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Sparse Signal Estimation by Maximally Sparse
Convex Optimization

Ivan W. Selesnick and Ilker Bayram

Abstract—This paper addresses the problem of sparsity penal-
ized least squares for applications in sparse signal processing,
e.g. sparse deconvolution. This paper aims to induce sparsity
more strongly than L1 norm regularization, while avoiding non-
convex optimization. For this purpose, this paper describes the
design and use of non-convex penalty functions (regularizers)
constrained so as to ensure the convexity of the total cost function,
F, to be minimized. The method is based on parametric penalty
functions, the parameters of which are constrained to ensure
convexity of F. It is shown that optimal parameters can be
obtained by semidefinite programming (SDP). This maximally
sparse convex (MSC) approach yields maximally non-convex
sparsity-inducing penalty functions constrained such that the
total cost function, F, is convex. It is demonstrated that iterative
MSC (IMSC) can yield solutions substantially more sparse than
the standard convex sparsity-inducing approach, i.e., L1 norm
minimization.

I. INTRODUCTION

In sparse signal processing, the `1 norm has special sig-
nificance [4], [5]. It is the convex proxy for sparsity. Given
the relative ease with which convex problems can be reli-
ably solved, the `1 norm is a basic tool in sparse signal
processing. However, penalty functions that promote sparsity
more strongly than the `1 norm yield more accurate results in
many sparse signal estimation/reconstruction problems. Hence,
numerous algorithms have been devised to solve non-convex
formulations of the sparse signal estimation problem. In the
non-convex case, generally only a local optimal solution can
be ensured; hence solutions are sensitive to algorithmic details.

This paper aims to develop an approach that promotes
sparsity more strongly than the `1 norm, but which attempts to
avoid non-convex optimization as far as possible. In particular,
the paper addresses ill-posed linear inverse problems of the
form

arg min
x∈RN

{
F (x) = ‖y −Hx‖22 +

N−1∑

n=0

λnφn(xn)
}

(1)

where λn > 0 and φn : R → R are sparsity-inducing
regularizers (penalty functions) for n ∈ ZN = {0, . . . , N−1}.
Problems of this form arise in denoising, deconvolution,
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compressed sensing, etc. Specific motivating applications in-
clude nano-particle detection for bio-sensing and near infrared
spectroscopic time series imaging [61], [62].

This paper explores the use of non-convex penalty functions
φn, under the constraint that the total cost function F is convex
and therefore reliably minimized. This idea, introduced by
Blake and Zimmerman [6], is carried out

. . . by balancing the positive second derivatives in
the first term [quadratic fidelity term] against the
negative second derivatives in the [penalty] terms
[6, page 132].

This idea is also proposed by Nikolova in Ref. [49] where it is
used in the denoising of binary images. In this work, to carry
out this idea, we employ penalty functions parameterized by
variables an, i.e., φn(x) = φ(x; an), wherein the parameters
an are selected so as to ensure convexity of the total cost
function F . We note that in [6], the proposed family of penalty
functions are quadratic around the origin and that all an are
equal. On the other hand, the penalty functions we utilize in
this work are non-differentiable at the origin as in [52], [54]
(so as to promote sparsity) and the an are not constrained to
be equal.

A key idea is that the parameters an can be optimized
to make the penalty functions φn maximally non-convex
(i.e., maximally sparsity-inducing), subject to the constraint
that F is convex. We refer to this as the ‘maximally-sparse
convex’ (MSC) approach. In this paper, the allowed interval
for the parameters an, to ensure F is convex, is obtained by
formulating a semidefinite program (SDP) [2], which is itself
a convex optimization problem. Hence, in the proposed MSC
approach, the cost function F to be minimized depends itself
on the solution to a convex problem. This paper also describes
an iterative MSC (IMSC) approach that boosts the applicability
and effectiveness of the MSC approach. In particular, IMSC
extends MSC to the case where H is rank deficient or ill
conditioned; e.g., overcomplete dictionaries and deconvolution
of near singular systems.

The proposed MSC approach requires a suitable parametric
penalty function φ(· ; a), where a controls the degree to which
φ is non-convex. Therefore, this paper also addresses the
choice of parameterized non-convex penalty functions so as
to enable the approach. The paper proposes suitable penalty
functions φ and describes their relevant properties.

A. Related Work (Threshold Functions)

When H in (1) is the identity operator, the problem is one of
denoising and is separable in xn. In this case, a sparse solution
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x is usually obtained by some type of threshold function,
θ : R → R. The most widely used threshold functions are
the soft and hard threshold functions [21]. Each has its disad-
vantages, and many other thresholding functions that provide
a compromise of the soft and hard thresholding functions
have been proposed – for example: the firm threshold [32],
the non-negative (nn) garrote [26], [31], the SCAD threshold
function [24], [73], and the proximity operator of the `p quasi-
norm (0 < p < 1) [44]. Several penalty functions are unified
by the two-parameter formulas given in [3], [35], wherein
threshold functions are derived as proximity operators [19].
(Table 1.2 of [19] lists the proximity operators of numerous
functions.) Further threshold functions are defined directly by
their functional form [70]–[72].

Sparsity-based nonlinear estimation algorithms can also be
developed by formulating suitable non-Gaussian probability
models that reflect sparse behavior, and by applying Bayesian
estimation techniques [1], [17], [23], [39], [40], [48], [56].
We note that, the approach we take below is essentially a
deterministic one; we do not explore its formulation from a
Bayesian perspective.

This paper develops a specific threshold function designed
so as to have the three properties advocated in [24]: unbiased-
ness (of large coefficients), sparsity, and continuity. Further,
the threshold function θ and its corresponding penalty function
φ are parameterized by two parameters: the threshold T and
the right-sided derivative of θ at the threshold, i.e. θ′(T+),
a measure of the threshold function’s sensitivity. Like other
threshold functions, the proposed threshold function biases
large |xn| less than does the soft threshold function, but is
continuous unlike the hard threshold function. As will be
shown below, the proposed function is most similar to the
threshold function (proximity operator) corresponding to the
logarithmic penalty, but it is designed to have less bias. It is
also particularly convenient in algorithms for solving (1) that
do not call on the threshold function directly, but instead call
on the derivative of penalty function, φ′(x), due to its simple
functional form. Such algorithms include iterative reweighted
least squares (IRLS) [38], iterative reweighted `1 [11], [69],
FOCUSS [58], and algorithms derived using majorization-
minimization (MM) [25] wherein the penalty function is upper
bounded (e.g. by a quadratic or linear function).

B. Related Work (Sparsity Penalized Least Squares)
Numerous problem formulations and algorithms to obtain

sparse solutions to the general ill-posed linear inverse problem,
(1), have been proposed. The `1 norm penalty (i.e., φn(x) =
|x|) has been proposed for sparse deconvolution [10], [16],
[41], [66] and more generally for sparse signal processing [15]
and statistics [67]. For the `1 norm and other non-differentiable
convex penalties, efficient algorithms for large scale problems
of the form (1) and similar (including convex constraints)
have been developed based on proximal splitting methods [18],
[19], alternating direction method of multipliers (ADMM) [9],
majorization-minimization (MM) [25], primal-dual gradient
descent [22], and Bregman iterations [36].

Several approaches aim to obtain solutions to (1) that are
more sparse than the `1 norm solution. Some of these methods

proceed first by selecting a non-convex penalty function that
induces sparsity more strongly than the `1 norm, and second by
developing non-convex optimization algorithms for the mini-
mization of F ; for example, iterative reweighted least squares
(IRLS) [38], [69], FOCUSS [37], [58], extensions thereof [47],
[65], half-quadratic minimization [12], [34], graduated non-
convexity (GNC) [6], and its extensions [50]–[52], [54].

The GNC approach for minimizing a non-convex function F
proceeds by minimizing a sequence of approximate functions,
starting with a convex approximation of F and ending with
F itself. While GNC was originally formulated for image
segmentation with smooth penalties, it has been extended to
general ill-posed linear inverse problems [51] and non-smooth
penalties [46], [52], [54].

With the availability of fast reliable algorithms for `1
norm minimization, reweighted `1 norm minimization is a
suitable approach for the non-convex problem [11], [69]: the
tighter upper bound of the non-convex penalty provided by
the weighted `1 norm, as compared to the weighted `2 norm,
reduces the chance of convergence to poor local minima. Other
algorithmic approaches include ‘difference of convex’ (DC)
programming [33] and operator splitting [13].

In contrast to these works, in this paper the penalties φn
are constrained by the operator H and by λn. This approach
(MSC) deviates from the usual approach wherein the penalty
is chosen based on prior knowledge of x. We also note
that, by design, the proposed approach leads to a convex
optimization problem; hence, it differs from approaches that
pursue non-convex optimization. It also differs from usual
convex approaches for sparse signal estimation/recovery which
utilize convex penalties. In this paper, the aim is precisely to
utilize non-convex penalties that induce sparsity more strongly
than a convex penalty possibly can.

The proposed MSC approach is most similar to the gen-
eralizations of GNC to non-smooth penalties [50], [52], [54]
that have proven effective for the fast image reconstruction
with accurate edge reproduction. In GNC, the convex approx-
imation of F is based on the minimum eigenvalue of HTH.
The MSC approach is similar but more general: not all an are
equal. This more general formulation leads to an SDP, not an
eigenvalue problem. In addition, GNC comprises a sequence
of non-convex optimizations, whereas the proposed approach
(IMSC) leads to a sequence of convex problems. The GNC
approach can be seen as a continuation method, wherein a
convex approximation of F is gradually transformed to F in
a predetermined manner. In contrast, in the proposed approach,
each optimization problem is defined by the output of an SDP
which depends on the support of the previous solution. In a
sense, F is redefined at each iteration, to obtain progressively
sparse solutions.

By not constraining all an to be equal, the MSC approach
allows a more general parametric form for the penalty, and
as such, it can be more non-convex (i.e., more sparsity
promoting) than if all an are constrained to be equal. The
example in Sec. III-F compares the two cases (with and
without the simplification that all an are equal) and shows that
the simplified version gives inferior results. (The simplified
form is denoted IMSC/S in Table I and Fig. 9 below).
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If the measurement matrix H is rank deficient, and if all
an were constrained to be equal, then the only solution in
the proposed approach would have an = 0 for all n; i.e.,
the penalty function would be convex. In this case, it is not
possible to gain anything by allowing the penalty function
to be non-convex subject to the constraint that the total cost
function is convex. On the other hand, the proposed MSC
approach, depending on H, can still have all or some an > 0
and hence can admit non-convex penalties (in turn, promoting
sparsity more strongly).
L0 minimizaton: A distinct approach to obtain sparse solu-
tions to (1) is to find an approximate solution minimizing the
`0 quasi-norm or satisfying an `0 constraint. Examples of such
algorithms include: matching pursuit (MP) and orthogonal MP
(OMP) [45], greedy `1 [43], iterative hard thresholding (IHT)
[7], [8], [42], [55], hard thresholding pursuit [28], smoothed
`0, [46], iterative support detection (ISD) [68], single best
replacement (SBR) [63], and ECME thresholding [57].

Compared to algorithms aiming to solve the `0 quasi-norm
problem, the proposed approach again differs. First, the `0
problem is highly non-convex, while the proposed approach
defines a convex problem. Second, methods for `0 seek the
correct support (index set of non-zero elements) of x and
do not regularize (penalize) any element xn in the calculated
support. In contrast, the design of the regularizer (penalty)
is at the center of the proposed approach, and no xn is left
unregularized.

II. SCALAR THRESHOLD FUNCTIONS

The proposed threshold function and corresponding penalty
function is intended to serve as a compromise between soft
and hard threshold functions, and as a parameterized family
of functions for use with the proposed MSC method for ill-
posed linear inverse problems, to be described in Sect. III.

First, we note the high sensitivity of the hard threshold
function to small changes in its input. If the input is slightly
less than the threshold T , then a small positive perturbation
produces a large change in the output, i.e., θh(T − ε) = 0
and θh(T + ε) ≈ T where θh : R → R denotes the hard
threshold function. Due to this discontinuity, spurious noise
peaks/bursts often appear as a result of hard-thresholding
denoising. For this reason, a continuous threshold function
is often preferred. The susceptibility of a threshold function
θ to the phenomenon of spurious noise peaks can be roughly
quantified by the maximum value its derivative attains, i.e.,
maxy∈R θ

′(y), provided θ is continuous. For the threshold
functions considered below, θ′ attains its maximum value
at y = ±T+; hence, the value of θ′(T+) will be noted.
The soft threshold function θs has θ′s(T

+) = 1 reflecting
its insensitivity. However, θs substantially biases (attenuates)
large values of its input; i.e., θs(y) = y − T for y > T .

A. Problem Statement

In this section, we seek a threshold function and correspond-
ing penalty (i) for which the ‘sensitivity’ θ′(T+) can be readily
tuned from 1 to infinity and (ii) that does not substantially bias
large y, i.e., y − θ(y) decays to zero rapidly as y increases.

For a given penalty function φ, the proximity operator [19]
denoted θ : R→ R is defined by

θ(y) = argmin
x∈R

{
F (x) =

1

2
(y − x)2 + λφ(x)

}
(2)

where λ > 0. For uniqueness of the minimizer, we assume
in the definition of θ(y) that F is strictly convex. Common
sparsity-inducing penalties include

φ(x) = |x| and φ(x) =
1

a
log(1 + a |x|). (3)

We similarly assume in the following that φ(x) is three times
continuously differentiable for all x ∈ R except x = 0, and
that φ is symmetric, i.e., φ(−x) = φ(x).

If θ(y) = 0 for all |y| 6 T for some T > 0, and T is
the maximum such value, then the function θ is a threshold
function and T is the threshold.

It is often beneficial in practice if θ admits a simple func-
tional form. However, as noted above, a number of algorithms
for solving (1) do not use θ directly, but use φ′ instead. In that
case, it is beneficial if φ′ has a simple function form. This is
relevant in Sec. III where such algorithms will be used.

In order that y−θ(y) approaches zero, the penalty function
φ must be non-convex, as shown by the following.

Proposition 1. Suppose φ : R→ R is a convex function and
θ(y) denotes the proximity operator associated with φ, defined
in (2). If 0 6 y1 6 y2, then

y1 − θ(y1) 6 y2 − θ(y2). (4)

Proof: Let ui = θ(yi) for i = 1, 2. We have,

yi ∈ ui + λ∂φ(ui). (5)

Since y2 > y1, by the monotonicity of both of the terms on
the right hand side of (5), it follows that u2 > u1.

If u2 = u1, (4) holds with since y2 ≥ y1.
Suppose now that u2 > u1. Note that the subdifferential

∂φ is also a monotone mapping since φ is a convex function.
Therefore it follows that if zi ∈ λ∂φ(ui), we should have
z2 > z1. Since yi − θ(yi) ∈ λ∂φ(ui), the claim follows.

According to the proposition, if the penalty is convex, then
the gap between θ(y) and y increases as the magnitude of y
increases. The larger y is, the greater the bias (attenuation)
is. The soft threshold function is an extreme case that keeps
this gap constant (beyond the threshold T , the gap is equal to
T ). Hence, in order to avoid attenuation of large values, the
penalty function must be non-convex.

B. Properties

As detailed in the Appendix, the proximity operator (thresh-
old function) θ defined in (2) can be expressed as

θ(y) =

{
0, |y| ≤ T
f−1(y), |y| ≥ T (6)

where the threshold, T , is given by

T = λφ′(0+) (7)
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and f : R+ → R is defined as

f(x) = x+ λφ′(x). (8)

As noted in the Appendix, F is strictly convex if

φ′′(x) > − 1

λ
, ∀x > 0. (9)

In addition, we have

θ′(T+) =
1

1 + λφ′′(0+)
(10)

and
θ′′(T+) = − λφ′′′(0+)

[1 + λφ′′(0+)]3
. (11)

Equations (10) and (11) will be used in the following. As
noted above, θ′(T+) reflects the maximum sensitivity of θ.
The value θ′′(T+) is also relevant; it will be set in Sec. II-D
so as to induce θ(y)− y to decay rapidly to zero.

C. The Logarithmic Penalty Function

The logarithmic penalty function can be used for the MSC
method to be described in Sec. III. It also serves as the model
for the penalty function developed in Sec. II-D below, designed
to have less bias. The logarithmic penalty is given by

φ(x) =
1

a
log(1 + a |x|), 0 < a ≤ 1

λ
(12)

which is differentiable except at x = 0. For x 6= 0, the
derivative of φ is given by

φ′(x) =
1

1 + a |x| sign(x), x 6= 0, (13)

as illustrated in Fig. 1a. The function f(x) = x + λφ′(x) is
illustrated in Fig. 1b. The threshold function θ, given by (6),
is illustrated in Fig. 1c.

Let us find the range of a for which F is convex. Note that

φ′′(x) = − a

(1 + ax)2
, φ′′′(x) =

2a2

(1 + ax)3

for x > 0. Using the condition (9), it is deduced that if 0 <
a ≤ 1/λ, then f(x) is increasing, the cost function F in (2)
is convex, and the threshold function θ is continuous.

Using (7), the threshold is given by T = λ. To find θ′(T+)
and θ′′(T+), note that φ′′(0+) = −a, and φ′′′(0+) = 2a2.
Using (10) and (11), we then have

θ′(T+) =
1

1− aλ, θ′′(T+) = − 2a2λ

(1− aλ)3 . (14)

As a varies between 0 and 1/λ, the derivative θ′(T+) varies
between 1 and infinity. As a approaches zero, θ approaches the
soft-threshold function. We can set a so as to specify θ′(T+).
Solving (14) for a gives

a =
1

λ

(
1− 1

θ′(T+)

)
. (15)

Therefore, T and θ′(T+) can be directly specified by setting
the parameters λ and a (i.e., λ = T and a is given by (15)).

Note that θ′′(T+) given in (14) is strictly negative except
when a = 0 which corresponds to the soft threshold function.
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and f : R+ ! R is defined as

f(x) = x + ��0(x). (8)

As noted in the Appendix, F is strictly convex if

�00(x) > � 1

�
, 8x > 0. (9)

In addition, we have

✓0(T+) =
1

1 + ��00(0+)
(10)

and
✓00(T+) = � ��000(0+)

[1 + ��00(0+)]3
. (11)

Equations (10) and (11) will be used in the following. As
noted above, ✓0(T+) reflects the maximum sensitivity of ✓.
The value ✓00(T+) is also relevant; it will be set in Sec. II-D
so as to induce ✓(y) � y to decay rapidly to zero.

C. The Logarithmic Penalty Function

The logarithmic penalty function can be used for the MSC
method to be described in Sec. III. It also serves as the model
for the penalty function developed in Sec. II-D below, designed
to have less bias. The logarithmic penalty is given by

�(x) =
1

a
log(1 + a |x|), 0 < a  1

�
(12)

which is differentiable except at x = 0. For x 6= 0, the
derivative of � is given by

�0(x) =
1

1 + a |x| sign(x), x 6= 0, (13)

as illustrated in Fig. 1a. The function f(x) = x + ��0(x) is
illustrated in Fig. 1b. The threshold function ✓, given by (6),
is illustrated in Fig. 1c.

Let us find the range of a for which F is convex. Note that

�00(x) = � a

(1 + ax)2
, �000(x) =

2a2

(1 + ax)3

for x > 0. Using the condition (9), it is deduced that if 0 <
a  1/�, then f(x) is increasing, the cost function F in (2)
is convex, and the threshold function ✓ is continuous.

Using (7), the threshold is given by T = �. To find ✓0(T+)
and ✓00(T+), note that �00(0+) = �a, and �000(0+) = 2a2.
Using (10) and (11), we then have

✓0(T+) =
1

1 � a�
, ✓00(T+) = � 2a2�

(1 � a�)3
. (14)

As a varies between 0 and 1/�, the derivative ✓0(T+) varies
between 1 and infinity. As a approaches zero, ✓ approaches the
soft-threshold function. We can set a so as to specify ✓0(T+).
Solving (14) for a gives

a =
1

�

✓
1 � 1

✓0(T+)

◆
. (15)

Therefore, T and ✓0(T+) can be directly specified by setting
the parameters � and a (i.e., � = T and a is given by (15)).

Note that ✓00(T+) given in (14) is strictly negative except
when a = 0 which corresponds to the soft threshold function.
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Fig. 1. Functions related to the logarithmic penalty function (12).Fig. 1. Functions related to the logarithmic penalty function (12). (a) φ′(x).
(b) f(x) = x+ λφ′(x). (c) Threshold function, θ(y) = f−1(y).

The negativity of θ′′(T+) inhibits the rapid approach of θ to
the identity function.

The threshold function θ is obtained by solving y = f(x)
for x, leading to

ax2 + (1− a |y|) |x|+ (λ− |y|) = 0, (16)
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which leads in turn to the explicit formula

θ(y) =





[
|y|
2 − 1

2a +
√

( |y|2 + 1
2a )

2 − λ
a

]
sign(y), |y| > λ

0, |y| 6 λ
as illustrated in Fig. 1c. As shown, the gap y−θ(y) goes to zero
for large y. By increasing a up to 1/λ, the gap goes to zero
more rapidly; however, increasing a also changes θ′(T+). The
single parameter a affects both the derivative at the threshold
and the convergence rate to identity.

The next section derives a penalty function, for which the
gap goes to zero more rapidly, for the same value of θ′(T+).
It will be achieved by setting θ′′(T+) = 0.

D. The Arctangent Penalty Function

To obtain a penalty approaching the identity more rapidly
than the logarithmic penalty, we use equation (13) as a model,
and define a new penalty by means of its derivative as

φ′(x) =
1

bx2 + a |x|+ 1
sign(x), a > 0, b > 0. (17)

Using (7), the corresponding threshold function θ has threshold
T = λ. In order to use (10) and (11), we note

φ′′(x) = − (2bx+ a)

(bx2 + ax+ 1)2
for x > 0

φ′′′(x) =
2(2bx+ a)2

(bx2 + ax+ 1)3
− 2b

(bx2 + ax+ 1)2
for x > 0.

The derivatives at zero are given by

φ′(0+) = 1, φ′′(0+) = −a, φ′′′(0+) = 2a2 − 2b. (18)

Using (10), (11), and (18), we have

θ′(T+) =
1

1− λa, θ′′(T+) =
2λ(b− a2)
(1− λa)3 . (19)

We may set a so as to specify θ′(T+). Solving (19) for a
gives (15), the same as for the logarithmic penalty function.

In order that the threshold function increases rapidly toward
the identity function, we use the parameter b. To this end, we
set b so that θ is approximately linear in the vicinity of the
threshold. Setting θ′′(T+) = 0 in (19) gives b = a2. Therefore,
the proposed penalty function is given by

φ′(x) =
1

a2x2 + a |x|+ 1
sign(x). (20)

From the condition (9), we find that if 0 < a ≤ 1/λ, then
f(x) = x+ λφ′(x) is strictly increasing, F is strictly convex,
and θ is continuous. The parameters, a and λ, can be set as
for the logarithmic penalty function; namely T = λ and by
(15).

To find the threshold function θ, we solve y = x+ λφ′(x)
for x which leads to

a2
∣∣x3
∣∣+a(1−|y| a)x2+(1−|y| a) |x|+(λ−|y|) = 0 (21)

for |y| > T . The value of θ(y) can be found solving the
cubic polynomial for x, and multiplying the real root by
sign(y). Although θ does not have a simple functional form,

0 2 4 6 8 10

0

2

4

6

8

10

y

atan threshold function (T = 2)

θ(y) = f
−1

(y)

 

 

θ’(T
+
) = inf

θ’(T
+
) = 2

θ’(T
+
) = 1

Fig. 2. The arctangent threshold function for several values of θ′(T+).

the function φ′ does. Therefore, algorithms such as MM and
IRLS, which use φ′ instead of θ, can be readily used in
conjunction with this penalty function.

The penalty function itself, φ, can be found by integrating
its derivative:

φ(x) =

∫ |x|

0

φ′(u) du (22)

=
2

a
√
3

(
tan−1

(
1 + 2a |x|√

3

)
− π

6

)
. (23)

We refer to this as the arctangent penalty function.
The threshold function is illustrated in Fig. 2 for threshold

T = λ = 2 and three values of θ′(T+). With λ = 2,
the function F is strictly convex for all a ∈ [0, 1/λ]. With
θ′(T+) = 1, one gets a = 0 and θ is the soft-threshold
function. With θ′(T+) = 2, one gets a = 1/4 and θ converges
to the identity function. With θ′(T+) =∞, one gets a = 1/2;
in this case, θ converges more rapidly to the identity function,
but θ may be more sensitive than desired in the vicinity of the
threshold.

Figure 3 compares the logarithmic and arctangent threshold
functions where the parameters for each function are set so that
T and θ′(T+) are the same, specifically, T = θ′(T+) = 2. It
can be seen that the arctangent threshold function converges
more rapidly to the identity function than the logarithmic
threshold function. To illustrate the difference more clearly,
the lower panel in Fig. 3 shows the gap between the iden-
tity function and the threshold function. For the arctangent
threshold function, this gap goes to zero more rapidly. Yet, for
both threshold functions, θ′ has a maximum value of 2. The
faster convergence of the arctangent threshold function is due
to φ′(x) going to zero like 1/x2, whereas for the logarithmic
threshold function φ′(x) goes to zero like 1/x.

Figure 4 compares the logarithmic and arctangent penalty
functions. Both functions grow more slowly than |x| and thus
induce less bias than the `1 norm for large x. Moreover, while
the logarithmic penalty tends to +∞, the arctangent penalty
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Fig. 3. Comparison of arctangent and logarithmic penalty functions, both
with ✓0(T+) = 2. The arctangent threshold function approaches the identity
faster than the logarithmic penalty function.
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Fig. 4. Sparsity promoting penalties: absolute value (`1 norm), logarithmic,
and arctangent penalty functions (a = 0.25).

faster convergence of the arctangent threshold function is due
to �0(x) going to zero like 1/x2, whereas for the logarithmic
threshold function �0(x) goes to zero like 1/x.

Figure 4 compares the logarithmic and arctangent penalty
functions. Both functions grow more slowly than |x| and thus
induce less bias than the `1 norm for large x. Moreover, while
the logarithmic penalty tends to +1, the arctangent penalty
tends to a constant. Hence, the arctangent penalty leads to less
bias than the logarithmic penalty. All three penalties have the

same slope (of 1) at x = 0; and furthermore, the logarithmic
and arctangent penalties have the same second derivative (of
�a) at x = 0. But, the logarithmic and arctangent penalties
have different third-order derivatives at x = 0 (2a2 and zero,
respectively). That is, the arctangent penalty is more concave
at the origin than the logarithmic penalty.

E. Other Penalty Functions

The firm threshold function [30], and the smoothly clipped
absolute deviation (SCAD) threshold function [23], [71] also
provide a compromise between hard and soft thresholding.
Both the firm and SCAD threshold functions are continuous
and equal to the identity function for large |y| (the corre-
sponding �0(x) is equal to zero for x above some value).
Some algorithms, such as IRLS, MM, etc., involve dividing
by �0, and for these algorithms, divide-by-zero issues arise.
Hence, the penalty functions corresponding to these threshold
functions are unsuitable for these algorithms.

A widely used penalty function is the `p pseudo-norm, 0 <
p < 1, for which �(x) = |x|p . However, using (9), it can
be seen that for this penalty function, the cost function F (x)
is not convex for any 0 < p < 1. As our current interest is
in non-convex penalty functions for which F is convex, we
do not further discuss the `p penalty. The reader is referred
to [42], [51] for in-depth analysis of this and several other
penalty functions.

F. Denoising Example

To illustrate the trade-off between ✓0(T+) and the bias
introduced by thresholding, we consider the denoising of the
noisy signal illustrated in Fig. 5. Wavelet domain thresholding
is performed with several thresholding functions.

Each threshold function is applied with the same threshold,
T = 3�. Most of the noise (c.f. the ‘three-sigma rule’) will
fall below the threshold and will be eliminated. The RMSE-
optimal choice of threshold is usually lower than 3�, so this
represents a larger threshold than that usually used. However,
a larger threshold reduces the number of spurious noise peaks
produced by hard thresholding.

The hard threshold achieves the best RMSE, but the output
signal exhibits spurious noise bursts due to noisy wavelet co-
efficients exceeding the threshold. The soft threshold function
reduces the spurious noise bursts, but attenuates the peaks and
results in a higher RMSE. The arctangent threshold function
suppresses the noise bursts, with modest attenuation of peaks,
and results in an RMSE closer to that of hard thresholding.

In this example, the signal is ‘bumps’ from WaveLab
[19], with length 2048. The noise is additive white Gaussian
noise with standard deviation � = 0.4. The wavelet is the
orthonormal Daubechies wavelet with 3 vanishing moments.

III. SPARSITY PENALIZED LEAST SQUARES

Consider the linear model,

y = Hx + w (24)

where x 2 RN is a sparse N -point signal, y 2 RM is
the observed signal, H 2 RM⇥N is a linear operator (e.g.,

Fig. 3. Comparison of arctangent and logarithmic penalty functions, both
with θ′(T+) = 2. The arctangent threshold function approaches the identity
faster than the logarithmic penalty function.
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Fig. 4. Sparsity promoting penalties: absolute value (`1 norm), logarithmic,
and arctangent penalty functions (a = 0.25).

tends to a constant. Hence, the arctangent penalty leads to less
bias than the logarithmic penalty. All three penalties have the
same slope (of 1) at x = 0; and furthermore, the logarithmic
and arctangent penalties have the same second derivative (of
−a) at x = 0. But, the logarithmic and arctangent penalties
have different third-order derivatives at x = 0 (2a2 and zero,
respectively). That is, the arctangent penalty is more concave
at the origin than the logarithmic penalty.

E. Other Penalty Functions

The firm threshold function [32], and the smoothly clipped
absolute deviation (SCAD) threshold function [24], [73] also
provide a compromise between hard and soft thresholding.
Both the firm and SCAD threshold functions are continuous
and equal to the identity function for large |y| (the corre-
sponding φ′(x) is equal to zero for x above some value).
Some algorithms, such as IRLS, MM, etc., involve dividing
by φ′, and for these algorithms, divide-by-zero issues arise.
Hence, the penalty functions corresponding to these threshold
functions are unsuitable for these algorithms.

A widely used penalty function is the `p pseudo-norm, 0 <
p < 1, for which φ(x) = |x|p . However, using (9), it can
be seen that for this penalty function, the cost function F (x)
is not convex for any 0 < p < 1. As our current interest is
in non-convex penalty functions for which F is convex, we
do not further discuss the `p penalty. The reader is referred
to [44], [53] for in-depth analysis of this and several other
penalty functions.

F. Denoising Example

To illustrate the trade-off between θ′(T+) and the bias
introduced by thresholding, we consider the denoising of the
noisy signal illustrated in Fig. 5. Wavelet domain thresholding
is performed with several thresholding functions.

Each threshold function is applied with the same threshold,
T = 3σ. Most of the noise (c.f. the ‘three-sigma rule’) will
fall below the threshold and will be eliminated. The RMSE-
optimal choice of threshold is usually lower than 3σ, so this
represents a larger threshold than that usually used. However,
a larger threshold reduces the number of spurious noise peaks
produced by hard thresholding.

The hard threshold achieves the best RMSE, but the output
signal exhibits spurious noise bursts due to noisy wavelet co-
efficients exceeding the threshold. The soft threshold function
reduces the spurious noise bursts, but attenuates the peaks and
results in a higher RMSE. The arctangent threshold function
suppresses the noise bursts, with modest attenuation of peaks,
and results in an RMSE closer to that of hard thresholding.

In this example, the signal is ‘bumps’ from WaveLab
[20], with length 2048. The noise is additive white Gaussian
noise with standard deviation σ = 0.4. The wavelet is the
orthonormal Daubechies wavelet with 3 vanishing moments.

III. SPARSITY PENALIZED LEAST SQUARES

Consider the linear model,

y = Hx+w (24)

where x ∈ RN is a sparse N -point signal, y ∈ RM is
the observed signal, H ∈ RM×N is a linear operator (e.g.,
convolution), and w ∈ RN is additive white Gaussian noise
(AWGN). The vector x is denoted x = (x0, . . . , xN−1)T .

Under the assumption that x is sparse, we consider the linear
inverse problem:

arg min
x∈RN

{
F (x) =

1

2
‖y−Hx‖22 +

N−1∑

n=0

λnφ(xn; an)

}
(25)
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Fig. 5. Denoising via orthonormal wavelet thresholding using various
threshold functions.

where φ(x; a) is a sparsity-promoting penalty function with
parameter a, such as the logarithmic or arctangent penalty
functions. In many applications, all λn are equal, i.e., λn = λ.
For generality, we let this regularization parameter depend on
the index n.

In the following, we address the question of how to con-
strain the regularization parameters λn and an so as to ensure
F is convex, even when φ( · ; an) is not convex. A problem
of this form is addressed in GNC [6], [50], where the an are
constrained to be equal.

A. Convexity Condition

Let φ(x; a) denote a penalty function with parameter a.
Consider the function v : R→ R, defined as

v(x) =
1

2
x2 + λφ(x; a). (26)

Assume v(x) can be made strictly convex for special choices
of λ and a. We give a name to the set of all such choices.

Definition 1. Let S be the set of pairs (λ, a) for which v(x)
in (26) is strictly convex. We refer to S as the ‘parameter set
associated with φ’.

For the logarithmic and arctangent penalty functions de-
scribed above, the set S is given by

S = {(λ, a) : λ > 0, 0 6 a 6 1/λ}. (27)

Now, consider the function F : RN → R, defined in (25).
The following proposition provides a sufficient condition on
(λn, an) ensuring the strict convexity of F .

Proposition 2. Suppose R is a positive definite diagonal ma-
trix such that HTH−R is positive semidefinite. Let rn denote
the n-th diagonal entry of R, i.e., [R]n,n = rn > 0. Also, let
S be the parameter set associated with φ. If (λn/rn, an) ∈ S
for each n, then F (x) in (25) is strictly convex.

Proof: The function F (x) can be written as

F (x) =
1

2
xT (HTH−R)x− yTHx+

1

2
yTy

︸ ︷︷ ︸
q(x)

+g(x), (28)

where
g(x) =

1

2
xTRx+

∑

n

λnφ(xn; an). (29)

Note that q(x) is convex since HTH−R is positive semidef-
inite. Now, since R is diagonal, we can rewrite g(x) as

g(x) =
∑

n

rn
2
x2n + λnφ(xn; an) (30)

=
∑

n

rn

(1
2
x2n +

λn
rn
φ(xn; an)

)
. (31)

From (31), it follows that if (λn/rn, an) ∈ S for each n, then
g(x) is strictly convex. Under this condition, being a sum of
a convex and a strictly convex function, it follows that F (x)
is strictly convex.

The proposition states that constraints on the penalty pa-
rameters an ensuring strict convexity of F (x) can be obtained
using a diagonal matrix R lower bounding HTH. If H does
not have full rank, then strict convexity is precluded. In that
case, HTH will be positive semidefinite. Consequently, R will
also be positive semidefinite, with some rn equal to zero. For
those indices n, where rn = 0, the quadratic term in (30)
vanishes. In that case, we can still ensure the convexity of F
in (25) by ensuring φ(x; an) is convex. For the logarithmic
and arctangent penalties proposed in this paper, we have
φ(x; a) → |x| as a → 0. Therefore, we define φ(x; 0) = |x|
for the log and atan penalties.

In view of (27), the following is a corollary of this result.

Corollary 1. For the logarithmic and arctangent penalty
functions, if

0 < an <
rn
λn
, (32)

then F in (25) is strictly convex.

We illustrate condition (32) with a simple example using
N = 2 variables. We set H = I, y = [9.5, 9.5]T , and
λ0 = λ1 = 10. Then R = I is a positive diagonal matrix
with HTH − R positive semidefinite. According to (32), F
is strictly convex if ai < 0.1, i = 0, 1. Figure 6 illustrates
the contours of the logarithmic penalty function and the cost
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Fig. 6. Contour plots of the logarithmic penalty function φ and cost function
F for three values of a as described in the text. For a = 0.1, the function F
is convex even though the penalty function is not.

function F for three values of a. For a = 0, the penalty
function reduces to the `1 norm. Both the penalty function and
F are convex. For a = 0.1, the penalty function is non-convex
but F is convex. The non-convexity of the penalty is apparent
in the figure (its contours do not enclose convex regions).
The non-convex ‘star’ shaped contours induce sparsity more
strongly than the diamond shaped contours of the `1 norm. For
a = 0.2, both the penalty function and F are non-convex. The
non-convexity of F is apparent in the figure (a convex function
can not have more than one stationary point, while the figure
shows two). In this case, the star shape is too pronounced for
F to be convex. In this example, a = 0.1 yields the maximally
sparse convex (MSC) problem.

Can a suitable R be obtained by variational principles? Let
us denote the minimal eigenvalue of HTH by αmin. Then
R = αminI is a positive semidefinite diagonal lower bound, as
needed. However, this is a sub-optimal lower bound in general.
For example, if H is a non-constant diagonal matrix, then a
tighter lower bound is HTH itself, which is very different
from αminI. A tighter lower bound is of interest because the

tighter the bound, the more non-convex the penalty function
can be, while maintaining convexity of F . In turn, sparser
solutions can be obtained without sacrificing convexity of
the cost function. A tighter lower bound can be found as
the solution to an optimization problem, as described in the
following.

B. Diagonal Lower Bound Matrix Computation
Given H, the convexity conditions above calls for a positive

semidefinite diagonal matrix R lower bounding HTH. In
order to find a reasonably tight lower bound, each rn should
be maximized. However, these N parameters must be chosen
jointly to ensure HTH − R is positive semidefinite. We
formulate the calculation of R as an optimization problem:

arg max
r∈RN

N−1∑

n=0

rn

such that rn > αmin

HTH−R > 0

(33)

where R is the diagonal matrix [R]n,n = rn. The inequality
HTH − R > 0 expresses the constraint that HTH − R is
positive semidefinite (all its eigenvalues non-negative). Note
that the problem is feasible, because R = αminI satisfies
the constraints. We remark that problem (33) is not the only
approach to derive a matrix R satisfying Proposition 2. For
example, the objective function could be a weighted sum or
other norm of {rn}. One convenient aspect of (33) is that it
has the form of a standard convex problem.

Problem (33) can be recognized as a semidefinite optimiza-
tion problem, a type of convex optimization problem for which
algorithms have been developed and for which software is
available [2]. The cost function in (33) is a linear function
of the N variables, and the constraints are linear matrix
inequalities (LMIs). To solve (33) and obtain R, we have used
the MATLAB software package ‘SeDuMi’ [64].

Often, inverse problems arising in signal processing involve
large data sets (e.g., speech, EEG, and images). Practical algo-
rithms must be efficient in terms of memory and computation.
In particular, they should be ‘matrix-free’, i.e., the operator
H is not explicitly stored as a matrix, nor are individual
rows or columns of H accessed or modified. However, op-
timization algorithms for semidefinite programming usually
involve row/column matrix operations and are not ‘matrix
free’. Hence, solving problem (33) will likely be a bottleneck
for large scale problems. (In the deconvolution example below,
the MSC solution using SDP takes from 35 to 55 times longer
to compute than the `1 norm solution). This motivates the
development of semidefinite algorithms to solve (33) where
H is not explicitly available, but for which multiplications by
H and HT are fast (this is not addressed in this paper).

Nevertheless, for 1D problems of ‘medium’-size (arising
for example in biomedical applications [61]), (33) is readily
solved via existing software. In case (33) is too computation-
ally demanding, then the suboptimal choice R = αminI can
be used as in GNC [6], [50]. Furthermore, we describe below
a multistage algorithm whereby the proposed MSC approach
is applied iteratively.
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C. Optimality Conditions and Threshold Selection

When the cost function F in (25) is strictly convex, then
its minimizer must satisfy specific conditions [29], [4, Prop
1.3]. These conditions can be used to verify the optimality of
a solution produced by a numerical algorithm. The conditions
also aid in setting the regularization parameters λn.

If F in (25) is strictly convex, and φ is differentiable except
at zero, then x∗ minimizes F if




1

λn
[HT (y −Hx∗)]n = φ′(x∗n; an), x∗n 6= 0

1

λn
[HT (y −Hx∗)]n ∈ [φ′(0−; an), φ

′(0+; an)], x∗n = 0

(34)
where [v]n denotes the n-th component of the vector v.

The optimality of a numerically obtained solution can be
illustrated by a scatter plot of [HT (y − Hx)]n/λn versus
xnan, for n ∈ ZN . For the example below, Fig. 8 illustrates
the scatter plot, wherein the points lie on the graph of φ′. We
remark that the scatter plot representation as in Fig. 8 makes
sense only when the parametric penalty φ(x; a) is a function
of ax and a, as are the log and atan penalties, (12) and (23).
Otherwise, the horizontal axis will not be labelled xnan and
the points will not lie on the graph of φ. This might not be
the case for other parametric penalties.

The condition (34) can be used to set the regularization
parameters, λn, as in Ref. [30]. Suppose y follows the model
(24) where x is sparse. One approach for setting λn is to ask
that the solution to (25) be all-zero when x is all-zero in the
model (24). Note that, if x = 0, then y consists of noise only
(i.e., y = w). In this case, (34) suggests that λn be chosen
such that

λn φ
′(0−; an) 6 [HTw]n 6 λn φ′(0+; an), n ∈ ZN . (35)

For the `1 norm, logarithmic and arctangent penalty functions,
φ(0−; an) = −1 and φ(0+; an) = 1, so (35) can be written
as ∣∣[HTw]n

∣∣ 6 λn, n ∈ ZN . (36)

However, the larger λn is, the more xn will be attenuated.
Hence, it is reasonable to set λn to the smallest value satisfying
(36), namely,

λn ≈ max
∣∣[HTw]n

∣∣ (37)

where w is the additive noise. Although (37) assumes avail-
ability of the noise signal w, which is unknown in practice,
(37) can often be estimated based on knowledge of statistics
of the noise w. For example, based on the ‘three-sigma rule’,
we obtain

λn ≈ 3 std([HTw]n). (38)

If w is white Gaussian noise with variance σ2, then

std([HTw]n) = σ‖H(·, n)‖2 (39)

where H(·, n) denotes column n of H. For example, if H
denotes linear convolution, then all columns of H have equal
norm and (38) becomes

λn = λ ≈ 3σ‖h‖2 (40)

where h is the impulse of the convolution system.

D. Usage of Method

We summarize the forgoing approach, MSC, to sparsity
penalized least squares, cf. (25). We assume the parameters
λn are fixed (e.g., set according to additive noise variance).

1) Input: y ∈ RM , H ∈ RM×N , {λn > 0, n ∈ ZN},
φ : R× R→ R.

2) Find a positive semidefinite diagonal matrix R such that
HTH − R is positive semidefinite; i.e., solve (33), or
use the sub-optimal R = αminI. Denote the diagonal
elements of R by rn, n ∈ ZN .

3) For n ∈ ZN , set an such that (rn/λn, an) ∈ S . Here,
S is the set such that v in (26) is convex if (λ, a) ∈ S.

4) Minimize (25) to obtain x.
5) Output: x ∈ RN . �
The penalty function φ need not be the logarithmic or arct-

angent penalty functions discussed above. Another parametric
penalty function can be used, but it must have the property
that v in (26) is convex for (λ, a) ∈ S for some set S. Note
that φ(x, p) = |x|p with 0 < p < 1 does not qualify because
v is non-convex for all 0 < p < 1. On the other hand, the firm
penalty function [32] could be used.

In step (3), for the logarithmic and arctangent penalty
functions, one can use

an = β
rn
λn
, where 0 6 β 6 1. (41)

When β = 0, the penalty function is simply the `1 norm; in
this case, the proposed method offers no advantage relative
to `1 norm penalized least squares (BPD/lasso). When β =
1, the penalty function is maximally non-convex (maximally
sparsity-inducing) subject to F being convex. Hence, as it is
not an arbitrary choice, β = 1 can be taken as a recommended
default value. We have used β = 1 in the examples below.

The minimization of (25) in step (4) is a convex opti-
mization problem for which numerous algorithms have been
developed as noted in Sec. I-B. The most efficient algorithm
depends primarily on the properties of H.

E. Iterative MSC (IMSC)

An apparent limitation of the proposed approach, MSC, is
that for some problems of interest, the parameters rn are either
equal to zero or nearly equal to zero for all n ∈ ZN , i.e.,
R ≈ 0. In this case, the method requires that φ(· ; an) be
convex or practically convex. For example, for the logarithmic
and arctangent penalty functions, rn ≈ 0 leads to an ≈ 0. As a
consequence, the penalty function is practically the `1 norm.
In this case, the method offers no advantage in comparison
with `1 norm penalized least squares (BPD/lasso).

The situation wherein R ≈ 0 arises in two standard
sparse signal processing problems: basis pursuit denoising
and deconvolution. In deconvolution, if the system is non-
invertible or nearly singular (i.e., the frequency response has
a null or approximate null at one or more frequencies), then
the lower bound R will be R ≈ 0. In BPD, the matrix
H often represents the inverse of an overcomplete frame (or
dictionary), in which case the lower bound R is again close
to zero.
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In order to broaden the applicability of MSC, we describe
iterative MSC (IMSC) wherein MSC is applied several times.
On each iteration, MSC is applied only to the non-zero
elements of the sparse solution x obtained as a result of the
previous iteration. Each iteration involves only those columns
of H corresponding to the previously identified non-zero com-
ponents. As the number of active columns of H diminishes as
the iterations progress, the problem (33) produces a sequence
of increasingly positive diagonal matrices R. Hence, as the
iterations progress, the penalty functions become increasingly
non-convex. The procedure can be repeated until there is no
change in the index set of non-zero elements.

The IMSC algorithm can be initialized with the `1 norm
solution, i.e., using φ(x, an) = |x| for all n ∈ ZN . (For the
logarithmic and arctangent penalties, an = 0, n ∈ ZN .) We
assume the `1 norm solution is reasonably sparse; otherwise,
sparsity is likely not useful for the problem at hand. The
algorithm should be terminated when there is no change (or
only insignificant change) between the active set from one
iteration to the next.

The IMSC procedure is described as follows, where i > 1
denotes the iteration index.

1) Initialization. Find the `1 norm solution:

x(1) = arg min
x∈RN

‖y −Hx‖22 +
N−1∑

n=0

λn |xn| . (42)

Set i = 1 and K(0) = N . Note H is of size M ×N .
2) Identify the non-zero elements of x(i), and record their

indices in the set K(i),

K(i) =
{
n ∈ ZN

∣∣∣ x(i)n 6= 0
}
. (43)

This is the support of x(i). Let K(i) be the number of
non-zero elements of x(i), i.e., K(i) =

∣∣K(i)
∣∣.

3) Check the termination condition: If K(i) is not less than
K(i−1), then terminate. The output is x(i).

4) Define H(i) as the sub-matrix of H containing only
columns k ∈ K(i). The matrix H(i) is of size M×K(i).
Find a positive semidefinite diagonal matrix R(i) lower
bounding [H(i)]TH(i), i.e., solve problem (33) or use
α
(i)
minI. The matrix R(i) is of size K(i) ×K(i).

5) Set an such that (λn/r
(i)
n , an) ∈ S, n ∈ K(i). For

example, with the logarithmic and arctangent penalties,
one may set

a(i)n = β
r
(i)
n

λn
, n ∈ K(i) (44)

for some 0 6 β 6 1.
6) Solve the K(i) dimensional convex problem:

u(i) = arg min
u∈RK(i)

‖y−H(i)u‖22+
∑

n∈K(i)

λnφ(un; a
(i)
n ).

(45)
7) Set x(i+1) as

x(i+1)
n =

{
0, n /∈ K(i)

u
(i)
n , n ∈ K(i).

(46)

8) Set i = i+ 1 and go to step 2). �

In the IMSC algorithm, the support of x(i) can only shrink
from one iteration to the next, i.e., K(i+1) ⊆ K(i) and
K(i+1) 6 K(i). Once there is no further change in K(i), each
subsequent iteration will produce exactly the same result, i.e.,

K(i+1) = K(i) =⇒ x(i+1) = x(i). (47)

For this reason, the procedure should be terminated when
K(i) ceases to shrink. In the 1D sparse deconvolution example
below, the IMSC procedure terminates after only three or four
iterations.

Note that the problem (33) in step 4) reduces in size as the
algorithm progresses. Hence each instance of (33) requires less
computation than the previous. More importantly, each matrix
H(i+1) has a subset of the columns of H(i). Hence, R(i+1) is
less constrained than R(i), and the penalty functions become
more non-convex (more strongly sparsity-inducing) as the
iterations progress. Therefore, the IMSC algorithm produces
a sequence of successively sparser x(i).

Initializing the IMSC procedure with the `1 norm solution
substantially reduces the computational cost of the algorithm.
Note that if the `1 norm solution is sparse, i.e., K(1) � N ,
then all the semidefinite optimization problems (33) have far
fewer variables than N , i.e., K(i) 6 K(1). Hence, IMSC
can be applied to larger data sets than would otherwise be
computationally practical, due to the computational cost of
(33).

F. Deconvolution Example

A sparse signal x(n) of length N = 1000 is generated so
that (i) the inter-spike interval is uniform random between 5
and 35 samples, and (ii) the amplitude of each spike is uniform
between −1 and 1. The signal is illustrated in Fig. 7.

The spike signal is then used as the input to a linear time-
invariant (LTI) system, the output of which is contaminated
by AWGN, w(n). The observed data, y(n), is written as

y(n) =
∑

k

b(k)x(n− k)−
∑

k

a(k) y(n− k) + w(n)

where w(n) ∼ N (0, σ2). It can also be written as

y = A−1Bx+w = Hx+w, H = A−1B

where A and B are banded Toeplitz matrices [60]. In this
example, we set b(0) = 1, b(1) = 0.8, a(0) = 1, a(1) =
−1.047, a(2) = 0.81, and σ = 0.2. The observed data, y, is
illustrated in Fig. 7.

Several algorithms for estimating the sparse signal x will
be compared. The estimated signal is denoted x̂. The accuracy
of the estimation is quantified by the `2 and `1 norms of the
error signal and by the support error, denoted L2E, L1E, and
SE respectively.

1) L2E = ‖x− x̂‖2
2) L1E = ‖x− x̂‖1
3) SE = ‖s(x)− s(x̂)‖0
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Fig. 7. Sparse deconvolution via sparsity penalized least squares.

The support error, SE, is computed using s(x), the ε-support
of x ∈ RN . Namely, s : RN → {0, 1}N is defined as

[s(x)]n =

{
1, |xn| > ε

0, |xn| 6 ε
(48)

where ε > 0 is a small value to accommodate negligible non-
zeros. We set ε = 10−3. The support error, SE, counts both the
false zeros and the false non-zeros of x̂. The numbers of false
zeros and false non-zeros are denoted FZ and FN, respectively.

First, the sparse `1 norm solutions, i.e., φ(x, a) = |x| in
(25), with and without debiasing, are computed.1 We set λn
according to (40), i.e., λn = 2.01, n ∈ ZN . The estimated
signals are illustrated in Fig. 7. The errors L2E, L1E, and SE,
are noted in the figure. As expected, debiasing substantially
improves the L2E and L1E errors of the `1 norm solution;

1Debiasing is a post-processing step wherein least squares is performed
over the obtained support set [27].

TABLE I
SPARSE DECONVOLUTION EXAMPLE. AVERAGE ERRORS (200 TRIALS).

Algorithm L2E L1E SE ( FZ, FN)

`1 norm 1.443 10.01 37.60 (10.3, 27.3)
`1 norm + debiasing 0.989 7.14 37.57 (10.3, 27.2)
AIHT [7] 1.073 6.37 24.90 (12.4, 12.5)
ISD [68] 0.911 5.19 19.67 (11.6, 8.1)
SBR [63] 0.788 4.05 13.62 (12.0, 1.6)
`p(p = 0.7) IRL2 0.993 5.80 16.32 (12.9, 3.4)
`p(p = 0.7) IRL2 + debiasing 0.924 4.82 16.32 (12.9, 3.4)
`p(p = 0.7) IRL1 0.884 5.29 14.43 (11.5, 2.9)
`p(p = 0.7) IRL1 + debiasing 0.774 4.18 14.43 (11.5, 2.9)
IMSC (log) 0.864 5.08 17.98 ( 9.8, 8.2)
IMSC (log) + debiasing 0.817 4.83 17.98 ( 9.8, 8.2)
IMSC (atan) 0.768 4.29 15.43 (10.0, 5.5)
IMSC (atan) + debiasing 0.769 4.35 15.42 (10.0, 5.5)
IMSC/S (atan) 0.910 5.45 17.93 ( 9.8, 8.1)
IMSC/S (atan) + debiasing 0.800 4.73 17.92 ( 9.8, 8.1)

however, it does not improve the support error, SE. Debiasing
does not make the solution more sparse. The errors, averaged
over 200 trials, are shown in Table I. Each trial consists of
independently generated sparse and noise signals.

Next, sparse deconvolution is performed using three algo-
rithms developed to solve the highly non-convex `0 quasi-
norm problem, namely the Iterative Support Detection (ISD)
algorithm [68],2 the Accelerated Iterative Hard Thresholding
(AIHT) algorithm [7],3 and the Single Best Replacement
(SBR) algorithm [63]. In each case, we used software by
the respective authors. The ISD and SBR algorithms require
regularization parameters ρ and λ respectively; we found that
ρ = 1.0 and λ = 0.5 were approximately optimal. The AIHT
algorithm requires the number of non-zeros be specified; we
used the number of non-zeros in the true sparse signal. Each
of ISD, AIHT, and SBR significantly improve the accuracy of
the result in comparison with the `1 norm solutions, with SBR
being the most accurate. These algorithms essentially seek the
correct support. They do not penalize the values in the detected
support; so, debiasing does not alter the signals produced by
these algorithms.

The `p quasi-norm, with p = 0.7, i.e. φ(x) = |x|p,
also substantially improves upon the `1 norm result. Several
methods exist to minimize the cost function F in this case. We
implement two methods: IRL2 and IRL1 (iterative reweighted
`2 and `1 norm minimization, respectively), with and without
debiasing in each case. We used λ = 1.0, which we found to
be about optimal on average for this deconvolution problem.
As revealed in Table I, IRL1 is more accurate than IRL2.
Note that IRL2 and IRL1 seek to minimize exactly the same
cost function; so the inferiority of IRL2 compared to IRL1 is
due to the convergence of IRL2 to a local minimizer of F .
Also note that debiasing substantially improves L2E and L1E
(with no effect on SE) for both IRL2 and IRL1. The `p results
demonstrate both the value of a non-convex regularizer and the
vulnerability of non-convex optimization to local minimizers.

The results of the proposed iterative MSC (IMSC) algo-
rithm, with and without debiasing, are shown in Table I. We

2http://www.caam.rice.edu/%7Eoptimization/L1/ISD/
3http://users.fmrib.ox.ac.uk/%7Etblumens/sparsify/sparsify.html



12 IEEE TRANSACTIONS ON SIGNAL PROCESSING. 2014 (PREPRINT)
12

cost function; so the inferiority of IRL2 compared to IRL1 is
due to the convergence of IRL2 to a local minimizer of F .
Also note that debiasing substantially improves L2E and L1E
(with no effect on SE) for both IRL2 and IRL1. The `p results
demonstrate both the value of a non-convex regularizer and the
vulnerability of non-convex optimization to local minimizers.

The results of the proposed iterative MSC (IMSC) algo-
rithm, with and without debiasing, are shown in Table I. We
used � = 1.0 and �n = 2.01, n 2 ZN , in accordance with
(40). Results using the logarithmic (log) and arctangent (atan)
penalty functions are tabulated, which show the improvement
provided by the later penalty, in terms of L2E, L1E, and SE.
While debiasing reduces the error (bias) of the logarithmic
penalty, it has negligible effect on the arctangent penalty. The
simplified form of the MSC algorithm, wherein R = ↵minI is
used instead of the R computed via SDP, is also tabulated in
Table I, denoted by IMSC/S. IMSC/S is more computationally
efficient than MSC due to the omission of SDP; however, it
does lead to an increase in the error measures.

The IMSC algorithm ran for three iterations on average.
For example, the IMSC solution illustrated in Fig. 7 ran with
K(1) = 61, K(2) = 40, and K(3) = 38. Therefore, even
though the signal is of length 1000, the SDPs that had to be
solved are much smaller: of sizes 61, 40, and 38, only.

The optimality of the MSC solution at each stage can be
verified using (34). Specifically, a scatter plot of [HT (y �
Hx)]n/�n verses xnan, for all n 2 K(i), should show all
points lying on the graph of @�(x, 1). For the IMSC solution
illustrated in Fig. 7, this optimality scatter plot is illustrated
in Fig. 8, which shows that all points lie on the graph of
sign(x)/(1 + |x| + x2), hence verifying the optimality of the
obtained solution.

To more clearly compare the relative bias of the `1 norm
and IMSC (atan) solutions, these two solutions are illustrated
together in Fig. 8. Only the non-zero elements of each solution
are shown. In this figure, the closer the points lie to the
identity, the more accurate the solution. The figure shows the
IMSC solution lies closer to the identity than the `1 norm
solution; and the `1 norm solution tends to underestimate the
true values.

In terms of L2E and L1E, the best IMSC result, i.e., IMSC
(atan), is outperformed by SBR and the IRL1 + debiasing
algorithm. In addition, IMSC (atan) yields lower SE than `1
minimization, AIHT, and ISD. IMSC does not yield the best
error measures, but it comes reasonably close; even though
IMSC is based entirely on convex optimization. In terms of
L1E and SE, the SBR performs best for this example. Most
notably, SBR attains a small number of false non-zeros.

Note that IMSC requires only the parameter � (with 0 6
� 6 1) beyond those parameters (namely �n) required for the
`1 norm solution.

Fig. 9 illustrates the average errors as functions of the reg-
ularization parameter, for ISD, IMSC, and IMSC + debiasing
(denoted IMSC+d in the figure). For IMSC, the regularization
parameter is �. For ISD, the regularization parameter is
⇢ = �/2. Note that for IMSC, the value of � minimizing L2E
and L1E depends on whether or not debiasing is performed.
The value � suggested by (40) (i.e., � = 2) is reasonably
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Fig. 8. Sparse deconvolution. (a) Illustration of optimality condition (34) for
IMSC (atan) solution. (b) Comparison of `1 norm and IMSC solutions.

effective with or without debiasing. The value of � minimizing
SE is somewhat higher.

The implementation of the `1, IRL2, IRL1, and IMSC
algorithms for deconvolution each require the solution of
(25) with various penalty functions and/or sub-matrices of
H. We have used algorithms, based on majorization of the
penalty function, that exploit banded matrix structures for
computational efficiency [59], [60].

Finally, we comment on the computation time for IMSC.
The IMSC solution with the atan penalty illustrated in Fig. 7
took 1.7 seconds and about 94% of the time was spent on
solving SDPs. As noted above, three SDPs were solved (of
sizes 61, 40, and 38). The IMSC solution with the log penalty
took 2.8 seconds, with again, about 94% of the time spent
on SDPs. The longer time was due to more iterations of
IMSC (five SDPs instead of three). The `1 norm solution was
obtained in only 52 milliseconds (33 times faster than the MSC
solution).

IV. CONCLUSION

This paper proposes an approach (MSC) to obtain sparse so-
lutions to ill-posed linear inverse problems. In order to induce
sparsity more strongly than the `1 norm, the MSC approach
utilizes non-convex penalty functions. However, the non-
convex penalty functions are constrained so that the total cost

Fig. 8. Sparse deconvolution. (a) Illustration of optimality condition (34)
for IMSC (atan) solution. (b) Comparison of `1 norm and IMSC solutions.

used β = 1.0 and λn = 2.01, n ∈ ZN , in accordance with
(40). Results using the logarithmic (log) and arctangent (atan)
penalty functions are tabulated, which show the improvement
provided by the later penalty, in terms of L2E, L1E, and SE.
While debiasing reduces the error (bias) of the logarithmic
penalty, it has negligible effect on the arctangent penalty. The
simplified form of the MSC algorithm, wherein R = αminI is
used instead of the R computed via SDP, is also tabulated in
Table I, denoted by IMSC/S. IMSC/S is more computationally
efficient than MSC due to the omission of SDP; however, it
does lead to an increase in the error measures.

The IMSC algorithm ran for three iterations on average.
For example, the IMSC solution illustrated in Fig. 7 ran with
K(1) = 61, K(2) = 40, and K(3) = 38. Therefore, even
though the signal is of length 1000, the SDPs that had to be
solved are much smaller: of sizes 61, 40, and 38, only.

The optimality of the MSC solution at each stage can be
verified using (34). Specifically, a scatter plot of [HT (y −
Hx)]n/λn verses xnan, for all n ∈ K(i), should show all
points lying on the graph of ∂φ(x, 1). For the IMSC solution
illustrated in Fig. 7, this optimality scatter plot is illustrated
in Fig. 8, which shows that all points lie on the graph of
sign(x)/(1 + |x|+ x2), hence verifying the optimality of the
obtained solution.

To more clearly compare the relative bias of the `1 norm
and IMSC (atan) solutions, these two solutions are illustrated

together in Fig. 8. Only the non-zero elements of each solution
are shown. In this figure, the closer the points lie to the
identity, the more accurate the solution. The figure shows the
IMSC solution lies closer to the identity than the `1 norm
solution; and the `1 norm solution tends to underestimate the
true values.

In terms of L2E and L1E, the best IMSC result, i.e., IMSC
(atan), is outperformed by SBR and the IRL1 + debiasing
algorithm. In addition, IMSC (atan) yields lower SE than `1
minimization, AIHT, and ISD. IMSC does not yield the best
error measures, but it comes reasonably close; even though
IMSC is based entirely on convex optimization. In terms of
L1E and SE, the SBR performs best for this example. Most
notably, SBR attains a small number of false non-zeros.

Note that IMSC requires only the parameter β (with 0 6
β 6 1) beyond those parameters (namely λn) required for the
`1 norm solution.

Fig. 9 illustrates the average errors as functions of the reg-
ularization parameter, for ISD, IMSC, and IMSC + debiasing
(denoted IMSC+d in the figure). For IMSC, the regularization
parameter is λ. For ISD, the regularization parameter is
ρ = λ/2. Note that for IMSC, the value of λ minimizing L2E
and L1E depends on whether or not debiasing is performed.
The value λ suggested by (40) (i.e., λ = 2) is reasonably
effective with or without debiasing. The value of λ minimizing
SE is somewhat higher.

The implementation of the `1, IRL2, IRL1, and IMSC
algorithms for deconvolution each require the solution of
(25) with various penalty functions and/or sub-matrices of
H. We have used algorithms, based on majorization of the
penalty function, that exploit banded matrix structures for
computational efficiency [59], [60].

Finally, we comment on the computation time for IMSC.
The IMSC solution with the atan penalty illustrated in Fig. 7
took 1.7 seconds and about 94% of the time was spent on
solving SDPs. As noted above, three SDPs were solved (of
sizes 61, 40, and 38). The IMSC solution with the log penalty
took 2.8 seconds, with again, about 94% of the time spent
on SDPs. The longer time was due to more iterations of
IMSC (five SDPs instead of three). The `1 norm solution was
obtained in only 52 milliseconds (33 times faster than the MSC
solution).

IV. CONCLUSION

This paper proposes an approach (MSC) to obtain sparse so-
lutions to ill-posed linear inverse problems. In order to induce
sparsity more strongly than the `1 norm, the MSC approach
utilizes non-convex penalty functions. However, the non-
convex penalty functions are constrained so that the total cost
function is convex. This approach was introduced in [6], and
extended in [50]–[52]. A novelty of the proposed approach is
that the maximally non-convex (maximally sparsity-inducing)
penalty functions are found by formulating a semidefinite
program (SDP). Iterative MSC (IMSC) consists of applying
MSC to the non-zero (active) elements of the sparse solution
produced by the previous iteration. Each iteration of IMSC
involves the solution to a convex optimization problem.
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Fig. 9. Sparse deconvolution. Errors as functions of regularization param-
eters, averaged over 100 realizations. (Note that the support error for IMSC
and IMSC+d coincide.)

The MSC method is intended as a convex alternative to
`1 norm minimization, which is widely used in sparse signal
processing where it is often desired that a ‘sparse’ or the
‘sparsest’ solution be found to a system of linear equations
with noise. At the same time, some practitioners are concerned
with non-convex optimization issues. One issue is entrapment
of optimization algorithms in local minima. But another issue
related to non-convex optimization is the sensitivity of the
solution to perturbations in the data. Suppose a non-convex
cost function has two minima, one local, one global. The
cost function surface depends on the observed data. As the
observed data vary, the local (non-global) minimum may
decrease in value relative to the global minimum. Hence
the global minimizer of the non-convex cost function is a
discontinuous function of the data, i.e., the solution may
jump around erratically as a function of observed data. This
phenomena is exhibited, for example, as spurious noise spikes
in wavelet hard-thresholding denoising, as illustrated in Fig.
5. For these reasons, some may favor convex formulations.
The proposed MSC approach simply considers the question:

what is the convex optimization problem that best promotes
sparsity (from a parameterized set of penalty functions).

Being based entirely on convex optimization, it can not be
expected that MSC produces solutions as sparse as non-convex
optimization methods, such as `p quasi-norm (0 < p < 1)
minimization. However, it provides a principled approach for
enhanced sparsity relative to the `1 norm. Moreover, although
it is not explored here, it may be effective to use MSC in
conjunction with other techniques. As has been recognized
in the literature, and as illustrated in the sparse deconvolution
example above, reweighted `1 norm minimization can be more
effective than reweighted `2 norm minimization (i.e., higher
likelihood of convergence to a global minimizer). Likewise,
it will be of interest to explore the use of reweighted MSC
or similar methods as a means of more reliable non-convex
optimization. For example, a non-convex MM-type algorithm
may be conceived wherein a specified non-convex penalty
function is majorized by a non-convex function constrained
so as to ensure convexity of the total cost function at each
iteration of MM.

To apply the proposed approach to large scale problems
(e.g., image and video reconstruction), it is beneficial to solve
(33) by some algorithm that does not rely on accessing or
manipulating individual rows or columns of H.

The technique, where a non-convex penalty is chosen so as
to lead to a convex problem, has recently been utilized for
group-sparse signal denoising in [14].

APPENDIX

Suppose F , defined in (2), is strictly convex and φ(x)
is differentiable for all x ∈ R except x = 0. Then the
subdifferential ∂F is given by

∂F (x) =

{
{x− y + λφ′(x)}, if x 6= 0,

[λφ′(0−), λφ′(0+)]− y, if x = 0.
(49)

Since F is strictly convex, its minimizer x∗ satisfies 0 ∈
∂F (x∗).

If y ∈ [λφ′(0−), λφ′(0+)], then from (49) we have 0 ∈
∂F (0), and in turn x∗ = 0. Assuming φ is symmetric,
then φ′(0−) = −φ(0+), and this interval represents the
thresholding interval of θ, and the threshold T is given by
T = λφ′(0+).

Suppose now that y /∈ [λφ′(0−), λφ′(0+)]. This happens if
either (i) y > λφ′(0+), or (ii) y < λφ′(0−). In the following,
we study case (i). The results extend to (ii) straightforwardly.

First, note that if y > λφ′(0+), then x∗ > 0 and it satisfies

y = x∗ + λφ′(x∗). (50)

Let us define f : R+ → R as

f(x) = x+ λφ′(x). (51)

Note that, for x > 0, f(x) = F ′(x)+y. Since F (x) is strictly
convex, F ′(x) and f(x) are strictly increasing, hence injective
for x > 0. For y > λφ′(0+), the threshold function θ can now
be expressed as

θ(y) = f−1(y). (52)
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Observe that f is continuous and f(0+) = λφ′(0+) = T .
In view of (52), this implies that θ(T+) = 0. Thus, θ(y) is
continuous at the threshold.

For a symmetric φ, it can be shown that F is strictly convex
if and only if f is strictly increasing for x > 0. This in turn
can be ensured by requiring φ′′(x) > −1/λ, ∀x > 0.

Let us now find the first and second derivatives of θ(y) at
y = T+. From (52), f(θ(y)) = y. Differentiating with respect
to y gives

f ′(θ(y)) θ′(y) = 1. (53)

Differentiating again with respect to y gives

f ′′(θ(y)) [θ′(y)]2 + f ′(θ(y)) θ′′(y) = 0. (54)

Setting y = T+ in (53) gives

θ′(T+) = 1/f ′(0+). (55)

Setting y = T+ in (54) gives

f ′′(0+) [θ′(T+)]2 + f ′(0+) θ′′(T+) = 0 (56)

or
θ′′(T+) = −f ′′(0+)/[f ′(0+)]3. (57)

Using (51), we have

f ′(0+) = 1 + λφ′′(0+) and f ′′(0+) = λφ′′′(0+). (58)

Equations (10) and (11) follow.
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