

Finally, the optimal solutionQ1 to (52) is given by

Q
1
= Q

1
(ρ⋆). (60)

• Optimization with respect toP 1: Similar to the previous case, (46) can be rephrased as

min
Q

1
∈C(V1)

‖RP − P 1‖F (61)

whereRP = R⊙ (ssH)∗ −Q
1
. The solution of (61) is simply given by

P 1(k, l) =





R′
P (k, l) R′

P (k, l) ≥ 0 or k = l,

0 otherwise
(62)

whereR′
P = ℜ{RP }.

• Optimization with respect tos: Suppose thatQ
1

andP 1 are given and thatR1 = Q
1
+ P 1 is a

positive definite matrix (see the discussion on this aspect following Eq. (46)). We consider a relaxed

version of (46),

min
s1,s2∈Ωn

‖R−R1 ⊙ (s1s
H
2 )‖F (63)

The objective function in (63) can be re-written as

‖R−R1 ⊙ (s1s
H
2 )‖2F (64)

= ‖R−Diag(s1)R1Diag(s∗2)‖2F

= tr(R2) + tr(R2
1
)− 2ℜ{tr(R Diag(s1)R1Diag(s∗2))}.

Note that only the third term of (64) is a function ofs1 ands2. Moreover, it can be verified that [21]

tr(R Diag(s1)R1Diag(s∗2)) = sH2 (R ⊙RT
1
)s1. (65)
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TABLE I

THE MERIT ALGORITHM

(A) The case ofα0 = 0

Step 0: Initialize the variablesQ
1

andP 1 with I. Let s be a random vector

in Ωn.

Step 1: Perform the diagonal loading ofR as in (49)-(50) (note that this

diagonal loading is sufficient to keepR1 = Q
1
+P 1 always positive definite).

Step 2: Obtain the minimum of (46) with respect toQ
1

as in (60).

Step 3: Obtain the minimum of (46) with respect toP 1 using (62).

Step 4: Minimize (46) with respect tos using (66).

Step 5: Goto step 2 until a stop criterion is satisfied, e.g.‖R− (Q
1
+P 1)⊙

(ssH)‖F ≤ ǫ0 (or if the number of iterations exceeded a predefined maximum

number).

(B) The case ofα0 > 0

Step 0: Initialize the variables(s,Q
1
,P 1) using the results obtained by the

optimization of (46) as in Table I-A.

Step 1: Setδ (the step size for increasingα0 in each iteration). Letδ0 be the

minimal δ to be considered andα0 = 0.

Step 2: Let αpre

0
= α0, αnew

0 = α0 + δ andR′ = R + αnew
0 ssH .

Step 3: Solve (67) using the steps 2-5 in Table I-A (particularly step 4 must

be applied to (69)).

Step 4: If ‖R′ − (Q
1
+ P 1)⊙ (ssH)‖F ≤ ǫ0 do:

• Step 4-1: If δ ≥ δ0, let δ ← δ/2 and initialize (67) with the previously

obtained variables(s,Q
1
,P 1) for α0 = αpre

0
. Goto step 2.

• Step 4-2: If δ < δ0, stop.

Else, letα0 = αnew
0 and goto step 2.

As R ⊙RT
1

is positive definite, we can employ the power method-like iterations introduced in (32) to

obtain a solution to (46) i.e. starting from the currents = s(0), a local optimum of the problem can be

obtained by the iterations

s(t+1) = ej arg((R⊙RT
1
)s(t)). (66)

Finally, the proposed algorithmic optimization of (46) based on the above results is summarized in

Table I-A.
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B. Achieving a Local Optimum of UQP (the Case ofα0 > 0)

There exist examples for which the objective function in (46) does not converge to zero. As a result,

the proposed method cannot obtain a global optimum of UQP in such cases. However, it is still possible

to obtain a local optimum of UQP for someα0 > 0. To do so, we solve the optimization problem,

min
s∈Ω,Q

1
∈C1,P 1∈C(V1)

‖R′ − (Q
1
+ P 1)⊙ (ssH)‖F (67)

with R′ = R + α0ss
H , for increasingα0. The above optimization problem can be tackled using the

same tools as proposed for (46). In particular, note that increasingα0 decreases (67). To observe this,

suppose that the solution(s,Q
1
,P 1) of (67) is given for anα0 ≥ 0. The minimization of (67) with

respect toQ
1

for αnew
0 = α0 + δ (δ > 0) yields Q̃

1
∈ C1 such that

‖R+ αnew
0 ssH − (Q̃

1
+ P 1)⊙ (ssH)‖F (68)

≤ ‖R+ αnew
0 ssH − ((Q

1
+ δ11T ) + P 1)⊙ (ssH)‖F

= ‖R+ α0ss
H − (Q

1
+ P 1)⊙ (ssH)‖F

whereQ
1
+ δ11T ∈ C1. The optimization of (67) with respect toP 1 can be dealt with as before (see

(46) and it leads to a further decrease of the objective function. Furthermore,

‖R+ α0ss
H − (Q

1
+ P 1)⊙ (ssH)‖F (69)

= ‖R+ λ′I − (Q
1
+P 1 − α011

T + λ′I)⊙ (ssH)‖F

which implies that a solutions of (67) can be obtained via optimizing (69) with respect tos in a similar

way as we described for (46) provided thatλ′ ≥ 0 is such thatQ
1
+P 1−α011

T +λ′I is positive definite.

Finally, note that the obtained solution(s,Q1,P 1) of (46) can be used to initialize the corresponding

variables in (67). In effect, the solution of (67) for anyα0 can be used for the initialization of (67) with

an increasedα0.

Based on the above discussion and the fact that small values of α0 are of interest, a bisection approach

can be used to obtainα0. The proposed method for obtaining a local optimum of UQP along with the

correspondingα0 is described in Table I-B.

C. Sub-optimality Analysis

In this sub-section, we show that the proposed method can provide a sub-optimality guarantee (γ) that

is close to1. Let α0 = 0 (as a resultR′ = R) and define

E , R′ − (Q
1
+ P 1)⊙ (ssH)︸ ︷︷ ︸

Rs

(70)
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whereQ
1
∈ C1 andP 1 ∈ C(V1). The global optimum of the UQP associated withRs is s. We have

that

max
s′∈Ωn

s′HRs′ ≤ max
s′∈Ωn

s′HRss
′ + max

s′∈Ωn
s′HEs′ (71)

≤ max
s′∈Ωn

s′HRss
′ + nσ1(E)

= sHRss+ nσ1(E)

Furthermore,

max
s′∈Ωn

s′HRs′ ≥ max
s′∈Ωn

s′HRss
′ + min

s′∈Ωn
s′HEs′ (72)

≥ max
s′∈Ωn

s′HRss
′ + nσn(E)

= sHRss+ nσn(E)

As a result, an upper bound and a lower bound on the objective function for the global optimum of (46)

can be obtainedat each iteration. Furthermore, as

|σ1(E)| ≤ ‖E‖F , |σn(E)| ≤ ‖E‖F (73)

if ‖E‖F converges to zero we conclude for (71) and (72) that

max
s′∈Ωn

s′HRs′ = sHRss = sHRs (74)

and hences is the global optimum of the UQP associated withR (i.e. a sub-optimality guarantee of

γ = 1 is achieved).

Next, suppose that we have to increaseα0 in order to obtain the convergence of‖E‖F to zero. In such a

case, we have thatR = Rs−α0ss
H and as a result,maxs′∈Ωn s′HRss

′−α0n
2 ≤ maxs′∈Ωn s′HRs′ ≤

maxs′∈Ωn s′HRss
′ or equivalently,

sHRss− α0n
2 ≤ max

s′∈Ωn
s′HRs′ ≤ sHRss. (75)

The provided sub-optimality guarantee is thus given by

γ =
sHRs

sHRss
= 1− α0n

2

sHRss
. (76)

Note that while solving the optimization problem (67) does not necessarily yield the exact optimal

solution to UQP, the so-obtained solution can be still optimal. We also note that (76) generally yields

tighter sub-optimality guarantees than the currently known approximation guarantee (i.e.π/4 for SDR).

The following section provides empirical evidence for sucha fact.

March 4, 2013 DRAFT



20

0 200 400 600 800
500

1000

1500

2000

2500

iteration number

 

 

Upper bound

sH R
s
 s

sH R s
Lower bound

(a)

0 200 400 600 800
0

20

40

60

80

100

iteration number

(b)

Fig. 1. Different metrics versus the iteration number for anUQP solved by MERIT. (a) the UQP objective corresponding to the

true matrix (R), the approximated matrix (Rs) and also the upper/lower bounds at each iteration. The sub-optimality bounds

are updated using (71)-(72). (b) the criterion‖E‖F = ‖R −Rs‖F (it reaches values which are practically zero).

VI. N UMERICAL EXAMPLES

In order to examine the performance of the proposed method, several numerical examples will be

presented. Random Hermitian matricesR are generated using the formula

R =

n∑

k=1

xkx
H
k (77)

where {xk} are random vectors inCn whose real-part and imaginary-part elements are i.i.d. with a

standard Gaussian distributionN (0, 1). In all cases, we stopped the iterations when‖E‖F ≤ 10−9.

We use the MERIT algorithm to solve the UQP for a random positive definite matrix of sizen = 16.

The obtained values of the UQP objective for the true matrix (R) and the approximated matrix (Rs) as

well as the sub-optimality bounds (derived in (71) and (72))are depicted in Fig. 1 versus the iteration

number. In this example, a sub-optimality guarantee ofγ = 1 is achieved which implies that the method

has successfully obtained the global optimum of the considered UQP. A computational time of 3.653 sec

was required on a standard PC to accomplish the task.

Next, we solve the UQP for20 full-rank random positive definite matrices of sizesn ∈ {8, 16, 32, 64}.
Inspired by [11] and [22], we also consider rank-deficient matricesR =

∑d
k=1 xkx

H
k where{xk} are as

in (77), butd≪ n. The performance of MERIT for different values ofd is shown in Table II. Interestingly,

the solution of UQP for rank-deficient matrices appears to beobtained more efficiently than for the full-
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n Rank (d) #problems for

which γ = 1

Averageγ Minimum γ Average CPU

time (sec)

#problems

solved by SDR

8 2 17 0.9841 0.8184 0.13 4

8 16 0.9912 0.9117 0.69 7

2 15 0.9789 0.8301 1.06 2

16 4 13 0.9773 0.8692 1.58 10

16 4 0.9610 0.8693 3.54 13

2 9 0.9536 0.8190 47.04 3

32 6 4 0.9077 0.8106 55.59 7

32 2 0.9031 0.8021 94.90 16

2 3 0.8893 0.8177 406.56 4

64 8 1 0.8567 0.7727 560.35 10

64 0 0.8369 0.7811 1017.69 15

TABLE II

COMPARISON OF THE PERFORMANCE OFMERIT (SEETABLE I) AND SDR [17]WHEN SOLVING THE UQPFOR20 RANDOM

POSITIVE DEFINITE MATRICES OF DIFFERENT SIZESn AND RANKS d.

rank matrices. For each problem solved by MERIT, we also let the SDR algorithm of [17] use the same

computational time for solving the problem. The SDR algorithm is able to solve the problem only if its

core semi-definite program can be solved within the available time. Any remaining time is dedicated to

the randomization procedure. The results can be found in Table II. Note that the maximum UQP objective

values obtained by MERIT and SDR were nearly identical in those cases in which SDR was able to

solve the UQPs in the same amount of time as MERIT. Note also that given the solutions obtained by

MERIT and SDR as well as the sub-optimality guarantee of MERIT, a case-dependent sub-optimality

guarantee for SDR can be computed as

γSDR, γMERIT

(
vSDR

vMERIT

)
. (78)

This can be used to examine the goodness of the solutions obtained by SDR.

Besides random matrices, we also consider several other matrix structures for which solving the UQP

using the proposed method is not “hard”, as explained below.

• Case 1:An exponentially shaped disturbance matrix [1] with correlation coefficientη = 0.8,

M(k, l) = η|k−l|, 1 ≤ k, l ≤ n. (79)
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• Case 2:A disturbance matrix with the structure

M(k, l) = η
|k−l|
1 ej2πρ(k−l) + 10η

|k−l|
2 + 10−2I(k, l), 1 ≤ k, l ≤ n (80)

whose terms represent the effects of sea clutter, land clutter and thermal noise, respectively. The

values of(η1, η2, ρ) are set to(0.8, 0.9, 0.2) in accordance to an example provided in [23].

• Case 3:A disturbance matrix accounting for both discrete clutter scatterers and thermal noise [17],

M =

nc∑

k=1

ηkpvd,kp
H
vd,k + ηI (81)

wherenc = 10, ηk = 103, vd,k = (k − 1)/2,

pvd,k = (1, ej2πvd,k , · · · , ej2π(n−1)vd,k)T , 1 ≤ k ≤ nc, (82)

andη = 10−2. The chosen values are the same as those considered in [17].

We let R = M−1 ⊙ (ppH)∗ (see (3) and the following discussion) wherep is an unimodular vector

with a structure similar to that of{pvd,k} in (82). The UQP for the above cases is solved via MERIT

using 20 different random initializations for sizesn ∈ {8, 16, 32, 64}. Similar to the previous example,

we also used SDR to solve the same UQPs. The results are shown in Table III. The obtained solutions

can be considered to be quite accurate in the sense of a sub-optimality guaranteeγ close to one.

A different code design problem arises when synthesizing waveforms that have good resolution prop-

erties in range and Doppler [3]-[5],[24]-[26]. In the following, we consider the design of a thumbtack

CAF (see the definitions in sub-section I-A):

d(τ, f) =





n (τ, f) = (0, 0),

0 otherwise.
(83)

Supposen = 53, let T be the time duration of the total waveform, and lettp = T/n represent the time

duration of each sub-pulse. Define the weighting function as

w(τ, f) =





1 (τ, f) ∈ Ψ\Ψml,

0 otherwise,
(84)

whereΨ = [−10tp, 10tp]×[−2/T, 2/T ] is the region of interest andΨml = ([−tp, tp]\{0})×([−1/T, 1/T ]
\{0}) is the mainlobe area which is excluded due to the sharp changes near the origin ofd(τ, f). Note

that the time delayτ and the Doppler frequencyf are typically normalized byT and1/T , respectively,

and as a result the value oftp can be chosen freely without changing the performance of CAFdesign.

The synthesis of the desired CAF is accomplished via the cyclic minimization of (8) with respect tox

andy (see sub-section I-A). In particular, we use MERIT to obtaina unimodularx in each iteration. A
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n Rank (d) #problems for

which γ = 1

Averageγ Minimum γ Average CPU

time (sec)

#problems

solved by SDR

Case 1 20 1.0000 1.0000 2.82 17

8 Case 2 20 1.0000 1.0000 0.60 20

Case 3 20 1.0000 1.0000 0.27 10

Case 1 20 1.0000 1.0000 42.83 20

16 Case 2 18 0.9812 0.8075 21.58 20

Case 3 20 1.0000 1.0000 2.01 12

Case 1 20 1.0000 1.0000 990.90 20

32 Case 2 19 0.9995 0.9913 525.34 20

Case 3 20 1.0000 1.0000 7.52 7

Case 1 17 0.9901 0.9862 5574.98 20

64 Case 2 16 0.9540 0.8359 2053.26 20

Case 3 20 1.0000 1.0000 22.78 9

TABLE III

COMPARISON OF THE PERFORMANCE OFMERIT (SEETABLE I) AND SDR [17] WHEN SOLVING THE UQPFOR THE

MATRIX STRUCTURES DESCRIBED INCASES1-3 USING 20 DIFFERENT INITIALIZATIONS AND FOR DIFFERENT SIZESn.

Björck code is used to initialize both vectorsx andy. The Björck code of lengthn = p (wherep is a

prime number for whichp ≡ 1 (mod 4)) is given byb(k) = ej(
k

p
) arccos(1/(1+

√
p)), 0 ≤ k < p, with (kp )

denoting the Legendre symbol. Fig. 2 depicts the normalizedCAF modulus of the Björck code (i.e. the

initial CAF) and the obtained CAF using the UQP formulation in (11) and the proposed method. Despite

the fact that designing CAF with a unimodular transmit vector x is a rather constrained problem, MERIT

is able to efficiently suppress the CAF sidelobes in the region of interest.

VII. C ONCLUDING REMARKS

A computational approach to the NP-hard problem of optimizing a quadratic form over the unimodular

vector set (called UQP) has been introduced. The main results can be summarized as follows:

• Some applications of the UQP were reviewed. It was shown thatthe solution to UQP is not

necessarily unique. Several examples were provided for which an accurate global optimum of UQP

can be obtained efficiently.

• Using a relaxed version of UQP, a specialized local optimization scheme for UQP was devised and

was shown to yield superior results compared to any general local optimization of UQP.
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Fig. 2. The normalized CAF modulus for (a) the Björck code oflength n = 53 (i.e. the initial CAF), and (b) the UQP

formulation in (11) and MERIT.

• It was shown that the set of matrices (K(s)) leading to the same solution (s) as the global optimum of

UQP is a convex cone. An one-to-one mapping between any two such convex cones was introduced

and an approximate characterization ofK(s) was proposed.

• Using the approximate characterization ofK(s), an iterative approach (called MERIT) to the UQP

was proposed. It was shown that MERIT provides case-dependent sub-optimality guarantees. The

available numerical evidence shows that the sub-optimality guarantees obtained by MERIT are
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generally better than the currently known approximation guarantee (ofπ/4 for SDR).

• Numerical examples were provided to examine the potential of MERIT for different UQPs. In

particular, it was shown that the UQP solutions for certain matrices used in active sensing code

design can be obtained efficiently via MERIT.

We should note that no theoretical efficiency assessment of the method was provided. It is clear that

C(Vs) ∪ Cs ⊂ K(s). A possible approach would be to determine how large is the part of K(s) that is

“covered” byC(Vs)∪Cs. However, this problem is left for future work. Furthermore, a study ofm-UQP

using the ideas in this paper will be the subject of another paper.

APPENDIX

A. Proof of Theorem 1

In order to verify the first part of the theorem, consider any two matricesR1,R2 ∈ K(s̃). For any

two non-negative scalarsγ1, γ2 we have that

sH(γ1R1 + γ2R2)s = γ1s
HR1s+ γ2s

HR2s. (85)

Clearly, if somes = s̃ is the global maximizer of bothsHR1s andsHR2s then it is the global maximizer

of sH(γ1R1 + γ2R2)s which impliesγ1R1 + γ2R2 ∈ K(s̃).
The second part of the theorem can be shown noting that

sH2 (R⊙ (s0s
H
0 ))s2 = (s∗0 ⊙ s2)

HR(s∗0 ⊙ s2) (86)

= sH1 Rs1

for all s1, s2 ∈ Ωn and s0 = s∗1 ⊙ s2. Therefore, ifR ∈ K(s̃1) then R ⊙ (s̃0s̃
H
0 ) ∈ K(s̃2) (for

s̃0 = s̃∗1 ⊙ s̃2) and vice versa.

B. Proof of Theorem 2

It is well-known thatxHRx ≤ σ1‖x‖22 for all vectorsx ∈ Cn. Let

α′ =


 α

0(n−m)×1


 . (87)

It follows from (24) thats̃ = Uα′ and therefore

s̃HRs̃ = α′HΣα′ = σ1‖α′‖22 (88)

= σ1‖s̃‖22 = nσ1

which implies the global optimality of̃s for the considered UQP.
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C. Proof of Theorem 4

It is worthwhile to observe that the convergence rate of{R(t)} is not dependent on the problem

dimension (n), as each entry of{R(t)} is treated independently from the other entries (i.e. all the

operations are element-wise). Therefore, without loss of generality we study the convergence of one

entry (say{R(t)(k, l)} = {rtejθt}) in the following.

Note that in cases for which|θt− (φk − φl)| > π/2, the next element of the sequence{rtejθt} can be

written as

rt+1e
jθt+1 = rte

jθt + ρej(φk−φl) (89)

which implies that the proposed operation tends to makeθt closer to(φk − φl) in each iteration, and

finally putsθt within the π/2 distance from(φk − φl).

Let us suppose that|θ0 − (φk − φl)| > π/2, and that the latter phase criterion remains satisfied for all

θt, t < T . We have that

rT e
jθT = r0e

jθ0 + Tρej(φk−φl) (90)

which yields

rT cos(θT − (φk − φl)) = r0 cos(θ0 − (φk − φl)) + Tρ. (91)

Therefore it takes onlyT = ⌈−r0 cos(θ0 − (φk − φl))/ρ⌉ = 1 iteration for θt to stand within theπ/2

distance from(φk − φl).

Now, suppose that|θ0 − (φk − φl)| ≤ π/2. For everyt ≥ 1 we can write that

rt+1e
jθt+1 = rte

jθt + ρej(φk−φl) (92)

− rt cos(θt − (φk − φl))e
j(φk−φl)

= ej(φk−φl) (ρ+ jrt sin(θt − (φk − φl))) .

Let δt+1 = rt+1e
jθt+1 − rte

jθt . The first equality in (92) implies that

δt+1 = ej(φk−φl)(ρ− rt cos(θt − (φk − φl))). (93)

On the other hand, the second equality in (92) implies that

δt+1 = jej(φk−φl)(rt sin(θt − (φk − φl)) (94)

−rt−1 sin(θt−1 − (φk − φl)))
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for all t ≥ 1. Note that in (93) and (94),δt+1 is a complex number having different phases. We conclude

δt+1 = 0, ∀ t ≥ 1 (95)

which shows that the sequence{rtejθt} is convergent in one iteration. In sum, every entry of the matrix

R will converge in at most two iterations (i.e. at most one to achieve a phase value within theπ/2

distance from(φk − φl), and one iteration thereafter).

D. Proof of Theorem 5

We use the same notations as in the proof of Theorem 4. If|θ0 − (φk − φl)| ≤ π/2 then

r2e
jθ2 = r1e

jθ1 (96)

= r0e
jθ0 + ρej(φk−φl)

− r0 cos(θ0 − (φk − φl))e
j(φk−φl).

On the other hand, if|θ0 − (φk − φl)| > π/2 we have thatr1ejθ1 = r0e
jθ0 + ρej(φk−φl). As a result,

r1 cos(θ1 − (φk − φl)) = ρ+ r0 cos(θ0 − (φk − φl)) which implies

r2e
jθ2 = r1e

jθ1 + ρej(φk−φl) (97)

− r1 cos(θ1 − (φk − φl))e
j(φk−φl)

= r0e
jθ0 + ρej(φk−φl)

− r0 cos(θ0 − (φk − φl))e
j(φk−φl).

Now, it is easy to verify that (41) follows directly from (96)and (97).

E. Proof of Theorem 6

If s is a hyper point of UQP associated withR(0) = R then we have thatarg(s) = arg(Rs). Let

Rs = v ⊙ s wherev is a non-negative real-valued vector inRn. It follows that

v(k)ejφk =

n∑

l=1

|R(k, l)|ejθk,lejφl (98)

or equivalently

v(k) =

n∑

l=1

|R(k, l)|ej(θk,l−(φk−φl)) (99)
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which implies that 



∑n
l=1 |R(k, l)| cos(θk,l − (φk − φl)) ≥ 0

∑n
l=1 |R(k, l)| sin(θk,l − (φk − φl)) = 0

(100)

for all 1 ≤ k ≤ n. Now, note that the recursive formula of the sequence{R(t)} can be rewritten as

R(t+1) = R(t) −Diag(s) (R
(t)
+ − ρ1n×n) Diag(s∗) (101)

and as a result,

R(t+1)s = R(t)s−Diag(s) (R
(t)
+ − ρ1n×n) 1n×1. (102)

It follows from (102) that ifs is a hyper point of the UQP associated withR(t) (which implies the

existence of non-negative real-valued vectorv(t) such thatR(t)s = v(t)⊙s), then there existsv(t+1) ∈ Rn

for which R(t+1)s = v(t+1) ⊙ s and therefore,

v(t+1)(k) ejφk =

n∑

l=1

|R(t)(k, l)|ejθk,lejφl (103)

−
((

n∑

l=1

R
(t)
+ (k, l)

)
− nρ

)
ejφk .

Eq. (103) can be rewritten as

v(t+1)(k) =

n∑

l=1

|R(t)(k, l)|ej(θk,l−(φk−φl)) (104)

−
(

n∑

l=1

R
(t)
+ (k, l)

)
+ nρ

As indicated earlier,s being a hyper point forR(0) assures that the imaginary part of (104) is zero. To

show thats is a hyper point of the UQP associated withR(t+1), we only need to verify thatv(t+1)(k) ≥ 0:

v(t+1)(k) =

n∑

l=1

|R(t)(k, l)| cos(θk,l − (φk − φl)) (105)

−
(

n∑

l=1

R
(t)
+ (k, l)

)
+ nρ

= nρ

+
∑

l: (k,l)/∈Θ
|R(t)(k, l)| cos(θk,l − (φk − φl))

Now note that the positivity ofv(t+1)(k) is concluded from (38). In particular, based on the discussions

in the proof of Theorem 4, fort = 1, there is noθk,l such that|θk,l − (φk − φl)| ≥ π/2 and therefore

v(2)(k) = nρ for all 1 ≤ k ≤ n. As a result,

R(2)s = nρs (106)
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which implies thats is an eigenvector ofR(2) corresponding to the eigenvaluenρ.

ACKNOWLEDGEMENT

We would like to thank Prof. Antonio De Maio for providing us with the MATLAB code for SDR.

REFERENCES

[1] A. De Maio, S. De Nicola, Y. Huang, S. Zhang, and A. Farina,“Code design to optimize radar detection performance

under accuracy and similarity constraints,”IEEE Transactions on Signal Processing, vol. 56, no. 11, pp. 5618 –5629, Nov.

2008.

[2] A. De Maio and A. Farina, “Code selection for radar performance optimization,” inWaveform Diversity and Design

Conference, Pisa, Italy, June 2007, pp. 219–223.

[3] H. He, J. Li, and P. Stoica,Waveform Design for Active Sensing Systems: A Computational Approach. Cambridge, UK:

Cambridge University Press, 2012.

[4] N. Levanon and E. Mozeson,Radar Signals. New York: Wiley, 2004.

[5] H. He, P. Stoica, and J. Li, “On synthesizing cross ambiguity functions,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 2011, pp. 3536–3539.

[6] J. Li and P. Stoica,Eds., Robust Adaptive Beamforming. NJ, USA.: John Wiley & Sons, Inc., 2005.

[7] K.-C. Tan, G.-L. Oh, and M. Er, “A study of the uniqueness of steering vectors in array processing,”Signal Processing,

vol. 34, no. 3, pp. 245–256, 1993.

[8] A. Khabbazibasmenj, S. Vorobyov, and A. Hassanien, “Robust adaptive beamforming via estimating steering vector based

on semidefinite relaxation,” inConference on Signals, Systems and Computers (ASILOMAR), California, USA, Nov. 2010,

pp. 1102–1106.

[9] J. Jalden, C. Martin, and B. Ottersten, “Semidefinite programming for detection in linear systems - optimality conditions

and space-time decoding,” inIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4,

Hong Kong, April 2003, pp. 9–12.

[10] S. Zhang and Y. Huang, “Complex quadratic optimizationand semidefinite programming,”SIAM Journal on Optimization,

vol. 16, no. 3, pp. 871–890, 2006.

[11] A. T. Kyrillidis and G. N. Karystinos, “Rank-deficient quadratic-form maximization over M-phase alphabet: Polynomial-

complexity solvability and algorithmic developments,” inIEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), May 2011, pp. 3856–3859.
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