
ar
X

iv
:1

30
5.

49
79

v1
  [

cs
.IT

]  
21

 M
ay

 2
01

3
1

Efficient Transmit Beamspace Design for

Search-free Based DOA Estimation in

MIMO Radar

Arash Khabbazibasmenj, Aboulnasr Hassanien, Sergiy A. Vorobyov, and

Matthew W. Morency

Abstract

In this paper, we address the problem of transmit beamspace design for multiple-input multiple-

output (MIMO) radar with colocated antennas in applicationto direction-of-arrival (DOA) estimation.

A new method for designing the transmit beamspace matrix that enables the use of search-free DOA

estimation techniques at the receiver is introduced. The essence of the proposed method is to design

the transmit beamspace matrix based on minimizing the difference between a desired transmit beam-

pattern and the actual one under the constraint of uniform power distribution across the transmit array

elements. The desired transmit beampattern can be of arbitrary shape and is allowed to consist of one

or more spatial sectors. The number of transmit waveforms iseven but otherwise arbitrary. To allow for

simple search-free DOA estimation algorithms at the receive array, the rotational invariance property is

established at the transmit array by imposing a specific structure on the beamspace matrix. Semidefinite

relaxation is used to transform the proposed formulation into a convex problem that can be solved

efficiently. We also propose a spatial-division based design (SDD) by dividing the spatial domain into

several subsectors and assigning a subset of the transmit beams to each subsector. The transmit beams

associated with each subsector are designed separately. Simulation results demonstrate the improvement

in the DOA estimation performance offered by using the proposed joint and SDD transmit beamspace

design methods as compared to the traditional MIMO radar technique.
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I. INTRODUCTION

In array processing applications, the direction-of-arrival (DOA) parameter estimation problem

is the most fundamental one [1]. Many DOA estimation techniques have been developed for the

classical array processing single-input multiple-output(SIMO) setup [1], [2]. The development

of a novel array processing configuration that is best known as multiple-input multiple-output

(MIMO) radar [3], [4] has opened new opportunities in parameter estimation. Many works have

recently been reported in the literature showing the benefits of applying the MIMO radar concept

using widely separated antennas [5]–[8] as well as using colocated transmit and receive antennas

[9]–[16]. We focus on the latter case in this paper.

In MIMO radar with colocated antennas, a virtual array with alarger number of virtual antenna

elements can be formed and used for improved DOA estimation performance as compared to

the performance of SIMO radar [17], [18] for relatively highsignal-to-noise ratios (SNRs), i.e.,

when the benefits of increased virtual aperture start to showup. The SNR gain for the traditional

MIMO radar (with the number of waveforms being the same as thenumber of transmit antenna

elements), however, decreases as compared to the phased-array radar where the transmit array

radiates a single waveform coherently from all antenna elements [12], [13]. A trade-off between

the phased-array and the traditional MIMO radar can be achieved [12], [14], [19] which gives the

best of both configurations, i.e., the increased number of virtual antenna elements due to the use

of waveform diversity together with SNR gain due to subaperture based coherent transmission.

Several transmit beamforming techniques have been developed in the literature to achieve

transmit coherent gain in MIMO radar under the assumption that the general angular locations

of the targets are known a priori to be located within a certain spatial sector. The increased

number of degrees of freedom for MIMO radar, due to the use of multiple waveforms, is used for

the purpose of synthesizing a desired transmit beampatternbased on optimizing the correlation

matrix of the transmitted waveforms [4], [20], [21]. To apply the designs obtained using the

aforementioned methods, the actual waveforms still have tobe found which can be a difficult

and computationally demanding problem [22].

One of the major motivations for designing transmit beampattern is realizing the possibility
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of achieving SNR gain together with increased aperture for improved DOA estimation in a wide

range of SNRs [15], [23]. In particular, it has been shown in [15] that the performance of a MIMO

radar system with a number of waveforms less than the number of transmit antennas and with

transmit beamspace design capability is better than the performance of a MIMO radar system

with full waveform diversity and no transmit beamforming gain. Remarkably, using MIMO radar

with proper transmit beamspace design, it is possible to guarantee the satisfaction of such desired

property for DOA estimation as the rotational invariance property (RIP) at the receive array [15].

This is somewhat similar in effect to the property of orthogonal space-time block codes in that

the shape of the transmitted constellation does not change at the receiver independent of the

channel. The latter allows for simple decoder [24]. Similarly, here the RIP allows for simple

DOA estimation techniques at the receiver although the RIP is actually enforced at the transmitter,

and the propagation media cannot break it thanks to the proper design of transmit beamspace.

Since the RIP holds at the receive array independent of the propagation media and receive

antenna array configuration, the receive antenna array can be any arbitrary array. However, the

methods developed in [15] suffer from the shortcomings thatthe transmit power distribution

across the array elements is not uniform and the achieved phase rotations come with variations

in the magnitude of different transmit beams that affects the performance of DOA estimation at

the receiver.

In this paper, we consider the problem of transmit beamspacedesign for DOA estimation

in MIMO radar with colocated antennas. We propose a new method for designing the transmit

beamspace that enables the use of search-free DOA estimation techniques at the receive antenna

array.1 The essence of the proposed method is to design the transmit beamspace matrix based

on minimizing the difference between a desired transmit beampattern and the actual one while

enforcing the uniform power distribution constraint across the transmit array antenna elements.

The desired transmit beampattern can be of arbitrary shape and is allowed to consist of one or

more spatial sectors. The case of even but otherwise arbitrary number of transmit waveforms

is considered. To allow for simple search-free DOA estimation algorithms at the receiver, the

RIP is established at the transmit antenna array by imposinga specific structure on the transmit

beamspace matrix. The proposed structure is based on designing the transmit beams in pairs

1An early and very preliminary exposition of this work has been presented in parts in [25] and [26].
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where the transmit weight vector associated with a certain transmit beam is the conjugate flipped

version of the weight vector associated with another beam, i.e., one transmit weight vector is

designed for each pair of transmit beams. All pairs are designed jointly while satisfying the

requirement that the two transmit beams associated with each pair enjoy rotational invariance

with respect to each other. Semidefinite programming (SDP) relaxation is used to transform the

proposed formulation into a convex problem that can be solved efficiently using, for example,

interior point methods. In comparison to our previous method [23] that achieves phase rotation

between two transmit beams, the proposed method enjoys the following advantages. (i) It ensures

that the magnitude response of the two transmit beams associated with one pair of transmit

beams is exactly the same at all spatial directions, a property that improves the DOA estimation

performance. (ii) It ensures uniform power distribution across transmit elements. (iii) It enables

estimating the DOAs via estimating the accumulated phase rotations over all transmit beams

instead of only two beams. (iv) It only involves optimization over half the entries of the transmit

beamspace matrix which decreases the computational load. We also propose an alternative

formulation based on splitting the overall transmit beamspace design problem into several smaller

problems. The alternative formulation is referred to as thespatial-division based design (SDD)

which involves dividing the spatial domain into several subsectors and assigning a subset of

the transmit beamspace pairs to each subsector. The SDD method enables post processing of

data associated with different subsectors independently with estimation performance comparable

to the performance of the joint transmit beamspace design. Simulation results demonstrate

the improvement in the DOA estimation performance that is achieved by using the proposed

joint transmit beamspace design and SDD methods as comparedto the traditional MIMO radar

technique.

The rest of the paper is organized as follows. Section II introduces the system model for mono-

static MIMO radar system with transmit beamspace. The problem formulation is developed in

Section III while the transmit beamspace design problem foreven but otherwise arbitrary number

of transmit waveforms is developed in Section IV. Section V gives simulation examples for the

proposed DOA estimation techniques and conclusions are drawn in Section VI.

June 4, 2018 DRAFT



5

II. SYSTEM MODEL AND MAIN IDEA

Consider a mono-static MIMO radar system equipped with a uniform linear transmit array

of M colocated antennas with inter-element spacingd measured in wavelength and a receive

array ofN antennas configured in a random shape. The transmit and receive arrays are assumed

to be close enough to each other such that the spatial angle ofa target in the far-field remains

the same with respect to both arrays. LetΦ(t) = [φ1(t), . . . , φK(t)]
T be theK × 1 vector that

contains the complex envelopes of the waveformsφk(t), k = 1, . . . , K which are assumed to

be orthogonal, i.e.,
∫ Tp

0

φi(t)φ
∗

j(t) = δ(i− j), i, j = 1, 2, · · · , K (1)

whereTp is the pulse duration,(·)T and (·)∗ stand for the transpose and the conjugate, respec-

tively, andδ(·) is the Kroneker delta. The actual transmitted signals are taken as linear combina-

tions of the orthogonal waveforms. Therefore, theM × 1 vector of the baseband representation

of the transmitted signals can be written as [15]

s(t) = [s1(t), . . . , sM(t)]T = WΦ(t) (2)

wheresi(t) is the signal transmitted from antennai and

W =















w1,1 w2,1 · · · wK,1

w1,2 w2,2 · · · wK,2
...

...
. . .

...

w1,M w2,M · · · wK,M















(3)

is theM×K transmit beamspace matrix. It is worth noting that each of the orthogonal waveforms

φk(t), k = 1, . . . , K is transmitted over one transmit beam where thekth column of the matrix

W corresponds to the transmit beamforming weight vector usedto form thekth beam.

Let a(θ) , [1, e−j2πd sin(θ), . . . , e−j2πd(M−1) sin(θ)]T be theM ×1 transmit array steering vector.

The transmit power distribution pattern can be expressed as[20]

G(θ) =
1

4π
dH(θ)Rd(θ), −π/2 ≤ θ ≤ π/2 (4)

where(·)H stands for the conjugate transpose,d(θ) = a∗(θ), and

R =

∫ Tp

0

s(t)sH(t)dt (5)
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is the cross-correlation matrix of the transmitted signals(2). One way to achieve a certain

desired transmit beampattern is to optimize over the cross-correlation matrixR such as in [20],

[21]. In this case, a complementary problem has to be solved after obtainingR in order to

find appropriate signal vectors(t) that satisfies (5). Solving such a complementary problem is in

general difficult and computationally demanding. However,in this paper, we extend our approach

of optimizing the transmit beampattern via designing the transmit beamspace matrix. According

to this approach, the cross-correlation matrix is expressed as

R = WWH (6)

that holds due to the orthogonality of the waveforms (see (1)and (2)). Then the transmit

beamspace matrixW can be designed to achieve the desired beampattern while satisfying many

other requirements mandated by practical considerations such as equal transmit power distribution

across the transmit array antenna elements, achieving a desired radar ambiguity function, etc.

Moreover, this approach enables enforcing the RIP which facilitates subsequent processing steps

at the receive antenna array, e.g., it enables applying accurate computationally efficient DOA

estimation using search-free direction finding techniquessuch as ESPRIT.

The signal measured at the output of the receive array due to echoes fromL narrowband

far-field targets can be modeled as

x(t, τ) =
L
∑

l=1

βl(τ)
[

dH(θl)WΦ(t)
]

b(θl) + z(t, τ) (7)

wheret is the time index within the radar pulse,τ is the slow time index , i.e., the pulse number,

βl(τ) is the reflection coefficient of the target located at the unknown spatial angleθl, b(θl) is the

receive array steering vector, andz(t, τ) is theN × 1 vector of zero-mean white Gaussian noise

with varianceσ2
z . In (7), the target reflection coefficientsβl(τ), l = 1, . . . , L are assumed to

obey the Swerling II model, i.e, they remain constant duringthe duration of one radar pulse but

change from pulse to pulse. Moreover, they are assumed to be drawn from a normal distribution

with zero mean and varianceσ2
β.

By matched filteringx(t, τ) to each of the orthogonal basis waveformsφk(t), k = 1, . . . , K,
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theN × 1 virtual data vectors can be obtained as2

yk(τ) =

∫

Tp

x(t, τ)φ∗

k(t)dt

=
L
∑

l=1

βl(τ)
(

dH(θl)wk

)

b(θl) + zk(τ) (8)

wherewk is thekth column of the transmit beamspace matrixW andzk(τ) ,
∫

Tp
z(t, τ)φ∗

k(t)dt

is theN × 1 noise term whose covariance isσ2
zIN .

Let y̆l,k(τ) be the noise free component of the virtual data vector (8) associated with thelth

target, i.e.,̆yl,k(τ) = βl(τ)
(

dH(θl)wk

)

b(θl). Then, one can easily observe that thekth and the

k′th components associated with thelth target are related to each other through the following

relationship

y̆l,k′(τ) =βl(τ)
(

dH(θl)wk′
)

b(θl)

=
dH(θl)wk′

dH(θl)wk

· y̆l,k(τ)

= ej(ψk′ (θl)−ψk(θl))

∣

∣dH(θl)wk′
∣

∣

|dH(θl)wk|
· y̆l,k(τ) (9)

whereψk(θ) is the phase of the inner productdH(θ)wk. The expression (9) means that the

signal componentyk(τ) corresponding to a given target is the same as the signal componentyk′

corresponding to the same target up to a phase rotation and a gain factor.

The RIP can be enforced by imposing the constraint|dH(θ)wk| = |dH(θ)wk′ | while designing

the transmit beamspace matrixW. The main advantage of enforcing the RIP is that it allows

us to estimate DOAs via estimating the phase rotation associated with thekth andk′th pair of

the virtual data vectors using search-free techniques, e.g., ESPRIT. Moreover, if the number of

transmit waveforms is more than two, the DOA estimation can be carried out via estimating the

phase difference

∠

K/2
∑

i=1

dH(θl)wi −∠

K
∑

i=K/2+1

dH(θl)wi (10)

2Practically, this matched filtering step is performed for each Doppler-range bin, i.e., the received datax(t, τ ) is matched

filtered to a time-delayed Doppler shifted version of the waveformsφk(t), k = 1, . . . ,K.
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and comparing it to a precalculated phase profile for the given spatial sector in which we have

concentrated power from the transmit antenna array. However, in the latter case, precautions

should be taken to assure the coherent accumulation of theK/2 components in (10), i.e., to

avoid gain loss as will be shown later in the paper.

III. PROBLEM FORMULATION

The main goal is to design a transmit beamspace matrixW which achieves a spatial beam-

pattern that is as close as possible to a certain desired one.Substituting (6) in (4), the spatial

beampattern can be rewritten as

G(θ) =
1

4π
dH(θ)WWHd(θ)

=
1

4π

K
∑

i=1

wH
i d(θ)d

H(θ)wi. (11)

Therefore, we design the transmit beamspace matrixW based on minimizing the difference

between the desired beampattern and the actual beampatterngiven by (11). Using the minmax

criterion, the transmit beamspace matrix design problem can be formulated as

min
W

max
θ

∣

∣

∣

∣

∣

Gd(θ)−
1

4π

K
∑

i=1

wH
i d(θ)d

H(θ)wi

∣

∣

∣

∣

∣

(12)

s.t.
K
∑

i=1

|wi(j)|
2 =

Pt

M
, j = 1, · · · ,M (13)

whereGd(θ), θ ∈ [−π/2, π/2] is the desired beampattern andPt is the total transmit power. The

M constraints enforced in (13) are used to ensure that individual antennas transmit equal powers

given byPt/M . It is equivalent to having the norms of the rows ofW to be equal toPt/M . The

uniform power distribution across the array antenna elements given by (13) is necessary from a

practical point of view. In practice, each antenna in the transmit array typically uses the same

power amplifier, and thus has the same dynamic power range. Ifthe power used by different

antenna elements is allowed to vary widely, this can severely degrade the performance of the

system due to the nonlinear characteristics of the power amplifier.

Another goal that we wish to achieve is to enforce the RIP to enable for search-free DOA

estimation. Enforcing the RIP between thekth and(K/2+ k)th transmit beams is equivalent to

ensuring that the following relationship holds
∣

∣wH
k d(θ)

∣

∣ =
∣

∣

∣w
H
K
2
+k
d(θ)

∣

∣

∣ , θ ∈ [−π/2, π/2]. (14)
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Ensuring (14), the optimization problem (12)–(13) can be reformulated as

min
W

max
θ

∣

∣

∣

∣

∣

Gd(θ)−
1

4π

K
∑

i=1

wH
i d(θ)d

H(θ)wi

∣

∣

∣

∣

∣

(15)

s.t.

K
∑

i=1

|wi(j)|
2 =

Pt

M
, j = 1, · · · ,M (16)

∣

∣wH
k d(θ)

∣

∣ =
∣

∣

∣
wH

K
2
+k
d(θ)

∣

∣

∣
, (17)

θ ∈ [−π/2, π/2], k = 1, . . . ,
K

2
.

It is worth noting that the constraints (16) as well as the constraints (17) correspond to non-convex

sets and, therefore, the optimization problem (15)–(17) isa non-convex problem which is difficult

to solve in a computationally efficient manner. Moreover, the fact that (17) should be enforced

for every directionθ ∈ [−π/2, π/2], i.e., the number of equations in (17) is significantly larger

than the number of the variables, makes it impossible to satisfy (17) unless a specific structure

on the transmit beamspace matrixW is imposed.

In the following section we propose a specific structure toW to overcome the difficulties

caused by (17) and show how to use SDP relaxation to overcome the difficulties caused by the

non-convexity of (15)–(17).

IV. TRANSMIT BEAMSPACE DESIGN

A. Two Transmit Waveforms

We first consider a special, but practically important case of two orthonormal waveforms.

Thus, the dimension ofW is M × 2. Then under the aforementioned assumption of ULA at the

MIMO radar transmitter, the RIP can be satisfied by choosing the transmit beamspace matrix to

take the form

W = [w, w̃∗] (18)

wherew̃ is the flipped version of vectorw, i.e., w̃(i) = w(M − i+ 1), i = 1, . . . ,M . Indeed,

in this case,|dH(θ)w| = |dH(θ)w̃∗| and the RIP is clearly satisfied.

To prove that the specific structure (18) achieves the RIP, let us represent the vectorw as a

vector of complex numbers

w = [z1 z2 . . . zM ]T (19)

June 4, 2018 DRAFT
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wherezm, m = 1, . . . ,M are complex numbers. Then the flipped-conjugate version ofw has

the structurew̃∗ = [z∗M z∗M−1 . . . z
∗

1 ]
T . Examining the inner productsdH(θ)w anddH(θ)w̃∗ we

see that the first inner product produces the sum

dH(θ)w = z1 + z2e
j2πd sin(θ) +

. . .+ zMe
j2πd sin(θ)(M−1) (20)

and the second produces the sum

dH(θ)w̃∗

i = z∗M + z∗M−1 · e
j2πd sin(θ) +

. . .+ z∗1 · e
j2πd sin(θ)(M−1). (21)

Factoring out the terme−j2πd sin(θ)(M−1) from (21) and conjugating, we can see that the sums

are identical in magnitude and indeed are the same up to a phase rotationψ. This relationship

is precisely the RIP, and it is enforced at the transmit antenna array by the structure imposed

on the transmit beamspace matrixW.

Substituting (18) in (15)–(17), the optimization problem can be reformulated for the case of

two transmit waveforms as follows

min
w

max
θ

∣

∣Gd(θ)− ‖[ww̃∗]Hd(θ)‖2
∣

∣ (22)

s.t. |w(i)|2 + |w̃(i)|2 =
Pt

M
, i = 1, . . . ,M. (23)

It is worth noting that the constraints (17) are not shown in the optimization problem (22)–(23)

because they are inherently enforced due to the use of the specific structure ofW given in (18).

Introducing the auxiliary variableδ, the optimization problem (22)–(23) can be equivalently

rewritten as

min
w,δ

δ

s.t.
Gd(θq)

2
−|wHd(θq)|

2 ≤ δ, q = 1, . . . , Q

Gd(θq)

2
−|wHd(θq)|

2 ≥ −δ, q = 1, . . . , Q

|w(i)|2+|w(M− i+1)|2=
Pt

M
, i = 1, . . .,

M

2
. (24)

where θq ∈ [−π/2, π/2], q = 1, . . . , Q is a continuum of directions that are properly chosen

(uniform or nonuniform) to approximate the spatial domain[−π/2, π/2]. It is worth noting that
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the optimization problem (24) has significantly larger number of degrees of freedom than the

beamforming problem for the phased-array case where the magnitudes ofw(i), i = 1, . . . ,M

are fixed.

The problem (24) belongs to the class of non-convex quadratically-constrained quadratic

programming (QCQP) problems which are in general NP-hard. However, a well developed SDP

relaxation technique can be used to solve it [27]–[31]. Indeed, using the facts that|wHd(θq)|
2 =

tr(d(θq)d
H(θq)wwH) and|w(i)|2+|w(M−i+1)|2 = tr(wwHAi), i = 1, . . . ,M/2, wheretr(·)

stands for the trace andAi is anM×M matrix such thatAi(i, i) = Ai(M−(i−1),M−(i−1)) =

1 and the rest of the elements are equal to zero, the problem (24) can be cast as

min
w,δ

δ

s.t.
Gd(θq)

2
−tr(d(θq)d

H(θq)wwH)≤δ, q = 1, . . . , Q

Gd(θq)

2
−tr(d(θq)d

H(θq)wwH)≥−δ, q = 1, . . . , Q

tr(wwHAi) =
Pt

M
, i = 1, . . . ,

M

2
. (25)

Introducing the new variableX , wwH , the problem (25) can be equivalently written as

min
X,δ

δ

s.t.
Gd(θq)

2
−tr(d(θq)d

H(θq)X)≤δ, q = 1, . . . , Q

Gd(θq)

2
−tr(d(θq)d

H(θq)X)≥−δ, q = 1, . . . , Q

tr(XAi) =
Pt

M
, i = 1, . . . ,

M

2
; rank(X) = 1 (26)

whereX is the Hermitian matrix andrank(·) denotes the rank of a matrix. Note that the last

two constraints in (26) imply that the matrixX is positive semidefinite. The problem (26) is

non-convex with respect toX because the last constraint is not convex. However, by means

of the SDP relaxation technique, this constraint can be replaced by another constraint, that is,

X � 0. The resulting problem is the relaxed version of (26) and it is a convex SDP problem

which can be efficiently solved using, for example, interiorpoint methods. When the relaxed

problem is solved, extraction of the solution of the original problem is typically done via the

so-calledrandomizationtechniques [27].

June 4, 2018 DRAFT
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Let Xopt denote the optimal solution of the relaxed problem. If the rank of Xopt is one, the

optimal solution of the original problem (24) can be obtained by simply finding the principal

eigenvector ofXopt. However, if the rank of the matrixXopt is higher than one, the randomization

approach can be used. Various randomization techniques have been developed and are generally

based on generating a set of candidate vectors and then choosing the candidate which gives the

minimum of the objective function of the original problem. Our randomization procedure can be

described as follows. LetXopt = UΣUH denote the eigen-decomposition ofXopt. The candidate

vector k can be chosen aswcan,k = UΣ1/2vk wherevk is random vector whose elements are

random variables uniformly distributed on the unit circle in the complex plane. Candidate vectors

are not always feasible and should be mapped to a nearby feasible point. This mapping is problem

dependent [31]. In our case, if the condition|wcan,k(i)|
2+ |wcan,k(M− i+1)|2 = Pt/M does not

hold, we can map this vector to a nearby feasible point by scaling wcan,k(i) andwcan,k(M−i+1)

to satisfy this constraint. Among the candidate vectors we then choose the one which gives the

minimum objective function, i.e., the one with minimummaxθq
∣

∣Gd(θq)/2− |wH
can,kd(θq)|

2
∣

∣.

B. Even Number of Transmit Waveforms

Let us consider now theM ×K transmit beamspace matrixW = [w1,w2, · · · ,wK ] where

K ≤M andK is an even number. For convenience, the virtual received signal vector matched

to the basis waveformφk(t) is rewritten as

yk(τ) =

∫

Tp

x(t, τ)φ∗

k(t)dt

=

L
∑

l=1

βl(τ)e
jψk(θl)

∣

∣dH(θl)wk

∣

∣b(θl) + zk(τ). (27)

From (27), it can be seen that the RIP betweenyk andyk′, k 6= k′ holds if

∣

∣dH(θ)wk

∣

∣ =
∣

∣dH(θ)wk′
∣

∣ , θ ∈ [−π/2, π/2]. (28)

In the previous subsection, we saw that by considering the following specific structure[w w̃∗]

for the transmit beamspace matrix with only two waveforms, the RIP is guaranteed at the receive

antenna array. In this part, we obtain the RIP for the more general case of more than two

waveforms. It provides more degrees of freedom for obtaining a better performance. For this
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goal, we first show that if for somek′ the following relation holds
∣

∣

∣

∣

∣

k′
∑

i=1

dH(θ)wi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

i=k′+1

dH(θ)wi

∣

∣

∣

∣

∣

, ∀θ ∈ [−π/2, π/2] (29)

then the two new sets of vectors defined as the summation of thefirst k′ data vectorsyi(τ),

i = 1, · · · , k′ and the lastK − k′ data vectorsyi(τ), i = k′ + 1, · · · , K will satisfy the RIP.

More specifically, by defining the following vectors

g1(τ) ,
k′
∑

i=1

yi(τ)

=
L
∑

l=1

βl(τ)

(

k′
∑

i=1

dH(θl)wi

)

b(θl)+
k′
∑

i=1

zi(τ) (30)

g2(τ) ,

K
∑

i=k′+1

yi(τ)

=
L
∑

l=1

βl(τ)

(

K
∑

i=k′+1

dH(θl)wi

)

b(θl)+
K
∑

i=k′+1

zi(τ) (31)

the corresponding signal component of targetl in the vectorg1(τ) has the same magnitude as in

the vectorg2(τ) if the equation (29) holds. In this case, the only differencebetween the signal

components of the targetl in the vectorsg1(τ) andg2(τ) is the phase which can be used for

DOA estimation. Based on this fact, for ensuring the RIP between the vectorsg1(τ) andg2(τ),

equation (29) needs to be satisfied for every angleθ ∈ [−π/2, π/2]. By noting that the equation

|dH(θ)w| = |dH(θ)w̃∗| holds for any arbitraryθ, it can be shown that the equation (29) holds

for any arbitraryθ only if the following structure on the matrixW is imposed:

• K is an even number,

• k′ equals toK/2,

• wi = w̃∗

k′+i, i = 1, · · · , K/2.

More specifically, if the transmit beamspace matrix has the following structure

W = [w1, · · · ,wK/2, w̃
∗

1, · · · , w̃
∗

K/2] (32)

then the signal component ofg1(τ) associated with thelth target is the same as the corresponding

signal component ofg2(τ) up to phase rotation of

∠

K/2
∑

i=1

dH(θl)wi −∠

K
∑

i=K/2+1

dH(θl)wi (33)
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which can be used as a look-up table for finding DOA of a target.By considering the afore-

mentioned structure for the transmit beamspace matrixW, it is guaranteed that the RIP is

satisfied and other additional design requirements can be satisfied through the proper design of

w1, · · · ,wK/2.

Substituting (32) in (17), the optimization problem of transmit beamspace matrix design can

be reformulated as

min
wk

max
θq

∣

∣

∣

∣

∣

∣

Gd(θq)−

K/2
∑

k=1

‖[wk w̃k
∗]Hd(θq)‖

2

∣

∣

∣

∣

∣

∣

(34)

s.t.

K/2
∑

k=1

|wk(i)|
2 + |w̃k(i)|

2=
Pt

M
, i = 1, . . . ,M.

For the case when the number of transmit antennas is even3 and using the facts that

‖[wk w̃
∗

k]
Hd(θq)‖

2 = 2|wH
k d(θq)|

2 (35)

|wH
k d(θq)|

2 = tr(d(θq)d
H(θq)wkw

H
k ) (36)

|wk(i)|
2 + |wk(M − i+ 1)|2=tr(wkw

H
k Ai),

i = 1, . . . ,M/2 (37)

the problem (34) can be recast as

min
wk

max
θq

∣

∣

∣

∣

∣

∣

Gd(θq)/2−

K/2
∑

k=1

∣

∣dH(θq)wk

∣

∣

2

∣

∣

∣

∣

∣

∣

s.t.

K/2
∑

k=1

tr(wkw
H
k Ai) =

Pt

M
, i = 1, . . . ,

M

2
. (38)

Introducing the new variablesXk , wkw
H
k , k = 1, . . . , K/2 and following similar steps as in

the case of two transmit waveforms, the problem above can be equivalently rewritten as

min
Xk

max
θq

∣

∣

∣

∣

∣

∣

Gd(θq)/2−

K/2
∑

k=1

tr

(

d(θq)d
H(θq)Xk

)

∣

∣

∣

∣

∣

∣

s.t.

K/2
∑

k=1

tr(XkAi) =
Pt

M
, i = 1, . . . ,

M

2

rank(Xk) = 1, k = 1, · · · , K/2 (39)

3The case when the number of transmit antennas is odd can be carried out in a straightforward manner.
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where Xk, k = 1, · · · , K/2 are Hermitian matrices. The problem (39) can be solved in a

similar way as the problem (26). Specifically, the optimal solution of the problem (39) can

be approximated using the SDP relaxation, i.e., dropping the rank-one constraints and solving

the resulting convex problem.

By relaxing the rank-one constraints, the optimization problem (39) can be approximated as

min
Xk

max
θq

∣

∣

∣

∣

∣

∣

Gd(θq)/2−

K/2
∑

k=1

tr(d(θq)d
H(θq)Xk)

∣

∣

∣

∣

∣

∣

s.t.

K/2
∑

k=1

tr(XkAi) =
Pt

M
, i = 1, . . . ,

M

2

Xk � 0, k = 1, · · · , K/2. (40)

The problem (40) is convex and, therefore, it can be solved efficiently using interior point

methods. Once the matricesXk � 0, k = 1, · · · , K/2 are obtained, the corresponding weight

vectorswk, k = 1, · · · , K/2 can be obtained using randomization techniques. Specifically, we

use the randomization method introduced in Subsection IV-Aover everyXk, k = 1, · · · , K/2

separately and then map the resulted rank-one solutions to the closest feasible points. Among

the candidate solutions, the best one is then selected.

C. Optimal Rotation of the Transmit Beamspace Matrix

The solution of the optimization problem (38) is not unique and as it will be explained shortly

in details, any spatial rotation of the optimal transmit beamspace matrix is also optimal. Among

the set of the optimal solutions of the problem (38), the one with better energy preservation is

favorable. As a result, after the approximate optimal solution of the problem (38) is obtained,

we still need to find the optimal rotation which results in thebest possible transmit beamspace

matrix in terms of the energy preservation. More specifically, since the DOA of the target atθl is

estimated based on the phase difference between the signal components of this target in the newly

defined vectors, i.e.,
∑K/2

i=1 dH(θl)wi and
∑K

i=K/2+1 d
H(θl)wi, to obtain the best performance,

W should be designed in a way that the magnitudes of the summations
∑K/2

i=1 dH(θl)wi and
∑K

i=K/2+1 d
H(θl)wi take their largest values.

Since the phase of the product termdH(θl)wi in
∑K/2

i=1 dH(θl)wi (or equivalently in
∑K

i=K/2+1 d
H(θl)wi)

may be different for different waveforms, the terms in the summation
∑K/2

i=1 dH(θl)wi (or equiv-
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alently in the summation
∑K

i=K/2+1 d
H(θl)wi) may add incoherently and, therefore, it may result

in a small magnitude which in turn degrades the DOA estimation performance. In order to avoid

this problem, we use the property that any arbitrary rotation of the transmit beamspace matrix

does not change the transmit beampattern. Specifically, ifW = [w1, · · · ,wK/2, w̃
∗

1, · · · , w̃
∗

K/2]

is a transmit beamspace matrix with the introduced structure, then the new beamspace matrix

defined as

Wrot = [wrot,1, · · · ,wrot,K/2, w̃
∗

rot,1, · · · , w̃
∗

rot,K/2]. (41)

has the same beampattern and the same power distribution across the antenna elements. Here

[wrot,1, · · · ,wrot,K/2] = [w1, · · · ,wK/2]UK/2×K/2 andUK/2×K/2 is a unitary matrix. Based on

this property, after proper design of the beamspace matrix with a desired beampattern and the

RIP, we can rotate the beams so that the magnitude of the summation
∑K/2

i=1 dH(θl)wi is increased

as much as possible.

Since the actual locations of the targets are not known a priori, we design a unitary rotation

matrix so that the integration of the squared magnitude of the summation
∑K/2

i=1 dH(θl)wi over

the desired sector is maximized. As an illustrating exampleand because of space limitations,

we consider the case whenK is 4. In this case,

[wrot,1,wrot,2] = [w1,w2]U2×2 (42)

and the integration of the squared magnitude of the summation
∑2

i=1 d
H(θl)wrot,i over the desired

sectors can be expressed as
∫

Θ

∣

∣

∣

∣

wH
rot,1d(θ)+w

H
rot,2d(θ)

∣

∣

∣

∣

2

dθ

=

∫

Θ

(

dH(θ)wrot,1w
H
rot,1d(θ)+dH(θ)wrot,2w

H
rot,2d(θ)

+2Re
(

dH(θ)wrot,1w
H
rot,2d(θ)

)

)

dθ

=

∫

Θ

(

dH(θ)w1w
H
1 d(θ)+dH(θ)w2w

H
2 d(θ)

+2Re
(

dH(θ)wrot,1w
H
rot,2d(θ)

)

)

dθ (43)

whereΘ denotes the desired sectors andRe(·) stands for the real part of a complex number. The

last line follows from the equation (42). Defining the new vector e = [1,−1]T , the expression
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in (43) can be equivalently recast as
∫

Θ

(

dH(θ)w1w
H
1 d(θ)+dH(θ)w2w

H
2 d(θ)

+2Re
(

dH(θ)wrot,1w
H
rot,2d(θ)

)

)

dθ =

∫

Θ

(

2dH(θ)w1w
H
1 d(θ)+2dH(θ)w2w

H
2 d(θ)

−|d(θ)HWUe|2
)

dθ. (44)

We aim at maximizing the expression (44) with respect to the unitary rotation matrixU. Since

the first two terms inside the integral in (44) are independent of the unitary matrix, it only

suffices to minimize the integration of the last term.

Using the property that‖X‖2F = tr(XXH), where‖ · ‖F denotes the Frobenius norm, and the

cyclical property of the trace, i.e.,tr(XXH) = tr(XHX), the integral of the last term in (44)

can be equivalently expressed as
∫

Θ

tr
(

UeeHUHWHd(θ)d(θ)HW
)

dθ. (45)

The only term in the integral (45) which depends onθ is WHd(θ)d(θ)HW. Therefore, the

minimization of the integration of the last term in (44) overa sectorΘ can be stated as the

following optimization problem

min
U

tr(UEUHD) (46)

s.t. UUH = I

whereE = eeH andD =
∫

Θ
tr
(

WHd(θ)d(θ)HW
)

dθ. Because of the unitary constraint, the

optimization problem (46) is the optimization problem overthe Grassmannian manifold [32],

[33]. In order to address this problem, we can use the existing steepest descent-based algorithm

developed in [32].

D. Spatial-Division Based Design (SDD)

It is worth noting that instead of designing all transmit beams jointly, an easy alternative for

designingW is to design different pairs of beamforming vectors{wk, w̃
∗

k}, k = 1, · · · , K/2 sep-

arately. Specifically, in order to avoid the incoherent summation of the terms in
∑K/2

i=1 dH(θl)wi
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(or equivalently in
∑K

i=K/2+1 d
H(θl)wi), the matrixW can be designed in such a way that the

corresponding transmit beampatterns of the beamforming vectorsw1, · · · ,wK/2 do not overlap

and they cover different parts of the desired sector with equal energy. This alternative design is

referred to as the SDD method. The design of one pair{wk, w̃∗

k} has been already explained

in Subsection IV-A.

V. SIMULATION RESULTS

Throughout our simulations, we assume a uniform linear transmit array withM = 10 antennas

spaced half a wavelength apart, and a non-uniform linear receive array ofN = 10 elements.

The locations of the receive antennas are randomly drawn from the set[0, 9] measured in half a

wavelength. Noise signals are assumed to be Gaussian, zero-mean, and white both temporally and

spatially. In each example, targets are assumed to lie within a given spatial sector. From example

to example the sector widths in which transmit energy is focussed is changed, and, as a result, so

does the optimal number of waveforms to be used in the optimization of the transmit beamspace

matrix. The optimal number of waveforms is calculated basedon the number of dominant

eigen-values of the positive definite matrixA =
∫

Θ
a(θ)aH(θ)dθ (see [15] for explanations

and corresponding Cramer-Rao bound derivations and analysis). We assume that the number

of dominant eigenvalues is even; otherwise, we round it up tothe nearest even number. The

reason that an odd number of dominant eigenvalues is roundedup, as opposed to down, is that

overusing waveforms is less detrimental to the performanceof DOA estimation than underusing,

as it is shown in [15]. Four examples are chosen to test the performance of our algorithm. In

Example 1, a single centrally located sector of width20◦ is chosen to verify the importance of

the uniform power distribution across the orthogonal waveforms. In Example 2, two separated

sectors each with a width of20◦ degrees are chosen. In Example 3, a single, centrally located

sector of width10◦ degrees is chosen. Finally, in Example 4, a single, centrally located sector of

width 30◦ degrees is chosen. The optimal number of waveforms used for each example is two,

four, two, and four, respectively. The methods tested by theexamples are traditional MIMO radar

with uniform transmit power density andK = M and the proposed jointly optimum transmit

beamspace design method. In Example 3, we also consider the SSD method which is an easier

alternative to the jointly optimal method. Throughout the simulations, we refer to the proposed

transmit beamspace method as the optimal transmit beamspace design (although the solution
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obtained through SDP relaxation and randomization is suboptimal in general) to distinguish it

from the SDD method in which different pairs of the transmit beamspace matrix columns are

designed separately. In Examples 1 and 3, the SDD is not considered since there is no need for

more than two waveforms. We also do not apply the SDD method inthe last example due to the

fact that the corresponding spatially divided sectors in this case are adjacent and their sidelobes

result in energy loss and performance degradation as opposed to Example 2.

Throughout all simulations, the total transmit power remains constant atPt = M . The root

mean square error (RMSE) and probability of target resolution are calculated based on500

independent Monte-Carlo runs.

A. Example 1 : Effect of the Uniform Power Distribution Across the Waveforms

In this example, we aim at studying how the lack of uniform transmission power across

the transmit waveforms affects the performance of the new proposed method. For this goal,

we consider two targets that are located in the directions−5◦ and 5◦ and the desired sector

is chosen asθ = [−10◦ 10◦]. Two orthogonal waveforms are considered and optimal transmit

beamspace matrix denoted asW0 is obtained by solving the optimization problem (22)–(23).

To simulate the case of non-uniform power distribution across the waveforms while preserving

the same transmit beampattern ofW0, we use the rotated transmit beamspace matrixW0U2×2,

whereU2×2 is a unitary matrix defined as

U2×2 =







0.6925 + j0.3994 0.4903 + j0.3468

−0.4755 + j0.3669 0.6753− j0.4279






.

Note thatW0 and W0U2×2 lead to the same transmit beampattern and as a result the same

transmit power within the desired sector, however, compared to the former, the latter one does

not have uniform transmit power across the waveforms. The RMSE curves of the proposed DOA

estimation method for bothW0 andW0U2×2 versusSNR are shown in Fig. 1. It can be seen

from this figure that the lack of uniform transmission power across the waveforms can degrade

the performance of DOA estimation severely.

B. Example 2 : Two Separated Sectors of Width20◦ Degrees Each

In the second example, two targets are assumed to lie within two spatial sectors: one from

θ = [−40◦ − 20◦] and the other fromθ = [30◦ 50◦]. The targets are located atθ1 = −33◦
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Fig. 1. Example 1: Performance of the new proposed method with and without uniform power distribution across transmit

waveforms.

and θ2 = 41◦. Fig. 2 shows the transmit beampatterns of the traditional MIMO with uniform

transmit power distribution and both the optimal and SDD designs for W. It can be seen in

the figure that the optimal transmit beamspace method provides the most even concentration of

power in the desired sectors. The SDD technique provides concentration of power in the desired

sectors above and beyond traditional MIMO; however, the energy is not evenly distributed with

one sector having a peak beampattern strength of 15 dB, whilethe other has a peak of no more

than 12 dB. Fig. 3 shows the individual beampatterns associated with individual waveforms as

well as the coherent addition of all four individual beampatterns.
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The performance of all three methods is compared in terms of the corresponding RMSEs versus

SNR as shown in Fig. 4. As we can see in the figure, the jointly optimal transmit beamspace

and the SDD methods have lower RMSEs as compared to the RMSE ofthe traditional MIMO

radar. It is also observed from the figure that the performance of the SDD method is very close

to the performance of the jointly optimal one.

To assess the proposed method’s ability to resolve closely located targets, we move both

targets to the locationsθ1 = 38◦ and θ2 = 40◦. The performance of all three methods tested is

given in terms of the probability of target resolution. Notethat the targets are considered to be

resolved if there are at least two peaks in the MUSIC spectrumand the following is satisfied [2]
∣

∣

∣
θ̂l − θl

∣

∣

∣
≤

∆θ

2
, l = 1, 2

where∆θ = |θ2−θ1|. The probability of source resolution versus SNR for all methods tested are

shown in Fig. 5. It can be seen from the figure that the SNR threshold at which the probability

of target resolution transitions from very low values (i.e., resolution fail) to values close to

one (i.e., resolution success) is lowest for the jointly optimal transmit beamspace design-based

method, second lowest for the SDD method, and finally, highest for the traditional MIMO radar

method. In other words, the figure shows that the jointly optimal transmit beamspace design-

based method has a higher probability of target resolution at lower values of SNR than the SDD

method, while the traditional MIMO radar method has the worst resolution performance.

C. Example 3 : Single and Centrally Located Sector of Width10◦ Degrees

In the third example, the targets are assumed to lie within a single thin sector ofθ = [−10◦ 0◦].

Due to the choice of the width of the sector, the optimal number of waveforms to use is only

two. For this reason, only two methods are tested: the proposed transmit beamspace method and

the traditional MIMO radar. The beampatterns for these two methods are shown in Fig. 6. It can

observed from the figure that our method offers a transmit power gain that is 5 dB higher than

the traditional MIMO radar. In order to test the RMSE performance of both methods, targets

are assumed to be located atθ1 = −7◦ and θ2 = −2◦. The RMSE’s are plotted versus SNR in

Fig. 7. It can be observed from this figure that the proposed transmit beamspace method yields

lower RMSE as compared to the traditional MIMO radar based method at moderate and high

SNR values. At low SNR values one can observe from the figure that the RMSE of the transmit
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Fig. 2. Example 2: Transmit beampatterns of the traditionalMIMO and the proposed transmit beamspace design-based methods.

beamspace method saturates at3◦ due to the fact that each of the two targets is located3◦ from

the edge of the sector. In order to test the resolution capabilities of both methods tested, the

targets are moved toθ1 = −3◦ andθ2 = −1◦. The same criterion as in Example 2 is then used

to determine the target resolution. The results of this testare displayed in Fig. 8 and agrees with

the similar results in Example 2.
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Fig. 3. Example 2: Individual beampatterns associated withindividual waveforms and the overall beampattern.

D. Example 4 : Single and Centrally Located Sector of Width30◦ Degrees

In the last example, a single wide sector is chosen asθ = [−15◦ 15◦]. The optimal number of

waveforms for such a sector is found to be four. Similar to theprevious Example 3, we compare

the performance of the proposed method to that of the traditional MIMO radar. Four transmit

beams are used to simulate the optimal transmit beamspace design-based method. Fig. 9 shows

the transmit beampatterns for the methods tested. In order to test the RMSE performance of

the methods tested, two targets are assumed to be located atθ1 = −12◦ and θ2 = 9◦. Fig. 10
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Fig. 4. Example 2: Performance comparison between the traditional MIMO and the proposed transmit beamspace design-based

methods.

shows the RMSEs versus SNR for the methods tested. As we can see in the figure, the RMSE

for the jointly optimal transmit beamspace design-based method is lower than the RMSE for

the traditional MIMO radar based method. Moreover, in orderto test resolution, the targets are

moved toθ1 = −3◦ andθ2 = −1◦. The same criterion as in Example 2 is used to determine the

target resolution. The results of this test are similar to those displayed in Fig. 5, and, therefore,

are not displayed here.
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Fig. 5. Example 2: Performance comparison between the traditional MIMO and the proposed transmit beamspace design-based

methods.

VI. CONCLUSION

The problem of transmit beamspace design for MIMO radar withcolocated antennas with

application to DOA estimation has been considered. A new method for designing the transmit

beamspace matrix that enables the use of search-free DOA estimation techniques at the receiver

has been introduced. The essence of the proposed method is todesign the transmit beamspace

matrix based on minimizing the difference between a desiredtransmit beampattern and the
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Fig. 6. Example 3: Transmit beampatterns of the traditionalMIMO and the proposed transmit beamspace design-based method.

actual one. The case of even but otherwise arbitrary number of transmit waveforms has been

considered. The transmit beams are designed in pairs where all pairs are designed jointly

while satisfying the requirements that the two transmit beams associated with each pair enjoy

rotational invariance with respect to each other. Unlike previous methods that achieve phase

rotation between two transmit beams while allowing the magnitude to be different, a specific

beamspace matrix structure achieves phase rotation while ensuring that the magnitude response

of the two transmit beams is exactly the same at all spatial directions has been proposed. The
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Fig. 7. Example 3: Performance comparison between the traditional MIMO and the proposed transmit beamspace design-based

method.

SDP relaxation technique has been used to transform the proposed formulation into a convex

optimization problem that can be solved efficiently using interior point methods. An alternative

SDD method that divides the spatial domain into several subsectors and assigns a subset of

the transmit beamspace pairs to each subsector has been alsodeveloped. The SDD method

enables post processing of data associated with different subsectors independently with DOA

estimation performance comparable to the performance of the joint transmit beamspace design-

based method. Simulation results have been used to demonstrate the improvement in the DOA
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Fig. 8. Example 3: Performance comparison between the traditional MIMO and the proposed transmit beamspace design-based

methods.

estimation performance offered by using the proposed jointand SDD transmit beamspace design

methods as compared to the traditional MIMO radar.
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