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Estimation for the Linear Model with
Uncertain Covariance Matrices
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Abstract—We derive a maximum a posteriori estimator for The ‘minimax’ MSE approach_[15], however, was found to
the linear observation model, where the signal and noise cevi-  pe overly conservative when evaluating its MSE performance
ance matrices are both uncertain. The uncertainties are trated compensate for thi§ [12] also applied a different criteri

probabilistically by modeling the covariance matrices wit prior . . .
inverse-Wishart distributions. The nonconvex problem of pintly based on the minimum attainable MSE over the covariance

estimating the signal of interest and the covariance matries is ynpertainty C|a_53- The ‘minimax regret approaqh aims to-mi
tackled by a computationally efficient fixed-point iteration as imize the maximum possible deviation from this MSE value.

well as an approximate variational Bayes solution. The stastical  For the problem to be tractable, however, the uncertairtyscl
performance of estimators is compared numerically to stat®f- a5 restricted such that the eigenvector®a@ndR equal the
the-art estimators from the literature and shown to perform . ) .

right and left singular vectors dfl, respectively, and further,

favorably. o . .
that their eigenvalues have known bounds. To circumvest thi
restriction, [16] generalized the minimax regret approantl

|. INTRODUCTION applied it to a wider covariance uncertainty class with elatn
The linear observation model wise bounds, but only for the signal covarianBe Further,

m unlike [12] the resulting estimator is not obtained in ckhse
y =Hx+weR", (1) form but requires solving a semidefinite program with quaarti
is ubiquitous in signal processing, statistics and machingomplexity in signal dimensiom. In sum, a drawback of
|earning, cf. [L]_[?] App”cations include regressionobp the deterministic approaches is the requirement of a costhi
lems, model fitting, functional magnetic resonance imagingarametric class of covariance uncertainties. Furthey tre
finite impulse response identification, block data estiomti formulated for a single snapshot and do not provide estisnate
stochastic channel estimation, tracking, sensor fusiod a@f the signal and noise covariances, both of which are véguab
multi-antenna receivers [2][8]=[LOHere x € R™ denotes Statistical information in certain applications.
the unknown signal of interesH € R™*" denotes a given A different approach is to treat the covariance uncertanti
matrix with full column rank andwv is zero-mean noise. Many Probabilistically. This entails specifying distributisrfor the
estimation procedures rely on prior knowledge of the dtasis Uncertain parameters|[5]. For instande./[17] and [18] model
properties of and/orw. In particular, the covariance matricesv as a Gaussian random variable and use various prior
P = Cov(x) andR = Cov(w) are assumed to be known. Indistributions onR. The signal of interestx is modeled
practice, however, these statistical properties may bglESUbWith a noninformative prior distribution and therefore no
to uncertainties. If assigned nominal covariance matyiBgs Signal covariance matri® is considered. In[[17], the prior
andRO' are based on prior know|edge where the statistics éj@trlbutlon of R is noninformative reSUlting in closed-form
only approximately stationary and/or prior estimates sabj Solutions of the parameter estimates. By contrast, [18}icken
to errors, the resulting inaccuracies lead to degradation iBformative priors forR but require a sampling-based Markov
estimation performance. chain Monte Carlo (MCMC) method for solving the problem,
One approach is to treat the covariance uncertainties-det@hich becomes computationally intractable for larger algn
ministically. This entails specifying a class of possibéggm- dimensions.
eter values[[11]. For instance, one could maBek P, + 6P In this paper we seek to generalize the probabilistic ap-
andR = Ry, + 6R and assume that the errof® and R Proach to jointly estimate the signal of interest, as welthes
have known bounds on their Spectra| norms. In this case, [@gnal and noise covariance matrices. Both unknown matrices
derived the linear estimator of that minimizes the worst- are modeled as random and independent quantities around
case mean square error (MSE) over the Speciﬁed C|asst|'ﬂﬂ nominal ones, using tractable priors. To the best of the
covariance matrices, drawing upon work [n|[13],][14]. Th@uthors’ knowledge this has not been addressed and solved

problem was shown to be convex and solved in closed forffi. @ tractable way in the literature. In this work we use the
inverse-Wishart distribution, which is a conjugate priotthe
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[19]-[21]. [1l. THE CMAP ESTIMATOR
We show that the maximum a posteriori probability estima-
tor results in a nonconvex optimization problem, but reseal The maximum a posterior estimator with random covariance
certain connections with the standard estimators. To shige matrices, henceforth denoted CMAP, is obtained by solving
problem in a computationally efficient manner we formulate
a fixed-point iteration. Whilst proving convergence appear min p(X,P,R|Y), 4)
intractable, we prove that the iteration does not diverge an XeRm¥, P>0,R>0
illustrate its converge properties empirically. Furtiveg, derive wh
a variational Bayes solution to the problem as a tractabte bd‘ensity function (pdf)By applying Bayes’ rule and introduc-
approximate alternative. Finally, the resulting estimsitare ing
evaluated in terms of average performance and robustness.
Notation: |A_| and t{ A} denote the determinant and trace J(X,P,R) 2 Inp(Y|X,P,R) + np(X,P,R)
of A, respectively.A ® B denotes the Kronecker product
of matrices and| - || denotes the Frobenius norr;; is = Inp(Y[X,R) + In (p(X|P)p(P)p(R))
the ijth standard basis matrigV/(u, P) denotes a Gaussian (X, R) + (X, P),
distribution with meanu and covarianceP. The inverse-
Wishart distribution with parameters and C is denoted where Ji(X,R) = [lnp(Y|X,R)+mp(R)] and
W=L(C,v). Jo(X,P) = [Inp(X|P)+Inp(P)], we can tackle the
problem by first solving foR andP. Then

ere p(X,P,R|Y) denotes the joint posterior probability

[I. PROBLEM FORMULATION f(cmap: argmax | max Ji(X,R)+ (X, P)|. (5)
XeRnXN R>0,P>0
For generality we consider a set df measurements
{y:})Y, and corresponding signals of interegte;} Y ,. For We begin by finding the maximizing andP below.
notational simplicity we writeY £ [y, ---yx] € R™*" and

X £ [x1---xn] € R**N, Then the linear observation model
(@) is written as A. Concentrated cost function

Y=HX+W. @ Lety, 2 y,—Hx,, ¥ 2 Y—HX andvy, 2 vy+m+1+N,

so that
It is assumed that the signal and noise follow independent

Gaussian distributionsx;|P ~ N(p,,P) and w,/R ~ JI(X,R) =Inp(Y[R) + Inp(R)
N(0,R). ’

When the covariance matrices are known, the maximum a :Z 1 In|R|— ltr (R'y:y/ }
posteriori (MAP) estimator oX coincides with the familiar 2 2
linear minimum MSE estimator, Vi +m—+1

1 —1

- —f1n|R|—§tr{CwR }+ K
Xmap = X|Y w 1 ~

map = argmax p(X[Y) 3) —— 2 m|R| - —tr{(Cw + YYT)R*} + K

_ Tp-—1 —1\—1 Tp—-1 —1

whereU £ [p, ---puy] € RN [3]. As the uncertainty or (6)
varlance of the prior ofx; increases, by settin® = 021,
and 02 — oo, the estimator coincides with the minimumwhereX denotes an unimportant constant ERIC& —(Cu+
variance unbiased (MVU) esUmatoiXmap — vau = YYT) Then
(H'R'H)"'H'R'Y [2]. WhenP andR are not known
precisely they are replaced by nominal matridg,and Ry. jl(X R)2 —In|R| - tr{f{Rfl}

Henceforth the unknown covariance matrices are modeled s °
as random and independent quantities around the nominal = —In|RR'R| —tr{RR‘l}
ones, using inverse-Wishart distributio®:~ W~1(C,, v,) S~ ~
andR ~ W™1(C,,v,). Assuming thatE[P] = P, and = -InR(R"'R) |—tr{RR }
E[R] = Ry, we haveC, = (v, —n—1)Py andC,, = R+ InR-R 15
(vw — m — 1)Rg. The degrees of freedomw, > n + 1 and n[R|+1n | r{ }
v, > m++1, control the certainties d? andR. Extensions to

the complex Gaussian and inverse-Wishart distributio [2attains its maximum wheik ™ 'R=1I,, orR* = (C +
are straight-forward. YY) Slmllarly, letX £ X — U andv, £ v, +n+ 1+ N,
The goal is to estimatéX, P and R from the set of thenP* = 1 (C, +XXT) Note that bothP* andR* are

observationsy'. functions ofyX



Plugging back the solution, and using the matrix determi4 (X), sinceln | - | is a monotonically increasing function on

nant lemma, yields

w 1 ey w
JI(X,R*) = _771 ——(Cu+ YY) - %tr (I} + K
w 1 SN
ey <— ‘Cw+YYT’> + K
2 Vo
:—%wm cw+??T‘+K”
- —77” In (|Cw| ‘IN +YTCIY ) + K"
_ _77” In |y + ?Tc;l?‘ T
Similarly,
Jo(X, P*) = ——ln‘I e 1X‘ T K.

In sum, the optimal estimator is given by

)A(cmap = argmin V(X),

XER"XN (7)
where the concentrated cost function equals
v(x)2le L in|Iy + (Y - HX) C (Y — HX)|
(8)

+71n‘IN+ (X-U)'c. ' (X-1U).

Next, we study the properties of the cost function by writing

it asV(X) = Vi(X) + V2(X), where

Vi(X) = 22 In|A(X)]
Va(X) = 5 In[B(X)]

and A(X) £ Iy + (Y - HX)'C!
BX)£Iy+(X-U)TC;!

(Y — HX) > 0 and
(X —U) > 0. While the inner

matrices are quadratic functions &, the log-determinant
makesV; (X) andV»(X) nonconvex functions. Their minima, Th

however, provide the key for finding minima &f(X).

The minimum of V4 (X) is }A(mvu and can be verified by

computing the gradient. Using the chain-rule,

ovy T 0A
=1tr< (0aV;

Ozt {( A 1) 317#}7

where the inner derivative equals

0A 0

— =1 Y - HX)'C (Y - HX

Srr = 5 (T ( e )

=—-E/H'"C_ (Y —HX) - (Y - HX) C_'HE,,

and the outer derivative i84V; = VT“JA*1 due to symmetry.
Hence

g;/; = -2 {ATEJHTCL (Y - HX)}
%”tr{A (Y — HX) C,'HE,}
= —ytr {H'C, (Y - HX)A'Ey;}
and
IxVi = —v,H'C 1 (Y —HX)A L. 9)

Settingdx V1 (X) = 0 and solving forX yields the stationary
point X sinceC,, < Ry. Thenvau is the minimizer of

the set of positive definite matrices and the quadratic fanct
AX) = AXmw)-

Similarly, the trivial minimizer ofV;(X) is U, and can be
verified by

IxVa =7C; (X -U)B™! (10)

When a reaIizationvau is far apart fromU then, in the
vicinity of the minimizer of V1 (X), V2(X) is approximately
constant, and vice versa, due to the compressive property of
the logarithm. In the extreme, thereforé(X) may have at
least two separated minima, located in the vicinit;fs’q;ﬁ\,u and
U, respectively, and the estimator is not amenable to closed-
form solution. On the other hand, Whét}m,u is close toU, a
single minimum ofl/(X) may result. These extreme scenarios
are illustrated in Figl11.

Using Xmvy, andU as starting points, minima df (X) can
be found by gradient desceXt' ! = X —;9x V(X’), where
1> 0 is the step size andxV = dx Vi + 0x V- given by [9)
and [I0). The partial derivatives can be written in alteueat
forms that are computationally advantageous whén> n
and N > m, using the matrix inversion lemma,

OxVi = —7,H C'Y(Iy +Y'ClY) !
= —y,HTC! (IN S YYT(Cy + ??T)—l) Y
= —H Cl Iy +YY CH) 'Y
= —,H (C, + YY) !
and similarly
OxVo = 7,C; ' X(Iy + X' C;1X) !
= 7,(C, + XX T)71X.

us
OxV = —y,H CH(Y —HX)A™! +4,C; 1 (X - U)B™!
~H'R (Y -HX)+P (X - U),
where
B(X) = - (C. + (X - U)X - 1))
~ b (12)
R(X)=— (C, + (Y -HX)(Y -HX)")

Yow
are the covariance matrix estimates. Note that their igers
can be computed recursively by a series of rank-1 updates,
using the Sherman-Morrison formula [23]. The overall com-
putational efficiency of the gradient decent method is, hare
dependent on the user-defined step sizeTo circumvent
this limitation, we devise an alternative fixed-point it&wa
method.

B. Fixed-point iteration

We attempt to find the local minima by iteratively ful-
filling the condition for a stationary point. The solution to
dxV(X) = 0, when holding the nonlinear funcuorB(X)
andR(X) constant for a given estimaf€’, equals

X4 = HR;'H+P,) 'H'R; 'Y +P;'U) (12)
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Fig. 1. Example of cost functiol’ (X) wheren = 1, N = 1 andm = 1 for sake of illustration. Dotted lines showWi (X) andV2(X). HereY = HX+W,
whereX = 1 and H = 1. Nominal variancesP, = 0.8 and Rp = 1 with minimum certainties. (W = 8 resulting in local minima oft (X). (b)
‘W = 0.8 resulting in a single minimum oV (X). Note that the minima occur in the vicinity &mw and U.

and is iterated until convergence. Comparifigl (12) with (Z)!gorithm 1 CMAP estimator

it is immediately recognized that the fixed-point method ist: Input: Y, H, Cy, Cu, Vo, Yu: €

an iterative application of the standard MAP estimator with2: X} = Xmw andX3 = U

covariance matrice®, = P(X’) andR, = R(X?). Based 3 X; = iter(Y,X{,H,C,, Cu, Yz, Yu;€)

on the analysis of the previous section, we propose using: Xs :Aiter(Y,AXS,H,CI,Cw,%,'yw,a)

Xmw andU as two starting points, respectively. The resultings: if V(X;) < V(X3) then

minimum with the lowest cost/(X) is then used as the &: X=X R

estimate. When the costs happen to be equal, the estimatoriselse if V(X;) > V(Xz2) then

indifferent and we can choose the solution that is closeftdo 8: X = }ACQ

MAP estimate, which assumes that the nominal covariances else

are true. Our numerical experiments show that the iterative: X := arg miny g %, H}A(map— X||r

solution is very likely to produce the optimal estimate, cfi1: end if

sectionIV-D. 12: P
The CMAP estimator is summarized in AlgoritHth 1. The = -~ S S

function iter(-) iterates [(IR) until| X¢ — X‘~1||» < e. R Ci“ +A(Y _PX)(Y - HX)T) [
For a derivation of the conditions for convergencelofl (12) it4: Output: X, P andR

would be sufficient to prove that the iteration is a conti@cti

mapping [24]. Deriving these conditions appears intrdetab

in general. However, it is possible to show that the itegativ- Marginalized MAP

solution [12) does not diverge. L&t = HX‘*! denote the _ o _ _
predicted observation, ang denote theth column of Y4+, In certain applications the covariance matrifeandR may
If ||3:]3 = %/ H'Hx, is bounded, then|x,||? is bounded MOt be of interest and can be treated as nuisance parameters

since H has full rank andEITH > 0. Hencel|[Y*+!||2. < that are marginalized out from the prior and likelihood pdfs
of] so that Utilizing the conjugacy of the inverse-Wishart distritartito
)71 v the Gaussian distribution,

o

Co+(X-U)X-U)T) /%

Il
I~ YN

oo = X2 < oo. Next, considerU =
@) can be written aX‘+! = P,H " (ﬁg +HP,H'

and definel’;, £ HP,H' >~ 0 and®, 2 R, + Iy, > p(X):/p(X|P)p(P)dP
T',. Hence|T,®,'|2 < 1 and it follows that|y.[|? =

IH%,(3 = [ITe®; yell3 < ITe®; " Blyel3 < llyell3- x ‘ifﬂ +C,
Therefore|| Y**+!||2. is bounded and consequent|X‘**||2,

is bounded for all¢. The iterative solution[(12) must eitherand

converge or produce a bounded orbit. In fact, through ektens

simulations the algorithm was always found to converge. In p(Y|X) = /p(Y|X,R)p(R)dR
section IV-B we present an empirical convergence analyfsis o

the fixed-point iteration. ~ ‘??T +C,

— (et N) /2

‘7(l/w+N)/2

1This is no restriction as it is possible to define an equivapenblem with . . . L
zero-mean variablesX = X — I‘} andY = Y — HU qan\éaﬁen shift the 1hen taking the negative logarithm of the marginalized pdf,

estimate ofX. p(X[Y) x p(Y|X)p(X), results in a cost function of the same



form as [[8) and the marginalized MAP estimator is given bwhich equals the functional form @¥ independent Gaussians

Xmmap: argmin V'(X) (13) with mean and covariance
where o U=(H"Egy[R™H+Epy[P1)~!
! x (HT Egy[RY + Epy[P717'U)  (15)
V() £ In Ly + (Y ~ HX)T O (Y — HX)| P = (H By [RH+Epy [P0,
+ % n|Iy+(X-U)'C'(X-U), The mean and mode coincide and the variational MAP esti-

_ mator equals
and the weights are/, = v, + N andy,, = v, + N. Thus

we can apply the same solution methods as used for CMAP )A(wnap: argmax ¢(X|Y) = U. (16)
but with different weights. XeRnxN

. Further,
D. Variational MAP !

We note that the sought variables follow the condi- Ing(P[Y) = Ex gy [Inp(X,P,R,Y)] + K

tional distributions: [X];|P,R, Y ~ N((H'R'H + = Ex gy Inp(X|P) + Inp(P)] + Ko
P-) (HR'Y + P 'U),,(H'R'H + P 1)), Vet N+n+1

PIX,R, Y ~ W C, + (X -U)(X-U)T,v, + N) and =Expy |-~ n|P|
RIX,P,Y ~ W YC, + (Y -HX)(Y -HX) ", 1, + N), 1 oo

where [X]; denotes theith column of X. This enables a - 5t{(Ce + XX )P }} + K
numerical computation of the mean of the posterior pdf ! +n+1 1 o~
p(X,P,R|Y) in (@) by means of Markov Chain Monte :—%ln|P|—§tr{CmP '+ K

Carlo methods, e.g., Gibbs sampling [7]. Whilst the posteri__ = . ) i .
mean is the MSE-optimal estimate, the dimensionality of thhis |s/ the functional form of an inverse-Wishart with param
problem requires a very large number of samples for accur&€"7: = ¥= + N and
Egmputamon, renderlng_the samp_lln_g methods mtrac_temje. C. = Cy + Expy[(X - U)X — U)T]
pleteness we consider a variational approximation ef th e o = _
posterior pdf([25], and derive the corresponding MAP estima =C,+NP+NUU' —-UU' -UU" +UU".
tor. The solution to this approximated problem results in an (17)
iteration that converges to a local minimum. . o
The pdfp(X, P, R|Y) is approximated by conditionally in- Thus P~" follows a Wishart distribution andpy [P~'] =
dependent pdfg(X|Y)q(P|Y)q(R|Y). The distributions that 7,C; . Similarly,
minimize the Kullback-Leibler divergence to(X,P,R[Y)
are given by/[[7] Ing(R|Y) = EX,/R|Y[IHP(Xa P,R,)Y)| + K,
G(X[Y) o cPrmy Inp(XPRY) = R| - St{CLR ) + K
E Inp(X,P,.R,Y
a(PIY) oce st ! (14) has the functional form of an inverse-Wishart distributigith
g(RIY) o Fxpivlimp PR parameters/, = v, + N and

Using the chain rule and introduciny = Epy[P~!] and

N T
W = Eg)y [R™] for notational simplicity, we have Cuy = Cu + Ex ppy[(Y —HX)(Y — HX) |

=C,+YY'-YU'H' —HUY' 18
ng(X|Y) = Ep iy [0 p(X PR, V)] + K YY “YUH (9
= Epgy[Inp(YX,R) + Inp(X|P)] + K ANHPHS + NHUU
- —%tr{(Y —HX)" Egy[R7Y(Y — HX)} ThusR~! follows a Wishart distribution and )y [R™'] =
/ C_l.
1 Y Co
- Etr{(X -u)’ Epy P (X -U)}+ K3 Inserting these results intg_(16) the variational MAP esti-

1 mator is computed iteratively as
= —§tr{YTWY ~Y'WHX - X"H'WY R N N
Xvmap = (%/UHTC;lH + 7;051)71

+X"H'WHX +X'VX - o
— —ltr{XT(HTWH +V)X The parameterE’, .and (_Njw are _spb;equently L_deated using
2 - . (I7) and[(IB). The iteration is initialized by setting thegra-
- (Y WH+U V)X etersC, = C, andC,, = C,,. Experimentally we find that
~X'"(H'WY +VU)} + K5 using more informative initialization points, i.e., irtizing

1 IO - (I7) and [IB) withU = X, andP = P, produces virtually
= —5r{X - U)'PH(X - U)} + K, identical results.



IV. EXPERIMENTAL RESULTS B. Signal setup

__In this section we compare the statistical performance of For sake of illustration, we consider the problem of estimat
Xemap With other estimators using the distribution of noring a stochasti@ x 2 multiple-input multiple output (MIMO)
malized squared errors, NSE || X — X||2/E[|X||2]. The channelA € R?*2 from observed signals, = Asj +ny. As
expectation is over all random variables. In particularwi#é is common in wireless communications, this is achieved by
use the normalized mean square error NMSE [NSE and transmitting a known training sequenfe= [s; - - - sx] [26],
the complementary cumulative distribution function (9¢df[27]. Collecting K snapshots and vectorizing, the observation

Pr{NSE > x}. The former measures the average performanise rewritten asy = Hx + w, wherex = vedA) and
of the estimators and the latter quantifies their robusttessH = (ST ® I;). The vectorized channel coefficients
noise and covariance uncertainties. and noisew follow independent, zero-mean, conditionally

We also evaluate the NMSE of the covariance matrigaussian distributionsS is chosen as a deterministic white
estimatesP andR in comparison with the nominal matricessequence with constrained powgg|3 = 10. We setP, =

Py, andR,. %In, and Ry = o021,,. The covariance matrices are drawn
The statistical measures are estimated by means of Moaggording to inverse-Wishart distributions. We considgti-e
Carlo simulations. mating N channel realizationX € R"*" from observations

Y =HX+4+ W e R™*V,
_ The signal to noise ratio,
A. Estimators

We compareX cmap With Xmap and Xy, that use nominal SNR2 E [|HX]%] _ tr{HP H'}
covariance matrice®, and Ry. For CMAP we set the E[|W]%] tr{Ro}
tolerance parameter= 10-5.

For comparison of robustness properties with respect fo bég varied in the experiments, i.e., setting; =
signal and noise covariance uncertainties, we also apgly th{HH'}/(mn x SNR). We considerK = 8 snapshots
state of the art difference regret estimator (DRE) given #0 thatm = 16 andn = 4. For m > n, the resulting
[12], Xgre. This estimator assumes thit is zero mean and low-rank signal structure enables CMAP to estimate parts
is derived on assumption that the spatial correlations ef tef both covariances. Whem = n, the loss of parameter
signal and noise are structured by the singular vecto of identifiability makes CMAP rely less on the prior signal
Nevertheless, in[12] it is suggested that the estimatorbean Statistics at higher SNR levels, thus performing closerh® t
implemented whether or not this correlation structure tissa MVU estimator.
fied. The covariance uncertainties are treated deterrntialigt Throughout the experiments we ran®> Monte Carlo sim-
as bounds on the eigenvaluesBf, i.e., ¥ < A\¥ < u¥ for ulations for each signal setup.
i=1,...,n, andRy, i.e, [ <AV <w¥ forj=1,...,m.

The estimator has the form

-~ _ C. Results for single observation
Xqe=D,H' (HD,H' +D,) Y. (19) g

) . ) In the following experiments we considér = 1. First, the
The input covariance matrices are seflas = VA VT and  average performance of the estimators are compared[Fig. 2
D, = WA, W', whereV andW are eigenvector matricesghows the NMSE as a function of SNR when the degrees
of Py and Ry, respectively. Furtherd,, = diag(d7,...,0%)  of freedom forP and R are set to their minimum integer
and A, = diag(dy’, ..., d;,), where values? = n + 2 andv = m + 2, respectively. This yields
the minimum certainties of the random quantities. CMAP
is capable of reducing the NMSE by up to approximately
2 dB compared to the standard MAP. As SNR increases,
MAP converges faster to MVU than does CMAP. The average
performance of DRE is initially similar to MAP but the gap
\/W increases with SNR as it injects a larger bias.
- VI +uto? +\JuP + Fo? (20) Next, the statistical performance of the estimators is com-
! o Lo pared using the ccdBr{NSE > «}, at SNR=0 dB. The curves

whereo; are the singular values d. in Fig. [3 illustrate the relative robustness of the estimmato

Since the covariance uncertainties are treated probabilis covariance uncertainties. Estimators that produce ardow
tically in this work, selecting deterministic bounds on théraction of poor estimates will have lower ccdfs. Note that
eigenvalues can only be done heuristically. Here we ha®SE > 1 are estimates that have errors greater than the
selected]; = (1—1°/v))\; andu; = (1+v°/v))\;, wherer® average NSE of the meaX = 0. As expected, MAP and
denotes the minimum integer value mfi.e.,») =n+2 and DRE perform similarly at this SNR level, while MVU is
v = m+2. Thus with minimum certainty of the covariancesslightly worse but declines at a similar rate. CMAP declines
the lower bound is 0 and upper boundis;. As v — oo, the more rapidly, with a ccdf that is approximately one order of
bounds become tight. magnitude lower than MVU at = 10.

5 = il + (L—aguf, i=1...n

5 = il + (1 —aqul, i=1,....n

andd? = \¥ forall i =n+1,...,m. Here

Q;
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Fig. 4. NMSE versus SNR, with, = 19 andv,, = v9,. N = 4. Gibbs 1,

10° 2 and 3 use 200, 2 000 and 20 000 samples, respectively.
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D. Results for multiple observations , ) ~ ~ ]
. . Fig. 5. Difference NMSE betweeK cmapandXmap versus SNR, for different
The previous experiments are repeated Xor= 4. We use certainties ofP andR. N = 4.

the Gibbs sampling approximation of the posterior mean kwvhic

provides a bound on the NMSE, cf. Fig. 4. In this scenario we

see that CMAP is very close to the optimum. When> N, the noise statistics and CMAP approaches MVU. As both

the computational complexity of the Gibbs sampler and CMAgovariance matrices become less certain v,,) — (2, v3),

is of the orderO(m?Nier), Wherem? is the complexity of the advantage of CMAP increases, illustrated by the dashed

matrix inversion andVie, is the number of repetitions. For theand solid lines. The improvement fa¥ = 4 snapshots is

Gibbs samplerNier = 2 x 10% is about 100 times the numberabove 3 dB for low SNR.

of parameters to estimate and provides a good approximatiomext, the statistical performance is assessed using the ccd

of the mean. For CMAP, the expected number of iterationsa$ SNR=0 dB. Figd.]4.]7 arid 8 illustrate robustness at various

approximately three orders of magnitude less, cf. Bec.lIV-Ecovariance uncertainties. A comparison between[Hig. I&nd 6
Further, we vary the certainties of the covariance matshows how the ccdf of CMAP is reduced when the number

ces by settingy to the extremesy® and co. (For co, we of samples increases froléf = 1 to 4. When CMAP relies

set v numerically to 10°.) The relative difference in aver- primarily on the noise statistics, as in Fig. 7, it tends taisa

age performance between CMAP and MAP is denoted VU. While the average NSE of CMAP rises slightly above

ANMSE, where a negative value means reduction in NMSHEAP in this case at low SNR (Figl 5), its ccdf exhibits a sharp

in decibel using CMAP. The results are shown in Hi@). Secline relative to MAP. When only the signal statistics are

When (v, 1,,) = (00,00), CMAP is identical to MAP but reliable, the differences in decline are more pronounced, s

for (v.,vw) = (V2,00) the estimator relies primarily on Fig.[8. In all three cases the fraction of poor estimates cuts
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off faster for CMAP than MAP.

Further, we investigate the estimation errors of the cevari
ance matrix estimatd® andR.. More specifically, we compute
the difference NMSE between the estimates and the priors,
which quantifies the information gain, &§ increases. The
results are shown in Fif] 9 for various SNR levels. Note that
there is a measurable gain evenMt< n and N < m. Thus
CMAP is useful also as a covariance estimator for applicatio
in which signal statistics are of importance.

In practical scenarios with uncertain covariances, CMAP
would be implemented witthe minimal integer values!
and 0. We now investigate the effect of mismatches from
this conservative prior knowledge by setting the true valice
% + Av. In FiguresID anf[11 we increager, and Av,,,
respectively. At SNR=0 dB, we see increases in NMSE for ‘ ‘ ‘ :
CMAP but the advantage of the estimator is still robust with 10° 10 10 10 10
respect to mismatches for either distributionshobr R.

Finally, we investigate how CMAP performs when increas-
ing the signal dimensions. We now set= 64 andn = 16, for ~ Fig. 11. NMSE versus\v,, at SNR=0 dB.N = 4.
SNR=0 dB, withv, = 1, v, = 2 and N = 16. The NMSE

NMSE [dB]
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k}, as displayed in Fig—14. When= 10-% we see that the
probability of Ny, exceeding 300 iterations is less thEim 3,
and the mean ol is 24.7. Fore = 1073, the mean ofVier

is reduced by more than a half, while the NMSE is virtually the
same. For = 1071, the entire ccdf is substantially reduced
while incurring an increase in NMSE of only 0.24 dB.

We also estimate the proportion of instances in which the
fixed-point iteration converges to two different minimartitey
from Xmw and U, respectively. We quantify this as when the
convergence pointsX; and X, differ substantially from the
numerical tolerance, i.ePr{ | X; — Xs||r > 1072 xnN}. For
the given scenario, the probability was estimated to 0.03. |
98% out of those instanceX; produced a lower cost'(X)

NMSE [dB]

= 0 5 10 15 than Xo.
SNR [dB] In all our simulations we did never encounter a single
case when the fixed-point iteration failed to converge to the

Fig. 12. NMSE versus SNR fom = 64 andn = 16. N = 16. tolerance.

_ o . F. Comparison between alternative MAP estimators
per_formance as a function of SNR s illustrated in FE@ 12 Finally, we compare a scenario in which the covariance
which shows a gain of CMAP over MAP greater than in th?natrices are not of interest and can be marginalized out,

setup considered in Figl 4, where= 16, m = 4 andN = 4. resulting in the marginalized MAP estimatdr 13) using the
same initial points as CMAP. The difference between the
- ) estimators is marginal in terms of NSE performance (see
E. Empirical convergence properties Fig. [I8). The NMSE is marginally better for MMAP as it
We now turn to the convergence properties of the iteratiestimates fewer parameters than CMAR,.98 and—9.94 dB
solution [12) of CMAP for the same scenario as consideredfior MMAP and CMAP, respectively. The variational MAP
the previous section, i.e., SNR=0 dB, with = v, v, = 0  estimator performs better than the standard MAP but isiimfer
and N = 4. Fig.[I3 shows a comparison of the convergente MMAP and CMAP. The NMSE is-6.83 and —8.10 dB
rate of the fixed-point iteration and the gradient descent sor MAP and VMAP, respectively.
lution, for a typical realization. Both solutions exhibitrslar We also evaluate the significance and robustness of the
rates once the estimates are sufficiently close to a minimwmoice of starting points for CMAP and MMAP. Tests were
as both are based on the gradient. But the fixed-point iteratiperformed using initial pointX° randomized by a Gaussian
reaches this region within a few iterations without the neetistribution with covariancé, and a given mean. For each
for a user-defined step length. observationY we then form 10 random initial pointX©°
Next, we study the statistical convergence properties. Liefsulting in 10 search paths. The convergence point that
Nier denote the total number of iterations unfi[{12) fulfillsyields the lowest cost} (X), is retained as the estimate.
| XH!1—X*||F < . Then we can estimate the cdeif{ Nier > We denote this randomized MAP-based estimator as ‘RMAP".
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Fig. 13.  Convergence to minimurity, of gradient descent and fixed- N
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Ccdf of NSE at SNR=0 dB, witly, 0

= 10 and vy,
- x

T = 4. Comparison with the marginalized estimator, ‘MMAP’, thﬁ'mtlonal
point iteration, starting fromXmyu. Step sizesui, ug and ps3 were set to  estimator, ‘'VMAP’, and estimator with randomized initiabipts ‘RMAP’.
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We have derived a joint signal and covariance maximum a
posteriori estimator for the linear observation model, ighe
the signal and noise covariance matrices are modeled as
random quantities. We formulated a solution of the noncrnve
problem as a fixed-point iterations. The resulting estimato
CMAP, exhibits robustness properties relative to the siethd
MAP and MVU estimators as well as the minimax difference
regret estimator in low-rank signal estimation problemghis
scenario CMAP also shows near MSE-optimal performance.
As the number of samples increases, the performance gains of
CMAP can be quite substantial.
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