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Abstract—We consider the problem of phase retrieval, namely,
recovery of a signal from the magnitude of its Fourier transform,
or of any other linear transform. Due to the loss of the Fourier
phase information, this problem is ill-posed. Therefore, prior
information on the signal is needed in order to enable its recovery.
In this work we consider the case in which the signal is known to
be sparse, i.e., it consists of a small number of nonzero elements
in an appropriate basis. We propose a fast local search method
for recovering a sparse signal from measurements of its Fourier
transform (or other linear transform) magnitude which we refer
to as GESPAR: GrEedy Sparse PhAse Retrieval. Our algorithm
does not require matrix lifting, unlike previous approaches, and
therefore is potentially suitable for large scale problemssuch
as images. Simulation results indicate that GESPAR is fast and
more accurate than existing techniques in a variety of settings.

I. I NTRODUCTION

Recovery of a signal from the magnitude of its Fourier
transform, also known as phase retrieval, is of great interest in
applications such as optical imaging [1], crystallography[2],
and more [3]. Due to the loss of Fourier phase information, the
problem (in 1D) is generally ill-posed. A common approach
to overcome this ill-posedeness is to exploit prior information
on the signal. A variety of methods have been developed that
use such prior information, which may be the signal’s support
(region in which the signal is nonzero), non-negativity, orthe
signal’s magnitude [4], [5].

A popular class of algorithms is based on the use of
alternate projections between the different constraints.In order
to increase the probability of correct recovery, these methods
require the prior information to be very precise, for example,
exact/or “almost” exact knowledge of the support set. Sincethe
projections are generally onto non-convex sets, convergence
to a correct recovery is not guaranteed [6]. A more recent
approach is to use matrix-lifting of the problem which allows
to recast phase retrieval as a semi-definite programming (SDP)
problem [7]. The algorithm developed in [7] does not require
prior information about the signal but instead uses multiple
signal measurements (e.g., using different illumination set-
tings, in an optical setup).
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In order to obtain more robust recovery without requiring
multiple measurements, we develop a method that exploits
signal sparsity. Existing approaches aimed at recovering sparse
signals from their Fourier magnitude belong to two main
categories: SDP-based techniques [8],[9],[10],[11] and algo-
rithms that use alternate projections (Fienup-type methods)
[12]. Phase retrieval of sparse signals can be viewed as a
special case of the more general quadratic compressed sensing
(QCS) problem considered in [8]. Specifically, QCS treats
recovery of sparse vectors from quadratic measurements of the
form yi = xTAix, i = 1, . . . , N , wherex is the unknown
sparse vector to be recovered,yi are the measurements, andAi

are known matrices. In (discrete) phase retrieval,Ai = F∗
iFi

whereFi is theith row of the discrete Fourier transform (DFT)
matrix. QCS is encountered, for example, when imaging a
sparse object using partially spatially-incoherent illumination
[8].

A general approach to QCS was developed in [8] based
on matrix lifting. More specifically, the quadratic constraints
where lifted to a higher dimension by defining a matrix
variableX = xxT . The problem was then recast as an SDP
involving minimization of the rank of the lifted matrix subject
to the recovery constraints as well as row sparsity constraints
onX. An iterative thresholding algorithm based on a sequence
of SDPs was then proposed to recover a sparse solution.
Similar SDP-type ideas were recently used in the context
of phase retrieval [9],[10]. However, due to the increase in
dimension created by the matrix lifting procedure, the SDP
approach is not suitable for large-scale problems.

Another approach for phase retrieval of sparse signals is
adding a sparsity constraint to the well-known iterative error
reduction algorithm of Fienup [12]. In general, Fienup-type
approaches are known to suffer from convergence issues
and often do not lead to correct recovery especially in 1D
problems; simulation results show that even with the additional
information that the input is sparse, convergence is still prob-
lematic and the algorithm often recovers erroneous solutions.

In this paper we propose an efficient method for phase
retrieval which also leads to good recovery performance. Our
approach is based on a fast 2-opt local search method (see [13]
for an excellent introduction to such techniques) applied to
a sparsity constrained non-linear optimization formulation of
the problem. We refer to the resulting algorithm as GESPAR:
GrEedy Sparse PhAse Retrieval. Sparsity constrained non-
linear optimization problems have been considered recently
in [14]; the method derived in this paper is motivated –
although different in many aspects – by the local search-
type techniques of [14]. In essence, GESPAR is a local-search
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method, where the support of the sought signal is updated
iteratively, according to selection rules described in detail in
Section III. A local minimum of the objective function is
then found given the current support using the damped Gauss
Newton algorithm. Theorem 1 establishes convergence of the
iterations to a stationary point of the objective under suitable
conditions.

We demonstrate through numerical simulations that GES-
PAR is both efficient and more accurate than current tech-
niques. Several other aspects of the algorithm are explored
via simulations such as robustness to noise, and scalability
for larger dimensions. In the simulations performed we found
that the number of measurements needed for reliable recovery
from Fourier magnitudes seems to scale likes3, wheres is
the sparsity level.

GESPAR is applicable to recovery of a sparse vector
from general quadratic measurements, and is not restrictedto
Fourier magnitude measurements. Nonetheless, when the mea-
surements are obtained in the Fourier domain, the algorithm
can be implemented efficiently by exploiting the fast Fourier
transform, as we discuss in Section IV.

The remainder of the paper is organized as follows. We
formulate the problem in Section II. Section III describes our
proposed algorithm in detail and establishes convergence of
the local iterations. Implementation details for Fourier-based
problems are provided in Section IV. Extensive numerical ex-
periments illustrating the empirical performance of GESPAR
are presented in Section V.

II. PROBLEM FORMULATION

A. Sparse Phase Retrieval: Fourier Measurements

We are given a vector of measurementsy ∈ RN , that
corresponds to the magnitude-squared of anN point DFT of
a vectorx ∈ RN , i.e.:

yl =

∣

∣

∣

∣

∣

n
∑

m=1

xme−
2πj(m−1)(l−1)

N

∣

∣

∣

∣

∣

2

, l = 1, . . . , N. (1)

Herex is constructed by(N − n) zero padding of a vector
x̄ ∈ R

n with elementsxi, i = 1, 2, . . . , n. Denoting byF ∈
CN×N the DFT matrix with elementsexp

{

− 2πj(m−1)(l−1)
N

}

,
we can expressy as y = |Fx|2, where | · |2 denotes the
element-wise absolute-squared value. The vectorx̄ is known
to bes-sparse, that is, it contains at mosts nonzero elements.
Our goal is to recover̄x, or x, given the measurementsy and
the sparsity levels.

The mathematical formulation of the problem that we con-
sider consists of minimizing the sum of squared errors subject
to the sparsity constraint:

minx
∑N

i=1(|Fix|2 − yi)
2

s.t. ‖x‖0 ≤ s,
supp(x) ⊆ {1, 2, . . . , n},
x ∈ RN ,

(2)

whereFi is the ith row of the DFT matrixF, and ‖ · ‖0
stands for the zero-“norm”, that is, the number of nonzero
elements. Note that the unknown vectorx can only be found

up to trivial degeneracies that are the result of the loss of
Fourier phase information: circular shift, global phase, and
signal “mirroring”.

Support Information: To aid in solving the phase retrieval
problem, we can rely on the fact that the autocorrelation
sequence of̄x (the firstn components ofx) may be determined
from y if N ≥ 2n− 1. Specifically, let

gm =

n
∑

i=1

xixi+m, m = −(n− 1), . . . , n− 1 (3)

denote the correlation sequence of length2n−1. If we choose
N ≥ 2n− 1, then{gm} can be obtained by taking the inverse
DFT of y.

Determininggm requires oversampling, or zero-padding of
x. While this additional information improves the recovery
performance, as is demonstrated in the simulations section,
it is not actually needed for GESPAR to work. Nevertheless,
when this information is available, GESPAR exploits it, in
the following way. First of all, we assume that no support
cancelations occur in{gm}, namely, if xi 6= 0 and xj 6= 0
for some i, j, then g|i−j| 6= 0. When the values ofx are
random, this is true with probability 1. This fact can be usedin
GESPAR in order to obtain initial information on the support
of x, which we capture by two setsJ1 andJ2.

Denote byJ1 the set of indices known in advance to be in
the support. To derive the setJ1, note that due to the existing
degree of freedom relating to shift-invariance ofx, the index
1 can be assumed to be in the support, thereby removing this
degree of freedom; as a consequence, the index corresponding
to the last nonzero element in the autocorrelation sequenceis
also in the support, i.e.

imax = 1 + argmax
i
{i : gi 6= 0}.

Therefore,J1 = {1, imax}.
Next, we denote byJ2 the set of indices that are candidates

for being in the support, meaning the indices that arenot
known in advance to be in the off-support (the complement of
the support). Specifically,J2 contains the set of all indicesk ∈
{1, 2, . . . , n} such thatgk−1 6= 0. Obviously, since we assume
thatxk = 0 for k > n, we haveJ2 ⊆ {1, 2, . . . , n}. As a con-
crete example, consider the signalx̄ = (2, 0, 0,−1, 0,−1.5)T .
The corresponding11 point autocorrelation functiongm is
given by gm = (−3, 0,−2, 1.5, 0, 7.25, 0, 1.5,−2, 0,−3)T.
The setJ1 is thereforeJ1 = {1, 6}. Next, by examining
the zeros ofgm, and using our assumption of no support-
cancelations, we deduce that there are no two non-zero ele-
mentsxi 6= 0 andxj 6= 0 such that|i − j| = 1, 4. Therefore,
forcing the first element inx to be non-zero, which removes
the shift-invariance degeneracy, immediately implies that x2 =
x5 = 0. In this way J2 is determined asJ2 = {1, 3, 4, 6}.
Defining Ai = ℜ(Fi)

Tℜ(Fi) + ℑ(Fi)
Tℑ(Fi) ∈ RN×N ,

problem (2) along with the support information can be written
as

minx f(x) ≡∑N
i=1(x

TAix− yi)
2

s.t. ‖x‖0 ≤ s,
J1 ⊆ supp(x) ⊆ J2,
x ∈ RN ,

(4)
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which will be the formulation to be studied.
Note that even with knowledge of the exact support of

x there is no guarantee for uniqueness beyond the afore-
mentioned trivial degeneracies. Consider for example the two
vectorsu = (1, 0,−2, 0,−2) andv =(1−

√
3, 0, 1, 0, 1+

√
3).

Both of these vectors ares = 3 sparse, and they have the same
autocorrelation functiongm = (−2, 0, 2, 0, 9, 0, 2, 0,−2). This
ambiguity therefore cannot be resolved using any method that
uses sparsity (even exact support information) and autocorre-
lation (or Fourier magnitude) measurements alone.

Finally, when the measurements are noisy, the autocorrela-
tion information is not very useful for support estimation,since
very small (noise level) values in the autocorrelation sequence
cannot be treated as zero. For this reason, the autocorrelation-
derived support information is not used in GESPAR at all
in the noisy case. Formally, ignoring this information is
equivalent to settingJ1 = {1} andJ2 = {1, 2, . . . , n}.

B. Sparse Phase Retrieval: General Measurements

Although the problem formulation above assumes Fourier
measurements and sparsity ofx̄, we show below that our
approach applies to arbitrary quadratic measurements ofx̄.
This includes the case in which̄x is sparse in a basis other than
the identity basis. In fact, in this general case, the formulation
given in (4) remains the same, with the only change being the
definition of the matricesAi.

Consider the phase retrieval problem with respect to arbi-
trary linear measurements, so that

yi = |〈φi,x〉|2, (5)

for a set of measurement vectorsφi ∈ R
n, i = 1, . . . , N .

The corresponding phase retrieval problem can be written as
in (4) with Ai = φiφ

T
i . Similarly, suppose that̄x = Dz,

where D ∈ Rn×b is some basis in which̄x is sparse, and
z ∈ Rb is a sparse vector. In this caseAi = DTφiφ

T
i D. Thus,

our formulation can accommodate arbitrary sparsity bases and
general quadratic measurements.

In the next section, we propose GESPAR—an iterative
local-search based algorithm for solving (4). We note that
although in the context of phase retrieval the parameters
Ai, J1, J2 have special properties (e.g.,Ai is positive semidef-
inite of at most rank 2,|J1| = 2), we will not use these
properties in GESPAR. Therefore, our approach is capable of
handling general instances of (4) with the sole assumption
that Ai is symmetric for anyi = 1, 2, . . . , N . In the Fourier
case, the algorithm can be implemented more efficiently, as
we discuss in Section IV.

III. G REEDY SPARSEPHASE RETRIEVAL (GESPAR)

A. The Damped Gauss-Newton Method

Before describing our algorithm, we begin by present-
ing a variant of the damped Gauss-Newton (DGN) method
[15],[16] that is in fact the core step of our approach. The
DGN method is invoked in order to solve the problem of

minimizing the objective functionf over a given support
S ⊆ {1, 2, . . . , n} (|S| = s):

min{f(USz) : z ∈ R
s}, (6)

whereUS ∈ RN×s is the matrix consisting of the columns of
the identity matrixIN corresponding to the index setS. With
this notation, (6) can be explicitly written as

min

{

g(z) ≡
N
∑

i=1

(zTUT
SAiUSz− yi)

2 : z ∈ R
s

}

. (7)

The minimization in (7) is a nonlinear least-squares prob-
lem. A natural approach for tackling it is via the DGN method.
This algorithm begins with an arbitrary vectorz0. In our
simulations, we choose it as a white random Gaussian vector
with zero mean and unit variance. At each iteration, all the
terms inside the squares ing(z) are linearized around the
previous guess. Namely, we writeg(z) from (7) as:

g(z) =

N
∑

i=1

h2
i (z), (8)

with hi(z) = zTBiz− yi, andBi = UT
SAiUS . At each step

we replacehi by its linear approximation aroundzk−1:

hi ≈ hi(zk−1) +∇hi(zk−1)
T (z− zk−1)

= zTk−1Bizk−1 − yi + 2(Bizk−1)
T (z− zk−1). (9)

We then choosezk to be the solution of the problem

min
z

N∑

i=1

(zTk−1Bizk−1 − yi + 2(Bizk−1)
T (z− zk−1))

2
. (10)

Problem (10) can be written as a linear least-squares prob-
lem

z̃k = argmin ‖J(zk−1)z− bk‖22 (11)

with the ith row of J(zk−1) being ∇hi(zk−1)
T =

2(Bizk−1)
T , and theith component ofbk given by yi +

zTk−1Bizk−1 for i = 1, 2, . . . , N . The solutionz̃k is equal
to z̃k = (J(zk−1)

T J(zk−1))
−1J(zk−1)

Tbk. We then define
a direction vectordk = zk−1 − z̃k. This direction is used
to update the solution with an appropriate stepsize designed
to guarantee the convergence of the method to a stationary
point of g(z). The stepsize is chosen via a simple backtracking
procedure. Algorithm 1 describes the DGN method in detail.
In our implementation the stopping parameters were chosen
asε = 10−4 andL = 100.

The following theorem establishes the rate of convergence
of the norm of the gradient of the objective function to zero,
and consequently proves that the limit points of the sequence
are stationary points.

Theorem 1. Let {zk} be the sequence generated by the DGN
method. Assume that

∑N
i=1 Bi ≻ 0 and that there exists λ > 0

such that for all k

λmin(J(zk)
TJ(zk)) ≥ λ.
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Algorithm 1 DGN for solving (7)

Input: (Ai, yi, S, ε, L).
Ai ∈ RN×N , i = 1, 2, . . . , N - symmetric matrices.
yi ∈ R, i = 1, 2, . . . , N.
S ⊆ {1, 2, . . . , n} - index set.
ε - stopping criteria parameter.
L - maximum allowed iterations.
Output: z - an optimal (or suboptimal) solution of (7).

Initialization: Set Bi = UT
SAiUS , t0 = 0.5, z0 a random

vector.

General Step k(k ≥ 1): Given the iteratezk−1, the next
iterate is determined as follows:
1. Gauss-Newton Direction: Let z̃k be the solution of the
linear least-squares problem (11), given by:

z̃k = (J(zk−1)
TJ(zk−1))

−1J(zk−1)
Tbk

with the ith row of J(zk−1) being 2(Bizk−1)
T , and theith

component ofbk given by yi + zTk−1Bizk−1. The Gauss-
Newton direction is

dk = zk−1 − z̃k.

2. Stepsize Selection via Backtracking: set u =
min{2tk−1, 1}. Choose a stepsizetk as tk = (12 )

mu, where
m is the minimal nonnegative integer for which

g

(

zk−1 −
(

1

2

)m

udk

)

< g(zk−1)−u
(

1

2

)m+1

∇g(zk−1)
Tdk,

with g(z) given by (7).
3. Update: setzk = zk−1 − tkdk.
4. Stopping rule: STOP if either‖zk − zk−1‖ < ε or k > L.

Then ∇g(zk) → 0 as k → ∞ and there exists a constant
C > 0 such that

min
p=1,...,k

‖∇g(zp)‖ ≤
√

g(z0)

C
√
k + 1

. (12)

Moreover, each limit point of the sequence is a stationary point
of g.

Proof: See Appendix A.

Note that the proof requiresJ(zk) to have full column rank,
and in fact that the minimum eigenvalues ofJ(zk)

TJ(zk) are
uniformly bounded below. In the vast majority of our runs
this assumption held true; however, we did encounter in our
numerical experiments a few cases in which this condition
was not valid. In these situations, our implementation chose
one of the optimal solutions of the corresponding least-squares
problem. We noticed that these cases had negligible effect on
the results.

Algorithm 2 2-opt
Input : (Ai, yi).
Ai ∈ RN×N , i = 1, 2, . . . , N - symmetric matrices.
yi ∈ R, i = 1, 2, . . . , N.

Output : x - a suggested solution for problem (4).
T - total number of required swaps.

1) Initialization:
a) SetT = 0.
b) Generate a random index setS0(|S0| = s) satisfy-

ing the support constraints (J1 ⊆ S0 ⊆ J2).
c) Invoke the DGN method with parameters

(Ai, yi, S0, 10
−4, 100) and obtain an outputz0.

Setx0 = US0z0.

2) General Step (k = 1, 2, . . .):
a) Let i be the index fromSk−1\J1 corresponding to

the component ofxk−1 with the smallest absolute
value. Letj be the index fromSc

k−1 ∩ J2 corre-
sponding to the component of∇f(xk−1) with the
highest absolute value.

b) Set S̃ = Sk−1, and make a swap between the
indicesi andj

S̃ = (Sk−1\{i}) ∪ {j}.

Invoke DGN with input(Ai, yi, S̃, 10
−4, 100) and

obtain an output̃z. Set x̃ = US z̃. AdvanceT :
T ← T + 1.
If f(x̃) < f(xk−1), then setSk = S̃,xk = x̃,
advancek and goto 2.a.

c) If none of the swaps resulted with a better objective
function value, then STOP. The output isx = xk−1

andT .

B. The 2-opt Local Search Method

The GESPAR method consists of repeatedly invoking a
local-search method on an initial random support set. In
this section we describe the local search procedure. At the
beginning, the support is chosen to be a set ofs random
indices chosen to satisfy the support constraintsJ1 ⊆ S ⊆ J2.
Then, at each iteration a swap between a support and an off-
support index is performed such that the resulting solution
via the DGN method improves the objective function. Since
at each iteration only two elements are changed (one in
the support and one in the off-support), this is a so-called
“2-opt” method (see [13]). The swaps are always chosen
to be between the index corresponding to components in
the current iteratexk−1 with the smallest absolute value
and the off-support index corresponding to the component
of ∇f(xk−1) = 4

∑

i(x
T
k−1Aixk−1 − ci)Aixk−1 with the

largest absolute value. This process continues as long as the
objective function decreases and stops when no improvement
can be made. A detailed description of the method is given in
Algorithm 2.
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Algorithm 3 GESPAR
Input: (Ai, yi, τ, ITER).
Ai ∈ RN×N , i = 1, 2, . . . , N - symmetric matrices.
yi ∈ R, i = 1, 2, . . . , N.
τ - threshold parameter.
ITER - Maximum allowed total number of swaps.

Output: x - an optimal (or suboptimal) solution of (4).

Initialization . SetC = 0, k = 0.

• Repeat
Invoke the 2-opt method with input (Ai, yi) and obtain
an outputx andT . Setxk = x, C = C+T and advance
k: k ← k + 1.
Until f(x) < τ or C > ITER.

• The output isxℓ whereℓ = argmin
m=0,1...k−1

f(xm).

C. The GESPAR Algorithm

The 2-opt method can have the tendency to get stuck at local
optima points. Therefore, our final algorithm, which we call
GESPAR, is a restarted version of 2-opt. The 2-opt method
is repeatedly invoked with different initial random support
sets until the resulting objective function value is smaller
than a certain threshold (success) or the number of maximum
allowed total number of swaps was passed (failure). A detailed
description of the method is given in Algorithm 3. One
element of our specific implementation that is not describedin
Algorithm 3 is the incorporation of random weights added to
the objective function, giving randomly different weightsto the
different measurements. Namely, the objective function used
is actually chosen asf(x) =

∑N
i=1 wi(x

TAix − yi)
2 with

wi = 1 or 2 with equal probability. The random generation of
weights is done each time the DGN procedure is invoked. We
observed that this modification reduced the probability of the
2-opt procedure to get stuck in non-optimal points.

IV. FOURIER IMPLEMENTATION DETAILS

In principle, GESPAR may be used to find sparse solutions
to any system of quadratic equations, i.e. problems of the form:

minx
∑N

i=1(x
TAix− yi)

2

s.t. ‖x‖0 ≤ s,
x ∈ RN .

(13)

However, when the matricesAi correspond to transforms
that can be implemented efficiently, GESPAR takes on a
particularly simple form.

For example, consider the case in which{Ai} represent
Fourier measurements. In this case, the creation and storing
of the matricesAi defined in Section II, can be avoided in the
implementation, by using the FFT. Specifically, to calculate the
weighted objective function, we note that

f(x) =
N
∑

i=1

wi(x
TAix− yi)

2 =
N
∑

i=1

wi(|x̂i|2 − yi)
2 (14)

wherex̂i is the ith DFT component ofx, which can be com-
puted via the FFT. Clearly,J(z), which is used in the DGN
procedure (Algorithm 1) can also be computed efficiently since
Bi = UT

SAiUS only involves a small (s) number of columns
of the Fourier matrixF.

The FFT can also be used in the calculation of the gradient
∇f(x), used in the 2-opt stage 2:

∇f(x) = 4
∑

i

wi(x
TAix− yi)Aix

= 4N IFFT[(|x̂i|2 − yi)wix̂i]. (15)

Consequently, in no step of the algorithm is it necessary to
calculate the set of matricesAi explicitly.

This fact is even more important in the 2D Fourier phase re-
trieval problem, as the relevant vector sizes become very large.
Since a major advantage of GESPAR over other methods (e.g.
SDP based) is its low computational cost, GESPAR may be
used to find a sparse solution to the 2D Fourier phase retrieval
- or phase retrieval of images. The only adjustments needed
in the algorithm are in the implementation, for example, using
FFT2 instead of storing the large matricesAi.

Figure 1 shows a recovery example of a sparse195× 195
pixel image, comprised ofs = 15 circles at random locations
and random values on a grid containing225 points, recovered
from its 38, 025 2D-Fourier magnitude measurements, using
GESPAR. The dictionary used in this example contains 225
elements consisting of non-overlapping circles located ona
15 × 15 point cartesian grid, each with a 13 pixel diameter.
The solution took 80 seconds. Solving the same problem
using the sparse Fienup algorithm did not yield a successful
reconstruction, and using the SDP method is not practical due
to the large matrix sizes.

Further investigation of the algorithm’s performance in the
2D case is presented in Section V.

V. NUMERICAL SIMULATIONS

In order to demonstrate the performance of GESPAR,
we conduct several numerical simulations. The algorithm is
compared to other existing methods, and is evaluated in
terms of signal-recovery accuracy, computational efficiency,
and robustness to noise.

A. Signal-recovery Accuracy

In this subsection we examine the recovery success rate of
GESPAR as a function of the number of non-zero elements
in the signal. A runtime comparison of the tested methods is
also performed.

We choosēx as a random vector of lengthn. The vector
contains uniformly distributed values in the range[−4,−3]∪
[3, 4] in s randomly chosen elements. TheN point DFT of
the signal is calculated, and its magnitude-square is taken
as y, the vector of measurements. The2n − 1 point cor-
relation is also calculated. In order to recover the unknown
vector x, the GESPAR algorithm is used withτ = 10−4

and ITER = 6400. We also test two other algorithms for
comparison purposes: An SDP based algorithm (Algorithm
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Fig. 1. 2D Fourier phase retrieval example. (a) True195 × 195 sparse circle image (s = 15 circles). (b) Measured 2D Fourier magnitude (38, 025
measurements, log scale). (c) True and recovered coefficient vectors, corresponding to circle amplitudes at each of the225 grid points.

2, [9]), and an iterative Fienup algorithm with a sparsity
constraint [12]. In our simulationn = 64 and N = 128.
The Sparse-Fienup algorithm is run using100 random initial
points, out of which the chosen solution is the one that best
matches the measurements. Namely,x̂ is selected as thes
sparse output of the Sparse-Fienup algorithm with the minimal
costf(x) =

∑N
i=1(|Fix|2 − yi)

2 out of the100 runs.

Signal recovery results of the numerical simulation are
shown in Fig. 2, where the probability of successful recovery is
plotted for different sparsity levels. The success probability is
defined as the ratio of correctly recovered signalsx out of 100
simulations. In each simulation both the support and the signal
values are randomly selected. The three algorithms (GESPAR,
SDP and Sparse-Fienup) are compared. The results clearly
show that GESPAR outperforms the other methods in terms
of probability of successful recovery - over 90% successful
recovery up tos = 15, vs. s = 8 ands = 7 in the other two
techniques.

Average runtime comparison of the three algorithms is
shown in Table I forn = 64 and N = 128. The runtime
is averaged over all successful recoveries. The computer used
has an intel i5 CPU and 4GB of RAM. As seen in the table, the
SDP based algorithm is significantly slower than the other two
methods. Fienup iterations are slightly slower than GESPAR
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Fig. 2. Recovery probability vs. sparsity (s)

and lead to a much lower success rate. In these simulations,
GESPAR is both fast and more accurate than its competitors.

B. Sensitivity to exact sparsity knowledge

Since the exact value of the signal’s sparsitys may not be
known, the performance of GESPAR is examined when only
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TABLE I
RUNTIME COMPARISON

SDP Sparse-Fienup GESPAR

recovery
%

runtime
sec

recovery % runtime
sec

recovery
%

runtime
sec

s = 3 0.93 1.32 0.98 0.09 1 0.04

s = 5 0.86 1.78 0.97 0.12 1 0.05

s = 8 0.9 3.85 0.82 0.50 1 0.06
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Fig. 3. Effect of unknown exact sparsity levels on recovery probability.

an upper limit ons is given. To this end we run GESPAR
twice: Once withs known exactly at each realization, and once
with only an upper limit ons. The upper limit is taken as25.
The other simulation settings are the same as in SectionV-A.

Figure 3 shows the probability for successful recovery
of the two simulations. The rather loose upper limit ons
does not seem to affect the results significantly— in fact,
the performance is somewhat improved when allowing more
nonzero elements during the iterations.

C. Effect of the number of allowed swaps

One of the stopping criteria for the GESPAR algorithm
is when the total number of swaps exceeds a predefined
parameter (the input parameterITER in Algorithm 3). Nat-
urally, increasing the allowed number of index swaps will
increase the probability of finding a correct solution, but at the
cost of increased computation time. It is therefore important
to quantify this effect, which is the purpose of the current
simulation.

We run GESPAR with the same parameters as in SectionV-A
several times, where in each simulation a different value for
the parameterITER is used, in the range[100, 25600]. Figure
4 shows the results. As expected, increasing the number of
possible swaps increases the recovery probability. Note that
increasing the value ofITER above6400 demonstrated no
improvement in the recovery results - for the unsuccess-
ful recoveries, increasing the number of swaps even up to
ITER = 25600 did not help. This means that for these
simulation values (e.g.N = 128, s < 25), using a value
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Fig. 4. Effect of number of swaps (ITER) on recovery probability
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Fig. 5. Effect of oversampling and support information fromthe autocorre-
lation sequence (n = 64).

of ITER larger than6400 only increases computation time
without improving the results.

D. Effect of oversampling and support information

Here we examine the effect of oversampling and of
autocorrelation-derived support information. GESPAR is run
on random vectorsx of lengthn = 64, with a varying amount
of noiseless Fourier magnitude measurements, obtained by
the N point DFT of x with N = 64, 128, 256. In these
cases, no support information was used - i.e.J1 = {1}
and J2 = {1, 2, . . . , n}. In addition, in order to investigate
the effect of support information, we run GESPAR with
n = 64, N = 128 (i.e. oversampling by a factor of 2), and
use the support information derived from the autocorrelation
sequence. The results, shown in Fig. 5, clearly show that both
oversampling and support information improve performance.

E. Robustness to noise

We now evaluate GESPAR as a function of SNR, and
compare it with sparse Fienup [12]. The SDP based method
presented in [9] is not designed to deal with noise and
therefore we did not apply it here. The SDP approach of
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[10] considers random measurements, and does not produce
comparable results from direct Fourier measurements.

As in Section V-A, we choosēx as a vector of length
n, with s randomly chosen elements containing uniformly
distributed values, and evaluate itsN point Fourier magnitude-
square. White-gaussian noisev is added to the measurements,
at different SNR values, defined as:SNR = 20log‖y‖

‖v‖ . In
order to recover the unknown vectorx, the GESPAR algorithm
is used withτ = 10−4 and ITER = 10000, as well as
the sparse-Fienup algorithm, for comparison purposes. In our
simulationn = 64 andN = 128. The sparse-Fienup algorithm
is run with a maximum of1000 iterations, and with100
random initial points.

Note that even with little noise, the information on the sup-
port obtained by the zeros of the autocorrelation is no longer
available. This is due to the fact that in the presence of noise,
there will be no true zeros in the measured (or calculated)
autocorrelation. In this case, one might try to threshold the
autocorrelation values, rendering small autocorrelationvalues
as zeros. However, this might result in zeroing of small
(yet non-zero) values of the true autocorrelation function.
Therefore, in the noisy case, we do not use support information
obtained by the autocorrelation function in GESPAR, namely
J2 = {1, 2, . . . , n}.

Figure 6 shows the normalized mean squared reconstruction
error (NMSE), defined asNMSE = ‖x−x̂‖2

‖x‖2
, as a function of

sparsity, for different SNR values. Each point represents an av-
erage over 100 different random realizations. The performance
under different SNR values is plotted for GESPAR (full lines),
and for sparse-Fienup (dashed-lines). The performance of
GESPAR naturally improves as SNR increases, and it clearly
outperforms sparse-Fienup in terms of noise-robustness.

F. Scalability

As one of the main advantages of GESPAR over SDP based
methods is its ability to solve large problems efficiently, we
now examine its performance for different vector sizes.

We simulate GESPAR for various values ofn ∈ [64, 2048].
In all casesN = 2n. The other simulation parameters
are as in Section V-A. The recovery probability vs. spar-
sity s for different vector lengths is shown in Fig. 7. The
maximal sparsitys allowing successful recovery is shown
to increase with vector lengthn, and seems to scale like
n1/3, which is consistent with the same scaling observation
presented in [9]. The mean reconstruction time for a signal
with n = 512, s = 35 from N = 1024 measurements,
allowing ITER = 6400 replacements, is33.5 seconds. For
comparison, a corresponding plot representing the scalability
of the sparse-Fienup algorithm is presented in Fig. 8. Plotting
a similar scalability plot for the SDP based method is not
possible due to the high computational cost which under our
simulation conditions limits the application of this method to
aroundn ∼ 400.

G. Computation Time

The most time consuming part of GESPAR is the matrix
inversion process in the DGN segment of the algorithm.
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Fig. 7. 1D-Scalability - GESPAR recovery probability as a function of signal
sparsitys, for various vector lengths (n ∈ [64, 2048]), and with oversampling,
i.e. N = 2n. White corresponds to high recovery probability.
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Fig. 8. Sparse Fienup scalability - recovery probability asa function of signal
sparsitys, for various vector lengths (n ∈ [64, 2048]), and with oversampling,
i.e. N = 2n. White corresponds to high recovery probability.

Therefore, computation time scales approximately linearly
with the number of swaps - as each swap corresponds to a
single DGN iteration. The approximately linear dependenceof
runtime in the number of swaps is displayed in Fig. 9. Each
point in the plot represents the mean time it took GESPAR to
run ITER iterations, averaged over 50 random input signals
with N = 128, n = 64, s = 10.

A major factor that determines the computation time is the
number of index swaps required to find a solution. The mean
number of swaps as a function ofs, n is shown in Fig. 10.
Beyond the successful recovery region (the white region in
Fig. 7), the maximal number of swaps (6400) is used, without
yielding a correct solution.

H. Two-Dimensional Fourier Phase Retrieval

In this section we apply GESPAR to 2D Fourier phase
retrieval problems, showing its ability to solve large scale
problems efficiently.
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scale, e.g.10 ⇒ 210 = 1024 swaps.

We generate randoms−sparse 2D signals of sizes
√
n×√n,

with varying values fors andn, in the rangess ∈ [2 : 82] and
n ∈ [256 : 6400]. Each signal is recovered from the noiseless
magnitude of its 2D DFT, with no oversampling, using GES-
PAR. Similarly to the 1D noisy simulation, no autocorrelation-
derived support information was used here. The parameter
ITER is taken as6400. The recovery probability vs. sparsity
s for different vector lengths is shown in Fig. 11. Similarly
to the 1D case, the maximal sparsity allowing successful
recovery increases withn. For comparison, Fig. 12 shows
the result of a sparse-Fienup scalability simulation for the
2D case, under the same conditions, with 200 initial points
per signal (increasing this parameter did not affect the results
significantly). GESPAR is shown to outperform the sparse-
Fienup method in the 2D case as well. As in the 1D case, a
comparison to SDP based methods is not included here, since
applying the SDP based method on the 2D case is very difficult
due to memory limitations.

A comparison between GESPAR and the sparse-Fienup
method is shown in Fig. 13. The comparison shows the
average time a successful recovery in the simulation took, as
a function of vector sizen. Sparse-Fienup is seen to be faster,
however comparing Fig. 11 to Fig. 12 shows that GESPAR
can recover signals up with a higher value ofs: For example,
whenn = 6400, GESPAR recovers with very high probability
signals up to sparsitys = 57, while sparse Fienup only
recovers up tos = 42.

VI. CONCLUSION

We proposed and demonstrated GESPAR - a fast algorithm
for recovering a sparse vector from its Fourier magnitude, or
more generally, from quadratic measurements. We showed via
simulations that GESPAR outperforms alternative approaches
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Fig. 11. GESPAR 2D-Scalability - recovery probability as a function of
signal sparsity for various image sizes (n = 256, 1024, 2304, 4096, 6400).
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Fig. 12. Sparse-Fienup 2D-Scalability - recovery probability as a function of
signal sparsity for various image sizes (n = 256, 1024, 2304, 4096, 6400).
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Fig. 13. Runtime comparison - average computation time for asuccesful 2D
recovery, for GESPAR and for sparse-Fienup, as a function ofn.

suggested for this problem in terms of complexity and success
probability. The algorithm does not require matrix-lifting, and
therefore is potentially suitable for large scale problemssuch
as 2D images. The simulations demonstrated robustness of
GESPAR to noise and other inexact knowledge, as well as
its ability to successfully treat a variety of phase retrieval
problems in one and two dimensions.
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APPENDIX

Define the vector-valued functionh by

h(z) = (h1(z), h2(z), . . . , hN(z))T ,

with hi(z) = zTBiz − yi With this notation, the vectorbk

can be written as

bk = J(zk−1)zk−1 − h(zk−1),

and the solution of the least-squares problem is

z̃k = (J(zk−1)
T J(zk−1))

−1J(zk−1)
T

(J(zk−1)zk−1 − h(zk−1))

= zk−1 − (J(zk−1)
T J(zk−1))

−1J(zk−1)
Th(zk−1)

= zk−1 −
1

2
(J(zk−1)

TJ(zk−1))
−1∇g(zk−1). (16)
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Finally,

dk =
1

2
(J(zk−1)

T J(zk−1))
−1∇g(zk−1). (17)

From (16) it follows that−dk is a descent direction since

−dT
k∇g(zk−1)

= −1

2
∇g(zk−1)(J(zk−1)

TJ(zk−1))
−1∇g(zk−1) < 0.(18)

We now show that the sequence generated by the DGN
method is bounded. Indeed, since−dk is a descent direction,

√

g(z0) ≥
√

g(zk)

=

√

∑N
i=1(z

T
k Bizk − yi)

2

≥ 1√
N

∑N
i=1 |zTk Bizk − yi|

≥ 1√
N

(

zTk (
∑N

i=1 Bi)zk −
∑N

i=1 yi

)

,

where the second inequality is due to Cauchy-Schwarz and
the last inequality is a result of the fact that

∑N
i=1 Bi ≻ 0 and

yi ≥ 0. Therefore,

‖zk‖2 ≤
1

λmin(
∑N

i=1 Bi)

(

√

Ng(z0) +
∑N

i=1 yi

)

≡ α,

proving that{zk} ⊆ B[0,
√
α] = {z : ‖z‖ ≤ √α}.

Since g is twice continuously differentiable, andJ(z) is
continuous, it follows that there existsM > 0 and Λ > 0
such thatλmax(∇2g(z)) ≤M andλmax(J(z)

T J(z)) ≤ Λ for
any z ∈ B[0, 2

√
α]. In addition, since∇g is continuous over

B[0, 2
√
α], there existβ > 0 such that‖∇g(z)‖ ≤ β for all

z ∈ B[0, 2
√
α]. Therefore, by (17) it follows that

‖dk‖ ≤
β

2λ
. (19)

The fact thatλmax(∇2g(z)) ≤ M for all z ∈ B[0, 2
√
α]

implies that∇g is Lipschitz continuous overB[0, 2
√
α] with

parameterM > 0. Hence, by the descent lemma [15],

g(y) ≤ g(x) +∇g(x)T (y − x) +
M

2
‖y − x‖2 (20)

for anyx,y ∈ B[0, 2
√
α].

From ‖zk−1‖ ≤
√
α and ‖dk‖ ≤ β/(2λ), it follows that

zk−1 − tdk ∈ B[0, 2
√
α] whenevert ≤ 2λ

√
α

β . Therefore, we
can plugy = zk−1 − tdk andx = zk−1 into (20) to obtain

g(zk−1 − tdk) ≤ g(zk−1)− t∇g(zk−1)
Tdk +

Mt2

2
‖dk‖2.

Using (17),

‖dk‖2 =
1

4
∇g(x)T (J(zk)T J(zk))−2∇g(x)

≤ 1

4λ
∇g(x)T (J(zk)TJ(zk))−1∇g(x)

=
1

2λ
∇g(zk−1)

Tdk,

which yields

g(zk−1)− g(zk−1 − tdk) ≥ t

(

1− M

4λ
t

)

∇g(zk−1)
Tdk.

Therefore, ift ≤ min
{

2λ
M , 2λ

√
α

β

}

, then

g(zk−1)− g(zk−1 − tdk) ≥
t

2
∇g(zk−1)

Tdk. (21)

By the way the backtracking procedure is defined, we have
that either tk = 1 or 2tk > min

{

2λ
M , 2λ

√
α

β

}

and hence

tk ≥ min
{

1, λ
M , λ

√
α

β

}

. Together with (21) this results in
the inequality

g(zk−1)− g(zk) ≥ tk
2
∇g(zk−1)

Tdk

≥ min

{

1

2
,

λ

2M
,
λ
√
α

2β

}

∇g(zk−1)
Tdk.

Since

∇g(zk−1)
Tdk

= ∇g(xk−1)
T (J(zk−1)

T J(zk−1))
−1∇g(zk−1)

≥ 1

Λ
‖∇g(zk−1)‖2,

we conclude that

g(zk−1)− g(zk) ≥ C‖∇g(zk−1)‖2, (22)

whereC = min
{

1
2Λ ,

λ
2MΛ ,

λ
√
α

2βΛ

}

. Noting that{g(zk)} is a
bounded below and nonincreasing sequence, it follows that it
converges. The left-hand side of (22) therefore converges to
zero and we obtain the result that∇g(zk) converges to zero
as k tends to infinity. This fact also readily implies that all
accumulation points of the sequence are stationary. Summing
the inequality (22) overp = 1, 2, . . . , k + 1 we obtain that

g(z0)− g(zk+1) ≥ C
∑k+1

p=1 ‖∇g(zp−1)‖2,

and consequently, (also using the fact thatg(zk+1) ≥ 0),

g(z0) ≥ C(k + 1) min
p=1,...,k+1

‖∇g(zp−1)‖2,

from which the inequality (12) follows.�
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