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Abstract

Large multiple-input multiple-output (MIMO) networks promise high energy efficiency, i.e., much less power

is required to achieve the same capacity compared to the conventional MIMO networks if perfect channel state

information (CSI) is available at the transmitter. However, in such networks, huge overhead is required to obtain full

CSI especially for Frequency-Division Duplex (FDD) systems. To reduce overhead, we propose a downlink antenna

selection scheme, which selects S antennas from M > S transmit antennas based on the large scale fading to serve

K ≤ S users in large distributed MIMO networks employing regularized zero-forcing (RZF) precoding. In particular,

we study the joint optimization of antenna selection, regularization factor, and power allocation to maximize the

average weighted sum-rate. This is a mixed combinatorial and non-convex problem whose objective and constraints

have no closed-form expressions. We apply random matrix theory to derive asymptotically accurate expressions for

the objective and constraints. As such, the joint optimization problem is decomposed into subproblems, each of which

is solved by an efficient algorithm. In addition, we derive structural solutions for some special cases and show that the

capacity of very large distributed MIMO networks scales as O (KlogM) when M →∞ with K,S fixed. Simulations

show that the proposed scheme achieves significant performance gain over various baselines.

Index Terms

Large MIMO, Cloud Radio Access Networks, Antenna selection, Asymptotic Analysis

I. INTRODUCTION

Large MIMO networks have been a hot research topic due to their high energy efficiency [1]. Such networks are

equipped with an order of magnitude more antennas than conventional systems, i.e., a hundred antennas or more. In

centralized large MIMO systems where all antennas are collocated at the base station (BS), high energy efficiency

is realized by exploiting the increased spatial degrees of freedom and beamforming gain. In large distributed

MIMO systems where the antennas are distributed geographically, enhanced energy efficiency is achieved from

shortened distances between antennas and users as well as improved spectral efficiency per unit area. There are a

number of prior works on large MIMO networks, including various topics such as information theoretical capacity

[2], transceiver design [3], CSI acquisition, and pilot contamination [4]. In particular, various downlink precoding
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Figure 1. Illustration of a large distributed MIMO network, which consists of M thin base stations (distributed antennas) connected to a

C-RAN via high speed optical fiber.

schemes have been proposed and analyzed. Remarkably, the simple zero-forcing (ZF) precoding is shown to achieve

most of the capacity of large MIMO downlink [1]. One of the main challenges towards achieving the performance

predicted by the theoretical analysis is how to obtain the CSI at the transmitter (CSIT) for a large number of

antennas. In most of the existing works, Time-Division Duplex (TDD) is assumed and channel reciprocity can be

exploited to obtain CSIT via uplink pilot training. In [5], [6], random matrix theory is used to analyze the asymptotic

performance of ZF and RZF [7] in both TDD and FDD systems, with a focus on the case when all the antennas

are collocated at a BS. For FDD systems, the amount of CSI feedback required to maintain a constant per-user

rate gap from the perfect CSIT case has also been analyzed in [6] under the assumption of perfect CSI estimation

at the users. In practice, we need M orthogonal pilot sequences to estimate the channel corresponding to the M

transmit antennas. However, the number of available orthogonal pilot sequences is limited by the channel coherent

time and it may become smaller than M as M grows large.

In this paper, we consider large distributed MIMO networks operating in FDD mode in which there are M

distributed antennas (thin BSs1) linked together by high speed fiber backhaul as illustrated in Fig. 1. Such networks

are also called the cloud radio access networks (C-RAN) [8]. In such a scenario, only a few nearby antennas can

contribute significantly to a user’s communication due to path loss. To avoid expensive CSI acquisition and signal

processing overheads for antennas with huge path losses to the users, a subset of S antennas is selected to serve a

given set of K users using RZF precoding [7], where M � S ≥ K. RZF precoding has been shown in [9] to be

asymptotically optimal for S,K →∞ in a two-cell system.

The existing antenna selection schemes in multi-user MIMO systems [10], [11] require global knowledge of

the instantaneous CSI which is unacceptable for large M . In 3G and LTE systems, users are associated with the

strongest antennas/BSs. However, this baseline algorithm is inefficient when the antennas/BSs are allowed to perform

cooperative MIMO (CoMP) [12] as illustrated in the following two examples. In both examples, we assume S = 2

distributed antennas are selected to serve K = 2 users.

1A thin base-station refers to a low cost and low power base station and this name is borrowed from the nomenclature "thin client" in cloud

computing.



Figure 2. An example that strong cross link causes large interference Figure 3. An example that strong cross links provide cooperative

gain

Example 1 (Strong cross link causing low SINR). Fig. 2 illustrates the path loss configuration. According to the

baseline algorithm, the selected antennas will be A = {2, 3}. However, this is not a good choice because antenna

2 causes strong interference to user 2 before precoding. Although the interference can be suppressed using RZF

precoding, the overall SINR is still low because the cross link from A3 to U1 is weak and the joint transmission

gain is limited. A better choice would be A = {1, 3}.

Example 2 (Strong cross link providing cooperative gain). Fig. 3 illustrates the path loss configuration. According

to the baseline algorithm, the selected antennas will be A = {1, 3}. Instead, better performance can be achieved

by letting A = {1, 2} due to cooperative transmission.

Hence, a more efficient antenna selection design is crucial for C-RAN. We study the joint optimization of antenna

selection, regularization factor in RZF precoding, and power allocation, to maximize the average weighted sum-rate

under per antenna power constraints. The optimization only requires the knowledge of large scale fading factors

and the overhead for CSI acquisition is greatly reduced as discussed in Remark 1. The following are two first-order

challenges.

• Combinatorial Optimization Problem: The antenna selection problem with CoMP processing in the C-RAN

is combinatorial with exponential complexity w.r.t. the total number of antennas M .

• Asymptotic Performance Analysis: It is important to derive closed-form performance expressions in order to

obtain design insights. Yet, the performance analysis is non-trivial due to the heterogeneous path loss as well

as the lack of closed form antenna selection solution.

In this paper, we extend the results in [6] to obtain deterministic equivalent (DE) of the weighted sum-rate and

the per-antenna transmit power2. By exploiting the implicit structure in the objective and constraints functions,

the joint optimization problem is decomposed into simpler subproblems, each of which is solved by an efficient

2We also noticed that the downlink channel H in C-RAN can be modeled as the gram random matrices with a given variance profile [13].

The mutual information log
∣∣HH† + ρI

∣∣ for such channel model, where ρ > 0 is a constant, has been shown in [13] to have a Gaussian limit

whose parameters are identified as the dimension of H goes to infinity. In this paper, we focus on a different problem, i.e., the joint optimization

of power and antenna selection to maximize the weighted sum-rate under RZF precoding.



algorithm. We also show that there is an asymptotic decoupling effect in very large distributed MIMO networks and

the capacity grows logarithmically with the total number of antennas M even when the number of active antennas

S is fixed.

The rest of the paper is organized as follows. The system model is outlined in Section II. In Section III, the

antenna selection problem is formulated and its deterministic approximation is derived using random matrix theory.

The solution of the problem is presented in Section IV. In Section V, we give structural solutions for some special

cases. Simulations are used to verify the performance of the proposed solution in Section VI and the conclusion is

given in Section VII.

II. SYSTEM MODEL

Consider the downlink of C-RAN with M distributed transmit antennas and K single-antenna users as illustrated

in Fig. 1. The M � K distributed antennas are connected to a C-RAN [8] via fiber backhaul and the system

operates in FDD mode. Denote hkm as the channel between the mth transmit antenna and the kth user. We consider

a composite fading channel, i.e., hkm = σkmWkm, ∀k,m, where σkm ≥ 0 is the large scale fading factor caused

by, e.g., path loss and shadow fading, and Wkm is the small scale fading factor.

Assumption 1 (Channel model). The small scale fading process Wkm (t) ∼ CN (0, 1) is quasi-static within a time

slot but i.i.d. w.r.t. time slots and the spatial indices k,m. The large scale fading process σkm (t) is assumed to

be a slow ergodic random process (i.e., σkm (t) remains constant for a large number of time slots) according to a

general distribution.

The baseband processing is centralized at the C-RAN. To limit the signaling overheads, we consider antenna

selection where a subset A, |A| = S ≥ K of the M antennas are selected to serve the K users. Let Aj denote

the jth element in A. Let H (A) ∈ CK×S denote the composite downlink channel matrix between the selected

S antennas and the K users, and define Σ (A) ∈ RK×S+ as the corresponding large scale fading matrix, whose

element at the kth row and the jth column is σkAj . For conciseness, H (A) and Σ (A) are denoted as H and Σ

when there is no ambiguity.

Assumption 2 (CSIT assumption). The C-RAN has knowledge of all the K ×M large scale fading factors σkm’s

and the K × S instantaneous channel matrix H (A) corresponding to the selected antennas in A only.

Remark 1 (CSI Acquisition). In FDD systems, H (A) can be obtained via downlink channel estimation and channel

feedback. The amount of training for H (A) is limited by the channel coherence time, which depends on the user

movement speed. Hence, for large M , the estimated CSI quality at the C-RAN will be poor if all the M antennas

in the network are active. Using antenna selection and with properly chosen S, the instantaneous CSI for the S

selected antennas can be estimated and fed back to the C-RAN using conventional arrangement in LTE. Hence, the

problem of CSI limitation in C-RAN can be alleviated by antenna selection based on large scale fading factors. On



the other hand, the large scale fading matrix Σ is a long-term statistic and can be estimated at the C-RAN from

the uplink reference signals [14] due to the reciprocity of large scale fading factors.

We consider the RZF precoding scheme [7]. The composite receive signal vector for the K users can be expressed

as:

y = HFs + n,

where s = [s1, ..., sK ] ∼ CN (0, IK) is the symbol vector; n ∼ CN (0, IK) is the AWGN noise vector; and

F = [f1, ..., fK ] ∈ CS×K is the RZF precoding matrix given by

F =
(
H†H + αSIS

)−1
H†P1/2, (1)

where α is the regularization factor and P = diag (p1, ..., pK) is a power allocation matrix. Note that the regu-

larization factor is scaled by S to ensure that α is bounded as S,K → ∞ [6]. Define power allocation vector as

p = [p1, ..., pK ]
T .

Define the normalized channel H̄ = H/
√
S. Let h†k and h̄†k denote, respectively, the kth row of H and H̄. Define

H̄k as the matrix H̄ with the kth row removed, and Pk , diag (p1, ..., pk−1, pk+1, ..., pK) . Assume that user k has

perfect knowledge of the effective channel h†kfk and the interference-plus-noise power. The SINR of user k is [5]

γk (A, α,p) =
pkA

2
k

Bk + (1 +Ak)
2 , (2)

where

Ak = h̄†k

(
H̄†kH̄k + αIS

)−1

h̄k,

Bk = h̄†k

(
H̄†kH̄k + αIS

)−1

H̄†kPkH̄k

(
H̄†kH̄k + αIS

)−1

h̄k.

The instantaneous transmit power of the jth selected antenna is given by

PAj (A, α,p) =
1

S
1Tj F̄F̄†1j , (3)

where F̄ = H̄†
(
H̄H̄† + αIK

)−1
P1/2; and 1j is a K × 1 vector whose jth element is 1 and all other elements are

zeros.

III. OPTIMIZATION FORMULATION FOR DYNAMIC ANTENNA SELECTION

We consider long-term control policy where the active antenna set A, the regularization factor α, and the power

allocation p are adaptive to the large scale fading Σ only.

Definition 1 (Long-term control policy). A long-term antenna selection, regularization and power control policy

Ψ = {ΨA,Ψα,Ψp} are mappings from the large scale fading matrix Σ to the active antenna set A, the regularization

factor α, and the power allocation p respectively. Specifically, A, α, and p are given by: ΨA (Σ), Ψα (Σ) and

Ψp (Σ).



For technical reasons, we consider a sequence of C-RAN systems indexed by S = {1, 2, ...}. In the S-th system,

there are M =
⌈
βS
⌉

distributed transmit antennas and K = dβSe single-antenna users, where β ∈ (0, 1] and
1
β
∈ (0, 1) are constant. Correspondingly, we consider a sequence of long-term control policies

{
Ψ(S)

}
indexed by

S = {1, 2, ...}, and apply the S-th control policy Ψ(S) to the S-th system. We restrict our attention to the class of

policies that satisfy the following technical assumptions.

Definition 2 (Admissible control policy). A sequence of control policies
{

Ψ(S)
}

is admissible if for each S, Ψ
(S)
A

is a mapping: RK×M+ 7→ {A : A ⊂ {1, ...,M} , |A| = S}, Ψ
(S)
α is a mapping: RK×M+ 7→ [αmin, αmax], and Ψ

(S)
p is

a mapping: RK×M+ 7→ [0, Pmax]
K , where the constants Pmax, αmax and αmin ∈ (0,∞).

The objective of the S-th control policy Ψ(S) is to maximize the conditional average weighted sum-rate for the S-

th system. Specifically, given large scale fading matrix Σ(S) ∈ RK×M+ and weight vector w(S) =
[
w

(S)
k

]
k=1,...,K

∈

RK+ for the S-th system, the long-term control Ψ(S)
(
Σ(S)

)
is given by the solution of the following joint

optimization problem

P
(
Σ(S)

)
: max

Ψ(S)(Σ(S))
I
(

Ψ(S)
(
Σ(S)

)
|Σ(S)

)
s.t. E

[
Pm

(
Ψ(S)

(
Σ(S)

)) ∣∣∣Σ(S)
]
≤ ρm

S
, ∀m ∈ Ψ

(S)
A

(
Σ(S)

)
, (4)

where for given Σ,w and Ψ (Σ) = {A, α,p}, the conditional average weighted sum-rate is

I (Ψ (Σ) |Σ) = E

[
K∑
k=1

wklog (1 + γk (Ψ (Σ))) |Σ

]
, (5)

γk (Ψ (Σ)) = γk (A, α,p) is the SINR in (2), Pm (Ψ (Σ)) = Pm (A, α,p) is the per antenna transmit power in

(3) and ρm > 0 is a constant.

Remark 2 (Per antenna power constraint). In (4), the per antenna power constraint for the S-th system is ρm
S due

to the following reason. It can be verified that E
[
Pm
(
Ψ(S)

(
Σ(S)

)) ∣∣Σ(S)
]

=
∑K
k=1R

′

m,kpk = O(1/S) → 0 as

S → ∞ under an admissible control policy Ψ(S), where R
′

m,k = O
(

1
S2

)
is some coefficient independent of p.

Moreover, the effective channel gain per user is O (S). Hence, the per-antenna transmit power required to support

a finite data rate for each user in the S-th system is O(1/S) as S → ∞ and O(1) power allocation variables

{p1, ..., pK} are needed to satisfy the constraint (4). Similar observation is also made in [1], [6] about in a large

MIMO system with M antennas, a per-antenna power of O(1/M) is needed to support a finite SINR for each user.

There are several challenges in solving Problem P
(
Σ(S)

)
. First, there is no closed-form expression for the

optimization objective and constraints. Second, the problem is combinatorial w.r.t. the antenna selection and non-

convex w.r.t. the regularization factor and power allocation. The first challenge is tackled in this section by using

the random matrix theory in [15] to derive asymptotically accurate expressions for the optimization objective and

constraints. The second challenge is tackled in Section IV.

To derive DE of the weighted sum-rate and transmit power, we require the following assumptions.



Assumption 3 (Boundedness of Σ(S),w(S)).

1) Uniformly Bounded Σ(S) w.r.t. S: Let
{
Σ(S) ∈ RK×M+

}
be a sequence of large scale fading matrices

(indexed by S = {1, 2, ...}) such that

lim sup
S→∞

sup
1≤k≤K,1≤m≤M

σ
(S)
km < ∞, (6)

lim inf
S→∞

inf
1≤k≤K,1≤m≤M

σ
(S)
km > 0, (7)

where σ(S)
km is the element at the k-th row and m-th column of Σ(S).

2) Uniformly Bounded Kwk w.r.t. S: Let
{
w(S) ∈ RK+

}
be a sequence of weight vectors (indexed by S =

{1, 2, ...}) such that

lim sup
S→∞

sup
1≤k≤K

Kw
(S)
k < ∞.

The assumption in (6) ensures that the normalized channel matrix has uniformly bounded spectral norm with

probability 1, which is required in the proof of Lemma 1 and 2 later.

Proposition 1. Let
{
Σ(S)

}
be as in Assumption 3. Let H̄(S) denote the normalized channel matrix corresponding

to Σ(S). We have lim supS→∞
∥∥H̄(S)†H̄(S)

∥∥ a.s< ∞.

Please refer to Appendix A for the proof.

The assumption in (7) ensures that ξl in (9) in Lemma 1 is bounded away from zero as S → ∞. Assumption

3-2) is to ensure that I
(
Ψ(S)

(
Σ(S)

)
|Σ(S)

)
is bounded as S →∞.

Lemma 1 (DE of SINR). Let
{
Σ(S)

}
be as in Assumption 3. We have γk

(
Ψ(S)

(
Σ(S)

))
− γ̄k

(
Ψ(S)

(
Σ(S)

)) a.s→ 0

as S →∞, where for given Σ and Ψ (Σ) = {A, α,p},

γ̄k (Ψ (Σ)) =
pkξ

2
k

1
S

∑K
l 6=k

[
plθkl/ (1 + ξl)

2
]

+ (1 + ξk)
2
, (8)

where ξ = [ξ1, ..., ξK ]
T ∈ RK+ is the unique solution of

ξl =
1

S

∑
m∈A

[
σ2
lm/fm (ξ)

]
, l = 1, ...,K, (9)

with fm (ξ) , α+ 1
S

∑K
i=1

σ2
im

1+ξi
, and θk = [θk1, ..., θkK ]

T is

θk , (IK −D)
−1

dk, k = 1, ...,K, (10)

with D = [Dln]l,n=1,...,K ∈ RK×K and dk = [dkl]l=1,...,K ∈ RK×1 given by

Dln =
1

S

∑
m∈A

[
1

S
σ2
lmσ

2
nm/

(
(1 + ξn)

2
f2
m (ξ)

)]
,

dkl =
1

S

∑
m∈A

[
σ2
kmσ

2
lm/f

2
m (ξ)

]
.



Lemma 2 (DE of per-antenna transmit power). Let
{
Σ(S)

}
be as in Assumption 3. We have SPm

(
Ψ(S)

(
Σ(S)

))
−

SP̄m
(
Ψ(S)

(
Σ(S)

)) a.s→ 0,∀m ∈ Ψ
(S)
A
(
Σ(S)

)
as S →∞, where for given Σ and Ψ (Σ) = {A, α,p}

P̄m (Ψ (Σ)) =
α−1

S2
ψ−2
m (v)

K∑
i=1

σ2
im (pivi − ϕi) , (11)

where v = [v1, ..., vK ]
T ∈ RK++ is the unique solution of

vl =
1

α+ 1
S

∑
m∈A [σ2

lm/ψm (v)]
, l = 1, ...,K, (12)

with ψm (v) , 1 + 1
S

∑K
i=1 σ

2
imvi, and ϕ = [ϕ1, ..., ϕK ]

T is

ϕ , (αIK + ∆−C)
−1

c, (13)

with ∆ = diag (∆1, ...,∆K), C = [Cln]l,n=1,...,K ∈ RK×K and c = [cl]l=1,...,K ∈ RK×1 given by

∆l =
1

S

∑
m∈A

[
σ2
lm/ψm (v)

]
, l = 1, ...,K,

Cln =
1

S

∑
m∈A

[
1

S
σ2
lmσ

2
nmvl/ψ

2
m (v)

]
,

cl =
1

S

∑
m∈A

[
σ2
lmvl

ψ2
m (v)

(
pl +

1

S

K∑
i=1

σ2
imvi (pl − pi)

)]
.

The proof of Lemma 1 is similar to that of [6, Thereom 2] and is omitted for conciseness3. The proof of Lemma

2 is given in Appendix B.

Remark 3. The equations in (9) and (12) can be solved using Proposition 1 in [6].

Then the following theorem holds.

Theorem 1 (Asymptotic equivalence of Problem P). Let
{
Σ(S)

}
,
{
w(S)

}
be as in Assumption 3 and Ψ(S)∗ (Σ(S)

)
be an optimal solution of the following problem

PE
(
Σ(S)

)
: max

Ψ(S)(Σ(S))
Ī
(

Ψ(S)
(
Σ(S)

)
|Σ(S)

)

,
K∑
k=1

w
(S)
k log

(
1 + γ̄k

(
Ψ(S)

(
Σ(S)

)))
s.t. P̄m

(
Ψ(S)

(
Σ(S)

))
≤ ρm

S
, ∀m ∈ Ψ

(S)
A

(
Σ(S)

)
. (14)

Let I(S)◦ be the optimal value of Problem P
(
Σ(S)

)
with weight vector w(S). Then as S →∞, we have

SE
[
Pm

(
Ψ(S)∗

(
Σ(S)

)) ∣∣∣Σ(S)
]
− ρm ≤ 0,

∀m ∈ Ψ
(S)∗
A

(
Σ(S)

)
, (15)

I
(

Ψ(S)∗
(
Σ(S)

)
|Σ(S)

)
− I(S)◦ → 0. (16)

3In [6, Thereom 2], α is a positive constant. However, it can be verified that the proof of [6, Thereom 2] still holds if we replace the constant

α by α(S) = Ψ
(S)
α

(
Σ(S)

)
in Lemma 1 due to the bounded constraint on Ψ

(S)
α .



Please refer to Appendix C for the proof. Note that in both P
(
Σ(S)

)
and PE

(
Σ(S)

)
, Ψ(S) must be admissible.

Remark 4. In Appendix C, we prove that for a given sequence of admissible control policies
{

Ψ(S)
}

and
{
Σ(S)

}
,
{
w(S)

}
that satisfy Assumption 3, the conditional average weighted sum-rate I

(
Ψ(S)

(
Σ(S)

)
|Σ(S)

)
(conditioned on the

large scale fading matrix Σ(S)) converges to the DE Ī
(
Ψ(S)

(
Σ(S)

)
|Σ(S)

)
as S →∞. In the proposed long-term

control policy, the antenna selection A is adaptive to the large scale fading matrix Σ only. Hence, for a given

sequence of Σ(S), the antenna set Ψ
(S)
A
(
Σ(S)

)
is deterministic for each S and as a result, the DE convergence

holds true. On the other hand, if A were adaptive to the short term CSI H, then conditioned on Σ(S), A would

still be random and the DE convergence would fail. Similar conclusion has also been made in [16] that the DE of

the data rate in massive MIMO system with user selection is valid as long as the user selection is independent of

the instantaneous CSI H.

Remark 5. For centralized large MIMO downlink, a DE of the SINR has been provided in Theorem 2 of [6] under

per-user channel transmit correlation with correlation matrices Θk , E
[
hkh

†
k

]
, ∀k and imperfect CSIT with CSIT

errors τk’s. Our channel model is a special case of that in [6] with4 Θk = σ2
k , diag

(
σ2
kA1

, ..., σ2
kAS

)
, ∀k and

τk = 0, ∀k in [6]. However, this paper and [6] focus on different network topologies (distributed versus centralized).

As a result, there are some new technical challenges:

• Due to the distributed topology, we have to consider per-antenna power constraint, which is more complicated

than the sum power constraint considered in [6]. For example, in the DE of the SINR in Theorem 2 of [6], the

RZF precoding matrix is scaled to satisfy the sum power constraint. However, the per-antenna power constraint

cannot be satisfied by simply scaling the precoding matrix F, and we need to derive the DE for the per-antenna

transmit power as in Lemma 2. Moreover, the per-antenna power constraint has to be explicitly handled by

the optimization algorithm, which makes both the algorithm design and performance analysis more difficult.

• The assumptions for the theoretical results are different between the distributed and the centralized topologies.

Theorem 2 of [6] requires the following assumptions: A1) H̄†H̄ has, almost surely, uniformly bounded spectral

norm on M . The optimization problems in [6] focus on the case whereby Θk = Θ, ∀k, under which A1

is true. However, it is not clear if A1 holds for the distributed topology. In this paper, we replace A1 with

Assumption 3-1), which is a more mild assumption in practical systems.

• In Theorem 1, we formally proved the asymptotic equivalence between Problem P and its deterministic

approximation PE . The proof of Theorem 1 is non-trivial. However, in [6], the problem formulation is directly

based on the deterministic approximation and there is no proof of the asymptotic equivalence between the

“original problem” and its deterministic approximation.

• Compared to the optimization problems in [6], problem PE is much more difficult to solve due to the

heterogeneous path loss and the combinatorial nature of the antenna selection problem.

4This assumption is reasonable since the correlations between the geographically distributed antennas are indeed negligible.



IV. OPTIMIZATION SOLUTION FOR PE

In Theorem 1, we let S →∞ to establish the asymptotic equivalence between Problem P and PE . In this section,

we focus on solving PE for large but finite M,K,S, which is the case for a practical large C-RAN. By Theorem

1, the optimal value I∗ of PE (Σ) and the optimal value I◦ of P (Σ) satisfy I∗ = I◦ + o(1) for fixed M,K,S,

where o(1)→ 0 as S →∞. This implies that the solution of Problem P (Σ) can still be well approximated by the

solution of PE (Σ) for large but finite M,K,S. Since we focus on solving PE (Σ) for given Σ in the rest of the

paper, we will omit the argument Σ in PE and explicitly express Ī (Ψ (Σ) |Σ) as Ī (Ψ (Σ)) = Ī (A, α,p), where

{A, α,p} = Ψ (Σ).

A. Problem Decomposition

Under an admissible control policy, the power allocation vector is bounded as max
1≤k≤K

pk ≤ Pmax. We first show

that this bounded power constraint can be relaxed in Problem PE .

Proposition 2. For fixed M,K,S, let P ′E denote a relaxed problem of PE obtained by removing the bounded power

constraint max
1≤k≤K

pk ≤ Pmax in PE . For sufficiently large Pmax, the optimal power allocation p∗ = [p∗1, ..., p
∗
K ] of

P ′E satisfies max
1≤k≤K

p∗k ≤ Pmax and thus PE and P ′E are equivalent.

Please refer to Appendix D for the proof.

Using primal decomposition [17] and Proposition 2, for sufficiently large Pmax, PE can be decomposed into the

following two subproblems:

Subproblem 1 (Optimization of p and α under fixed A):

P1 (A) : max
α∈[αmin,αmax],p≥0

Ī (A, α,p) , s.t. (14) is satisfied. (17)

Subproblem 2 (Optimization of A):

P2 : max
A

Ī (A, α∗ (A) ,p∗ (A)) , (18)

s.t. A ⊆ {1, ...,M} , and |A| = S,

where α∗ (A) ,p∗ (A) is the optimal solution of P1 (A).

Subproblem 1 is non-convex. Although the gradient projection (GP) method [18] is usually used to find a

stationary point for the constrained non-convex problem, it cannot be applied here because the power constraint

functions in (14) are very complicated w.r.t. α and it is very difficult to calculate the projection of α and p on

the feasible set of P1 (A). In Section IV-B, we combine the weighted MMSE (WMMSE) approach in [19] and

the bisection method to find a stationary point for P1 (A). In Section IV-C, we propose an efficient algorithm for

Subproblem 2. For some special cases discussed in Section V, the proposed algorithms are asymptotically optimal.



B. Solution of Subproblem 1

We first propose an efficient algorithm to solve Subproblem 1 with fixed α, which can be expressed as follows:

P1a (A, α) : max
p≥0
Ī (A, α,p) , s.t. (14) is satisfied. (19)

Then we give the overall solution of Subproblem 1.

1) Algorithm S1a for Solving P1a (A, α): P1a (A, α) can be rewritten as a weighted sum-rate maximization

problem (WSRMP) under the linear constraints for K-user interference channel as follows. First, rewrite the objective

Ī (A, α,p) as

Ī (A, α,p) =

K∑
k=1

wklog

1 + gkkpk/

1 +

K∑
l 6=k

gklpl

 ,

gkk ,
ξ2
k

(1 + ξk)
2 , ∀k, gkl ,

θkl

S (1 + ξl)
2

(1 + ξk)
2 , ∀k 6= l.

Define a K × S matrix R̂ with the elements given by

R̂kj =
1

S
α−1σ2

kAjψ
−2
Aj (v) , ∀k, j,

and define R̄ as a K ×K matrix with each element given by

R̄kk =
1

S

∑
m∈A

1 +
1

S

K∑
i6=k

σ2
imvi

σ2
kmvk/ψ

2
m (v)

 , ∀k,
R̄kl = − 1

S

∑
m∈A

[
1

S
σ2
lmvlσ

2
kmvk/ψ

2
m (v)

]
, ∀k 6= l.

Let V = diag (v1, ..., vK). Then the per antenna power constraint in (14) can be rewritten as Rp ≤ ρ, where

R , R̂T
[
V − (αIK + ∆−C)

−1
R̄
]
∈ RS×K , and ρ = [ρA1 , ..., ρAS ]

T .

In [19], a WMMSE algorithm was proposed to find a stationary point for the WSRMP in MIMO interfering

broadcast channels under per-BS power constraints. In the following, the WMMSE algorithm is tailored and

generalized to solve P1a (A, α) under multiple linear constraints.

Following a similar proof as that of [19, Theorem 1], it can be shown that p∗ (A, α) = q∗ ◦ q∗ is the optimal

solution of P1a (A, α), where the notation ◦ denotes the Hadamard product; and q∗ is the optimal solution of

min
q,υ,ω

K∑
k=1

wk (ωkek − logωk) , s.t.R (q ◦ q) ≤ ρ, (20)

where q,υ and ω ≥ 0 are vectors in RK ; and ek =
(
1− υk

√
gkkqk

)2
+
∑
l 6=k υ

2
kgklq

2
l + υ2

k. Hence we only

need to solve Problem (20), which is convex in each of the optimization variables q,υ,ω. We can use the block

coordinate decent method to solve (20). First, for fixed q,υ, the optimal ω is given by ω∗k = e−1
k ,∀k. Second, for

fixed q,ω, the optimal υ is given by υ∗k =
(∑K

l=1 gklq
2
l + 1

)−1√
gkkqk,∀k. Finally, for fixed υ,ω, the optimal

q is given by the solution of the following optimization problem:

min
q

K∑
k=1

wkωk (1− υk
√
gkkqk)

2
+
∑
l 6=k

wlωlυ
2
l glkq

2
k

 (21)

s.t. R (q ◦ q) ≤ ρ.



Problem (21) is a convex quadratic optimization problem which can be solved using the Lagrange dual method.

Specifically, the Lagrange function of Problem (21) is given by

L (λ,q) =

K∑
k=1

wkωk (1− υk
√
gkkqk)

2
+
∑
l 6=k

wlωlυ
2
l glkq

2
k


+λT (R (q ◦ q)− ρ) ,

where λ ∈ RS+ is the Lagrange multiplier vector. The dual function of Problem (21) is

J (λ) = min
q
L (λ,q) . (22)

The minimization problem in (22) can be decomposed into K independent problems as

min
qk

wkωk (1− υk
√
gkkqk)

2
+

∑
l 6=k

wlωlυ
2
l glk + λT rk

 q2
k

 , (23)

where rk is the kth column of R. For fixed λ, Problem (23) has a closed-form solution given by

q∗k (λ) =

(
K∑
l=1

wlωlυ
2
l glk + λT rk

)−1

wk
√
gkkυkωk. (24)

Since (21) is a convex quadratic optimization problem, the optimal solution is given by q∗k

(
λ̃
)

=
[
q∗k

(
λ̃
)]

k=1,...,K
,

where λ̃ is the optimal solution of the dual problem

max
λ
J (λ) , s.t. λ ≥ 0. (25)

The dual function J (λ) is concave and it can be verified that R (q∗ (λ) ◦ q∗ (λ)) − ρ is a subgradient of J (λ).

Hence, the standard subgradient based methods such as the subgradient algorithm in [20] or the Ellipsoid method

in [21] can be used to solve Problem (25).

The overall algorithm for solving Problem (20) is summarized as follows.

Algorithm S1a (for solving Problem (20)):
Initialization: Let q = c1, where 1 denotes a vector of all ones; and c is chosen such that R (q ◦ q) ≤ ρ.

Step 1 Let υk =
(∑K

l=1 gklq
2
l + 1

)−1√
gkkqk, ∀k

Step 2 Let ωk =
(
1− υk

√
gkkqk

)−1
, ∀k

Step 3 Let qk = q∗k

(
λ̃
)
, ∀k; where λ̃ is the optimal solution of (25) which can be solved using, e.g., the subgradient

algorithm in [20] or the Ellipsoid method in [21] with the subgradient of J (λ) given by R (q∗ (λ) ◦ q∗ (λ))− ρ; and q∗ (λ)

is given in (24).

Return to Step 1 until convergence.

The following theorem shows that Algorithm S1a converges to a stationary point of P1a (A, α).

Theorem 2 (Convergence of Alg. S1a). For any limit point
(
q̃, υ̃, ω̃, λ̃

)
of the iterates generated by Algorithm

S1a, the corresponding p̃ (A, α) = q̃ ◦ q̃ and λ̃ satisfies the KKT conditions of P1a (A, α), which can be expressed



as

∇pĪ (A, α, p̃ (A, α))−RT λ̃+ ν̃ = 0; (26)

diag (ρ) λ̃− diag
(
λ̃
)

Rp̃ (A, α) = 0;

diag (ν̃) p̃ (A, α) = 0;

where λ̃ and ν̃ = RT λ̃−∇pĪ (A, α, p̃ (A, α)) are the Lagrange multipliers associated with the constraints Rp ≤ ρ

and p ≥ 0 respectively; and ∇pĪ (A, α, p̃ (A, α)) =
[
∂Ī
∂p1

, ..., ∂Ī
∂pK

]
with

∂Ī
∂pk

=
wkgkk(

Ω̃k + gkkp̃k (A, α)
) − K∑

l 6=k

wlglkgllp̃l (A, α)

Ω̃l

(
Ω̃l + gllp̃l (A, α)

) .
where

Ω̃k = 1 +

K∑
l 6=k

gklp̃l (A, α) , ∀k. (27)

Proof: Following a similar proof as that of [19, Theorem 3], we can show that Algorithm S1a converges to a sta-

tionary point q̃, υ̃, ω̃ of Problem (20). At the stationary point, the corresponding q̃, υ̃, ω̃, λ̃ must satisfy diag (ρ) λ̃−

diag
(
λ̃
)

R (q̃ ◦ q̃) = 0 and (24) with υ̃k =
(∑K

l=1 gklq̃
2
l + 1

)−1√
gkk q̃k, and ω̃k =

(
1− υ̃k

√
gkk q̃k

)−1
. Using

the above fact, it can be verified by a direct calculation that p̃ (A, α) and λ̃ satisfies the KKT conditions in (26).

2) Overall Solution for Subproblem 1: The following theorem characterizes the overall solution of subproblem

1.

Theorem 3 (Stationary point of P1 (A)). Let p̃ (A, α) denote the stationary point of P1a (A, α) found by Algorithm

S1a. Assume that p̃ (A, α) is differentiable over α and define a function

Î (A, α) , Ī (A, α, p̃ (A, α)) . (28)

Then the following are true:

1) If ∂Î(A,αmin)
∂α < 0, then αmin, p̃ (A, αmin) is a stationary point of P1 (A).

2) If ∂Î(A,αmax)
∂α > 0, then αmax, p̃ (A, αmax) is a stationary point of P1 (A).

3) If ∂Î(A,αmin)
∂α > 0 and ∂Î(A,αmax)

∂α < 0, let α̃ (A) be a solution of the following equation

∂Î (A, α)

∂α
= 0, α ∈ [αmin, αmax] , (29)

i.e., α̃ (A) is a stationary point of Î (A, α). Then α̃ (A) , p̃ (A, α̃ (A)) is a stationary point of P1 (A).

Proof: It is easy to see that if ∂Î(A,αmin)
∂α < 0 (∂Î(A,αmax)

∂α > 0), αmin (αmax) is a local maximum (and thus

stationary point) of the problem maxα∈[αmin,αmax] Î (A, α). Then Theorem 3 can be proved using the facts that

p̃ (A, α) (α = αmin, αmax or α̃ (A) depending on different cases) is a stationary point of P1a (A, α) and α is a

stationary point of maxα∈[αmin,αmax] Î (A, α). The details are omitted for conciseness.

Motivated by Theorem 3, we propose the following bisection algorithm to solve P1 (A) .



Algorithm S1b (Bisection search for solving P1 (A)):
Initialization: If ∂Î(A,αmin)

∂α
< 0, terminate the algorithm and output αmin, p̃ (A, αmin). If ∂Î(A,αmax)

∂α
> 0, terminate the

algorithm and output αmax, p̃ (A, αmax). Otherwise, choose proper αa, αb such that 0 < αa < αb and ∂Î(A,αa)
∂α

> 0, ∂Î(A,αb)
∂α

<

0.

Step 1: Let α = (αa + αb) /2. If ∂Î(A,α)
∂α

≤ 0, let αb = α. Otherwise, let αa = α.

Step 2: If αb − αa is small enough, terminate the algorithm and output α, p̃ (A, α). Otherwise, return to Step 1.

Remark 6. It is observed in the simulations that one can always choose sufficiently large αmax and sufficiently small

αmin > 0 such that ∂Î(A,αmin)
∂α > 0 and ∂Î(A,αmax)

∂α < 0. Then the constraint αmin ≤ α ≤ αmax is never active at the

solution found by Algorithm S1b.

The calculation of ∂Î(A,α)
∂α in Algorithm S1b is non-trivial due to the lack of analytical expression for Î (A, α).

In the following, we show how to calculate ∂Î(A,α)
∂α from the output of Algorithm S1a: p̃ (A, α) and λ̃. Assuming

that ∂p̃(A,α)
∂α , ∂λ̃

∂α and ∂ν̃
∂α exist and taking partial derivative of the equations in (26) with respect to α, we obtain

a linear equation with ∂p̃(A,α)
∂α , ∂λ̃∂α and ∂ν̃

∂α as the variables. Then we can calculate ∂p̃(A,α)
∂α by solving this linear

equation. Finally, the derivative ∂Î(A,α)
∂α can be calculated as

∂Î (A, α)

∂α
=

K∑
k=1

wk

∑K
l=1

(
p̃l (A, α) ∂gkl∂α + gkl

∂p̃l(A,α)
∂α

)
gkkp̃k (A, α) + Ω̃k

−

∑K
l 6=k

(
p̃l (A, α) ∂gkl∂α + gkl

∂p̃l(A,α)
∂α

)
Ω̃k

 . (30)

The detailed calculations for ∂p̃(A,α)
∂α , ∂gkl∂α ’s and ∂Î(A,α)

∂α can be found in Appendix E.

C. Algorithm S2 for Solving Subproblem 2

Subproblem 2 is a combinatorial problem and the optimal solution requires exhaustive search. We shall propose

a low complexity algorithm which is asymptotically optimal for large M as will be shown in Corollary 1.

Based on the insight obtained in Example 1 and 2, we propose an efficient algorithm S2 for P2. In step 1, the

algorithm selects antennas that have a direct link with a single user and do not cause strong interference to others5.

In step 2, the algorithm selects antennas that have strong links with several users. These antennas have the potential

to provide large cooperative gain. Note that “bad” antennas that cause strong interference may also be selected;

however, they will be deleted in step 4. In step 3, the algorithm selects antennas that have a strong cross link with

a single user and do not cause strong interference to others. In step 4, a greedy search is performed to replace the

“bad” antennas with “good” ones from a candidate antenna set Γj , which is carefully chosen to reduce the number

of weighted sum-rate calculations in step 4 as well as to maintain a good performance.

We first define some notations and then give the detailed steps of Algorithm S2. Let m̃k = argmaxmσ
2
km,

k = 1, ...,K. Define ḡdk = σ2
km̃k

. For k = 1, ...,K, and m = 1, ...,M , let Gkm = 1, if σ2
km ≥ κḡdk, and otherwise, let

5The phrase “an antenna causes interference to a user” refers to the case when an antenna causes strong interference to a user before precoding

and joint transmission using RZF does not provide much gain due to some other weak cross links as shown in Example 1.



Gkm = 0, where κ ∈ (0, 1). Roughly speaking, Gkm is an indication of whether antenna m contributes significantly

to the communication of user k. Simulations show that the performance of Algorithm S2 is not sensitive to the

choice of κ for κ ∈
[

1
4 ,

1
2

]
. Define Km = {k : Gkm = 1} , m = 1, ...,M . Let ĨA , Ī (A, ρ̃ (A) , p̃ (A, ρ̃ (A)))

denote the optimized weighted sum-rate under A. For any set of antennas A ⊆ {1, ...,M}, let Ā denote the relative

complement of A.

Algorithm S2 (for solving Subproblem 2):
Initialization: Let A = Φ, where Φ denotes the void set.

Step 1 (Select antennas with a direct link and no cross link):

For k = 1 to K, if |Km̃k | = 1, let A = A ∪ m̃k. If |A| = S, go to step 4.

Step 2 (Select antennas with multiple strong links):

Let Ḡm = |Km|B +
∑K
k=1 σ

2
km, where B can be any constant larger than max

1≤m≤M

∑K
k=1 σ

2
km.

Let m∗ = argmax
m∈Ā

Ḡm

While |Km∗ | ≥ 2 and |A| < S

Let A = A ∪m∗ and m∗ = argmax
m∈Ā

Ḡm.

End

If |A| = S, go to step 4.

Step 3 (Select antennas with a single strong link):

Let k̃m = argmax
k

σ2
km and Im = wk̃m log

(
1 + σ2

k̃mm

)
.

While |A| < S

Let m∗ = argmax
m∈Ā

Im and A = A ∪m∗.

End

Step 4 (Greedy search for replacing "bad" antennas with "good" ones):

For j = 1 to S

Let A−j = A/Aj . Let n∗ = argmax
m∈Ā∩{m:|Km|=1}

Im and Γaj = Ā ∩ {m : |Km| ≥ 2}.

If In∗ ≥ IAj or
∣∣KAj ∣∣ > 1, let Γj = Γaj ∪ n∗; otherwise, let Γj = Γaj .

Let m∗ = argmax
m∈Γj

ĨA−j∪m.

If ĨA−j∪m∗ > ĨA, let Aj = m∗.

End

Finally, we elaborate the choice of the candidate antenna set Γj in step 4. The Im defined in step 3 reflects

the contribution of antenna m to the weighted rate of a single user. Then n∗ in step 4 is the unselected antenna

which is likely to contribute the most to the weighted rate of a single user without causing strong interference to

other users. If In∗ ≥ IAj , n
∗ is added in Γj . Even if In∗ < IAj , we still add n∗ in Γj if Aj has the potential to

cause large interference, i.e.,
∣∣KAj ∣∣ > 1. Γaj are the set of unselected antennas which have the potential to provide

cooperative gain, and are also added in Γj .

V. STRUCTURAL SOLUTION FOR SOME SPECIAL CASES

A. Large MIMO Network with Collocated Antennas

We first study the case where the antennas are collocated at the base station. Specifically, this corresponds to the

case where all antennas experience the same large scale fading: σ2
km = σ2

k1, k = 1, ...,K, m = 1, ...,M . In this



case, any subset A of S antennas is optimal for the antenna selection problem since all antennas are statistically

equivalent. We focus on deriving the structural properties of p∗ and α∗.

We first obtain simpler expressions for asymptotic SINR and transmit power for P1 (A).

Theorem 4 (DE for collocated antennas). Let Σ, α be as in Assumption 3. The following statements are true for

the special case of collocated antennas (σ2
km = σ2

k1, k = 1, ...,K, m = 1, ...,M ):

1) The system of equation:

u =
1

α+ 1
S

∑K
i=1

σ2
i1

1+σ2
i1u

, (31)

admits a unique solution u in R++.

2) Define

F12 =
1

S

K∑
i=1

σ2
i1

(1 + σ2
i1u)

2 , F̄12 (p) =
1

S

K∑
i=1

piσ
2
i1

(1 + σ2
i1u)

2 .

As S
K=Sβ−→ ∞, γk (A, α,p) in (2) and Pm (A, α,p) in (3) converge, respectively, to the following deterministic

values almost surely

γ̄k (A, α,P) =
pkσ

4
k1u

2 (α+ F12)

F̄12 (p)σ2
k1u+ (1 + σ2

k1u)
2

(α+ F12)
,

P̄m (A, α,p) =
F̄12 (p)u

S (α+ F12)
, ∀m ∈ A. (32)

The proof is similar to the proof in Appendix B.

Using Theorem 4, P1a (A, α) can be reformulated into a simpler form as follows. First, according to (32), all

antennas always have the same transmit power. Furthermore, it can be verified that the per antenna power constraint

must be achieved with equality at the optimal solution. Combining these facts and the asymptotic expressions in

Theorem 4, P1a (A, α) is equivalent to the following optimization problem

max
p≥0

K∑
k=1

wklog

(
1 +

pkσ
4
k1u

2

σ2
k1PT + (1 + σ2

k1u)
2

)
, s.t.

F̄12 (p)u

(α+ F12)
≤ PT , (33)

where PT = min
m∈A

ρm.

1) Water-filling Structure of the Optimal Power Allocation: For fixedA, α, the optimal power allocation p∗ (A, α) =

[p∗1, ..., p
∗
K ] is given by:

p∗k =

(
wkS

(
1 + σ2

k1u
)2

(α+ F12)

λσ2
k1u

−
σ2
k1PT +

(
1 + σ2

k1u
)2

σ4
k1u

2

)+

, (34)

where λ is chosen such that F̄12 (p∗ (A, α))u/ (α+ F12) = PT .

2) Properties of the optimal α in High SNR Regime: The following theorem summarizes the structural properties

of the optimal solution α∗ for P1 (A).

Theorem 5 (Properties of α∗ at high SNR). For fixed K,S and sufficiently small αmin, the following are true:

1) α∗ = O
(

1
PT

)
for large PT .



2) There exists a small enough constant αt > αmin such that Ī (A, α,p∗ (A, α)), is a concave function of α for

all α ∈ [αmin, αt).

The proof is given in Appendix F. Theorem 5 implies that with sufficiently small αmin and initial αb > αa ≥ αmin,

Algorithm S1b will converge to the optimal α∗ at high enough SNR.

Remark 7 (Large MIMO with Collocated Users). When all users are collocated in the large MIMO network (i.e., the

users are very close geographically), they experience the same large scale fading: σ2
km = σ2

1m, k = 1, ...,K, m =

1, ...,M . As a result, the optimal active antenna set A∗ contains the antennas that have the largest S large scale

fading factors with the users. Similarly, it can be shown that the optimal power allocation for P1a (A, α) is also a

water-filling solution. The details are omitted due to limited space.

B. Very Large Distributed MIMO Network

In this section, we derive the asymptotic performance for very large distributed MIMO networks. Note that the

analysis in this section does not rely on Assumption 3. The results in this section are derived only under the large

distributed MIMO setup defined below.

Definition 3 (Very Large Distributed MIMO Network). The coverage area is a square with side length Rc. There

are M = N2 antennas evenly distributed in the square grid for some integer N . The locations of the K users are

randomly generated from a uniform distribution within the square. The path loss model is given by σ2
km = G0r

−ζ
km,

where G0 > 0 is a constant, rkm is the distance between the mth antenna and kth user, ζ is the path loss factor.

Let m̃k = argmax
m

σ2
km. Define ḡdk = σ2

km̃k
as the direct-link gain, and ḡck = max

l 6=k
σ2
km̃l

as the maximum cross-link

gain. Define η = min
k
ḡdk/ḡ

c
k.

Theorem 6 (Asymptotic Decoupling and Capacity Scaling). For any η0 > 0, we have

Pr (η > η0) ≥ 1−K

[
1−

(
1− π

(
η

1/ζ
0 + 1

)2

/ (2M)

)K−1
]
. (35)

Furthermore, for any ε > 0, the maximum achievable sum-rate Cs almost surely satisfies

O

(
K

(
ζ

2
− ε
)

logM
)
≤ Cs ≤ O

(
K

(
ζ

2
+ ε

)
logM

)
,

as M →∞ with K,S fixed.

Please refer to Appendix G for the proof.

Remark 8 (Asymptotic Decoupling). For large M/K, there is a high probability that η is large, i.e., there is a

high chance that each user can find a set of nearby transmit antennas which are far from other users. Due to this

decoupling effect, simplified physical layer processing (such as Matched-Filter precoder [1]) can also achieve good

performance.
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Figure 4. Relative sum-rate/transmit power error versus S

Corollary 1 (Asymptotic Optimality of Algorithm S2). Algorithm S2 is asymptotically optimal, i.e., for any ε > 0,

the achieved sum-rate IA satisfies IA
a.s
≥ O

(
K
(
ζ
2 − ε

)
logM

)
as M →∞ with K,S fixed.

The proof is given in Appendix H.

VI. NUMERICAL RESULTS

Consider a C-RAN serving K users lying inside a square with an area of 2km× 2km. The simulation setup is

the same as that in Definition 3 with path loss factor ζ = 2.5.

A. Accuracy of the Asymptotic Expressions

We verify the accuracy of the DE of sum-rate (i.e., wk = 1, ∀k) Ī (A, α,p) and the DE of per antenna

transmit power P̄m (A, α,p) ,∀m ∈ A by comparing them to those obtained by Monte-Carlo simulations: Isim and

P sim
m ,∀m ∈ A. We set A = {1, ...,M}, i.e., S = M . Assume the per antenna power constraint is given by ρm =

10dB,∀m and equal power allocation is adopted, i.e., P = cI in (1), where c is chosen such that P̄m (A, α,p) = 10
S .

The regularization factor is fixed as α = β/10. In Fig. 4, we plot the relative sum-rate error
∣∣Ī (A, α,p)− Isim

∣∣ /Isim

and the relative transmit power error
(∑

m∈A
∣∣P̄m (A, α,p)− P sim

m

∣∣2)1/2

/
(∑

m∈A
∣∣P sim
m

∣∣2)1/2

, versus S. Both

cases with K = S/2 (i.e., β = 1/2) and K = S (i.e., β = 1) are simulated. The large scale fading matrix Σ is

generated according to a random realization of user locations. It can be seen that the asymptotic approximation is

quite accurate.

In the rest of the simulations (i.e., in Fig. 5 and 6), the per antenna power constraint is set as ρm = P0,∀m. The

number of users K is fixed as 8. From user 1 to user 8, the weights wk’s increase linearly from 0.5 to 1.5.

B. Performance Gain of the Proposed Scheme w.r.t. Baseline

In Fig. 5, we verify the performance gain of the proposed scheme w.r.t. the traditional antenna selection baseline

algorithm where each user is associated with the strongest antennas. There are a total number of M = 25 antennas.
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Figure 5. Comparison of proposed antenna selection scheme and baseline

We plot the weighted sum-rates averaged over different realizations of user locations versus P0 for S = 8 and

16 respectively. In the subplot on the left-hand side of Fig. 5, we consider the strong cross link case, where the

user locations are randomly generated but with the restriction that the distance between each user and the nearest

antenna must be larger than a threshold. In this case, it can be seen that the proposed scheme achieves significant

performance gain compared with the baseline. In the subplot on the right-hand side of Fig. 5, we consider the

normal case where the users are uniformly distributed. Similar results can be observed, although the performance

gain is smaller6.

C. Advantages of the Proposed Scheme over the Cases without Antenna Selection

In Fig. 6, we compare the proposed antenna selection scheme with various cases without antenna selection. There

are a total number of M = 49 antennas and S = 16 of them are selected for transmission. The performance of

the following cases are compared. Case 1: All the 49 distributed antennas are used for transmission. Case 2: All

the 49 antennas are collocated at the BS and are used for transmission. Case 3: There is a total of 16 antennas

evenly distributed in the square and all the 16 antennas are used for transmission. We plot the weighted sum-rates

averaged over different realizations of user locations versus the sum transmit power7. The following advantages

of the proposed antenna selection scheme can be observed. 1) Under the same sum transmit power, it achieves a

weighted sum-rate that is close to Case 1, and is better than Case 2, while the pilot training overhead is lower. 2)

The performance is much better than Case 3 due to large antenna gain.

6This is because the unfavored scenarios for the baseline algorithm as illustrated in Example 1 and 2 occur less frequently when the users

are uniformly distributed.
7In Fig. 6, the horizontal axis is chosen to be sum transmit power to make a fair comparison of the performance for the cases with different

number of active transmit antennas and different antenna deployments (i.e., distributed versus collocated).
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Figure 6. Comparison of weighted sum-rates for different choices of transmit antennas

VII. CONCLUSION

In this paper, we have considered a downlink antenna selection in a large distributed MIMO network with M � 1

distributed antennas serving K users using RZF precoding. The objective is to maximize the average weighted

sum-rate under per antenna and sum power constraints based on large scale fading. This mixed combinatorial and

non-convex problem is decomposed into simpler subproblems, each of which is then solved by an efficient algorithm.

We also show that the capacity of a very large distributed MIMO network scales according to O
(
K ζ

2 logM
)

, where

ζ is the path loss factor.

APPENDIX

A. Proof of Proposition 1

First, we prove the following lemma.

Lemma 3. Define σmax , max
1≤k≤K,1≤m≤M

σkm. Then for every t ≥ 0, with probability at least 1− e−t2/σ2
max one has

‖H‖ ≤ C (σmax)
(√

K +
√
M
)

+ t, (36)

where C (σmax) is a constant only depends on σmax.

Proof: Recall that H = W ◦ Σ, where the notation ◦ denotes the Hadamard product; and W is the small

scale fading matrix with i.i.d.∼ CN (0, 1) entries. For any matrix X ∈ CK×M , let x = Vec (X) represent the

vector obtained by stacking the column of X, and let Vec−1 (x) denote the inverse mapping. Define a function

f (x) ,
∥∥Vec−1 (x) ◦Σ

∥∥. Then we have

|f (x)− f (y)| ≤ ‖x ◦ Vec (Σ)− y ◦ Vec (Σ)‖ (37)

≤ σmax ‖x− y‖ ,



where (37) follows from the fact that ‖x ◦ Vec (Σ)‖ is a 1-Lipschitz function of x ◦ Vec (Σ). It can be deduced

from [22, Theorem 2] that

E ‖H‖ ≤ C (σmax)
(√

K +
√
M
)
. (38)

Note that ‖H‖ = f (w), where w = Vec (W) has i.i.d.∼ CN (0, 1) entries. One has

Pr
{
f (w)− C (σmax)

(√
K +

√
M
)
> t
}

≤ Pr {f (w)− Ef (w) > t} ≤ e−t
2/σ2

max , (39)

where the last inequality is obtained by applying the Gaussian concentration in [23, Prop. 5.34] on the function

f̂ (ŵ) , f (w) , where ŵ ,
[

Re(
√

2w) Im(
√

2w)
]T

. This completes the proof for Lemma 3.

Noting that H̄ = H/
√
S, Proposition 1 follows immediately from Lemma 3 by setting t =

√
S and letting

S →∞.

B. Proof of Lemma 2

For conciseness, the Σ(S),Ψ(S)
(
Σ(S)

)
=
{
A(S), α(S),p(S)

}
are denoted as Σ,Ψ (Σ) = {A, α,p} and we

use “a.s→ 0” as a simplified notation for “a.s→ 0, as S → ∞”. Recall that Aj is the jth antenna in A. By denoting

Q̃j = H̄c
jH̄

c†
j +αIK , where H̄c

j is the matrix of H̄ where the jth column is removed, and applying matrix inverse

lemma to (3), we have

SPAj (Ψ (Σ)) = Acj

(
1 + h̄c†j Q̃−1

j h̄cj

)−2

, (40)

where Acj = h̄c†j Q̃−1
j PQ̃−1

j h̄cj , and h̄cj = H̄1j is the j-th column of H̄. Note that

Acj = h̃c†j σ
c
jQ̃
−1
j PQ̃−1

j σ
c
jh̃

c
j , (41)

where σcj = diag (σ1j , ..., σKj) , and the elements of h̃cj ,
(
σcj
)−1

h̄cj are i.i.d. complex random variables with

zero mean, variance 1/S. For any A ∈ CK×K , define Ξσcj ,A , 1
KTr

((
σcj
)2

(A + αIK)
−1
)

. Using [24, Corrolary

1], (41) and the equality 1
KTr

((
σcj
)2

Q̃−1
j PQ̃−1

j

)
= − ∂

∂zΞσcj ,H̄c
jH̄

c†
j +zP

∣∣∣
z=0

, we have

Acj +
K

S

∂

∂z
Ξσcj ,H̄c

jH̄
c†
j +zP

∣∣∣∣
z=0

a.s→ 0. (42)

By [25, Lemma 2.1], we have

∂

∂z
Ξσcj ,H̄c

jH̄
c†
j +zP

∣∣∣∣
z=0

− ∂

∂z
Ξσcj ,H̄H̄†+zP

∣∣∣∣
z=0

a.s→ 0. (43)

Applying [6, Theorem 1] to Ξσcj ,H̄H̄†+zP, we obtain8

K

S

∂

∂z
Ξσcj ,H̄H̄†+zP

∣∣∣∣
z=0

+
α−1

S

K∑
i=1

σ2
iAj (pivi − ϕi)

a.s→ 0, (44)

8In [6, Thereom 1], α is a positive constant. However, it can be verified that the proof of [6, Thereom 1] still holds if we replace the constant

α by α(S) = Ψ
(S)
α

(
Σ(S)

)
due to the bounded constraint on Ψ

(S)
α .



where vi is defined in (12) and ϕi is defined in (13). Combining (42-44), we have

Acj −
α−1

S

K∑
i=1

σ2
iAj (pivi − ϕi)

a.s→ 0. (45)

Note that (αIK + ∆−C)
−1 in (13) is invertible because it is diagonally dominant. Applying [24, Corro-

lary 1], [25, Lemma 2.1] and [6, Theorem 1] one by one, we have h̄c†j Q̃−1
j h̄cj − K

S
1
KTr

((
σcj
)2

Q̃−1
j

)
a.s→ 0,

1
KTr

((
σcj
)2

Q̃−1
j

)
− 1

KTr
((
σcj
)2

Q−1
)

a.s→ 0 and 1
KTr

((
σcj
)2

Q−1
)
− 1

K

∑K
i=1 σ

2
iAjvi

a.s→ 0, where Q̃ =

H̄H̄† + αIK . Hence,

h̄c†j Q̃−1
j h̄cj −

1

S

K∑
i=1

σ2
iAjvi

a.s→ 0. (46)

Combining (40), (45) and (46), we have SPm (Ψ (Σ))− SP̄m (Ψ (Σ))
a.s→ 0,∀m ∈ A.

C. Proof of Theorem 1

Let Ψ(S)◦ (Σ(S)
)

be the optimal solution of Problem P
(
Σ(S)

)
. For an admissible policy Ψ(S), let

{
A(S), α(S),p(S)

}
=

Ψ(S)
(
Σ(S)

)
and define Y (S)

m , SPm
(
Ψ(S)

(
Σ(S)

))
for any m ∈ A(S). Recall that K = dβSe and M =

⌈
βS
⌉
.

Then according to the definition of admissible policy and Assumption 3, we have sup
1≤k≤K

p
(S)
k ≤ Pmax, α(S) ≥ αmin

and sup
1≤k≤K,1≤m≤M

σ
(S)
km ≤ σmax for some σmax > 0, uniformly on S. Using the expression of the per an-

tenna transmit power in (3), it can be shown that Y (S)
m ≤ (β+1)Pmaxσ

2
max

α2
min

Y
(S)
m , where Y

(S)
m ,

∑K
k=1|Wkm|2

K and

Wkm∼ CN (0, 1) is the element at the k-th row and m-th column of the small scale fading matrix W. Note that

2KY
(S)
m ∼ χ2 (2K) is a chi-square random variable with 2K degrees of freedom. Using the Chernoff bounds

on the upper tails of the CDF of χ2 (2K), we have F
(S)

Y
(t) , Pr

[
Y

(S)
m ≥ t

]
≤
(
te1−t)K ≤ te1−t for any

t ≥ 1. Using the relationship between expectation and CDF for a positive random variable, it can be shown that

E
[
Y

(S)
m I

Y
(S)
m ≥Y

]
=
´∞
Y
F

(S)

Y
(t) dt + Y F

(S)

Y
(Y ) ≤

(
1 + Y + Y 2

)
e1−Y for any Y ≥ 1, where I

Y
(S)
m ≥Y

= 1 if

Y
(S)
m ≥ Y and I

Y
(S)
m ≥Y

= 0 otherwise. It follows that
{
Y

(S)
m

}
is uniformly integrable [26]. Hence,

{
Y

(S)
m

}
is also

uniformly integrable. Combine the above and Lemma 2, it follows that

SE [Pm (Ψ∗ (Σ)) |Σ ]− SP̄m (Ψ∗ (Σ))→ 0. (47)

Note that for conciseness, Σ(S),Ψ(S)◦ (Σ(S)
)
,Ψ(S)∗ (Σ(S)

)
are denoted as Σ,Ψ◦ (Σ) ,Ψ∗ (Σ) when there is no

ambiguity and we use “→ 0” as a simplified notation for “→ 0 as S →∞”. By the definition of P̄m (Ψ∗ (Σ)), we

have

SP̄m (Ψ∗ (Σ))− ρm ≤ 0. (48)

Then it follows from (47) and (48) that, as S →∞,

SE [Pm (Ψ∗ (Σ)) |Σ ]− ρm ≤ 0,∀m ∈ Ψ∗A (Σ) . (49)

Similarly, as S →∞, it can be shown that

SP̄m (Ψ◦ (Σ))− ρm ≤ 0, ∀m ∈ Ψ◦A (Σ) . (50)



Similarly, define Z(S)
k , log

(
1 + γk

(
Ψ(S)

(
Σ(S)

)))
and ε(S)

k , log
(
1 + γ̄k

(
Ψ(S)

(
Σ(S)

)))
− E

[
Z

(S)
k

∣∣Σ(S)
]
.

Since Kw
(S)
k is uniformly bounded on S according to Assumption 3, there exists a constant C > 0 such that

sup
1≤k≤K

w
(S)
k ≤ C

K , uniformly on S. Using the expression of the SINR in (2), it can be shown that Z(S)
k ≤

log (1 + Pmax). Hence,
{
Z

(S)
k

}
is uniformly integrable [26]. Together with Lemma 1, it follows that ε(S)

k → 0,

i.e., ∀δ > 0, ∃S0 > 0 such that ∀S ≥ S0,
∣∣∣ε(S)
k

∣∣∣ < δ
C ,∀k. Then, ∀δ > 0, ∃S0 > 0 such that ∀S ≥ S0,∣∣∣∑K

k=1 w
(S)
k ε

(S)
k

∣∣∣ ≤∑K
k=1 w

(S)
k

∣∣∣ε(S)
k

∣∣∣ ≤ C
K

∑K
k=1

∣∣∣ε(S)
k

∣∣∣ < δ, i.e.,
∑K
k=1 w

(S)
k ε

(S)
k → 0. Note that

∑K
k=1 w

(S)
k ε

(S)
k =

I
(
Ψ(S)

(
Σ(S)

)
|Σ(S)

)
− Ī

(
Ψ(S)

(
Σ(S)

)
|Σ(S)

)
. Then it follows from the above analysis that

I (Ψ◦ (Σ) |Σ)− Ī (Ψ◦ (Σ) |Σ) → 0,

Ī (Ψ∗ (Σ) |Σ)− I (Ψ∗ (Σ) |Σ) → 0. (51)

From (49), (50) and the definition of Ψ∗ (Σ) and Ψ◦ (Σ), we have

I (Ψ◦ (Σ) |Σ)− I (Ψ∗ (Σ) |Σ) ≥ 0,

Ī (Ψ◦ (Σ) |Σ)− Ī (Ψ∗ (Σ) |Σ) ≤ 0. (52)

It follows from (51) and (52) that

I (Ψ◦ (Σ) |Σ)− I (Ψ∗ (Σ) |Σ)→ 0.

This completes the proof for Theorem 1.

D. Proof of Proposition 2

Using the notations defined in Section IV-B, the constraint in (14) can be rewritten as Rp ≤ ρ. It can be verified

that Rj,l > 0,∀j, l, where Rj,l is the element at the j-th row and l-th column of R. Suppose that there exists k such

that pk > Pmax. We must have
∑K
l=1Rj,lpl > Rj,kPmax > ρAj for sufficiently large Pmax. Hence, for sufficiently

large Pmax, we must have max
1≤k≤K

pk ≤ Pmax in order to satisfy the per antenna power constraint in (14). This

completes the proof.

E. Calculation of the Derivative ∂Î(A,α)
∂α

For convenience, define two (S +K)-dimensional vectors

ρext =

 ρ

0

 , λ̃ext =

 λ̃

−ν̃

 .
Define a (S +K)×K matrix Rext ,

[
RT ,−IK

]T
. Define a vector e ∈ RK whose kth element is

ek =

K∑
l=1

wlglk∑K
i=1 p̃i (A, α) ∂gli∂α(

gllp̃l (A, α) + Ω̃l

)2 −
wl

∂glk
∂α

gllp̃l (A, α) + Ω̃l


+

K∑
l 6=k

(
wl

∂glk
∂α

Ω̃l
−
wlglk

∑K
i 6=l p̃i (A, α) ∂gli∂α

Ω̃2
l

)
.



Define a K ×K matrix Υ whose element at the kth row and lth column is

Υkl =

K∑
l=1

−wlglkgln(
1 +

∑K
i=1 glip̃i (A, α)

)2 +
∑
l 6=k,n

wlglkgln

Ω̃2
l

.

Finally, define a (2K + S)× (2K + S) matrix

Υext =

 Υ; −RT
ext

diag
(
λ̃ext

)
Rext; diag (Rextp̃ (A, α)− ρext)

 .
Taking partial derivative of the equations in (26) with respect to α, we obtain the following linear equations

Υext

 ∂p̃(A,α)
∂α

∂λ̃ext
∂α

 =

 (
∂R
∂α

)T
λ̃+ e

−diag
(
λ̃ext

) (
∂Rext
∂α

)T
p̃ (A, α)

 .
Then we can obtain ∂p̃(A,α)

∂α by solving the above linear equations.

Define J =
{
j : P̄Aj (A, α, p̃ (A, α)) < ρAj

}
and K = {k : p̃k (A, α) > 0}. Note that we have λ̃j = 0, ∀j ∈ J

and ν̃k = 0, ∀k ∈ K according to the KKT conditions. It can be verified that ∂λ̃j∂α = 0, ∀j ∈ J and ∂ν̃k
∂α = 0, ∀k ∈ K.

Therefore, we can delete these |J |+ |K| variables and the corresponding linear equations whose index i satisfies

i−K ∈ J or i− S −K ∈ K. The remaining 2K + S − |J | − |K| variables can be determined by the remaining

linear equations. After obtaining ∂p̃(A,α)
∂α , the derivative ∂Î(A,α)

∂α can be calculated using (30).

To complete the calculation of ∂Î(A,α)
∂α , we still need to obtain ∂gkl

∂α , ∀k, l, and ∂R
∂α . The following Lemma are

useful and can be proved by a direct calculation.

Lemma 4 (Derivatives of the intermediate variables). For the intermediate variables θk, v, ∆ and C defined in

Lemma 1 and Lemma 2, the partial derivatives of them with respective to α are given below.

∂θk
∂α

= (IK −D)
−1

(
∂dk
∂α

+
∂D

∂α
θk

)
, ∀k, (53)

where ∂dk
∂α is given by

∂dkl
∂α

= − 2

S

∑
m∈A

[
σ2
kmσ

2
lm

(
1− 1

S

K∑
i=1

σ2
imϕi

(1 + ξi)
2

)
/f3
m (ξ)

]
, ∀l,

and ∂D
∂α is given by

∂Dln

∂α
=

1

S2

∑
m∈A

[
2σ2

lmσ
2
nm

(1 + ξn)
2

[
1

S

K∑
i=1

σ2
im

1 + ξi

(
ϕi

1 + ξi
− ϕn

1 + ξn

)
− 1− αϕn

1 + ξn

]
/f3
m (ξ)

]
.

∂Cln
∂α

=
1

S

∑
m∈A

[
1

S
σ2
lmσ

2
nm

∂vl
∂α

/ψ2
m (v)− 2

S
σ2
lmσ

2
nmvl

1

S

K∑
i=1

σ2
im

∂vi
∂α

/ψ3
m (v)

]
, ∀l, n, (54)

∂4l
∂α

= − 1

S

∑
m∈A

[
σ2
lm

1

S

K∑
i=1

σ2
im

∂vi
∂α

/ψ2
m (v)

]
, ∀l, (55)

∂v

∂α
= − (αIK + ∆−C)

−1
v, (56)



Using Lemma 4, ∂gkl∂α , ∀k, l, and ∂R
∂α can be obtained by a direct calculation as follows.

∂gkk
∂α

=
2ξk

∂ξk
∂α

(1 + ξk)
3 , ∀k,

∂gkl
∂α

=
∂θkl
∂α

S (1 + ξl)
2

(1 + ξk)
2 −

2θkl

[
∂ξl
∂α (1 + ξk) + ∂ξk

∂α (1 + ξl)
]

S (1 + ξl)
3

(1 + ξk)
3 , ∀k 6= l,

where ∂ξk
∂α = ϕk, ∀k is defined in (13), θk = [θk1, ..., θkK ]

T
, ∀k is defined in (10) and ∂θk

∂α is given in (53). To

calculate ∂R
∂α , we first obtain ∂R̂

∂α as

∂R̂kj
∂α

= −
σ2
kAjα

−1

S2

[
α−1/ψ2

Aj (v) +
2

S

K∑
i=1

σ2
iAj

∂vi
∂α

/ψ3
Aj (v)

]
, ∀k, j.

where ∂vi
∂α , ∀i is given in (56). Then we obtain ∂R̄

∂α as

∂R̄kk
∂α

=
1

S

∑
m∈A

σ2
km

∂vk
∂α

+ σ2
km

1

S

K∑
i 6=k

σ2
im

(
vk
∂vi
∂α

+ vi
∂vk
∂α

) /ψ2
m (v)

−

2σ2
kmvk

1 +
1

S

K∑
i 6=k

σ2
imvi

 1

S

K∑
i=1

σ2
im

∂vi
∂α

 /ψ3
m (v)

 ,∀k,
∂R̄kl
∂α

= − 1

S

∑
m∈A

[
σ2
kmσ

2
lm

1

S

(
vl
∂vk
∂α

+ vk
∂vl
∂α

)
/ψ2

m (v)− 2

S
σ2
kmσ

2
lmvkvl

1

S

K∑
i=1

σ2
im

∂vi
∂α

/ψ3
m (v)

]
,∀k 6= l.

Finally, ∂R
∂α =

[
IS , 1

]T
∂R̃
∂α and ∂R̃

∂α is given by

∂R̃

∂α
=

(
∂R̂

∂α

)T (
V − (αIK + ∆−C)

−1
R̄
)

+ R̂T

(
∂V

∂α
− (αIK + ∆−C)

−1 ∂R̄

∂α

)
+R̂T

(
IK +

∂∆

∂α
− ∂C

∂α

)
(αIK + ∆−C)

−2
R̄,

where ∂C
∂α and ∂∆

∂α are given in (54) and (55) respectively, and ∂V
∂α = diag

(
∂v1
∂α , ...,

∂vK
∂α

)
.

F. Proof of Theorem 5

When PT is large enough, all users will be allocated with non-zero power. In this case, the SINR of user k under

power allocation in (34) is given by

γ̂k (α,p∗ (A, α)) (57)

=
Swkσ

2
k1

(
2αuPT + (β − 1)PT + 1

S

∑K
l=1

1
σ2
l1

)
(∑K

l=1 wl

)(
σ2
k1PT

(1+σ2
k1u)

2 + 1

) − 1,

and Ī (A, α,p∗ (A, α)) =
∑K
k=1 wklog (1 + γ̂k (α,p∗ (A, α))). For any k, it can be shown that the solution

α̃k of ∂
∂α γ̂k (α,p∗ (A, α)) = 0 must satisfy α̃k = O

(
1
PT

)
. Since the optimal regularization factor α∗ must

satisfy min
k
α̃k ≤ α∗ ≤ max

k
α̃k, we have α∗ = O

(
1
PT

)
. To prove the second result, it can be verified that

∂2

∂2α γ̂k (α,p∗ (A, α)) < 0 and thus γ̂k (α,p∗ (A, α)) is concave when α is small enough. Since Ī (A, α,p∗ (A, α))

is a concave increasing function of γ̂k (α,p∗ (A, α)), Ī (A, α,p∗ (A, α)) must be a concave function of α [21].



G. Proof of Theorem 6

We first derive a lower bound for the probability that the minimum distance rmin between any two users is larger

than a certain value r0: Pr (rmin ≥ r0). Let dukl denote the distance between user k and user l. We have

Pr (rmin ≥ r0) = 1− Pr
(

min
l 6=k

dukl ≤ r0, ∃k ∈ {1, ...,K}
)

≥ 1−
K∑
k=1

Pr
(

min
l 6=k

dukl ≤ r0

)
= 1−KPr

(
min
l 6=1

du1l ≤ r0

)
= 1−K

[
1− (Pr (du12 ≥ r0))

K−1
]

≥ 1−K

[
1−

(
1− πr2

0

R2
c

)K−1
]
,

where the second inequality follows from the union bound and the last inequality holds because Pr (du12 ≥ r0)

≥ 1− πr20
R2
c

.

Then we use the path loss model to transfer the probability Pr (rmin ≥ r0) to the probability Pr (η > η0) in (35).

Note that for any k, we have min
m

rkm ≤
√

2Rc
2
√
M

, and max
l
rkm̃l ≥ rmin −

√
2Rc

2
√
M

. Hence η ≥
(
rmin/

(√
2Rc

2
√
M

)
− 1
)ζ

and

Pr (η > η0) ≥ Pr

(rmin/

(√
2Rc

2
√
M

)
− 1

)ζ
> η0


= Pr

(
rmin >

√
2Rc

2
√
M

(
η

1/ζ
0 + 1

))

≥ 1−K

1−

1−
π
(
η

1/ζ
0 + 1

)2

2M


K−1

 .
Finally, we prove the capacity scaling by deriving an upper and a lower bound for the sum-rate. The following

lemma follows directly from Definition 3.

Lemma 5. For any ε > 0, as M →∞ with K,S fixed, we have

Pr
(

min
k,m

rkm ≤M−
1
2−ε
)

=
πM−2ε

R2
c

→ 0,

and thus

Pr
(
ḡdk > G0M

ζ
2 +ε
)
→ 0.

Let PUT = max
m∈A

ρm and let XS be a random variable with χ2 (2S) distribution. Assuming that each user is served

by S antennas without mutual interference, we obtain an upper bound for average sum-rate as follows:

Cs ≤ KE
[
log
(
1 + PUT ḡ

d
kXS/2

)]
≤ Klog

(
1 + PUT ḡ

d
kE [XS ] /2

)
. (58)



Combining (58) with Lemma 5, we prove that Cs
a.s
≤ O

(
K
(
ζ
2 + ε

)
logM

)
as M →∞ with K,S fixed.

Furthermore, it follows from the lower bound provided in Appendix H that Cs ≥ O
(
K
(
ζ
2 − ε

)
logM

)
. This

completes the proof of Theorem 6.

H. Proof of Corollary 1

Due to (35) in Theorem 6, the step 1 in Algorithm S2 will almost surely select a set of antennas A, |A| = K such

that each user has strong direct-link with one of the selected K antennas and weak cross-links with other selected

antennas for large M/K. Assume that each selected antenna only serves the nearest user, and assume equal power

allocation for each user, i.e., the transmit power for each user is PL = min
m∈A

ρm
S . Let Xm denote a random variable

with χ2 (2m) distribution. Let η0 = M
ζ
2−ε1 in (35). Then using (35) and the fact that ḡdk ≥ G0

(√
2Rc

2
√
M

)−ζ
, we

can show that as M →∞ with K,S fixed, the average sum-rate IA is almost surely lower bounded by

IA
a.s
≥ KE

log

1 +
PLG0

(√
2Rc

2
√
M

)−ζ
X1/2

1 + PLM−
ζ
2 +ε1G0

(√
2Rc

2
√
M

)−ζ
XK−1

2


 , (59)

where X1 and XK−1 are independent. Choose B1, B2 > 0 such that Pr (X1 ≥ B1) Pr (XK−1 ≤ B2) ≥ 1 − ε2.
Then as M →∞ with K,S fixed, it follows from (59) that

IA
a.s

≥ K (1− ε2) log

1 +
PLG0

(√
2Rc

2
√
M

)−ζ
B1/2

1 + PLM−
ζ
2

+ε1G0

(√
2Rc

2
√
M

)−ζ
B2
2


= O

(
K (1− ε2)

(
ζ

2
− ε1

)
logM

)
.

Choose ε1, ε2 such that ε1 + ζ
2 ε2 − ε1ε2 = ε. Then we have IA

a.s
≥ O

(
K
(
ζ
2 − ε

)
logM

)
as M → ∞ with K,S

fixed. The rest of the steps in S2 only increase the sum-rate by a constant. This completes the proof.
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