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Abstract—We consider the problem of phase retrieval, namely,  In order to obtain more robust recovery without requiring
recovery ofa5|gnal from the magnitude of its Fourier transbrm, multiple measurements, we develop a method that exploits
or of any other linear transform. Due to the loss of the Fourig signal sparsity. Existing approaches aimed at recovepiage

phase information, this problem is ill-posed. Therefore, pior . s f their Fouri itude bel to t .
information on the signal is needed in order to enable its reavery. signais from their Fourier magnitude belong to two main

In this work we consider the case in which the signal is knowna ~categories: SDP-based techniques [8],[9],[10],[11] akyb-a
be sparse, i.e., it consists of a small number of nonzero elemts rithms that use alternate projections (Fienup-type method

in an appropriate basis. We propose a fast local search metho [12]. Phase retrieval of sparse signals can be viewed as a

for recovering a sparse signal from measurements of its FOugr  gacia| case of the more general quadratic compressedagensi
transform (or other linear transform) magnitude which we refer

to as GESPAR: GrEedy Sparse PhAse Retrieval. Our algorithm (QCS) problem considered in[8]. Spe_rcifically, QCS treats
does not require matrix lifting, unlike previous approaches, and recovery of sparse vectors from quadratic measuremenfigof t

therefore is potentially suitable for large scale problemssuch form y; = xTA;x, i = 1,..., N, wherex is the unknown
as images. Simulation .re.sults indig:ate that GESPAR is fa§trai sparse vector to be recoverggare the measurements, aAd
more accurate than existing techniques in a variety of settigs. 5.0 known matrices. In (discrete) phase retrieval = FF,
whereF; is theith row of the discrete Fourier transform (DFT)
. INTRODUCTION matrix. QCS is encountered, for example, when imaging a
Recovery of a signal from the magnitude of its FourietParse object using partially spatially-incoherent illoation
transform, also known as phase retrieval, is of great isténe 8]
applications such as optical imagirig [1], crystallografigly ~ A 9eneral approach to QCS was developedlin [8] based
and more[[3]. Due to the loss of Fourier phase informatioa, tiPn matrix lifting. More specifically, the quadratic consiita
problem (in 1D) is generally ill-posed. A common approacihere lifted to a higher dimension by defining a matrix
to overcome this ill-posedeness is to exploit prior infotiora  VariableX = xx*. The problem was then recast as an SDP
on the signal. A variety of methods have been developed thaYolving minimization of the rank of the lifted matrix sidajt
use such prior information, which may be the signal’s suppdP the recovery constraints as well as row sparsity comgtai
(region in which the signal is nonzero), non-negativitytioe ©N X. An iterative thresholding algorithm based on a sequence
signal’'s magnitude 4], ]5]. of SDPs was then proposed to recover a sparse solution.
A popular class of algorithms is based on the use §imilar SDP-type ideas were recently used in the context
alternate projections between the different constrainterder ©f phase retrievall [91.[10]. However, due to the increase in
to increase the probability of correct recovery, these oesh dimension created by the matrix lifting procedure, the SDP
require the prior information to be very precise, for exaspl@PProach is not suitable for large-scale problems.
exact/or “almost” exact knowledge of the support set. Sthee  Another approach for phase retrieval of sparse signals is
projections are generally onto non-convex sets, conveigeﬁ‘dding a sparsity constraint to the well-known iterativeoer
to a correct recovery is not guaranteéd [6]. A more receffiduction algorithm of Fienup [12]. In general, Fienupeyp
approach is to use matrix-lifting of the problem which alkow@pproaches are known to suffer from convergence issues
to recast phase retrieval as a semi-definite programming(S&nd often do not lead to correct recovery especially in 1D
problem [7]. The algorithm developed inl [7] does not requi@roblems; simulation results show that even with the aololii
prior information about the signal but instead uses mutipinformation that the input is sparse, convergence is stdbp

signal measurements (e.g., using different illuminatiet s lematic and the algorithm often recovers erroneous saistio
tings, in an optical setup). In this paper we propose an efficient method for phase
retrieval which also leads to good recovery performance. Ou
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method, where the support of the sought signal is updatep to trivial degeneracies that are the result of the loss of
iteratively, according to selection rules described inadeéh Fourier phase information: circular shift, global phased a
Section[Ill. A local minimum of the objective function issignal “mirroring”.

then found given the current support using the damped Gaus$upport Information: To aid in solving the phase retrieval
Newton algorithm. Theoref 1 establishes convergence of foblem, we can rely on the fact that the autocorrelation
iterations to a stationary point of the objective underahlé sequence af (the firstn components ok) may be determined

conditions. fromy if N > 2n — 1. Specifically, let

We demonstrate through numerical simulations that GES- n
PAR is both efficient and more accurate than current tech- Gm = inxi+m, m=—(n-1),....n—1 (3)
nigues. Several other aspects of the algorithm are explored i=1

via simulations such as robustness to noise, and scajabitiienote the correlation sequence of lengjth- 1. If we choose
for larger dimensions. In the simulations performed we fbunV > 2n — 1, then{g.,} can be obtained by taking the inverse
that the number of measurements needed for reliable recovBFT of y.
from Fourier magnitudes seems to scale like wheres is Determiningg,, requires oversampling, or zero-padding of
the sparsity level. x. While this additional information improves the recovery
GESPAR is applicable to recovery of a sparse vectperformance, as is demonstrated in the simulations section
from general quadratic measurements, and is not restriotedt is not actually needed for GESPAR to work. Nevertheless,
Fourier magnitude measurements. Nonetheless, when the nvelzen this information is available, GESPAR exploits it, in
surements are obtained in the Fourier domain, the algoritithe following way. First of all, we assume that no support
can be implemented efficiently by exploiting the fast Fourigancelations occur ifg,,}, namely, ifz; # 0 andz; # 0
transform, as we discuss in Section IV. for somei, j, then g;_; # 0. When the values ok are
The remainder of the paper is organized as follows. Wandom, this is true with probability 1. This fact can be used
formulate the problem in Sectidd Il. Sectibnl 11l describes o GESPAR in order to obtain initial information on the support
proposed algorithm in detail and establishes convergehceob x, which we capture by two set$ andJs.
the local iterations. Implementation details for Foutiaised  Denote byJ; the set of indices known in advance to be in
problems are provided in Sectign]lV. Extensive numerical ethe support. To derive the sét, note that due to the existing
periments illustrating the empirical performance of GERPAdegree of freedom relating to shift-invariancexgfthe index

are presented in Sectigd V. 1 can be assumed to be in the support, thereby removing this
degree of freedom; as a consequence, the index corresgondin
Il. PROBLEM FORMULATION to the last nonzero element in the autocorrelation sequisnce
A. Sparse Phase Retrieval: Fourier Measurements also in the support, i.e.
We are given a vector of measurementsc RY, that imaz = 1 +argmaxi : g; # 0}.
corresponds to the magnitude-squared of\apoint DFT of _ !
a vectorx € RV, i.e.: Therefore,J1 = {1, 4maz }-

Next, we denote by, the set of indices that are candidates
- _2mi(m=—1)(-1) for being in the support, meaning the indices that not
b= Z Lme " o 1=1....N. (1) \nown in advance to be in the off-support (the complement of
m=l the support). Specificallyl, contains the set of all indicése
Herex is constructed by(/V — n) zero padding of a vector {1 2 . p} such thaig,_; # 0. Obviously, since we assume
x € R™ with elementsr;, i = 1,2,...,n. Denoting byF € thatz), = 0 for k > n, we haveJ, C {1,2,...,n}. As a con-
CN*N the DFT matrix with elementscp { — 2m-DE=D oy example, consider the sigiak= (2,0,0, —1,0, —1.5)7.
we can expresy asy = |Fx|*, where| - |> denotes the The correspondind 1 point autocorrelation functiory,, is
element-wise absolute-squared value. The vektis known given by g, = (—3,0,—2,1.5,0,7.25,0,1.5, 2,0, —3)7.
to bes-sparse, that is, it contains at meshonzero elements. The set Jy is thereforeJ; = {1,6}. Next, by examining
Our goal is to recovex, or x, given the measuremergsand the zeros ofg,,, and using our assumption of no support-
the sparsity levek. cancelations, we deduce that there are no two non-zero ele-
The mathematical formulation of the problem that we cornentsy; # 0 andz; # 0 such thatli — j| = 1,4. Therefore,
sider consists of minimizing the sum of squared errors siibjgorcing the first element ix to be non-zero, which removes
to the sparsity constraint: the shift-invariance degeneracy, immediately implies tha=
. N w2 2 x5 = 0. In this way J; is determined as/; = {1,3,4,6}.
min ) (Fax]™ = i) Defining A; = R(F,)"R(F;) + S(F,)TS(F,) € RV*N,

2

st Ixllo < s, (@) probl long with th informati be wri
supax) C {1,2,....n}, problem [2) along with the support information can be writte
X € RN, as . _ N T 2
mine f(x) =D, (x" Ayx— ;)
where F; is the ith row of the DFT matrixF, and || - ||o s.t. Ixlo <s, 4)
stands for the zero-“norm”, that is, the number of nonzero J1 C supx) C Js,

elements. Note that the unknown vectocan only be found x € RV,



which will be the formulation to be studied. minimizing the objective functionf over a given support
Note that even with knowledge of the exact support of C {1,2,...,n} (|S| = s):

x there is no guarantee for uniqueness beyond the afore-

mentioned trivial degeneracies. Consider for example e t min{f(Usz) : z € R}, (6)

vectorsu = (1,0, —2,0, —2) andv =(1—+/3,0,1,0,1++/3).

Both of these vectors are= 3 sparse, and they have the sam

autocorrelation functiog,, = (—2,0,2,0,9,0,2,0, —2). This i

ambiguity therefore cannot be resolved using any methad th

uses sparsity (even exact support information) and autecor N

lation (or Fourier magnitude) measurements alone. min {g(z) = Z(ZTUgAiUsz —y)ize RS} )
Finally, when the measurements are noisy, the autocorrela- i=1

tion information is not very useful for support estimatigince The minimization in[[¥) is a nonlinear least-squares prob-

very small (noise level) values in the autocorrelation 88M& |om A natural approach for tackling it is via the DGN method.
cannot be treated as zero. For this reason, the autoc@relaty;q algorithm begins with an arbitrary vectap. In our

derived support information is not used in GESPAR at alliations, we choose it as a white random Gaussian vector

in the noisy case. Formally, ignoring this information i$yith zero mean and unit variance. At each iteration, all the

equivalent to setting/y = {1} andJ; = {1,2,...,n}. terms inside the squares i(z) are linearized around the
previous guess. Namely, we writdz) from (7) as:

whereUg € RV*¢ is the matrix consisting of the columns of
fhe identity matrixIy corresponding to the index s&t With
rglis notation, [(B) can be explicitly written as

B. Sparse Phase Retrieval: General Measurements

N
Although the problem formulation above assumes Fourier g(z) =Y hi(z), (8)
measurements and sparsity ®f we show below that our i=1
apprpach applies to a_rbitra_ry .quadratic. measulrementz‘a. of with hi(z) = zTBiz — y;, andB; = UL A, Us. At each step
Th|s_ mclqdes th_e casein VthG_l’.]IS sparse in a basis othe.r than,e replaceh; by its linear approximation around, ;:
the identity basis. In fact, in this general case, the foatioh
given in [4) remains the same, with the only change being the h;, ~ h;(z_1) + Vhi(ze_1)" (z — z1_1)
definition of the matrices\;. T T
g = 2z 1Bizr_1—vy; +2(B;zi_ z—7,_1). (9

Consider the phase retrieval problem with respect to arbi- ko B Y (Bize—1) k1) )

trary linear measurements, so that We then choose; to be the solution of the problem

_ . 2 N
Yi = |<¢’Lax>| 3 (5) rnzinZ(zzleizk—l — i+ 2(B7;Zk,1)T(Z _ Zkfl))Q- (10)

for a set of measurement vectogg € R",i = 1,...,N. =t
The corresponding phase retrieval problem can be written asProblem [ID) can be written as a linear least-squares prob-
in @) with A; = ¢;¢7. Similarly, suppose thatk = Dz, lem
where D € R"*? is some basis in whickk is sparse, and
z € R is a sparse vector. In this cade = D7 ¢; ¢! D. Thus,
our formulation can accommodate arbitrary sparsity basds awith the ith row of J(zy_1) being Vh;(z;_1)T =
general quadratic measurements. 2(B;z_1)T, and theith component ofb, given by y; +

In the next section, we propose GESPAR—an iteratie B,z for i = 1,2,..., N. The solutionz; is equal
local-search based algorithm for solvirg (4). We note thtt z, = (J(zx—1)T J(zk_1)) 1 J(zx—1)Tbi. We then define
although in the context of phase retrieval the parametersdirection vectord, = z;_1 — Zg. This direction is used
A;, J1, Jo have special properties (e.@\; is positive semidef- to update the solution with an appropriate stepsize dedigne
inite of at most rank 2|J;| = 2), we will not use these to guarantee the convergence of the method to a stationary
properties in GESPAR. Therefore, our approach is capablepgfint of g(z). The stepsize is chosen via a simple backtracking
handling general instances dfl (4) with the sole assumptiprocedure. Algorithnill describes the DGN method in detail.

Z, = argmin || J(z,_1)z — b2 (11)

that A; is symmetric for anyi = 1,2,..., N. In the Fourier In our implementation the stopping parameters were chosen
case, the algorithm can be implemented more efficiently, ase = 10~* and L = 100.
we discuss in Section 1V. The following theorem establishes the rate of convergence

of the norm of the gradient of the objective function to zero,
Ill. GREEDY SPARSEPHASE RETRIEVAL (GESPAR) and coqsequently proves that the limit points of the seqrienc
are stationary points.

A. The Damped Gauss-Newton Method
P . Theorem 1. Let {z;} be the sequence generated by the DGN

Before describing our algorithm, we begin by presentnethod. Assume that Z%\il B, >~ 0 and that there exists A > 0
ing a variant of the damped Gauss-Newton (DGN) methegch that for all & = B

[15],[16] that is in fact the core step of our approach. The
DGN method is invoked in order to solve the problem of /\min(J(zk)TJ(zk)) >\



Algorithm 1 DGN for solving [T)

Algorithm 2 2-opt

Input: (A;,y;,S,¢,L).

A; e RVXN j=1,2 ..., N - symmetric matrices.
yieRi=1,2,...,N.

S C{1,2,...,n} - index set.

¢ - stopping criteria parameter.

L - maximum allowed iterations.

Output: z - an optimal (or suboptimal) solution dfl(7).

Initialization: SetB; = ULA;Ug,t;, = 0.5, zp a random
vector.

General Step k(k > 1): Given the iteratez;_,, the next
iterate is determined as follows:

1. Gauss-Newton Direction: Let z;, be the solution of the
linear least-squares problein {11), given by:

7 = (J(zp_1)" J(zk_1)) " T (2r_1) " by

with the ith row of J(zx_1) being2(B;z;_1)”, and theith
component ofb, given by y; + zf_lBizk,l. The Gauss-
Newton direction is

dk =Zk—-1 — ik.

2. Stepsize Selection via Backtracking: set u =

min{2t,_1,1}. Choose a stepsizl ast; = (%)mu, where

m is the minimal nonnegative integer for which

2

InpUt: (Aiayi)'
A; e RVXN j=1,2,... N - symmetric matrices.
y; €Ri=1,2,...,N.

Output: x - a suggested solution for problefd (4).
T - total number of required swaps.

1) Initialization:

a) SetT = 0.

b) Generate a random index s&{(|Sy| = s) satisfy-
ing the support constraintg/{ C Sy C J2).

c) Invoke the DGN method with parameters
(A, i, S0,107%,100) and obtain an outpug.
Setxg = Ug, zo.

2) General Step ¢ =1,2,...):

a) Leti be the index fromSy_;\J1 corresponding to
the component ok;_; with the smallest absolute
value. Letj be the index fromSg_, N J, corre-
sponding to the component & f (xj_1) with the
highest absolute value.

b) SetS = S,_1, and make a swap between the
indices: and j

5= (Sk—1\{i}) u {j}.
Invoke DGN with input(A;, s, S,1074,100) and
obtain an outputz. Setx = Ugz. AdvanceT"

" " . T+ T+1. i
g\zr-1—- |5 ) udk <g(zr-1)-u |5 Vg(zr-1)" di, If f(X) < f(xx_1), then setS, = S,x;, = X,

with ¢(z) given by [7).
3. Update: setz;, = z;_1 — txdg.
4. Stopping rule: STOP if either||z, — zx_1]| <e ork > L.

Then Vg(z;) — 0 as k — oo and there exists a constant
C > 0 such that

min_[Vg(zy)| < Y&

< . (12)
p=1,....k Cvk+1

Moreover, each limit point of the sequence is a stationary point
of g.
Proof: See AppendifCA. [

Note that the proof requires(z;) to have full column rank,
and in fact that the minimum eigenvalues.tiz;)? J (z) are

advancek and goto 2.a.

¢) If none of the swaps resulted with a better objective
function value, then STOP. The outputis= xj_1
andT.

B. The 2-opt Local Search Method

The GESPAR method consists of repeatedly invoking a
local-search method on an initial random support set. In
this section we describe the local search procedure. At the
beginning, the support is chosen to be a setsafandom
indices chosen to satisfy the support constraihts S C Js.
Then, at each iteration a swap between a support and an off-
support index is performed such that the resulting solution
via the DGN method improves the objective function. Since
at each iteration only two elements are changed (one in
the support and one in the off-support), this is a so-called
“2-opt” method (see[[13]). The swaps are always chosen

uniformly bounded below. In the vast majority of our rungg pe between the index corresponding to components in
this assumption held true; however, we did encounter in offe current iteratex, ; with the smallest absolute value
numerical experimentS a feW cases in Wh|Ch thIS COI’]dItIQ{hd the Off_support index Corresponding to the Component
was not valid. In these situations, our implementation ehoggt Vf(xp_1) = 4Zi(xg—1Aixk—1 — ¢i)Aix_1 With the

one of the optimal solutions of the corresponding leasaseg! |3rgest absolute value. This process continues as longeas th
problem. We noticed that these cases had negligible effect gyjective function decreases and stops when no improvement

the results.

can be made. A detailed description of the method is given in
Algorithm [2.



Algorithm 3 GESPAR wherez; is theith DFT component ok, which can be com-

Input: (A;,y;, 7,ITER). puted via the FFT. Clearly/(z), which is used in the DGN

A; e RVXN 4 =1,2,..., N - symmetric matrices. procedure (Algorithriill) can also be computed efficientlgsin

yi €R,i=1,2,...,N. B, = UEAZ-US only involves a small{) number of columns

7 - threshold parameter. of the Fourier matrix¥'.

ITER - Maximum allowed total number of swaps. The FFT can also be used in the calculation of the gradient

V f(x), used in the 2-opt stadge 2:

Output: x - an optimal (or suboptimal) solution dfl(4).
P P ( P ) ) Vix)=4 Zwi(xTAix —yi)A;x

Initialization . SetC' =0,k = 0.
= ANIFFT[(|&;]* — yi)wids]. (15)
« Repeat - ~ Consequently, in no step of the algorithm is it necessary to
Invoke the 2-opt method with inputA(;, y;) and obtain calculate the set of matrices; explicitly.
an outputx andT'. Setx, = x,C' = C+T and advance  This fact is even more important in the 2D Fourier phase re-

k: k —k+1. trieval problem, as the relevant vector sizes become veggla
Until f(x) <7 or C>ITER. _ Since a major advantage of GESPAR over other methods (e.g.
« The output isx, where/ = argmin  f(x,,). SDP based) is its low computational cost, GESPAR may be
m=0,1...k—1

used to find a sparse solution to the 2D Fourier phase reltrieva
- or phase retrieval of images. The only adjustments needed
) in the algorithm are in the implementation, for examplengsi

C. The GESPAR Algorithm FFT2 instead of storing the large matricAs.

The 2-opt method can have the tendency to get stuck at locaFigure[1 shows a recovery example of a spa$e x 195
optima points. Therefore, our final algorithm, which we calbixel image, comprised of = 15 circles at random locations
GESPAR, is a restarted version of 2-opt. The 2-opt methaghd random values on a grid containi2®p points, recovered
is repeatedly invoked with different initial random supiporfrom its 38,025 2D-Fourier magnitude measurements, using
sets until the resulting objective function value is snallesGESPAR. The dictionary used in this example contains 225
than a certain threshold (success) or the number of maximefements consisting of non-overlapping circles locatedaon
allowed total number of swaps was passed (failure). A detail15 x 15 point cartesian grid, each with a 13 pixel diameter.
description of the method is given in Algorithid 3. OnéThe solution took 80 seconds. Solving the same problem
element of our specific implementation that is not describedusing the sparse Fienup algorithm did not yield a successful
Algorithm[3 is the incorporation of random weights added teeconstruction, and using the SDP method is not practioal du
the objective function, giving randomly different weightsthe to the large matrix sizes.
different measurements. NameI]}]/, the objective functioedus Further investigation of the algorithm’s performance ie th
is actually chosen ag(x) = >, wi(x? A;x — y;)* with 2D case is presented in Sectioh V.

w; = 1 or 2 with equal probability. The random generation of

weights is done each time the DGN procedure is invoked. We V. NUMERICAL SIMULATIONS

observed that this modification reduced the probabilityhef t
2-opt procedure to get stuck in non-optimal points.

In order to demonstrate the performance of GESPAR,
we conduct several numerical simulations. The algorithm is
compared to other existing methods, and is evaluated in

o ) ~ terms of signal-recovery accuracy, computational efficyen
In principle, GESPAR may be used to find sparse solution$d robustness to noise.

to any system of quadratic equations, i.e. problems of thra:fo

IV. FOURIERIMPLEMENTATION DETAILS

mine YN (xTAix — ;)2 A. Sgnal-recovery Accuracy
S.t. lIxlo %Sa (13) In this subsection we examine the recovery success rate of
x e R GESPAR as a function of the number of non-zero elements

However, when the matriced; correspond to transformsin the signal. A runtime comparison of the tested methods is
that can be implemented efficiently, GESPAR takes on aso performed.
particularly simple form. We choosex as a random vector of length. The vector
For example, consider the case in whif¢A;} represent contains uniformly distributed values in the ranget, —3] U
Fourier measurements. In this case, the creation and gtorid, 4] in s randomly chosen elements. Tié point DFT of
of the matricesA; defined in Sectiofll, can be avoided in théhe signal is calculated, and its magnitude-square is taken
implementation, by using the FFT. Specifically, to caloallte as y, the vector of measurements. TRe — 1 point cor-
weighted objective function, we note that relation is also calculated. In order to recover the unknown
N N vector x, the GESPAR algorithm is used with = 10~*
— (T A e — )2 — (1412 _ 02 and ITER = 6400. We also test two other algorithms for
fx) ;wl(x A =30 ;wl(m' w4 comparison purposes: An SDP based algorithm (Algorithm
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Fig. 1. 2D Fourier phase retrieval example. (a) Tiagb x 195 sparse circle images(= 15 circles). (b) Measured 2D Fourier magnitudss (025
measurements, log scale). (c) True and recovered coefficgaors, corresponding to circle amplitudes at each of22tie grid points.

2, [9]), and an iterative Fienup algorithm with a sparsity
constraint [[12]. In our simulatiom = 64 and N = 128.
The Sparse-Fienup algorithm is run usih@) random initial
points, out of which the chosen solution is the one that best
matches the measurements. Namdlyis selected as the
sparse output of the Sparse-Fienup algorithm with the nahim
cost f(x) = SN (|Fix|?> — ;)% out of the100 runs.

Signal recovery results of the numerical simulation are
shown in Fig[2, where the probability of successful recpver

[EEN

o
o)

©
~

Recovery Probability
o
(2]

plotted for different sparsity levels. The success proliighs 02| * - Sparse-Fienup

defined as the ratio of correctly recovered signatsut of 100 "] e SDP Y

simulations. In each simulation both the support and theadig 0 —8— GESPAR e :

values are randomly selected. The three algorithms (GESPAR 0 5 10 15 20 25
SDP and Sparse-Fienup) are compared. The results clearly s

show that GESPAR outperforms the other methods in terms )
of probability of successful recovery - over 90% successfuf’ <
recovery up tos = 15, vs. s = 8 ands = 7 in the other two

techniques. and lead to a much lower success rate. In these simulations,

Average runtime comparison of the three algorithms SESPAR is both fast and more accurate than its competitors.
shown in Tabld]l forn = 64 and N = 128. The runtime

is averaged over all successful recoveries. The compuegt us . _

has an intel i5 CPU and 4GB of RAM. As seen in the table, tfe Sensitivity to exact sparsity knowledge

SDP based algorithm is significantly slower than the other tw Since the exact value of the signal’s sparsitynay not be
methods. Fienup iterations are slightly slower than GESPA&own, the performance of GESPAR is examined when only

Recovery probability vs. sparsity (s)



TABLE |
RUNTIME COMPARISON

[ [ SDP [ SparseFienup | GESPAR | 1
recovery runtime| recovery % | runtime| recovery runtime >
% sec sec % sec 308 “““““““““““““““““
[s=3] 093 | 132 | 088 [ 009 | 1 [ 004 ] 8
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L. . . i —e—with support, N=128| 4_, : H :
an upper limit ons is given. To this end we run GESPAR 0 ; ; N R
twice: Once withs known exactly at each realization, and once 0 5 10 15 20 25

with only an upper limit ons. The upper limit is taken a25.

The other simulation settings are the same as in S&cfidnV-Ag. 5. Effect of oversampling and support information fréime autocorre-
Figure [3 shows the probability for successful recovef§tion sequencer(= 64).

of the two simulations. The rather loose upper limit en

does not seem to affect the results significantly— in fact

the performance is somewhat improved when allowing mopé ‘;TER Iarge_r the;]n6400 ?nly Increases computation time
nonzero elements during the iterations. without improving the results.

D. Effect of oversampling and support information
C. Effect of the number of allowed swaps

Here we examine the effect of oversampling and of
One of the stopping criteria for the GESPAR algorithrautocorrelation-derived support information. GESPAR Us r
is when the total number of swaps exceeds a predefinglrandom vectors of lengthn = 64, with a varying amount
parameter (the input parametéF ER in Algorithm[3). Nat- of noiseless Fourier magnitude measurements, obtained by
urally, increasing the allowed number of index swaps withe N point DFT of x with N = 64,128,256. In these
increase the probability of finding a correct solution, biuth®  cases, no support information was used - ilg. = {1}

cost of increased computation time. It is therefore impdrtagnd .7, = {1,2,...,n}. In addition, in order to investigate
to quantify this effect, which is the purpose of the currenhe effect of support information, we run GESPAR with
simulation. n = 64,N = 128 (i.e. oversampling by a factor of 2), and

We run GESPAR with the same parameters as in SécfidnVit&e the support information derived from the autocorretati
several times, where in each simulation a different value fgequence. The results, shown in Fig. 5, clearly show thét bot

the parametef T ER is used, in the rang@ 00, 25600]. Figure oversampling and support information improve performance
shows the results. As expected, increasing the number of

possible swaps increases the recovery probability. Nadé th .

increasing the value of TER above6400 demonstrated no £ Robustness to noise

improvement in the recovery results - for the unsuccess-We now evaluate GESPAR as a function of SNR, and
ful recoveries, increasing the number of swaps even up dompare it with sparse Fienup [12]. The SDP based method
ITER = 25600 did not help. This means that for theseresented in[[9] is not designed to deal with noise and
simulation values (e.gN = 128, s < 25), using a value therefore we did not apply it here. The SDP approach of



[10] considers random measurements, and does not product

comparable results from direct Fourier measurements. 2048

As in Section[V-A, we choos& as a vector of length 1536
n, with s randomly chosen elements containing uniformly 1024
distributed values, and evaluate Xspoint Fourier magnitude- 768
square. White-gaussian noieds added to the measurements, 512
at different SNR values, defined aSNR = 20I09H. In 384
order to recover the unknown vectorthe GESPAR algorithm 256
is used witht = 10=* and ITER = 10000, as well as 192
the sparse-Fienup algorithm, for comparison purposesuin o 128
simulationn = 64 and N = 128. The sparse-Fienup algorithm 96
is run with a maximum of1000 iterations, and with100 64

random initial points. 70 20 30 40 50 60 70 80
Note that even with little noise, the information on the sup- s
port obtained by the zeros of the autocorrelation is no longe - - _ _
available. This is due to the fact that in the presence ofenoi§id: 7. 1D-Scalability - GESPAR recovery probability as adtion of signal
. . sparsitys, for various vector lengthsy € [64, 2048]), and with oversampling,
there will be no true zeros in the measured (or calculatelgﬁ N = 2n. White corresponds to high recovery probability.
autocorrelation. In this case, one might try to threshole th

autocorrelation values, rendering small autocorrelatignes

as zeros. However, this might result in zeroing of small 2048
(yet non-zero) values of the true autocorrelation function 1536
Therefore, in the noisy case, we do not use support infoonati 1024
obtained by the autocorrelation function in GESPAR, namely 768
J2:{1,2,...,TL}. 512
Figurel6 shows the normalized mean squared reconstructior 384
error (NMSE), defined a8 M SFE = ”’ﬁ;ﬁ‘z”Q, as a function of
sparsity, for different SNR values. Each point represemiza igg
erage over 100 different random realizations. The perfocea
under different SNR values is plotted for GESPAR (full lihes 128
and for sparse-Fienup (dashed-lines). The performance of 9
GESPAR naturally improves as SNR increases, and it clearly 64

outperforms sparse-Fienup in terms of noise-robustness. 10 20 30 ‘}50 50 60 70

n (log scale)

n (log scale)

F. Scal ablllty Fig. 8. Sparse Fienup scalability - recovery probabilityadanction of signal
As one of the main advantages of GESPAR over SDP baswdrsitys, for various vector lengthsy( € [64, 2048]), and with oversampling,

methods is its ability to solve large problems efficientlye wi-€- ¥ = 2n. White corresponds to high recovery probability.
now examine its performance for different vector sizes.

We simulate GESPAR for various valueswofk [64, 2048]. ) i . .
In all casesN — 2n. The other simulation parametersTherefore’ computation time scales approximately linearl
are as in Sectiofi VAA. The recovery probability vs. spa?’l{'th the nur_nber.of swaps - as .each swap corresponds to a
sity s for different vector lengths is shown in Figl 7. Theingle DGN iteration. The approximately linear dependesfce
maximal sparsitys allowing successful recovery is showrfuntime in the number of swaps is displayed in fij. 9. Each
to increase with vector length, and seems to scale likePOintin the plot represents the mean time it took GESPAR to
n!/3, which is consistent with the same scaling observatidH" ITER iterations, averaged over 50 random input signals

presented in[[9]. The mean reconstruction time for a sign‘é(lth N = 128, n = 64,5 = 10-. S
with n = 512, s = 35 from N = 1024 measurements, A Mmajor factor that determines the computation time is the

allowing ITER = 6400 replacements, i83.5 seconds. For number of index swaps required to find a solution. The mean
comparison, a corresponding plot representing the sdiyabinumber of swaps as a function efn is shown in Fig[1D.
of the sparse-Fienup algorithm is presented in Fig. 8. iRtptt Beyond the successful recovery region (the white region in
a similar scalability plot for the SDP based method is nétid-[4), the maximal number of swaps1(0) is used, without
possible due to the high computational cost which under oyjelding a correct solution.
simulation conditions limits the application of this methto
aroundn ~ 400. . . . .
undn H. Two-Dimensional Fourier Phase Retrieval
G. Computation Time In this section we apply GESPAR to 2D Fourier phase
The most time consuming part of GESPAR is the matrisetrieval problems, showing its ability to solve large scal
inversion process in the DGN segment of the algorithrproblems efficiently.
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Normalized MSE vs. sparsity level. The performars@lotted for several SNR values for GESPAR (full lines) amduSe-Fienup (S.F. - dashed

We generate randogi-sparse 2D signals of sizgsn x \/n,
with varying values fos andn, in the ranges € [2 : 82] and
n € [256 : 6400]. Each signal is recovered from the noiseless
magnitude of its 2D DFT, with no oversampling, using GES-
PAR. Similarly to the 1D noisy simulation, no autocorredati
derived support information was used here. The parameter
ITER is taken a$400. The recovery probability vs. sparsity
s for different vector lengths is shown in Fig.J11. Similarly
to the 1D case, the maximal sparsity allowing successful
recovery increases with. For comparison, Figi_12 shows
the result of a sparse-Fienup scalability simulation foe th
2D case, under the same conditions, with 200 initial points
per signal (increasing this parameter did not affect thaltes
significantly). GESPAR is shown to outperform the sparse-
Fienup method in the 2D case as well. As in the 1D case, a
comparison to SDP based methods is not included here, since
applying the SDP based method on the 2D case is very difficult
due to memory limitations.

A comparison between GESPAR and the sparse-Fienup
method is shown in Fig[_13. The comparison shows the
average time a successful recovery in the simulation tosk, a
a function of vector size.. Sparse-Fienup is seen to be faster,
however comparing Fid._11 to Fi§. 112 shows that GESPAR
can recover signals up with a higher valuesofor example,
whenn = 6400, GESPAR recovers with very high probability
signals up to sparsity = 57, while sparse Fienup only
recovers up te = 42.

VI. CONCLUSION

We proposed and demonstrated GESPAR - a fast algorithm
for recovering a sparse vector from its Fourier magnitude, o
more generally, from quadratic measurements. We showed via
simulations that GESPAR outperforms alternative appreach
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suggested for this problem in terms of complexity and sweces
probability. The algorithm does not require matrix-lifjinand

1k S therefore is potentially suitable for large scale problesush
: : : as 2D images. The simulations demonstrated robustness of
Zog} GESPAR to noise and other inexact knowledge, as well as
E : : ; its ability to successfully treat a variety of phase retuev
& 06f T R problems in one and two dimensions.
> \ \ ‘
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£ 10} Define the vector-valued functidn by
(%]
o 8f h(z) = (hi(2), ha(2), ..., hn(2))7,
g 6} with h;(z) = z"B;z — y; With this notation, the vectob;
L can be written as

4.

) by = J(2zr—1)zr—1 — h(zr_1),

and the solution of the least-squares problem is
0

0 20.00 40.00 60.00 8000 5 (J(Zk—l)TJ(Zk—l))_lJ(Zk—l)T

n =
(J(zr-1)Zr—1 — h(z-1))
Fig. 13. Runtime comparison - average computation time fuaesful 2D _ T -1 T
recovery, for GESPAR and for sparse-Fienup, as a function. of = zk—1 — (J(z-1)" S (2-1)) " (20-1) " h(zk-1)

= w1~ () ) Vo). (16)



Finally,
1

5 (J(21)" I (261)) " Vg(2r1).

From [I8) it follows that—d,, is a descent direction since
—d} Vg(zr—1)
1

_QVQ(ZI@—I)(J(zk—l)TJ(Zk—l))_1v9(zk—l) <(8)

d; = a7)

11

Therefore, ift < min { 22 ”‘/_} then

t
- g(Zk,1 - tdk) Z EVg(zk,l)Tdk. (21)

9(zk-1)

By the way the backtracking procedure is defined, we have
that eithert, = 1 or 2t;, > mm{2A ”5/_} and hence

tr > min il,%,%}. Together with [(2l1) this results in
ality

We now show that the sequence generated by the Dérll\? inequ

method is bounded. Indeed, sineel;, is a descent direction
9(z0) = g(zk)
— /SN, @ Bz — )
1 N
= \/—NZi:I |z Biz), — yil
1 N N
> (0 Nz — S ‘
= \/N (Zk (Zz:l BZ)Z/C Z'L:l yl) )

where the second inequality is due to Cauchy-Schwarz and

the last inequality is a result of the fact th@f\il B; >~ 0and
y; > 0. Therefore,

ze]? <

—mm(zz B (\/ 9(zo) + Zz 1 yz) =0,

proving that{z;} C B[0, v/a] = {z : ||z] < v/a}.

Since g is twice continuously differentiable, and(z) is
continuous, it follows that there exist& > 0 and A > 0
such that\max(V2g(z)) < M andAmax(J ()1 J(z)) < A for
anyz € B[0,2+/a]. In addition, sinceVg is continuous over
BJ0,24/a], there exist3 > 0 such that||Vg(z)|| < 3 for all
z € B|0,2+/a]. Therefore, by[(17) it follows that

B
2)

The fact that\y,.x(V3g(z)) < M for all z € BJ[0,2,/q]
implies thatVyg is Lipschitz continuous oveB[0, 2+/a] with
parameterd/ > 0. Hence, by the descent lemmal[15],

g(y) <

for any x,y € B0, 2+/a/].

From ||z;—1| < /o and||dg| < B/(22), it follows that
z,—1 — tdy, € B[0,2,/a] whenevert < %ﬁﬁ. Therefore, we
can plugy = z,_1 — td;, andx = z;_; into (20) to obtain

Mt?

[dill < (19)

90) + Vgl (y —x) + oy — x> (20)

9(zr—1 —tdy) < g(z4—1) — tVg(zp—1)" di + —||dk||2
Using [17),
el = V() (Tm) T (1) V()
< V900" () I m)  Va(x)
= ng(Zk—l)Tdk,
which yields

M
9(zx—1) = g(zr—1 —tdx) > ¢ (1 - ﬂt> Vg(zk-1)" dy.

t
Pg(zen) —gla) = S Vg(ar)Tdy
. 1 N MNWa
> mm{g,m,%}Vg(zkl)Tdk.
Since

Vg(Zkfl)Tdk
Vo(xr-1)" (J(ze-1)" I (ze-1))”

1
A

we conclude that

'Vy(zr-1)
>

— g(zx) > C||Vg(zr-1)|?,

whereC' = min { 2, 55, %ﬁif} Noting that{g(zx)} is a

bounded below and nonincreasing sequence, it follows that i
converges. The left-hand side ¢f{22) therefore converges t
zero and we obtain the result thety(z;) converges to zero
as k tends to infinity. This fact also readily implies that all
accumulation points of the sequence are stationary. Sugimin
the inequality [[2R) ovep = 1,2, ...,k + 1 we obtain that

9(20) — g(zrs1) > cz’““ IVg(zp-1)I?,
and consequently, (also using the fact thét;1) > 0),
)= Clh+1) IVg(zp-1)|%,

from which the inequality[(]Z) followd]

9(zr—1) (22)

9(zo 1mln
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