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Estimation for the Linear Model with
Uncertain Covariance Matrices

Dave Zachariah, Nafiseh Shariati, Mats Bengtsson, Magnus Jansson and Saikat Chatterjee

Abstract—We derive a maximum a posteriori estimator for
the linear observation model, where the signal and noise covari-
ance matrices are both uncertain. The uncertainties are treated
probabilistically by modeling the covariance matrices with prior
inverse-Wishart distributions. The nonconvex problem of jointly
estimating the signal of interest and the covariance matrices is
tackled by a computationally efficient fixed-point iteration as
well as an approximate variational Bayes solution. The statistical
performance of estimators is compared numerically to state-of-
the-art estimators from the literature and shown to perform
favorably.

I. I NTRODUCTION

The linear observation model

y = Hx+w ∈ R
m, (1)

is ubiquitous in signal processing, statistics and machine
learning, cf. [1]–[7]. Applications include regression prob-
lems, model fitting, functional magnetic resonance imaging,
finite impulse response identification, block data estimation,
stochastic channel estimation, tracking, sensor fusion and
multi-antenna receivers [2], [8]–[10].Here x ∈ R

n denotes
the unknown signal of interest,H ∈ R

m×n denotes a given
matrix with full column rank andw is zero-mean noise. Many
estimation procedures rely on prior knowledge of the statistical
properties ofx and/orw. In particular, the covariance matrices
P = Cov(x) andR = Cov(w) are assumed to be known. In
practice, however, these statistical properties may be subject
to uncertainties. If assigned nominal covariance matrices, P0

andR0, are based on prior knowledge where the statistics are
only approximately stationary and/or prior estimates subject
to errors, the resulting inaccuracies lead to degradation of
estimation performance.

One approach is to treat the covariance uncertainties deter-
ministically. This entails specifying a class of possible param-
eter values [11]. For instance, one could modelP = P0+ δP
andR = R0 + δR and assume that the errorsδP and δR
have known bounds on their spectral norms. In this case, [12]
derived the linear estimator ofx that minimizes the worst-
case mean square error (MSE) over the specified class of
covariance matrices, drawing upon work in [13], [14]. The
problem was shown to be convex and solved in closed form.
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The ‘minimax’ MSE approach [15], however, was found to
be overly conservative when evaluating its MSE performance.
To compensate for this [12] also applied a different criterion
based on the minimum attainable MSE over the covariance
uncertainty class. The ‘minimax regret’ approach aims to min-
imize the maximum possible deviation from this MSE value.
For the problem to be tractable, however, the uncertainty class
was restricted such that the eigenvectors ofP andR equal the
right and left singular vectors ofH, respectively, and further,
that their eigenvalues have known bounds. To circumvent this
restriction, [16] generalized the minimax regret approachand
applied it to a wider covariance uncertainty class with element-
wise bounds, but only for the signal covarianceP. Further,
unlike [12] the resulting estimator is not obtained in closed-
form but requires solving a semidefinite program with quartic
complexity in signal dimensionn. In sum, a drawback of
the deterministic approaches is the requirement of a restricted
parametric class of covariance uncertainties. Further, they are
formulated for a single snapshot and do not provide estimates
of the signal and noise covariances, both of which are valuable
statistical information in certain applications.

A different approach is to treat the covariance uncertainties
probabilistically. This entails specifying distributions for the
uncertain parameters [5]. For instance, [17] and [18] model
w as a Gaussian random variable and use various prior
distributions onR. The signal of interestx is modeled
with a noninformative prior distribution and therefore no
signal covariance matrixP is considered. In [17], the prior
distribution of R is noninformative resulting in closed-form
solutions of the parameter estimates. By contrast, [18] consider
informative priors forR but require a sampling-based Markov
chain Monte Carlo (MCMC) method for solving the problem,
which becomes computationally intractable for larger signal
dimensions.

In this paper we seek to generalize the probabilistic ap-
proach to jointly estimate the signal of interest, as well asthe
signaland noise covariance matrices. Both unknown matrices
are modeled as random and independent quantities around
the nominal ones, using tractable priors. To the best of the
authors’ knowledge this has not been addressed and solved
in a tractable way in the literature. In this work we use the
inverse-Wishart distribution, which is a conjugate prior to the
covariance matrix of a Gaussian distribution. A discussionon
the use of this distribution is given in [5], [17], [18], where it is
shown to be a modified version of the noninformative Jeffreys
prior. The inverse-Wishart distribution has also been usedin
detection problems where the inaccuracies of the nominal
covariance matrices arise due to environmental heterogeneity
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[19]–[21].
We show that the maximum a posteriori probability estima-

tor results in a nonconvex optimization problem, but reveals
certain connections with the standard estimators. To solvethe
problem in a computationally efficient manner we formulate
a fixed-point iteration. Whilst proving convergence appears
intractable, we prove that the iteration does not diverge and
illustrate its converge properties empirically. Further,we derive
a variational Bayes solution to the problem as a tractable but
approximate alternative. Finally, the resulting estimators are
evaluated in terms of average performance and robustness.

Notation: |A| and tr{A} denote the determinant and trace
of A, respectively.A ⊗ B denotes the Kronecker product
of matrices and‖ · ‖F denotes the Frobenius norm.Eij is
the ijth standard basis matrix.N (µ,P) denotes a Gaussian
distribution with meanµ and covarianceP. The inverse-
Wishart distribution with parametersν and C is denoted
W−1(C, ν).

II. PROBLEM FORMULATION

For generality we consider a set ofN measurements
{yt}Nt=1 and corresponding signals of interests{xt}Nt=1. For
notational simplicity we writeY , [y1 · · ·yN ] ∈ R

m×N and
X , [x1 · · ·xN ] ∈ R

n×N . Then the linear observation model
(1) is written as

Y = HX+W. (2)

It is assumed that the signal and noise follow independent
Gaussian distributionsxt|P ∼ N (µt,P) and wt|R ∼
N (0,R).

When the covariance matrices are known, the maximum a
posteriori (MAP) estimator ofX coincides with the familiar
linear minimum MSE estimator,

X̂map= argmax
X∈Rn×N

p(X|Y)

= (H⊤R−1H+P−1)−1(H⊤R−1Y +P−1U),
(3)

whereU , [µ1 · · ·µN ] ∈ R
n×N [3]. As the uncertainty or

variance of the prior ofxt increases, by settingP = σ2
xIn

and σ2
x → ∞, the estimator coincides with the minimum

variance unbiased (MVU) estimator,̂Xmap → X̂mvu =
(H⊤R−1H)−1H⊤R−1Y [2]. WhenP andR are not known
precisely they are replaced by nominal matrices,P0 andR0.

Henceforth the unknown covariance matrices are modeled
as random and independent quantities around the nominal
ones, using inverse-Wishart distributions:P ∼ W−1(Cx, νx)
and R ∼ W−1(Cw, νw). Assuming thatE[P] = P0 and
E[R] = R0, we haveCx = (νx − n − 1)P0 and Cw =
(νw − m − 1)R0. The degrees of freedom,νx > n + 1 and
νw > m+1, control the certainties ofP andR. Extensions to
the complex Gaussian and inverse-Wishart distributions [22]
are straight-forward.

The goal is to estimateX, P and R from the set of
observationsY.

III. T HE CMAP ESTIMATOR

The maximum a posterior estimator with random covariance
matrices, henceforth denoted CMAP, is obtained by solving

min
X∈Rn×N , P≻0,R≻0

p(X,P,R|Y), (4)

where p(X,P,R|Y) denotes the joint posterior probability
density function (pdf).By applying Bayes’ rule and introduc-
ing

J(X,P,R) , ln p(Y|X,P,R) + ln p(X,P,R)

= ln p(Y|X,R) + ln (p(X|P)p(P)p(R))

= J1(X,R) + J2(X,P),

where J1(X,R) = [ln p(Y|X,R) + ln p(R)] and
J2(X,P) = [ln p(X|P) + ln p(P)], we can tackle the
problem by first solving forR andP. Then

X̂cmap= argmax
X∈Rn×N

[
max

R≻0,P≻0

J1(X,R) + J2(X,P)

]
. (5)

We begin by finding the maximizingR andP below.

A. Concentrated cost function

Let ỹt , yt−Hxt, Ỹ , Y−HX andγw , νw+m+1+N ,
so that

J1(X,R) = ln p(Ỹ|R) + ln p(R)

=

N∑

t=1

−
1

2
ln |R| −

1

2
tr
{
R−1ỹtỹ

⊤
t

}

−
νw +m+ 1

2
ln |R| −

1

2
tr
{
CwR

−1
}
+K

=−
γw
2

ln |R| −
1

2
tr
{
(Cw + ỸỸ⊤)R−1

}
+K

=
γw
2

(
− ln |R| − tr{R̃R−1}

)
+K,

(6)

whereK denotes an unimportant constant andR̃ , 1
γw

(Cw+

ỸỸ⊤). Then

J̃1(X,R) , − ln |R| − tr
{
R̃R−1

}

= − ln |R̃R̃−1R| − tr
{
R̃R−1

}

= − ln |R̃(R−1R̃)−1| − tr
{
R̃R−1

}

= − ln |R̃|+ ln |R−1R̃| − tr
{
R−1R̃

}

attains its maximum whenR−1R̃ = Im, or R⋆ = 1
γw

(Cw +

ỸỸ⊤). Similarly, let X̃ , X−U andγx , νx + n+1+N ,
thenP⋆ = 1

γx
(Cx + X̃X̃⊤). Note that bothP⋆ andR⋆ are

functions ofX.
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Plugging back the solution, and using the matrix determi-
nant lemma, yields

J1(X,R⋆) = −
γw
2

ln

∣∣∣∣
1

γw
(Cw + ỸỸ⊤)

∣∣∣∣−
γw
2

tr {Im}+K

= −
γw
2

ln

(
1

γm
w

∣∣∣Cw + ỸỸ⊤
∣∣∣
)
+K ′

= −
γw
2

ln
∣∣∣Cw + ỸỸ⊤

∣∣∣+K ′′

= −
γw
2

ln
(
|Cw|

∣∣∣IN + Ỹ⊤C−1
w Ỹ

∣∣∣
)
+K ′′

= −
γw
2

ln
∣∣∣IN + Ỹ⊤C−1

w Ỹ

∣∣∣+K ′′′.

Similarly,

J2(X,P⋆) = −
γx
2

ln
∣∣∣IN + X̃⊤C−1

x X̃

∣∣∣+K.

In sum, the optimal estimator is given by

X̂cmap= argmin
X∈Rn×N

V (X), (7)

where the concentrated cost function equals

V (X) ,
γw
2

ln
∣∣IN + (Y −HX)⊤C−1

w (Y −HX)
∣∣

+
γx
2

ln
∣∣IN + (X−U)⊤C−1

x (X−U)
∣∣ .

(8)

Next, we study the properties of the cost function by writing
it as V (X) = V1(X) + V2(X), where

V1(X) =
γw
2

ln |A(X)|

V2(X) =
γx
2

ln |B(X)|,

and A(X) , IN + (Y − HX)⊤C−1
w (Y − HX) ≻ 0 and

B(X) , IN + (X−U)⊤C−1
x (X−U) ≻ 0. While the inner

matrices are quadratic functions ofX, the log-determinant
makesV1(X) andV2(X) nonconvex functions. Their minima,
however, provide the key for finding minima ofV (X).

The minimum ofV1(X) is X̂mvu and can be verified by
computing the gradient. Using the chain-rule,

∂V1

∂xit
= tr

{
(∂AV1)

⊤ ∂A

∂xit

}
,

where the inner derivative equals

∂A

∂xit
=

∂

∂xit

(
IN + (Y −HX)⊤C−1

w (Y −HX)
)

= −E⊤
itH

⊤C−1
w (Y −HX)− (Y −HX)⊤C−1

w HEit,

and the outer derivative is∂AV1 = γw

2 A−1 due to symmetry.
Hence

∂V1

∂xit
= −

γw
2

tr
{
A−1E⊤

itH
⊤C−1

w (Y −HX)
}

−
γw
2

tr
{
A−1(Y −HX)⊤C−1

w HEit

}

= −γwtr
{
H⊤C−1

w (Y −HX)A−1Eti

}

and

∂XV1 = −γwH
⊤C−1

w (Y −HX)A−1. (9)

Setting∂XV1(X) = 0 and solving forX yields the stationary
point X̂mvu sinceCw ∝ R0. ThenX̂mvu is the minimizer of

V1(X), sinceln | · | is a monotonically increasing function on
the set of positive definite matrices and the quadratic function
A(X) � A(X̂mvu).

Similarly, the trivial minimizer ofV2(X) is U, and can be
verified by

∂XV2 = γxC
−1
x (X−U)B−1. (10)

When a realizationX̂mvu is far apart fromU then, in the
vicinity of the minimizer ofV1(X), V2(X) is approximately
constant, and vice versa, due to the compressive property of
the logarithm. In the extreme, therefore,V (X) may have at
least two separated minima, located in the vicinity ofX̂mvu and
U, respectively, and the estimator is not amenable to closed-
form solution. On the other hand, when̂Xmvu is close toU, a
single minimum ofV (X) may result. These extreme scenarios
are illustrated in Fig. 1.

Using X̂mvu andU as starting points, minima ofV (X) can
be found by gradient descentX̂ℓ+1 = X̂ℓ−µ∂XV (X̂ℓ), where
µ > 0 is the step size and∂XV = ∂XV1+∂XV2 given by (9)
and (10). The partial derivatives can be written in alternative
forms that are computationally advantageous whenN > n
andN > m, using the matrix inversion lemma,

∂XV1 = −γwH
⊤C−1

w Ỹ(IN + Ỹ⊤C−1
w Ỹ)−1

= −γwH
⊤C−1

w

(
IN − ỸỸ⊤(Cw + ỸỸ⊤)−1

)
Ỹ

= −γwH
⊤C−1

w (IN + ỸỸ⊤C−1
w )−1Ỹ

= −γwH
⊤(Cw + ỸỸ⊤)−1Ỹ

and similarly

∂XV2 = γxC
−1
x X̃(IN + X̃⊤C−1

x X̃)−1

= γx(Cx + X̃X̃⊤)−1X̃.

Thus

∂XV = −γwH
⊤C−1

w (Y −HX)A−1 + γxC
−1
x (X−U)B−1

= −H⊤R̂−1(Y −HX) + P̂−1(X−U),

where

P̂(X) =
1

γx

(
Cx + (X−U)(X −U)⊤

)

R̂(X) =
1

γw

(
Cw + (Y −HX)(Y −HX)⊤

) (11)

are the covariance matrix estimates. Note that their inverses
can be computed recursively by a series of rank-1 updates,
using the Sherman-Morrison formula [23]. The overall com-
putational efficiency of the gradient decent method is, however,
dependent on the user-defined step sizeµ. To circumvent
this limitation, we devise an alternative fixed-point iteration
method.

B. Fixed-point iteration

We attempt to find the local minima by iteratively ful-
filling the condition for a stationary point. The solution to
∂XV (X) = 0, when holding the nonlinear functionŝP(X)
andR̂(X) constant for a given estimatêXℓ, equals

X̂ℓ+1 = (H⊤R̂−1
ℓ H+ P̂−1

ℓ )−1(H⊤R̂−1
ℓ Y + P̂−1

ℓ U) (12)
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Fig. 1. Example of cost functionV (X) wheren = 1, N = 1 andm = 1 for sake of illustration. Dotted lines showV1(X) andV2(X). HereY = HX+W,
whereX = 1 and H = 1. Nominal variancesP0 = 0.8 and R0 = 1 with minimum certainties. (a)W = 8 resulting in local minima ofV (X). (b)
W = 0.8 resulting in a single minimum ofV (X). Note that the minima occur in the vicinity of̂Xmvu andU.

and is iterated until convergence. Comparing (12) with (3)
it is immediately recognized that the fixed-point method is
an iterative application of the standard MAP estimator with
covariance matriceŝPℓ = P̂(X̂ℓ) and R̂ℓ = R̂(X̂ℓ). Based
on the analysis of the previous section, we propose using
X̂mvu andU as two starting points, respectively. The resulting
minimum with the lowest costV (X) is then used as the
estimate. When the costs happen to be equal, the estimator is
indifferent and we can choose the solution that is closest tothe
MAP estimate, which assumes that the nominal covariances
are true. Our numerical experiments show that the iterative
solution is very likely to produce the optimal estimate, cf.
section IV-D.

The CMAP estimator is summarized in Algorithm 1. The
functioniter(·) iterates (12) until‖X̂ℓ − X̂ℓ−1‖F < ε.

For a derivation of the conditions for convergence of (12) it
would be sufficient to prove that the iteration is a contraction
mapping [24]. Deriving these conditions appears intractable
in general. However, it is possible to show that the iterative
solution (12) does not diverge. Let̂Yℓ+1 = HX̂ℓ+1 denote the
predicted observation, and̂yt denote thetth column ofŶℓ+1.
If ‖ŷt‖22 = x̂⊤

t H
⊤Hx̂t is bounded, then‖x̂t‖22 is bounded

sinceH has full rank andH⊤H ≻ 0. Hence‖Ŷℓ+1‖2F <

∞ ⇒ ‖X̂ℓ+1‖2F < ∞. Next, considerU = 0,1 so that

(12) can be written aŝXℓ+1 = P̂ℓH
⊤
(
R̂ℓ +HP̂ℓH

⊤
)−1

Y,

and defineΓℓ , HP̂ℓH
⊤ ≻ 0 and Φℓ , R̂ℓ + Γℓ ≻

Γℓ. Hence ‖ΓℓΦ
−1
ℓ ‖22 < 1 and it follows that ‖ŷt‖22 =

‖Hx̂t‖22 = ‖ΓℓΦ
−1
ℓ yt‖22 ≤ ‖ΓℓΦ

−1
ℓ ‖22‖yt‖22 < ‖yt‖22.

Therefore‖Ŷℓ+1‖2F is bounded and consequently‖X̂ℓ+1‖2F
is bounded for allℓ. The iterative solution (12) must either
converge or produce a bounded orbit. In fact, through extensive
simulations the algorithm was always found to converge. In
section IV-E we present an empirical convergence analysis of
the fixed-point iteration.

1This is no restriction as it is possible to define an equivalent problem with
zero-mean variables,̄X = X − U and Ȳ = Y − HU, and then shift the
estimate ofX̄.

Algorithm 1 CMAP estimator
1: Input: Y,H,Cx,Cw, γx, γw, ε
2: X̂0

1 = X̂mvu andX̂0
2 = U

3: X̂1 = iter(Y, X̂0
1,H,Cx,Cw, γx, γw, ε)

4: X̂2 = iter(Y, X̂0
2,H,Cx,Cw, γx, γw, ε)

5: if V (X̂1) < V (X̂2) then
6: X̂ := X̂1

7: else if V (X̂1) > V (X̂2) then
8: X̂ := X̂2

9: else
10: X̂ := argmin

X∈{X̂1,X̂2}
‖X̂map−X‖F

11: end if
12: P̂ =

(
Cx + (X̂−U)(X̂−U)⊤

)
/γx

13: R̂ =
(
Cw + (Y −HX̂)(Y −HX̂)⊤

)
/γw

14: Output:X̂, P̂ andR̂

C. Marginalized MAP

In certain applications the covariance matricesP andR may
not be of interest and can be treated as nuisance parameters
that are marginalized out from the prior and likelihood pdfs.
Utilizing the conjugacy of the inverse-Wishart distribution to
the Gaussian distribution,

p(X) =

∫
p(X|P)p(P)dP

∝
∣∣∣X̃X̃⊤ +Cx

∣∣∣
−(νx+N)/2

and

p(Y|X) =

∫
p(Y|X,R)p(R)dR

∝
∣∣∣ỸỸ⊤ +Cw

∣∣∣
−(νw+N)/2

.

Then taking the negative logarithm of the marginalized pdf,
p(X|Y) ∝ p(Y|X)p(X), results in a cost function of the same
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form as (8) and the marginalized MAP estimator is given by

X̂mmap= argmin
X∈Rn×N

V ′(X) (13)

where

V ′(X) ,
γ′
w

2
ln
∣∣IN + (Y −HX)⊤C−1

w (Y −HX)
∣∣

+
γ′
x

2
ln
∣∣IN + (X−U)⊤C−1

x (X−U)
∣∣ ,

and the weights areγ′
w = νw + N and γ′

x = νx + N . Thus
we can apply the same solution methods as used for CMAP
but with different weights.

D. Variational MAP

We note that the sought variables follow the condi-
tional distributions: [X]i|P,R,Y ∼ N ([(H⊤R−1H +
P−1)−1(H⊤R−1Y + P−1U)]i, (H

⊤R−1H + P−1)−1),
P|X,R,Y ∼ W−1(Cx + (X −U)(X −U)⊤, νx +N) and
R|X,P,Y ∼ W−1(Cw + (Y−HX)(Y−HX)⊤, νw +N),
where [X]i denotes theith column of X. This enables a
numerical computation of the mean of the posterior pdf
p(X,P,R|Y) in (4) by means of Markov Chain Monte
Carlo methods, e.g., Gibbs sampling [7]. Whilst the posterior
mean is the MSE-optimal estimate, the dimensionality of the
problem requires a very large number of samples for accurate
computation, rendering the sampling methods intractable.For
completeness we consider a variational approximation of the
posterior pdf [25], and derive the corresponding MAP estima-
tor. The solution to this approximated problem results in an
iteration that converges to a local minimum.

The pdfp(X,P,R|Y) is approximated by conditionally in-
dependent pdfsq(X|Y)q(P|Y)q(R|Y). The distributions that
minimize the Kullback-Leibler divergence top(X,P,R|Y)
are given by [7]

q(X|Y) ∝ eEP,R|Y [ln p(X,P,R,Y)]

q(P|Y) ∝ eEX,R|Y [ln p(X,P,R,Y)]

q(R|Y) ∝ eEX,P |Y [ln p(X,P,R,Y)].

(14)

Using the chain rule and introducingV = EP |Y [P
−1] and

W = ER|Y [R
−1] for notational simplicity, we have

ln q(X|Y) = EP,R|Y [ln p(X,P,R,Y)] +K1

= EP,R|Y [ln p(Y|X,R) + ln p(X|P)] +K2

= −
1

2
tr{(Y −HX)⊤ ER|Y [R

−1](Y −HX)}

−
1

2
tr{(X−U)⊤ EP |Y [P

−1](X−U)}+K3

= −
1

2
tr{Y⊤WY −Y⊤WHX−X⊤H⊤WY

+X⊤H⊤WHX+X⊤VX

−X⊤VU−U⊤VX+U⊤VU}+K4

= −
1

2
tr{X⊤(H⊤WH+V)X

− (Y⊤WH+U⊤V)X

−X⊤(H⊤WY +VU)}+K5

= −
1

2
tr{(X− Ũ)⊤P̃−1(X− Ũ)} +K6,

which equals the functional form ofN independent Gaussians
with mean and covariance

Ũ = (H⊤ ER|Y [R
−1]H+ EP |Y [P

−1])−1

× (H⊤ ER|Y [R
−1]Y + EP |Y [P

−1]−1U)

P̃ = (H⊤ ER|Y [R
−1]H+ EP |Y [P

−1])−1.

(15)

The mean and mode coincide and the variational MAP esti-
mator equals

X̂vmap = argmax
X∈Rn×N

q(X|Y) = Ũ. (16)

Further,

ln q(P|Y) = EX,R|Y [ln p(X,P,R,Y)] +K1

= EX,R|Y [ln p(X|P) + ln p(P)] +K2

= EX,R|Y

[
−
νx +N + n+ 1

2
ln |P|

−
1

2
tr{(Cx + X̃X̃⊤)P−1}

]
+K3

= −
γ′
x + n+ 1

2
ln |P| −

1

2
tr{C̃xP

−1}+K4.

This is the functional form of an inverse-Wishart with param-
etersγ′

x = νx +N and

C̃x = Cx + EX,R|Y [(X−U)(X −U)⊤]

= Cx +NP̃+NŨŨ⊤ − ŨU⊤ −UŨ⊤ +UU⊤.
(17)

ThusP−1 follows a Wishart distribution andEP |Y [P
−1] =

γ′
xC̃

−1
x . Similarly,

ln q(R|Y) = EX,R|Y [ln p(X,P,R,Y)] +K1

= −
γ′
w +m+ 1

2
ln |R| −

1

2
tr{C̃wR

−1}+K2

has the functional form of an inverse-Wishart distributionwith
parametersγ′

w = νw +N and

C̃w = Cw + EX,P |Y [(Y −HX)(Y −HX)
⊤
]

= Cw +YY⊤ −YŨ⊤H⊤ −HŨY⊤

+NHP̃H⊤ +NHŨŨ⊤H⊤.

(18)

ThusR−1 follows a Wishart distribution andER|Y [R
−1] =

γ′
wC̃

−1
w .

Inserting these results into (16) the variational MAP esti-
mator is computed iteratively as

X̂vmap = (γ′
wH

⊤C̃−1
w H+ γ′

xC̃
−1
x )−1

× (γ′
wH

⊤C̃−1
w Y + γ′

xC̃
−1
x U).

The parameters̃Cx and C̃w are subsequently updated using
(17) and (18). The iteration is initialized by setting the param-
etersC̃x = Cx and C̃w = Cw. Experimentally we find that
using more informative initialization points, i.e., initializing
(17) and (18) withŨ = X̂mvu andP = P0 produces virtually
identical results.
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IV. EXPERIMENTAL RESULTS

In this section we compare the statistical performance of
X̂cmap with other estimators using the distribution of nor-
malized squared errors, NSE, ‖X − X̂‖2F /E[‖X‖2F ]. The
expectation is over all random variables. In particular, wewill
use the normalized mean square error NMSE≡ E [NSE] and
the complementary cumulative distribution function (ccdf),
Pr{NSE> κ}. The former measures the average performance
of the estimators and the latter quantifies their robustnessto
noise and covariance uncertainties.

We also evaluate the NMSE of the covariance matrix
estimateŝP and R̂ in comparison with the nominal matrices
P0 andR0.

The statistical measures are estimated by means of Monte
Carlo simulations.

A. Estimators

We comparêXcmap with X̂map andX̂mvu, that use nominal
covariance matricesP0 and R0. For CMAP we set the
tolerance parameterε = 10−6.

For comparison of robustness properties with respect to both
signal and noise covariance uncertainties, we also apply the
state of the art difference regret estimator (DRE) given in
[12], X̂dre. This estimator assumes thatX is zero mean and
is derived on assumption that the spatial correlations of the
signal and noise are structured by the singular vectors ofH.
Nevertheless, in [12] it is suggested that the estimator canbe
implemented whether or not this correlation structure is satis-
fied. The covariance uncertainties are treated deterministically
as bounds on the eigenvalues ofP0, i.e., lxi ≤ λx

i ≤ ux
i for

i = 1, . . . , n, andR0, i.e., lwj ≤ λw
j ≤ uw

j for j = 1, . . . ,m.
The estimator has the form

X̂dre = DxH
⊤
(
HDxH

⊤ +Dw

)−1
Y. (19)

The input covariance matrices are set asDx = V∆xV
⊤ and

Dw = W∆wW
⊤, whereV andW are eigenvector matrices

of P0 andR0, respectively. Further,∆x = diag(δx1 , . . . , δ
x
n)

and∆w = diag(δw1 , . . . , δ
w
m), where

δxi = αil
x
i + (1− αi)u

x
i , i = 1, . . . , n

δwi = αil
w
i + (1− αi)u

w
i , i = 1, . . . , n

andδwi = λw
i for all i = n+ 1, . . . ,m. Here

αi =

√
lwi + ux

i σ
2
i√

lwi + ux
i σ

2
i +

√
uw
i + lxi σ

2
i

, (20)

whereσi are the singular values ofH.
Since the covariance uncertainties are treated probabilis-

tically in this work, selecting deterministic bounds on the
eigenvalues can only be done heuristically. Here we have
selected,li = (1− ν0/ν)λi andui = (1+ ν0/ν)λi, whereν0

denotes the minimum integer value ofν, i.e., ν0x = n+2 and
ν0w = m+2. Thus with minimum certainty of the covariances,
the lower bound is 0 and upper bound is2λi. As ν → ∞, the
bounds become tight.

B. Signal setup

For sake of illustration, we consider the problem of estimat-
ing a stochastic2× 2 multiple-input multiple output (MIMO)
channelA ∈ R

2×2 from observed signalszk = Ask+nk. As
is common in wireless communications, this is achieved by
transmitting a known training sequenceS = [s1 · · · sK ] [26],
[27]. CollectingK snapshots and vectorizing, the observation
is rewritten asy = Hx + w, where x = vec(A) and
H = (S⊤ ⊗ I2). The vectorized channel coefficientsx
and noisew follow independent, zero-mean, conditionally
Gaussian distributions.S is chosen as a deterministic white
sequence with constrained power,‖S‖22 ≡ 10. We setP0 =
1
nIn, and R0 = σ2

wIm. The covariance matrices are drawn
according to inverse-Wishart distributions. We consider esti-
matingN channel realizationsX ∈ R

n×N from observations
Y = HX+W ∈ R

m×N .
The signal to noise ratio,

SNR,
E
[
‖HX‖2F

]

E [‖W‖2F ]
=

tr{HP0H
⊤}

tr{R0}
,

is varied in the experiments, i.e., settingσ2
w =

tr{HH⊤}/(mn × SNR). We considerK = 8 snapshots
so thatm = 16 and n = 4. For m > n, the resulting
low-rank signal structure enables CMAP to estimate parts
of both covariances. Whenm = n, the loss of parameter
identifiability makes CMAP rely less on the prior signal
statistics at higher SNR levels, thus performing closer to the
MVU estimator.

Throughout the experiments we ran105 Monte Carlo sim-
ulations for each signal setup.

C. Results for single observation

In the following experiments we considerN = 1. First, the
average performance of the estimators are compared. Fig. 2
shows the NMSE as a function of SNR when the degrees
of freedom forP and R are set to their minimum integer
values,ν0x = n+2 andν0w = m+2, respectively. This yields
the minimum certainties of the random quantities. CMAP
is capable of reducing the NMSE by up to approximately
2 dB compared to the standard MAP. As SNR increases,
MAP converges faster to MVU than does CMAP. The average
performance of DRE is initially similar to MAP but the gap
increases with SNR as it injects a larger bias.

Next, the statistical performance of the estimators is com-
pared using the ccdf,Pr{NSE> κ}, at SNR=0 dB. The curves
in Fig. 3 illustrate the relative robustness of the estimators
to covariance uncertainties. Estimators that produce a lower
fraction of poor estimates will have lower ccdfs. Note that
NSE > 1 are estimates that have errors greater than the
average NSE of the mean,̂X = 0. As expected, MAP and
DRE perform similarly at this SNR level, while MVU is
slightly worse but declines at a similar rate. CMAP declines
more rapidly, with a ccdf that is approximately one order of
magnitude lower than MVU atκ = 10.
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Fig. 2. NMSE versus SNR with minimum certainties ofP andR. N = 1.
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Fig. 3. Ccdf of NSE at SNR=0 dB, withνx = ν0
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andνw = ν0
w

. N = 1.

D. Results for multiple observations

The previous experiments are repeated forN = 4. We use
the Gibbs sampling approximation of the posterior mean which
provides a bound on the NMSE, cf. Fig. 4. In this scenario we
see that CMAP is very close to the optimum. Whenm > N ,
the computational complexity of the Gibbs sampler and CMAP
is of the orderO(m3Niter), wherem3 is the complexity of
matrix inversion andNiter is the number of repetitions. For the
Gibbs sampler,Niter = 2× 104 is about 100 times the number
of parameters to estimate and provides a good approximation
of the mean. For CMAP, the expected number of iterations is
approximately three orders of magnitude less, cf. Sec. IV-E.

Further, we vary the certainties of the covariance matri-
ces by settingν to the extremes,ν0 and ∞. (For ∞, we
set ν numerically to 105.) The relative difference in aver-
age performance between CMAP and MAP is denoted by
∆NMSE, where a negative value means reduction in NMSE
in decibel using CMAP. The results are shown in Fig. 5.
When (νx, νw) = (∞,∞), CMAP is identical to MAP but
for (νx, νw) = (ν0x,∞) the estimator relies primarily on

−5 0 5 10 15
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

SNR [dB]

N
M

S
E

 [d
B

]

 

 
map
cmap
Gibbs1
Gibbs2
Gibbs3

Fig. 4. NMSE versus SNR, withνx = ν0
x

andνw = ν0
w

. N = 4. Gibbs 1,
2 and 3 use 200, 2 000 and 20 000 samples, respectively.
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Fig. 5. Difference NMSE between̂XcmapandX̂map versus SNR, for different
certainties ofP andR. N = 4.

the noise statistics and CMAP approaches MVU. As both
covariance matrices become less certain(νx, νw) → (ν0x, ν

0
w),

the advantage of CMAP increases, illustrated by the dashed
and solid lines. The improvement forN = 4 snapshots is
above 3 dB for low SNR.

Next, the statistical performance is assessed using the ccdf
at SNR=0 dB. Figs. 6, 7 and 8 illustrate robustness at various
covariance uncertainties. A comparison between Fig. 3 and 6
shows how the ccdf of CMAP is reduced when the number
of samples increases fromN = 1 to 4. When CMAP relies
primarily on the noise statistics, as in Fig. 7, it tends towards
MVU. While the average NSE of CMAP rises slightly above
MAP in this case at low SNR (Fig. 5), its ccdf exhibits a sharp
decline relative to MAP. When only the signal statistics are
reliable, the differences in decline are more pronounced, see
Fig. 8. In all three cases the fraction of poor estimates cuts
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Fig. 7. Ccdf of NSE at SNR=0 dB, withνx = ν0
x

andνw = ∞. N = 4.

off faster for CMAP than MAP.
Further, we investigate the estimation errors of the covari-

ance matrix estimateŝP andR̂. More specifically, we compute
the difference NMSE between the estimates and the priors,
which quantifies the information gain, asN increases. The
results are shown in Fig. 9 for various SNR levels. Note that
there is a measurable gain even atN < n andN < m. Thus
CMAP is useful also as a covariance estimator for applications
in which signal statistics are of importance.

In practical scenarios with uncertain covariances, CMAP
would be implemented withthe minimal integer valuesν0x
and ν0w. We now investigate the effect of mismatches from
this conservative prior knowledge by setting the true values to
ν0 + ∆ν. In Figures 10 and 11 we increase∆νx and∆νw,
respectively. At SNR=0 dB, we see increases in NMSE for
CMAP but the advantage of the estimator is still robust with
respect to mismatches for either distributions ofP or R.

Finally, we investigate how CMAP performs when increas-
ing the signal dimensions. We now setm = 64 andn = 16, for
SNR=0 dB, withνx = ν0x, νw = ν0w andN = 16. The NMSE
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Fig. 8. Ccdf of NSE at SNR=0 dB, withνx = ∞ andνw = ν0
w

. N = 4.
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Fig. 12. NMSE versus SNR form = 64 andn = 16. N = 16.

performance as a function of SNR is illustrated in Fig. 12
which shows a gain of CMAP over MAP greater than in the
setup considered in Fig. 4, wherem = 16, m = 4 andN = 4.

E. Empirical convergence properties

We now turn to the convergence properties of the iterative
solution (12) of CMAP for the same scenario as considered in
the previous section, i.e., SNR=0 dB, withνx = ν0x, νw = ν0w
andN = 4. Fig. 13 shows a comparison of the convergence
rate of the fixed-point iteration and the gradient descent so-
lution, for a typical realization. Both solutions exhibit similar
rates once the estimates are sufficiently close to a minimum
as both are based on the gradient. But the fixed-point iteration
reaches this region within a few iterations without the need
for a user-defined step length.

Next, we study the statistical convergence properties. Let
Niter denote the total number of iterations until (12) fulfills
‖X̂ℓ+1−X̂ℓ‖F < ε. Then we can estimate the ccdfPr{Niter >

k}, as displayed in Fig. 14. Whenε = 10−6 we see that the
probability ofNiter exceeding 300 iterations is less than10−3,
and the mean ofNiter is 24.7. For ε = 10−3, the mean ofNiter

is reduced by more than a half, while the NMSE is virtually the
same. Forε = 10−1, the entire ccdf is substantially reduced
while incurring an increase in NMSE of only 0.24 dB.

We also estimate the proportion of instances in which the
fixed-point iteration converges to two different minima starting
from X̂mvu andU, respectively. We quantify this as when the
convergence points,̂X1 andX̂2, differ substantially from the
numerical tolerance, i.e.,Pr{‖X̂1−X̂2‖F > 10−2×nN}. For
the given scenario, the probability was estimated to 0.03. In
98% out of those instanceŝX1 produced a lower costV (X)
thanX̂2.

In all our simulations we did never encounter a single
case when the fixed-point iteration failed to converge to the
tolerance.

F. Comparison between alternative MAP estimators

Finally, we compare a scenario in which the covariance
matrices are not of interest and can be marginalized out,
resulting in the marginalized MAP estimator (13) using the
same initial points as CMAP. The difference between the
estimators is marginal in terms of NSE performance (see
Fig. 15). The NMSE is marginally better for MMAP as it
estimates fewer parameters than CMAP;−9.98 and−9.94 dB
for MMAP and CMAP, respectively. The variational MAP
estimator performs better than the standard MAP but is inferior
to MMAP and CMAP. The NMSE is−6.83 and−8.10 dB
for MAP and VMAP, respectively.

We also evaluate the significance and robustness of the
choice of starting points for CMAP and MMAP. Tests were
performed using initial pointŝX0 randomized by a Gaussian
distribution with covarianceP0 and a given mean. For each
observationY we then form 10 random initial pointŝX0

resulting in 10 search paths. The convergence point that
yields the lowest cost,V (X), is retained as the estimate.
We denote this randomized MAP-based estimator as ‘RMAP’.
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andN = 4.
Tolerancesε1 = 10−1, ε2 = 10−3 and ε3 = 10−6. The corresponding
E[Niter] was estimated to 2.5, 10.3 and 24.7, respectively, and NMSE was
−9.55, −9.78 and−9.78 dB, respectively.

The different means tested were based on starting points for
CMAP, i.e. prior meanU andX̂mvu, as well asX̂map andX̂dre.
RandomizingX̂0 around theX̂mvu, as well as the proximate
values X̂map and X̂dre, is found to produce near identical
performance to CMAP. RandomizinĝX0 aroundU, on the
other hand, leads to significantly reduced NSE performance
for the worst estimates. These results corroborate the choice
of initial points described in section III-A. Fig. 15 shows the
performance for RMAP when usinĝXdre as a mean, and the
NMSE equals−9.93 dB.

Reproducible research:Code for reproducing Figs. 2, 5 and
12 is available at www.ee.kth.se/∼davez/rr-cmap.

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

κ

P
r 

{ 
N

S
E

 >
 κ

 }

 

 
mvu
map
vmap
cmap
mmap
rmap

Fig. 15. Ccdf of NSE at SNR=0 dB, withνx = ν0
x

and νw = ν0
w

.
N = 4. Comparison with the marginalized estimator, ‘MMAP’, the variational
estimator, ‘VMAP’, and estimator with randomized initial points ‘RMAP’.

V. CONCLUSION

We have derived a joint signal and covariance maximum a
posteriori estimator for the linear observation model, where
the signal and noise covariance matrices are modeled as
random quantities. We formulated a solution of the nonconvex
problem as a fixed-point iterations. The resulting estimator,
CMAP, exhibits robustness properties relative to the standard
MAP and MVU estimators as well as the minimax difference
regret estimator in low-rank signal estimation problems. In this
scenario CMAP also shows near MSE-optimal performance.
As the number of samples increases, the performance gains of
CMAP can be quite substantial.
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