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Abstract

In this paper, we address the problem of transmit beamspesigrdfor multiple-input multiple-
output (MIMO) radar with colocated antennas in applicatiordirection-of-arrival (DOA) estimation.
A new method for designing the transmit beamspace matrikehables the use of search-free DOA
estimation techniques at the receiver is introduced. Tsere® of the proposed method is to design
the transmit beamspace matrix based on minimizing therdifiee between a desired transmit beam-
pattern and the actual one under the constraint of uniformepalistribution across the transmit array
elements. The desired transmit beampattern can be ofagb&hape and is allowed to consist of one
or more spatial sectors. The number of transmit waveforneses but otherwise arbitrary. To allow for
simple search-free DOA estimation algorithms at the rexaivay, the rotational invariance property is
established at the transmit array by imposing a specificttra on the beamspace matrix. Semidefinite

relaxation is used to transform the proposed formulatidn @ convex problem that can be solved

arxiv:1305.4979v1 [cs.IT] 21 May 2013

efficiently. We also propose a spatial-division based de$®PD) by dividing the spatial domain into
several subsectors and assigning a subset of the transamitsbi® each subsector. The transmit beams
associated with each subsector are designed separatalylaBon results demonstrate the improvement
in the DOA estimation performance offered by using the psggbjoint and SDD transmit beamspace

design methods as compared to the traditional MIMO raddmiecie.
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I. INTRODUCTION

In array processing applications, the direction-of-alrfDOA) parameter estimation problem
is the most fundamental onlel [1]. Many DOA estimation techaghave been developed for the
classical array processing single-input multiple-outf®IMO) setup [[1], [2]. The development
of a novel array processing configuration that is best knosymaltiple-input multiple-output
(MIMO) radar [3], [4] has opened new opportunities in paréenestimation. Many works have
recently been reported in the literature showing the benefiapplying the MIMO radar concept
using widely separated antenn@as [5]-[8] as well as usingceded transmit and receive antennas
[9]-[16]. We focus on the latter case in this paper.

In MIMO radar with colocated antennas, a virtual array witlm@er number of virtual antenna
elements can be formed and used for improved DOA estimatrfopnance as compared to
the performance of SIMO radar [17], 18] for relatively higlgnal-to-noise ratios (SNRs), i.e.,
when the benefits of increased virtual aperture start to sipwwhe SNR gain for the traditional
MIMO radar (with the number of waveforms being the same asitimaber of transmit antenna
elements), however, decreases as compared to the phasgdadar where the transmit array
radiates a single waveform coherently from all antenna efgs[12], [13]. A trade-off between
the phased-array and the traditional MIMO radar can be seHigl2], [14], [19] which gives the
best of both configurations, i.e., the increased numberrtialiantenna elements due to the use
of waveform diversity together with SNR gain due to subaperbased coherent transmission.

Several transmit beamforming techniques have been deaclopthe literature to achieve
transmit coherent gain in MIMO radar under the assumptien the general angular locations
of the targets are known a priori to be located within a certgpatial sector. The increased
number of degrees of freedom for MIMO radar, due to the useudfipbe waveforms, is used for
the purpose of synthesizing a desired transmit beampadissad on optimizing the correlation
matrix of the transmitted waveforms![4], [20], [21]. To apphe designs obtained using the
aforementioned methods, the actual waveforms still havieetdound which can be a difficult
and computationally demanding problem1[22].

One of the major motivations for designing transmit bear@patis realizing the possibility
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of achieving SNR gain together with increased aperturerfgaroved DOA estimation in a wide
range of SNR4[15]/[23]. In particular, it has been showrill#] that the performance of a MIMO
radar system with a number of waveforms less than the nunfbarmsmit antennas and with
transmit beamspace design capability is better than thierpesnce of a MIMO radar system
with full waveform diversity and no transmit beamformingrgeRemarkably, using MIMO radar
with proper transmit beamspace design, it is possible toagiee the satisfaction of such desired
property for DOA estimation as the rotational invarianceparty (RIP) at the receive arrdy [15].
This is somewhat similar in effect to the property of orthoglbspace-time block codes in that
the shape of the transmitted constellation does not changieeareceiver independent of the
channel. The latter allows for simple decoder![24]. Sinjlahere the RIP allows for simple
DOA estimation techniques at the receiver although the RHiually enforced at the transmitter,
and the propagation media cannot break it thanks to the puagesgn of transmit beamspace.
Since the RIP holds at the receive array independent of tbpagation media and receive
antenna array configuration, the receive antenna array eany arbitrary array. However, the
methods developed in_[15] suffer from the shortcomings that transmit power distribution
across the array elements is not uniform and the achieveskepiodations come with variations
in the magnitude of different transmit beams that affecesgrformance of DOA estimation at
the receiver.

In this paper, we consider the problem of transmit beamsplasggn for DOA estimation
in MIMO radar with colocated antennas. We propose a new ndetbiodesigning the transmit
beamspace that enables the use of search-free DOA estintetioniques at the receive antenna
arrayl The essence of the proposed method is to design the transamtdpace matrix based
on minimizing the difference between a desired transmitipadtern and the actual one while
enforcing the uniform power distribution constraint agrdlse transmit array antenna elements.
The desired transmit beampattern can be of arbitrary shagpesaallowed to consist of one or
more spatial sectors. The case of even but otherwise agbmwamber of transmit waveforms
is considered. To allow for simple search-free DOA estioratalgorithms at the receiver, the
RIP is established at the transmit antenna array by impasispecific structure on the transmit

beamspace matrix. The proposed structure is based on degithe transmit beams in pairs

*An early and very preliminary exposition of this work has beeesented in parts i [25] and [26].
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where the transmit weight vector associated with a certaimsimit beam is the conjugate flipped
version of the weight vector associated with another bean, dne transmit weight vector is
designed for each pair of transmit beams. All pairs are desigointly while satisfying the
requirement that the two transmit beams associated with pag enjoy rotational invariance
with respect to each other. Semidefinite programming (SBR)Xation is used to transform the
proposed formulation into a convex problem that can be soéféciently using, for example,
interior point methods. In comparison to our previous métff8] that achieves phase rotation
between two transmit beams, the proposed method enjoyslitbeiing advantages. (i) It ensures
that the magnitude response of the two transmit beams assdowith one pair of transmit
beams is exactly the same at all spatial directions, a ptppeat improves the DOA estimation
performance. (i) It ensures uniform power distributiomass transmit elements. (iii) It enables
estimating the DOAs via estimating the accumulated phat#ioaos over all transmit beams
instead of only two beams. (iv) It only involves optimizatiover half the entries of the transmit
beamspace matrix which decreases the computational loadalgd propose an alternative
formulation based on splitting the overall transmit beaacgpdesign problem into several smaller
problems. The alternative formulation is referred to asdpatial-division based design (SDD)
which involves dividing the spatial domain into several sediors and assigning a subset of
the transmit beamspace pairs to each subsector. The SDDbdnettables post processing of
data associated with different subsectors independerithyastimation performance comparable
to the performance of the joint transmit beamspace designul&tion results demonstrate
the improvement in the DOA estimation performance that isiemed by using the proposed
joint transmit beamspace design and SDD methods as comfiatbd traditional MIMO radar
technique.

The rest of the paper is organized as follows. Section lbohiices the system model for mono-
static MIMO radar system with transmit beamspace. The prablormulation is developed in
Section Il while the transmit beamspace design problene¥en but otherwise arbitrary number
of transmit waveforms is developed in Section IV. Sectioniveg simulation examples for the

proposed DOA estimation techniques and conclusions arendira Section VI.
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II. SYSTEM MODEL AND MAIN IDEA

Consider a mono-static MIMO radar system equipped with d@oumi linear transmit array
of M colocated antennas with inter-element spacingieasured in wavelength and a receive
array of N antennas configured in a random shape. The transmit andeeeays are assumed
to be close enough to each other such that the spatial anglearfjet in the far-field remains
the same with respect to both arrays. Keft) = [¢(t),. .., ¢x(t)]" be theK x 1 vector that
contains the complex envelopes of the wavefowp&), k£ = 1,..., K which are assumed to

be orthogonal, i.e.,
TP

whereT, is the pulse duration,:)” and (-)* stand for the transpose and the conjugate, respec-
tively, andi(-) is the Kroneker delta. The actual transmitted signals dentas linear combina-
tions of the orthogonal waveforms. Therefore, thiex 1 vector of the baseband representation

of the transmitted signals can be written @s| [15]
s(t) = [s1(t),...,su(t)]" = Wd(1) 2)

wheres;(t) is the signal transmitted from antenhand

w11 W1 -+ WK
Wy W2 -+ WK2

W = 3)
Wine Wonr - WK M

is the M x K transmit beamspace matrix. It is worth noting that each efattthogonal waveforms
or(t), k=1,..., K is transmitted over one transmit beam where ktte column of the matrix
W corresponds to the transmit beamforming weight vector tisddrm the kth beam.

Leta(f) = [1,e72mdsin®) o=32rdM=1sin0)]T pha the M x 1 transmit array steering vector.
The transmit power distribution pattern can be expressd@Gis

G(6) = 1-d"(O)RA(B), —7/2<0<7/2 @)

where (-)# stands for the conjugate transpodéd) = a*(f), and

R— /O Cs(t)sH (1)dt 5)
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is the cross-correlation matrix of the transmitted sign@s One way to achieve a certain
desired transmit beampattern is to optimize over the ccoslation matrixR. such as in[[20],
[21]. In this case, a complementary problem has to be sol¥es abtainingR. in order to
find appropriate signal vectslt) that satisfied(5). Solving such a complementary problem is i
general difficult and computationally demanding. Howeirethis paper, we extend our approach
of optimizing the transmit beampattern via designing tla@$mit beamspace matrix. According
to this approach, the cross-correlation matrix is expresse

R =WW7 (6)

that holds due to the orthogonality of the waveforms (déeafid [2)). Then the transmit
beamspace matri¥v can be designed to achieve the desired beampattern whséysa many
other requirements mandated by practical consideratiaeis&s equal transmit power distribution
across the transmit array antenna elements, achievingieedleadar ambiguity function, etc.
Moreover, this approach enables enforcing the RIP whicititites subsequent processing steps
at the receive antenna array, e.g., it enables applyingraieceomputationally efficient DOA
estimation using search-free direction finding technicgiesh as ESPRIT.

The signal measured at the output of the receive array duehoes fromZ narrowband
far-field targets can be modeled as

x(t,7) = Bi(r) [d"(B)WR()] b(6)) + =(t, 7) (7)

wheret is the time index within the radar pulsejs the slow time index , i.e., the pulse number,
pi(7) is the reflection coefficient of the target located at the wmkmspatial anglé,, b(6,) is the
receive array steering vector, ana(t, 7) is the N x 1 vector of zero-mean white Gaussian noise
with variances?. In (@), the target reflection coefficients(r), [ = 1,..., L are assumed to
obey the Swerling Il model, i.e, they remain constant duthngyduration of one radar pulse but
change from pulse to pulse. Moreover, they are assumed toaldndrom a normal distribution
with zero mean and variane%.

By matched filteringx(¢, 7) to each of the orthogonal basis waveformst), k = 1,..., K,
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the N x 1 virtual data vectors can be obtaineH as

yu(r) = / x(t, 7)) dt

=> " Bi(r) (d" () wi) b(6;) + zx(7) (8)

wherew, is thekth column of the transmit beamspace maMkandz,(7) £ pr z(t, 7)pr(t)dt
is the N x 1 noise term whose covariancedsly.

Let y, »(7) be the noise free component of the virtual data vedtbr (8)caated with thelth
target, i.e..y.x(7) = 3(7) (4 (6;)wy) b(6;). Then, one can easily observe that #ik and the
k'th components associated with thb target are related to each other through the following

relationship

Vi (1) = By(7) (A7 (61)wr) b(6))

dH(el)Wk/ o
= @ gyw, VT
. dH(6’ )W ’
_ mk/(ez)—wk(ez))‘ilk o 9
e 17 (6, )wi| Yi(7) ©)

where ¢ (0) is the phase of the inner produdt’ (6)w,. The expression]9) means that the
signal componeny, () corresponding to a given target is the same as the signal @oenpy .
corresponding to the same target up to a phase rotation aathdagtor.

The RIP can be enforced by imposing the constralfft(0)w;| = |d (9)w.| while designing
the transmit beamspace mati¥. The main advantage of enforcing the RIP is that it allows
us to estimate DOAs via estimating the phase rotation assutiwith thekth andk’th pair of
the virtual data vectors using search-free techniques, ESPRIT. Moreover, if the number of
transmit waveforms is more than two, the DOA estimation carcdrried out via estimating the

phase difference

K/2 K
£y d"Oyw, -2 > d"(0)w; (10)
i=1 i=K/2+1

%Practically, this matched filtering step is performed focted@oppler-range bin, i.e., the received daté, ) is matched

filtered to a time-delayed Doppler shifted version of the @favrms ¢, (), k =1,..., K.
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and comparing it to a precalculated phase profile for thengsmatial sector in which we have
concentrated power from the transmit antenna array. Howavehe latter case, precautions
should be taken to assure the coherent accumulation ofsttie components in[(10), i.e., to

avoid gain loss as will be shown later in the paper.

[1l. PROBLEM FORMULATION

The main goal is to design a transmit beamspace ma¥ixvhich achieves a spatial beam-
pattern that is as close as possible to a certain desiredSuisstituting [(6) in[(#), the spatial

beampattern can be rewritten as

(o) = %dH(G)WWHd(G)

K
_ % > wlae)d Ow. (11)

Therefore, we design the transmit beamspace maW¥ixbased on minimizing the difference
between the desired beampattern and the actual beampgittemby [11). Using the minmax

criterion, the transmit beamspace matrix design problembsaformulated as

K
. 1 " "
minmax | Ga(6) — - ;wi d(0)d" (0)w; (12)
K P,
st Y Wi =37 d=1- M (13)
=1

whereGy(0),0 € [—7/2,7/2] is the desired beampattern afdis the total transmit power. The
M constraints enforced i (IL3) are used to ensure that ing@idntennas transmit equal powers
given by P, /M. It is equivalent to having the norms of the rowsWf to be equal ta?;, /M. The
uniform power distribution across the array antenna elesgiven by [(1B) is necessary from a
practical point of view. In practice, each antenna in th@gnait array typically uses the same
power amplifier, and thus has the same dynamic power rangbe Ipower used by different
antenna elements is allowed to vary widely, this can seyatefgrade the performance of the
system due to the nonlinear characteristics of the powelif@np

Another goal that we wish to achieve is to enforce the RIP tab&nfor search-free DOA
estimation. Enforcing the RIP between thil and(X/2 + k)th transmit beams is equivalent to
ensuring that the following relationship holds

[wid(o)| = |wi,

kd(@)} . Oel-n/2,7/2]. (14)
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Ensuring [(I4), the optimization problem {12)4(13) can Herraulated as

K
. 1 H H

min max Ga(0) — E;wi d(6)d? (0)w; (15)
= . B

st Y Wi =57 i=1 M (16)
=1
wid(0)] = |wit,a0)]. (17)

K

0el|-n/2,7/2], k=1, L

It is worth noting that the constrainfs (16) as well as thest@ints[(1l) correspond to non-convex
sets and, therefore, the optimization problén (15)-(1@)risn-convex problem which is difficult
to solve in a computationally efficient manner. Moreovee fact that[(1l7) should be enforced
for every directiord € [—7/2,7/2], i.e., the number of equations in_{17) is significantly large
than the number of the variables, makes it impossible tafyafl1) unless a specific structure
on the transmit beamspace mat€X is imposed.

In the following section we propose a specific structureWwoto overcome the difficulties

caused by[(17) and show how to use SDP relaxation to overcbhendifficulties caused by the
non-convexity of [(15)-E17).

V. TRANSMIT BEAMSPACE DESIGN
A. Two Transmit Waveforms

We first consider a special, but practically important catéwm orthonormal waveforms.
Thus, the dimension oW is M x 2. Then under the aforementioned assumption of ULA at the
MIMO radar transmitter, the RIP can be satisfied by choodiggttansmit beamspace matrix to
take the form

W = [w, W] (18)

wherew is the flipped version of vectow, i.e., w(i) = w(M —i+1),i=1,..., M. Indeed,
in this case|d” (§)w| = |d” (#)w*| and the RIP is clearly satisfied.

To prove that the specific structufe {18) achieves the RtRjdeepresent the vecter as a
vector of complex numbers

W=z 2... zM]T (19
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10

wherez,,, m =1,..., M are complex numbers. Then the flipped-conjugate versiow dfas
the structurew* = [23, 2%, ,...2;]7. Examining the inner produc@” (9)w andd” (§)w* we
see that the first inner product produces the sum
dH(@)W =21 + Zzej27rdsin(€) +

L ZN[€j27rdsin(9)(J\/[—1) (20)

and the second produces the sum
A (0w = 25 + 25, l?rdsin()

o+ ZT . ej27rdsin(9)(]\/[—1). (21)
Factoring out the terma—7274sin()(M=1) from (21) and conjugating, we can see that the sums
are identical in magnitude and indeed are the same up to a phtation. This relationship
is precisely the RIP, and it is enforced at the transmit ardearray by the structure imposed
on the transmit beamspace mathX.

Substituting [(IB) in[(T5)£(17), the optimization probleancbe reformulated for the case of

two transmit waveforms as follows

min max [ Ga(9) — [[[ww]"d(0)|” | (22)
st [w(i)|> + [w(i)|* = %, i=1,...,M. (23)

It is worth noting that the constraints {17) are not shownhi& optimization probleni (22)=(23)
because they are inherently enforced due to the use of thdismtructure of W given in [18).
Introducing the auxiliary variablé, the optimization probleni(22)-(P3) can be equivalently

rewritten as

min o
w,0
Gq(6
st G0 pagg )P <sg=1...0
Gq(6
%—Ide(W > =0, q=1,..,Q
P, M
12 o 2_ "t o -
|w(i)|*+|w(M—i+1)] ik 1,..., 5 (24)
wheref, € [—7/2,7/2], ¢ = 1,...,Q is a continuum of directions that are properly chosen

(uniform or nonuniform) to approximate the spatial domgir/2, 7/2]. It is worth noting that
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11

the optimization problem(24) has significantly larger n@mbf degrees of freedom than the
beamforming problem for the phased-array case where thanitndgs ofw(i), i = 1,..., M
are fixed.

The problem [(24) belongs to the class of non-convex quadifticonstrained quadratic
programming (QCQP) problems which are in general NP-hamivé¥er, a well developed SDP
relaxation technique can be used to solveit [Z7}-[31]. énaising the facts thatw’d(6,)]> =
tr(d(0,)d” (6,)ww") and|w(i)|?+|w(M —i+1)|> = tr(wwf A;),i = 1,..., M/2, wheretr(-)
stands for the trace amdl; is anM x M matrix such thatA;(i,i) = A;(M—(i—1), M—(i—1)) =

1 and the rest of the elements are equal to zero, the prolblehcévibe cast as

min o
w,0
s.t. %—tr(d(%)dlf(eq)ww]{) <d,q=1,...,Q
%—t (d(g,)d” (0, )ww")>—0, ¢g=1,...,Q
tr(ww A;) = %, i=1, % (25)

min o
X8
%—tr(d(eq)dH(eq)X) >-5,q¢=1,...,Q
tr(XA;) = %, 1=1,..., %; rank(X) =1 (26)

where X is the Hermitian matrix andank(-) denotes the rank of a matrix. Note that the last
two constraints in[(26) imply that the matriX is positive semidefinite. The probler {26) is
non-convex with respect t&X because the last constraint is not convex. However, by means
of the SDP relaxation technique, this constraint can beacegl by another constraint, that is,
X = 0. The resulting problem is the relaxed version [of] (26) and iaiconvex SDP problem
which can be efficiently solved using, for example, intepmint methods. When the relaxed
problem is solved, extraction of the solution of the oridgipeoblem is typically done via the

so-calledrandomizationtechniques([27].

June 4, 2018 DRAFT



12

Let X,,; denote the optimal solution of the relaxed problem. If thekraf X, is one, the
optimal solution of the original probleni_(P4) can be obtairn®/ simply finding the principal
eigenvector oX,,;. However, if the rank of the matriX,, is higher than one, the randomization
approach can be used. Various randomization techniqueslie®en developed and are generally
based on generating a set of candidate vectors and thenicgdbe candidate which gives the
minimum of the objective function of the original problemuQrandomization procedure can be
described as follows. L&X,,,, = UX U denote the eigen-decompositionXf,,,. The candidate
vector k can be chosen a& .., ;, = UX'/2y, wherev, is random vector whose elements are
random variables uniformly distributed on the unit ciratelhe complex plane. Candidate vectors
are not always feasible and should be mapped to a nearbplieasint. This mapping is problem
dependent[31]. In our case, if the conditi.., x(7)|? + [Wean s (M —i+1)|> = P,/M does not
hold, we can map this vector to a nearby feasible point byirsgat.,, (i) andwea, (M —i+1)
to satisfy this constraint. Among the candidate vectors lvem tchoose the one which gives the

minimum objective function, i.e., the one with minimummx,, |G4(6,)/2 — \wgnvkd(eq)ﬂ.

B. Even Number of Transmit Waveforms

Let us consider now thd/ x K transmit beamspace matrW = [w;, ws, -, Wx| Where
K < M and K is an even number. For convenience, the virtual receiveaasigector matched

to the basis waveform(t) is rewritten as

yi(r) = / x(t, 7% (£)dt

L
:Zﬁl(7>€jwk(91) ‘dH(el)Wk‘ b(&l) —|—Zk(7') (27)
=1
From [27), it can be seen that the RIP betwggrandy, ., k # k' holds if

|d” (0)wy| = |d” (O)ww |, € [—m/2,7/2). (28)

In the previous subsection, we saw that by considering thewing specific structuréw w*|
for the transmit beamspace matrix with only two waveforrhs, RIP is guaranteed at the receive
antenna array. In this part, we obtain the RIP for the moreegégncase of more than two

waveforms. It provides more degrees of freedom for obtgiranbetter performance. For this
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13
goal, we first show that if for somg’ the following relation holds
K K
> d"(O)w; > d"(O)w;
i=1

i=k'+1
then the two new sets of vectors defined as the summation dfirdte:’ data vectorsy;(7),
i =1,--- k" and the lastk’ — k' data vectorsy;(7), i = K +1,--- , K will satisfy the RIP.

, VO e |-m/2,7/2 (29)

More specifically, by defining the following vectors

gi(r) = ZYi(T)

L

:Z‘}?l (7') ( 4 dH(Ql)WZ) b(el)—FZ Zi(T) (30)

=1

g(r) = D i)
= Bi(r) (ZdH(él)w; b(@l)—'&—ZZi(T) (31)

the corresponding signal component of target the vectorg; () has the same magnitude as in
the vectorg,(7) if the equation[(Z0) holds. In this case, the only differebeéween the signal
components of the targétin the vectorsg,(7) andg,(7) is the phase which can be used for
DOA estimation. Based on this fact, for ensuring the RIP leetwthe vectorg; (7) andgs(7),
equation[(ZP) needs to be satisfied for every afgie(—m /2, 7/2]. By noting that the equation
|d® (0)w| = |d¥ (§)w*| holds for any arbitrary, it can be shown that the equatidn](29) holds
for any arbitraryf only if the following structure on the matriXV is imposed:

« K is an even number,

. k' equals toK /2,

i=1,--,K/2.

sk
L] W,—Wk,,_H,

More specifically, if the transmit beamspace matrix has tllewing structure

W:[Wl,"‘ ’WK/27V~V>1’<,"' 7{7(’;(/2] (32)

then the signal component gf (1) associated with th&éh target is the same as the corresponding

signal component of,(7) up to phase rotation of

K/2 K
£y d"(Oyw; -2 d" (6w, (33)
i=1 i=K/2+1
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14

which can be used as a look-up table for finding DOA of a tarBgtconsidering the afore-
mentioned structure for the transmit beamspace malvix it is guaranteed that the RIP is
satisfied and other additional design requirements can tisfied through the proper design of
Wi, -, W2,

Substituting [(3R) in[(17), the optimization problem of tsamt beamspace matrix design can
be reformulated as

K/2
en 34
nv1v1knma d ZHWk )H (34)
K/2
Z\wk )2+ Wi (i)]? :—, i=1,...,M.

For the case when the number of transmit antennas |§e\mj1usmg the facts that
fwr Wil d(6,)]1* = 2wy d(6,)]” (35)

[wi'd(6,)]* = tr(d(0,)d" (0 wiwy) (36)

\wi(i)]? + [wi(M — i+ 1)|2:tr(wkw,fAi),
i=1,..., M/2 (37)

the problem[(34) can be recast as

K/2

min Hb&;x Ga(6,)/2 — Z ‘dH<9q)Wk‘2

W

K/2
P, M
s.t. Ztr(wkwai) = Mt’ i= 1,...,7. (38)
Introducing the new variableX; = w,w}, k= 1,..., K/2 and following similar steps as in

the case of two transmit waveforms, the problem above cargbeaently rewritten as

K/2
. H
tmin max Ga(8,)/2 — ;u(d(ﬁq)d (eq)xk)
K/2
P, M
s.t thr(Xk i Lo
rank(Xz) =1, k=1,--- K/2 (39)

*The case when the number of transmit antennas is odd can fedcaut in a straightforward manner.
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where X,k = 1,---, K/2 are Hermitian matrices. The problern {39) can be solved in a
similar way as the probleni_(26). Specifically, the optimaluion of the problem[(39) can
be approximated using the SDP relaxation, i.e., droppimgrémk-one constraints and solving
the resulting convex problem.

By relaxing the rank-one constraints, the optimizationbfgm (39) can be approximated as

K/2
min meixx 0,)/2 — Ztr (0,)X%)
K/2
P M
s.t Ztr(XkA = i=1,. T3
Xp>=0, k=1,---,K/2. (40)

The problem [(40) is convex and, therefore, it can be solvédidietly using interior point
methods. Once the matricé§, = 0, £k = 1,--- , K/2 are obtained, the corresponding weight
vectorswy, k= 1,---,K/2 can be obtained using randomization techniques. Spedbjfioad
use the randomization method introduced in Subsecfion]lwAr everyX, k = 1,--- , K/2
separately and then map the resulted rank-one solutiornsetelosest feasible points. Among

the candidate solutions, the best one is then selected.

C. Optimal Rotation of the Transmit Beamspace Matrix

The solution of the optimization problemn (38) is not uniquel @s it will be explained shortly
in details, any spatial rotation of the optimal transmitrinepace matrix is also optimal. Among
the set of the optimal solutions of the problem](38), the oiith Wwetter energy preservation is
favorable. As a result, after the approximate optimal sotubf the problem[(38) is obtained,
we still need to find the optimal rotation which results in thest possible transmit beamspace
matrix in terms of the energy preservation. More specificaince the DOA of the target &t is
estimated based on the phase difference between the s@mpbaents of this target in the newly
defined vectors, i.ey /" d (6;)w; and 31 ., 7 (6)w;, to obtain the best performance,
W should be designed in a way that the magnitudes of the summaﬁfi/f d?(,)w; and
S ko A (6,)w; take their largest values.

Since the phase of the product tedfi(6,)w; in 32%/? d” (¢,)w; (or equivalently inEfiK/2+1 d”(6,)w;)

may be different for different waveforms, the terms in thmmualtlonZK/2 d? (6,)w; (or equiv-
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alently in the summatioEfiK/QH d”(#,)w;) may add incoherently and, therefore, it may result
in a small magnitude which in turn degrades the DOA estimgpierformance. In order to avoid
this problem, we use the property that any arbitrary rotatd the transmit beamspace matrix
does not change the transmit beampattern. SpecificalfW i [wy, - -+, Wg /o, WT, - - - ,v~v§{/2]

is a transmit beamspace matrix with the introduced strectiimen the new beamspace matrix

defined as

Wrot - [Wrot,b o Wrot, K /25 Wrot,l’ e 7Wrot,K/2]‘ (41)

has the same beampattern and the same power distributiossaitre antenna elements. Here
(Wiot, 15+ s Wrot,k/2] = [Wi, -+, Wi/2|Ugkjaxk/2 @and Uk ax i/ IS @ unitary matrix. Based on
this property, after proper design of the beamspace matitix & desired beampattern and the
RIP, we can rotate the beams so that the magnitude of the slimnr@fi/f d(0,)w; is increased
as much as possible.

Since the actual locations of the targets are not known aipvi@ design a unitary rotation
matrix so that the integration of the squared magnitude efslhmmationzfi/f d“(0,)w; over
the desired sector is maximized. As an illustrating exanguld because of space limitations,

we consider the case whédx is 4. In this case,
[Wrot,lawrot,Q] = [W17W2]U2x2 (42)

and the integration of the squared magnitude of the summ@}@:1 d? (6,)w,.; over the desired

sectors can be expressed as

2

/ ’wfit,ld<e>+wfit,2d<e> a6
e

[ (0 o 1 000) 0 O, 0
C)
+2Re(dH(e)wmt,lwfgt,zd(e))) do
:/ (dH(G)Wlwfid(ﬁ) +d? (0)wowid(6)
S)

+2Re (dH(G)wmt,lwfit’zd(@))) do (43)

where© denotes the desired sectors ate-) stands for the real part of a complex number. The

last line follows from the equatiof_(#2). Defining the new tege: = [1, —1]7, the expression
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in @3) can be equivalently recast as
/@ (dH(G)WﬂNfI d(6)+d" () wywld(0)
+2Re(dH(Q)Wmt,lwfgmd(e))) d0 —
/9<2dH(9)W1Wf{d(9)+2dH(9)W2W§d(9)

—|d(9)HWUe|2) do. (44)

We aim at maximizing the expressidn [44) with respect to thigany rotation matrixU. Since
the first two terms inside the integral i {44) are indepemnd#nthe unitary matrix, it only
suffices to minimize the integration of the last term.

Using the property thatX||Z = tr(XX#), where|| - || denotes the Frobenius norm, and the
cyclical property of the trace, i.etr(XX*) = tr(X*X), the integral of the last term if_(44)

can be equivalently expressed as
/ tr (Uee" UTWd(6)d(0)"W)dé. (45)
(S}

The only term in the integral{45) which depends s W#d(0)d(0)” W. Therefore, the
minimization of the integration of the last term in_{44) owersector© can be stated as the

following optimization problem
min tr(UEUD) (46)

s.t. UU? =1

whereE = ee” andD = [, tr (W”d(#)d(9)” W)de. Because of the unitary constraint, the
optimization problem[(46) is the optimization problem o¥ke Grassmannian manifold [32],
[33]. In order to address this problem, we can use the egistiaepest descent-based algorithm
developed in[[32].

D. Spatial-Division Based Design (SDD)

It is worth noting that instead of designing all transmit imsgjointly, an easy alternative for
designingW is to design different pairs of beamforming vectéve,, wi}, k= 1,---, K/2 sep-

arately. Specifically, in order to avoid the incoherent swatiom of the terms iani/f d? (0,)w;
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(or equivalently ianiK/QJrl d”(6,)w;), the matrixW can be designed in such a way that the
corresponding transmit beampatterns of the beamformiatpx@w, - - - , wg/» do not overlap
and they cover different parts of the desired sector withakguergy. This alternative design is
referred to as the SDD method. The design of one p&if, w;} has been already explained
in Subsectiom TV-A.

V. SIMULATION RESULTS

Throughout our simulations, we assume a uniform linearstraharray with) = 10 antennas
spaced half a wavelength apart, and a non-uniform lineaivecrray of N = 10 elements.
The locations of the receive antennas are randomly drawn the sef0, 9] measured in half a
wavelength. Noise signals are assumed to be Gaussianyesan; and white both temporally and
spatially. In each example, targets are assumed to liemdtlgiven spatial sector. From example
to example the sector widths in which transmit energy is $sed is changed, and, as a result, so
does the optimal number of waveforms to be used in the opditioiz of the transmit beamspace
matrix. The optimal number of waveforms is calculated basadthe number of dominant
eigen-values of the positive definite matrik = f® a(f)af (0)df (see [15] for explanations
and corresponding Cramer-Rao bound derivations and asply¥e assume that the number
of dominant eigenvalues is even; otherwise, we round it ughonearest even number. The
reason that an odd number of dominant eigenvalues is roumpleds opposed to down, is that
overusing waveforms is less detrimental to the performafid@OA estimation than underusing,
as it is shown in[[15]. Four examples are chosen to test thiompeance of our algorithm. In
Example 1, a single centrally located sector of wid€i is chosen to verify the importance of
the uniform power distribution across the orthogonal waxek. In Example 2, two separated
sectors each with a width af0° degrees are chosen. In Example 3, a single, centrally ldcate
sector of width10° degrees is chosen. Finally, in Example 4, a single, cewntladiated sector of
width 30° degrees is chosen. The optimal number of waveforms usedafiir example is two,
four, two, and four, respectively. The methods tested byek@nples are traditional MIMO radar
with uniform transmit power density anl = M and the proposed jointly optimum transmit
beamspace design method. In Example 3, we also consideiStben&thod which is an easier
alternative to the jointly optimal method. Throughout thewdations, we refer to the proposed

transmit beamspace method as the optimal transmit beamsfesign (although the solution

June 4, 2018 DRAFT



19

obtained through SDP relaxation and randomization is stapin general) to distinguish it
from the SDD method in which different pairs of the transmeamspace matrix columns are
designed separately. In Examples 1 and 3, the SDD is notaenesi since there is no need for
more than two waveforms. We also do not apply the SDD methakenast example due to the
fact that the corresponding spatially divided sectors ia tiase are adjacent and their sidelobes
result in energy loss and performance degradation as ogpgosexample 2.

Throughout all simulations, the total transmit power remsatonstant af’, = M. The root
mean square error (RMSE) and probability of target resmutire calculated based a0

independent Monte-Carlo runs.

A. Example 1 : Effect of the Uniform Power Distribution Agdhe Waveforms

In this example, we aim at studying how the lack of uniformngmission power across
the transmit waveforms affects the performance of the nespgsed method. For this goal,
we consider two targets that are located in the directioi$ and 5° and the desired sector
is chosen a® = [—10° 10°]. Two orthogonal waveforms are considered and optimal tnéns
beamspace matrix denoted %€, is obtained by solving the optimization problem1(22)+(23).
To simulate the case of non-uniform power distribution asrthe waveforms while preserving
the same transmit beampattern\df,, we use the rotated transmit beamspace mavWpd,.-,

where U, is a unitary matrix defined as

0.6925 + j0.3994  0.4903 + 50.3468
Uszyo =
: —0.4755 + j0.3669 0.6753 — 70.4279

Note thatW, and W U,,, lead to the same transmit beampattern and as a result the same
transmit power within the desired sector, however, congpéoethe former, the latter one does
not have uniform transmit power across the waveforms. Th&RMurves of the proposed DOA
estimation method for botW, and W U,,, versusSNR are shown in Figl]1. It can be seen
from this figure that the lack of uniform transmission poweraoss the waveforms can degrade

the performance of DOA estimation severely.

B. Example 2 : Two Separated Sectors of Wiglih Degrees Each

In the second example, two targets are assumed to lie wittinspatial sectors: one from
0 = [-40° — 20°] and the other fron® = [30° 50°]. The targets are located éf = —33°
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-~ Optimal Tx Beamspace Design using W0
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Fig. 1. Example 1: Performance of the new proposed methold awitd without uniform power distribution across transmit

waveforms.

and 6, = 41°. Fig.[2 shows the transmit beampatterns of the tradition@®! with uniform
transmit power distribution and both the optimal and SDDigles for W. It can be seen in
the figure that the optimal transmit beamspace method peevide most even concentration of
power in the desired sectors. The SDD technique providesetdration of power in the desired
sectors above and beyond traditional MIMO; however, theg@nis not evenly distributed with
one sector having a peak beampattern strength of 15 dB, wiglether has a peak of no more
than 12 dB. Fig[3 shows the individual beampatterns aswatiaith individual waveforms as

well as the coherent addition of all four individual beantgats.
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The performance of all three methods is compared in terntseatdrresponding RMSES versus
SNR as shown in Fid.J4. As we can see in the figure, the jointlyng transmit beamspace
and the SDD methods have lower RMSEs as compared to the RM8te afaditional MIMO
radar. It is also observed from the figure that the perforrmasfdthe SDD method is very close
to the performance of the jointly optimal one.

To assess the proposed method’s ability to resolve closalgitéd targets, we move both
targets to the location$, = 38° and 6, = 40°. The performance of all three methods tested is
given in terms of the probability of target resolution. Ndbat the targets are considered to be
resolved if there are at least two peaks in the MUSIC spectandthe following is satisfied [2]

‘él —el‘ < %, [=1,2

whereAd = |f, —6,|. The probability of source resolution versus SNR for all noels tested are
shown in Fig[h. It can be seen from the figure that the SNR himldsat which the probability
of target resolution transitions from very low values (i.eesolution fail) to values close to
one (i.e., resolution success) is lowest for the jointlyiopat transmit beamspace design-based
method, second lowest for the SDD method, and finally, higfeeghe traditional MIMO radar
method. In other words, the figure shows that the jointly mapti transmit beamspace design-
based method has a higher probability of target resolutidoveer values of SNR than the SDD

method, while the traditional MIMO radar method has the woesolution performance.

C. Example 3 : Single and Centrally Located Sector of WidthDegrees

In the third example, the targets are assumed to lie withinglesthin sector of) = [—10° 0°].
Due to the choice of the width of the sector, the optimal nurmddevaveforms to use is only
two. For this reason, only two methods are tested: the pezptransmit beamspace method and
the traditional MIMO radar. The beampatterns for these tvethmds are shown in Figl 6. It can
observed from the figure that our method offers a transmitgoayain that is 5 dB higher than
the traditional MIMO radar. In order to test the RMSE perfarme of both methods, targets
are assumed to be locatedfat= —7° andf, = —2°. The RMSE’s are plotted versus SNR in
Fig.[4. It can be observed from this figure that the proposadstnit beamspace method yields
lower RMSE as compared to the traditional MIMO radar basethoteat moderate and high
SNR values. At low SNR values one can observe from the figuaettie RMSE of the transmit
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Fig. 2. Example 2: Transmit beampatterns of the traditidfidlO and the proposed transmit beamspace design-baseadseth

beamspace method saturates-atlue to the fact that each of the two targets is locatettom
the edge of the sector. In order to test the resolution capebiof both methods tested, the
targets are moved té, = —3° andf, = —1°. The same criterion as in Example 2 is then used

to determine the target resolution. The results of thisdestdisplayed in Fid.]8 and agrees with

the similar results in Example 2.
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Fig. 3. Example 2: Individual beampatterns associated imitividual waveforms and the overall beampattern.

D. Example 4 : Single and Centrally Located Sector of Witlth Degrees

In the last example, a single wide sector is chosef -as—15° 15°]. The optimal number of
waveforms for such a sector is found to be four. Similar toghe/ious Example 3, we compare
the performance of the proposed method to that of the toaditiMIMO radar. Four transmit
beams are used to simulate the optimal transmit beamspaame®ased method. Figl 9 shows
the transmit beampatterns for the methods tested. In ocdéest the RMSE performance of

the methods tested, two targets are assumed to be located=at-12° andf, = 9°. Fig.[10
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Fig. 4. Example 2: Performance comparison between thetivadi MIMO and the proposed transmit beamspace desigeebas

methods.

shows the RMSEs versus SNR for the methods tested. As we eaim $lee figure, the RMSE

for the jointly optimal transmit beamspace design-basethatkis lower than the RMSE for
the traditional MIMO radar based method. Moreover, in orgetest resolution, the targets are
moved to#; = —3° andf, = —1°. The same criterion as in Example 2 is used to determine the

target resolution. The results of this test are similar wséhdisplayed in Fid.]5, and, therefore,

are not displayed here.
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Fig. 5. Example 2: Performance comparison between thetivadi MIMO and the proposed transmit beamspace desigeebas

methods.

VI. CONCLUSION

The problem of transmit beamspace design for MIMO radar widlocated antennas with
application to DOA estimation has been considered. A newhatefor designing the transmit
beamspace matrix that enables the use of search-free D@Aatisin techniques at the receiver
has been introduced. The essence of the proposed methodlésign the transmit beamspace

matrix based on minimizing the difference between a desiradsmit beampattern and the
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Fig. 6. Example 3: Transmit beampatterns of the traditidti\O and the proposed transmit beamspace design-basedieth

actual one. The case of even but otherwise arbitrary numb&aonsmit waveforms has been
considered. The transmit beams are designed in pairs wHemgaies are designed jointly
while satisfying the requirements that the two transmitnbeassociated with each pair enjoy
rotational invariance with respect to each other. Unlikevmyus methods that achieve phase
rotation between two transmit beams while allowing the nitagle to be different, a specific
beamspace matrix structure achieves phase rotation winsleri@g that the magnitude response

of the two transmit beams is exactly the same at all spatrakcions has been proposed. The
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Fig. 7. Example 3: Performance comparison between thetitvadl MIMO and the proposed transmit beamspace desigeebas

method.

SDP relaxation technique has been used to transform theogedpformulation into a convex
optimization problem that can be solved efficiently usintgiior point methods. An alternative
SDD method that divides the spatial domain into several extbss and assigns a subset of
the transmit beamspace pairs to each subsector has beedeaisloped. The SDD method
enables post processing of data associated with differdrgestors independently with DOA
estimation performance comparable to the performanceeojdint transmit beamspace design-

based method. Simulation results have been used to dematngie improvement in the DOA
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Fig. 8. Example 3: Performance comparison between thetivadi MIMO and the proposed transmit beamspace desigeebas

methods.

estimation performance offered by using the proposed gt SDD transmit beamspace design

methods as compared to the traditional MIMO radar.
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